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Abstract. The Shapley value provides a unique solution to coalitianemand
is used to evaluate a player’s prospects of playing a gantbo#gh it provides
a unique solution, there is an element of uncertainty aatetiwith this value.
This uncertainty in the solution of a game provides an aoidi#i dimension for
evaluating a player’s prospects of playing the game. THageps want to know
not only their Shapley value for a game, but also the assmtiatcertainty. Given
this, our objective is to determine the Shapley value andritertainty and study
the relationship between them for the voting game. But sihegroblem of de-
termining the Shapley value for this game sébmplete, we first present a new
polynomial time randomized method for determining the agpnate Shapley
value. Using this method, we compute the Shapley value anglate it with
its uncertainty so as to allow agents to compare games oragie bf both their
Shapley values and the associated uncertainties. Our shaiys that, a player’s
uncertainty first increases with its Shapley value and tleenehses. This implies
that the uncertainty is at its minimum when the value is amigximum, and that
agents do not always have to compromise value in order taeeducertainty.

1 Introduction

Coalition formation is the process of joining together obtar more agents so as to
achieve goals that individuals on their own cannot, or tdexehthem more efficiently
[9]. Often, in such situations, there is more than one ptssibalition and a player’s
payoff depends on the coalition it joins. Given this, a keglpem in this area is to
ensure that none of the parties in a coalition has any inegetdibreak away from it and
join another coalition (i.e., the coalitions a&ble. However, in many cases there may
be more than one solution (i.e., a stable coalition). In stades, it becomes difficult
to select a single solution from among the possible onegoédy if the parties are
self-interested (i.e., they have different preferences etable coalitions).

In this context, cooperative game theory deals with the lpralof coalition for-
mation and offers a number of solution concepts that poskesisable properties like
stability, fair division of joint gaingsanduniquenes§3, 7]. Multiagent systems research
has used and extended these game-theoretic solutiondlimfa@utomated coalition



formation [9, 14, 12]. In this work, one of the most extenbivatudied solution con-
cepts is theShapley valugl3]. The Shapley value providesumiquesolution and is
therefore used to evaluate a player’s prospects of playganze.

Although the Shapley value provides a unique solution, ¢ twe key drawbacks.
First, for the weighted voting game that we consider, théjem of determining the
Shapley value is #tcomplete [1]. Second, it provides the solution only withraited
degree of certainty [11]. Thus the uncertainty in the Shapidue provides an addi-
tional dimension for evaluating a player’s prospects of/jplg a game and a measure
of uncertainty would serve as a useful tool to investigaiedbpect of a game. Charac-
terizing a game by both its value and uncertainty is like ahtarising a weapon by its
power and precision, or a financial stock by its expectedmednd risk [4].

The concept of uncertainty in the outcome of a game is noteynthew. For in-
stance, Roth showed that the Shapley value of a game egsiailitty, if and only if
the underlying player preferences are neutral to lotnary* andstrategicrisk [10,
11]. Otherwise, the Shapley value is not the same as utilityis therefore insufficient
for decision-making purposes. Kargin extended this confiether by introducing a
measure for determining the strategic risk [4]. This measicalled theincertaintyof
the Shapley value and it provides a yardstick for quantgithe strategic risk. Thus, in
order for a player to make more informed decisions, it is ingnat for it to not only
know its Shapley value, but also the relation between thigevand its uncertainty.
However, to date, there has been no analysis of this rekdtipn

Given this, our objective is to analyse the relation betwtberShapley value and its
uncertainty for thevoting gamesince it is an important mechanism for multiple agents
to reach consensus). However, uncertainty is defined irstefitihe Shapley value (i.e.,
in order to find uncertainty, the Shapley value needs to berohed first). But, as
we pointed out, the problem of determining the Shapley vakg been shown to be
#P-complete [1]. We therefore present a nemdomisednethod (that has polynomial
time complexity) for computing thapproximateShapley value. Using this method, we
determine the Shapley value and correlate it with its uadast. Our study shows that
each player’s uncertainty first increases with its Shapéyerand then decreases. This
implies that the uncertainty is at its minimum when the vatiat its maximum, and
that agents do not always have to compromise value in ordediace uncertainty.

To our knowledge, the only work that addresses the problemmoértainty in the
Shapley value is [10, 11, 4]. While [10, 11] introduces thaaapt of strategic risk in
the context of the Shapley value, [4] defines a measure ¢catieertainty) for this risk.
Our paper therefore makes a twofold contribution. Firstpnesent a polynomial time
method along the lines dflonte Carlo simulatior{see Section 3 for details) for com-
puting the Shapley value for the voting game. Second, usiisgiethod we compute
the Shapley value and analyse its relation with uncertainty

Section 2 defines the Shapley value and its uncertaintyid®e8t describes the
weighted voting game. Section 4 to Section 7 determine tlatioa between the Shap-
ley value and its uncertainty. Section 8 concludes.

! Ordinary risk involves the uncertainty that arises from¢hance mechanism involved in lot-
teries. On the other hansdirategic riskinvolves the uncertainty that arises as a result of inter-
action in a game of strategic players (i.e., those playextsate not dummy).



2 The Shapley value and its uncertainty

We begin by introducing coalition games and then define thighted voting game.
Coalition games are of two types ([7]): those withnsferable payoffand those with
non-transferable payaffA coalition game with transferable payoffV, v}, consists of
afinite set (Vv = {1,2,...,n}) of players and a function that associates with every
non-empty subsef of N (i.e., acoalition) a real numbev(S) (the worth ofS).

For each coalitiot, the number(.S) is the total payoff that is available for division
among the members &f (i.e., the set of joint actions that coaliti¢ghcan take consists
of all possible divisions of(.S) among the members ¢). Coalition games with non-
transferable payoffs differ from ones with transferablggits in the following way.
For the former, each coalition is associated witsetof payoff vectors that is not
necessarily the set of all possible divisions of some fixedwm In this paper, we
focus on the Shapley value for a game with transferable fpayof

Let S denote the seN — {i} and f; : S — 2V—{# be a random variable that
takes its values in the set of all subsetd\bt- {i}, and has the probability distribution
function (g) defined as:

a{fi(S) = 53 = 1B —nl!S| —1)!

The random variablg; is interpreted as the random choice of a coalition that playe
1 joins. A player’s Shapley value [13] is defined in terms ofnitarginal contribution

The marginal contribution of playérto coalitionS with i ¢ S is a functionA;v that
acts in the following way:

Aw(S) = v(S U {i}) — v(S)

Definition 1. The Shapley valuex) of the gamé N, v) for playeri is the expectation
(E) of its marginal contribution to a coalition that is choseandomly, i.e.; (N, v) =
E{Awo f;}

The Shapley value is interpreted as follows. Suppose thdahealplayers are ar-
ranged in some order, all orderings being equally likelyef; (N, v) is theexpected
marginal contribution over all orderings, of playerto the set of players who precede
him. Theuncertaintyof the Shapley value, is defined as follows [4]:

Definition 2. The uncertainty §;) for playeri is the variance Var) of its marginal
contribution. Thug3;(N,v) = Var{Av o f;}

Thus, while a player’'s Shapley value is the expectation, @i mean), its uncertainty
is the variance (i.e., the square of the standard deviatibit3 marginal contribution.
In other words, the uncertainty is the expectation of theasggi difference between the
actual and expected marginal contributions.

The utility of a player that is not neutral to strategic riggp@nds on both its Shapley
value and the associated uncertainty. Furthermore, sudayars utility function is
subjective and different players may have different fusrdi for the same game. But
for a given game, the relation between the Shapley value tsndnicertainty is not
subjective to player preferences and is the same for alleptayWe therefore analyse
this relation for the voting game described in Section 3.



3 The weighted voting game

We adopt the definition of voting game given in [7]. There issa&f n players that
may, for example, represent shareholders in a company orbersnin a parliament.
The weighted voting game is a gaiie= (N, v) in which

_ [1ifw(S) 2q
v(§) = {0 otherwise

for someq € R, andw; € RY, wherew(S) = > icg w; for any coalitionS. Thus
w; is the number of votes that playghas and; is the number of votes needed to win
the game (i.e., thquotg). For this game (denotgd; w1, . . . ,w,)), a player's marginal
contribution is either zero or one.

The problem of determining the Shapley value for the weigkteting game is #
complete [1]. A problem is #hard if solving that problem is as hard as counting sat-
isfying assignments of propositional logic formulae [84@% Since #-completeness
thus subsumessP-completeness, this implies that computing the Shapleyevidr the
weighted voting game will be intractable in general. To ceene this problem, two
methods have been proposdibnte Carlo simulatiorf5] and the method ofjienerat-
ing functiong[6]. The former method treats the numbersvfingg for each player as
a random variable over a given distribution and defines ttaptely value in terms of
these random variables. While this method gives the appraté Shapley value, the
generating functions method is an exact procedure. Althduig an exact procedure,
it requires very large arrays (i.e., it requires substést@age space) and can only be
applied to games with integer weights and quotas.

The method we present is similar to that of [5] in the senstitligan approxima-
tion method. But the difference is that while [5] defines thefey value by treating a
player’s number of swings as a random variable, we treat ygeps’ weights as ran-
dom variables. Since the voting game is defined in terms oplbigers’ weights and
the number of swings are obtained from these weights, ounadetorresponds more
closely to the definition of the voting game. Furthermorelaes not require large ar-
rays and is therefore economical in terms of storage spdwepioposed method has
polynomial time complexity. We first consider a simple vgtiame in which all play-
ers have equal weight. We then extend our analysis to a gathéwd types of players:
large andsmall and finally generalise it to more than two player types.

4 All players have equal weight

Consider the gaméy; j, . - ., j) with m parties. Each party hgsseats. Ifg < j, then
there would be no need for players to form a coalition. On tieohand, ify = mj
(m = |N| is the number of players), only the grand coalition is pdssifbhus, the
quota ) satisfies the constraintj + 1) < ¢ < j(m — 1). A majority is decisive. The
value of a coalition is one if the weight of the coalition isgter than or equal tg,
otherwise it is zero.

2 A swing for a playet is a pair of coalitions#, « U ) such that is losing butz U3 is winning.
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Fig. 1. Shapley value vs. uncertainty

Let p denote the Shapley value for a player ghdenote its uncertainty. Consider
any one player. This player can join a coalition asdtemember wherd < i < m.
However, the marginal contribution of the playerlisonly if it joins a coalition as
the [¢/j1th member. In all other cases, its marginal contributionésoz Thus, the
Shapley value for each playergs= 1/m. We know from Definition 2, that a player’s
uncertainty is the variance of its marginal contributiorenide, for each player, the
uncertainty (denoted) is:

B=(1=-9)p"+(1—-09p)p 1)

Having expressed a player’s uncertainty in terms of its &yayalue, we can now
correlate them. To this end, Figure 1 shows how the uncéytaaries with the Shap-
ley value. Since the Shapley value lies in the intef@al], Figure 1 plots uncertainty
for this interval. As seen in the figure, uncertainty firstreeses as the Shapley value
increases and then decreases. Uncertainty is maximymn=at /2. The following sec-
tions analyse the voting game for the case where all partie®thave equal weight.

5 Asingle large party

Consider a parliament in which there is one party with> 1 seats, andn parties
each with one seat. Thus, there are two types of playarge (with weight j) and
small (with unit weight). The quota for this gamegsi.e., we have a game of the form
{g;7,1,1,...,1). The total number of players {n + 1). The value of a coalition is
one if the weight of the coalition is greater than or equaj,totherwise it is zero. Let
o denote the Shapley value for the large player @andhat for each small player. As
we will show, the Shapley value of this game depends on whethaot g is greater
thanm. We therefore study the two possible cages: m andg > m:

1. Consideg < m first. The smallest possible value f@is j + 1. This is because, if
q < j, then the large party can win the election on its own, witltbetneed for a
coalition. Thus, the quota for the game satisfies the redatiel < ¢ < m+j—1.
Also, the lower and upper limits fof are2 and (¢ — 1) respectively. The lower
limit is 2 because the weight of the large party has to be greater ttdmsaaall



one. Furthermore, the weight of the large party cannot batgrehang, since in
that case there would be no need for the large party to fornaktiom. Recall that
for our voting game, a player’'s marginal contribution to al@@mn has only two
possible values: zero or one.

Consider the large party. This party can join a coalitionhesith member where

i satisfiesl < ¢ < (m + 1). However, the marginal contribution of the large
party is one if it joins a coalition as thith member wheré satisfies the condition
(g—3j+1) <i<qg. Inall the remaining cases, its marginal contribution isze
Thus, out of the totalm + 1) possible cases, its marginal contribution is ong in
cases. Hence, the Shapley value of the large party is:

o1 =j/(m+1) ()

Consider a small player. For a small player, the marginatrdmrtion is one in
two cases. First, if it joins a coalition (that already has ldrge party in it) as the
(g — j + 1)th member. Out of thém + 1)! possible permutations, the number of
permutations that satisfy this condition(ig¢ — j)(m — 1)!. Second, if it joins a
coalition (consisting oy — 1 small players) as thgth member. The number of
permutations that satisfy this condition(ia — ¢+ 1)(m — 1)!. Hence, the Shapley
value of each small party is:

ws=(m—j+1)/m(m+1) (3)
Using Definition 2, we get the uncertainty for the large pasy
Bi= (1=’ +oi(1—@)? (4)
For each small party, the uncertainty is:
Bs = (1= 9s)ps” + ¢s(1 = ¢5)° (5)

. Considegy > m. As before, the quota satisfies the relatjon1 < g <m+j— 1.
Also, 2 < j < (¢ — 1). Consider the large party. As before, this party can join
a coalition as theéth member wherd < i < (m + 1). However, its marginal
contribution is one only if it joins as thi#h member wher¢g — j + 1) < i < gq.
Thus, out of alllm + 1) possible cases, its marginal contribution is ong @ases.
Hence the Shapley value of the large party is:

o =7/(m+1) (6)

Consider a small player. Singe> m, a small player’s marginal contribution is one
in only one case: if it joins a coalition (that already hasldrge party in it) as the
(¢ — 7 + 1)th member. Out of thém + 1)! possible permutations, the number of
permutations that satisfy this conditionis— j)(m — 1)!. Hence the Shapley value
of each small party is:

ps = (¢ —Jj)/m(m +1) (7)



We get the uncertainty for the large party as:

Bi= (1=’ +oi(1—@1)? (8)
For each small party, the uncertainty is:
Bs = (1- 903)9032 +ps(1 - ‘Ps)2 9)

Note that for each player, uncertainty (in Equations 4, 5ar}] 9) has the same
relation with Shapley value as that for Equation 1. Themftne plot in Figure 1 ap-
plies to Equations 4, 5, 8, and 9 as well. Thus, for the votiagg with a single
large player, each player’s uncertainty first increasessaShapley value increases. A
player’s uncertainty is at a maximum when its Shapley vafuk/2. As the Shapley
value increases further, uncertainty decreases.

6 Multiple large and multiple small parties

Consider a parliament in which there areparties. The set of parties consistskofh
large parties andl — k)m small parties wheré < k < 1. As before, each large party
hasj seats and each small one has one seat. The total seats int@cadlsizem is
mkj + (1 — k)m. Thus, in a given population of players, the proportion eféplayers
is k. Here, the quotag] satisfies the constraiff + 1) < ¢ < (kmj + (1 — k)m —1).
As before, the lower and upper limits fgrare2 and(q — 1) respectively. Finally, the
value of a coalition is one if it hagor more seats, otherwise it is zero.

A Randomised Method for the Shapley Valueln order to determine a player’s Shap-
ley value, we consider a sample from the above defined populat players. Let this
sample be a large random coalition of si¥elL et k£ denote the proportion of large play-
ers in this sample. Irrespective of how the population isridbisted, the proportion of
large players in a sample of si2é is distributed approximatelgormally, with mean
p = kand variance = k(1 — k)/X (see [2] p435), i.e., we have:

b NG k(l);k))

On the basis of Equation 10, we obtain the Shapley value kgl Consider a large
party. The marginal contribution of this party to the randsample is one if the weight
of the sample is less than the quagalfut is greater than or equal (g — j). Otherwise,
its marginal contribution is zero. We know that the mean Wwedj the sample iéXj +

(1 — k) X. Leta denote the proportion of large players that is requirederrandom
sample to have mean weigfit — j) (i.e.,a = (¢ — j — X)/(X(j — 1))). Also, letd
denote the proportion of large players that is requiredierrandom sample to have
mean weight{qg — €) (wheree is an infinitesimally small positive number) (i.é.,=

(g — X —€)/(X(j — 1))). The expected marginal contribution of a large player to
the random sample is the area under the curve defined by tineahdrstribution of
Equation 10 between the limitsandb, i.e.,

(10)

o )2
x S (11)

7
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Fig. 2. A large player’'s Shapley value and uncertainty for a varyiright.

Therefore, a large player's Shapley value is:

_1 X
pr = m E 4 (12)
X=1
and its uncertainty is:
1 m
— A —¢p)? 13
Bi mXE:I( ) (13)

Consider a small party. The marginal contribution of thistpavhen added to a
sample, is one if the weight of the sample is less than theaggpbut is greater than or
equal to(qg — 1). Otherwise, its marginal contribution is zero. We know ttiet mean
weight of the sample i5Xj + (1- fc)X. Let ¢ denote the proportion of large players
that is required for the random sample to have mean wéightl) (i.e.,c = (¢ — 1 —
X)/(X (5 —1))). Also, letd denote the proportion of large players that is required for
the random sample to have mean weight € (i.e.,d = (¢ — X —€)/(X(j — 1))).
The marginal contribution of a small player is the area undercurve defined by the
normal distribution of Equation 10 between the limitandd, i.e.,

x 1 4 - S
Ay =———— | e dz (14)
V(2mv) Je

Therefore, for each small player, the Shapley value is:

1 m
=—> 47 (15)
m X=1
and the uncertainty is:
1 &, . x
== (A ) (16)
X=1
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Fig. 3. A small player's Shapley value and uncertainty for a varyiraight.

Theorem 1. The time complexity of the above randomised method for mi@targ the
Shapley value is polynomial in the number of players. Thedneacy of this method
decreases wittX and increases with.

Proof. The time required to compute the marginal contribatf a player to a coalition

of sizei (for 1 <4 < m) isindependent of the number of players (see Equations d1 an
14). A player can join the coalition as thith member (fol < i < m). The marginal
contribution of a player is determined for each of thesgpossible cases. Therefore,
the time taken to compute the Shapley valu@(is:).

The accuracy of the proposed method depends firstl{f owe know from [2], that
the inaccuracy in Equation 10 decreases¥sncreases. Consequently, the inaccuracy
of the proposed method decreases wkithThe second source of inaccuracyis 0. It
is obvious that the closeris to zero, the higher the accuracy. Thus, the inaccuracy of
the proposed method increases wit

We now analyse the relation between the Shapley value anddertainty. From the
above equations, we know that the Shapley value and its taitgrdepend on three
parameters: the number of players)( the weight associated with each large party
(5), and the quotag] for the game. Thus, we systematically vary these paraméater
order to study the relation between a player’s Shapley vaihakits uncertainty. These
parameters are varied as follows. We varteldetweer).1 and0.9. This is because we
want multiple large and multiple small players, and for géan, this range fok gives
us that. For each, we varied the parametens, j, andq such that the following two
constraints are satisfied:

C1 No player can win an election on its own (i.¢.< q).
C> The maximum number of parties required to win an electioess ithan the total
number of parties (i.eq < mkj + (1 — k)m).

Thus, for eachk, we determined the Shapley value and its uncertainty fderdift
values ofj andq that satisfy constraint§; andC>. This entire set of variations was
repeated for different values of.

Although a player’s Shapley value and its uncertainty vaith y, k, ¢, andm, the
uncertainty was always found to increase with Shapley valloze specifically, for the
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Fig. 4. A large player’s Shapley value and uncertainty for a varyjogta.
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Fig. 5. A small player’s Shapley value and uncertainty for a varyogta.

constraints defined above, if the number of players is large fn > 20) and there
are multiple large and multiple small players, we found thikfving relation. For each
player, the uncertainty increases as its Shapley valueases (see Figures 2to 7).

To begin, consider Figure 2. Fat = 200 andq = 200, this is a plot of a large
player's Shapley value and uncertainty for differing wefgfi.e., different values for
7). For each value of, the figure shows the Shapley value and uncertainty fok all
betweer(.1 and0.9. Likewise, Figures 3 is a plot for each small player.

Form = 200 andj = 5, Figure 4 is a plot for a large player’'s Shapley value and
uncertainty for a varying quota. For each quota (ig&.the figure shows the Shapley
value and uncertainty for akk between0.1 and0.9. Figure 5 is a plot for each small
player.

Consider Figure 6. Fof = 5 andg = 25, this is a plot of a large player’s Shapley
value and uncertainty for a varying number of players. Fohea, the figure shows the
Shapley value and uncertainty febetweer.1 and0.9. Likewise, Figures 7 is a plot
for each small player.

Thus, for two player types and variationsjok, ¢, andm that satisfy constraints;
and (s, the uncertainty for each player (large or small) increaseits Shapley value
increases. It is worth noting that in all the above figures,thmber of players is at

10
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Fig. 6. A large player’'s Shapley value and uncertainty for a varyingber of players.
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Fig. 7. A small player's Shapley value and uncertainty for a varyingnhber of players.

least20, and there is more than one player of each type ().2.< k£ < 0.9). For such
games, the Shapley value of each player is less@taihus, the relation between the
Shapley value and its uncertainty is the same as that forefténalf of the curve of
Figure 1 (i.e., forp < 0.5).

7 More than two player types

Consider a voting game with more than two types of playersul;@lenote the weight
of playeri. Thus, form players and for quotathe game is of the forry; wy, wa, . . . , wi,).
Consider a player population in which each individual pksyeeight has sstandard
normal distributio — A/(0,1). Since this distribution allows negative weights, we
transform this to\V/ (4, 1) in order to get positive weights. We know from Definition 1,

% Note that in Section 6 when we dealt with two player typesigheas no restriction on how the
population was distributed. But for more than two playemtypve assume that the population
has a normal distribution. Thus, while the results of Sec@are valid for two player types
with any population distribution, the results of this sentare valid for more than two player
types that have a normal distribution.

11
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Fig. 8. Shapley value and uncertainty for a gameofplayers and a varying weight.

that the Shapley value for a player is the expectationdf its marginal contribution to
a coalition that is chosen randomly. Thus, in order to deil@erthe Shapley value for
the above population of players (i.4/(4, 1)), we use the following rule from Sampling
Theory (see [2] p417) that holds good for a normal distridmuti

From a normal distribution (with meam and variance), if a sample of sizen
is drawn, then the sum of the weights of allplayers in the sample has the distribu-
tion V' (mp, mv). Thus, for the distributionX(4, 1)) we defined above, the sum of
the weights of the players in a random sample of sizés given by the distribution
N (4m,m). We use this rule to determine the Shapley value as follows.
A Randomised Method for the Shapley ValueFor player with weightw;, lety; de-
note the Shapley value aftj its uncertainty. LetX denote the size of a large random
sample drawn from a population in which individual playerigtes have the distribu-
tion A/(4,1). The marginal contribution of playérto this random sample is one, if the
total weight of theX players in the sample is greater than or equal tow; but less
thang. Otherwise, its marginal contribution is zero. Thus, thpemted marginal con-
tribution of playeri (denotedA) to the sample coalition is the area under the curve
defined byV (4X, X) in the intervallg — w;,q — €], i.e.,

x 1 q—€ (z—ax)?
Ai — / e~ 2x dx (17)
\/(271'1/) q—w;
and its Shapley value is
1< | x
i =~ > A (18)
X=1

It is easy to verify that the time complexity of this methodlém). Also, the two
sources of inaccuracy at€ ande. As in the case of the randomised method of Sec-
tion 6, the inaccuracy decreases wifland increases with The uncertainty associated
with the Shapley value is:

fi= = 3 (o - AXY (29)
X=1

12
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Fig. 10. Shapley value and uncertainty for a gamd @ players and a varying weight.

For the case of more than two player types, we define the follpwonstraints on
g andw; (for 1 < i < m):

Cs No player can win the game on its own (i.au; (< ¢) for 1 < i < m).
C4 The number of players required to win an election is less thdne., the quota is
less thardm?).

We use the above equations and systematically vary paresmgte; (for 1 <
i < m), andm, such that constraint§; andC, are always satisfied, and determine
the relation between the Shapley value and its uncertdihigse results are plotted in
Figures 8 to 10. Consider Figure 8. For each quota, an ingiiglayer's weight is
varied betweei andg—1. As seen in the figure, uncertainty first increases with Shapl
value and then decreases. Figure 9 is a plotfee 50 and Figure 10 that fain = 100.
In all these figures, a player’s uncertainty first increasi#is it Shapley value and then
decreases. Thus, the relation between the Shapley valutsamtertainty is the same
as that in Figure 1.

To sum up, our study provides a basis for agents to comparegamthe basis of
both their Shapley values and the associated uncertailtfeshowed that a player’s
uncertainty first increases with its Shapley value and tremmahses. This implies that
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the uncertainty is at its minimum when the value is at its mnaxi, and that agents do
not always have to compromise value in order to reduce usiogyt This is because, if
the Shapley value lies in the ranffe5..1], then an increase in value is associated with
a decrease in uncertainty.

8 Conclusions and future work

Although the Shapley value provides a unique solution thatggan indication of an
agent’s power relative to that of others, it also has an et¢mwieuncertainty associated
with it. Given this, the uncertainty is an additional dimemsthat an agent should take
into account for evaluating its prospects of playing a gaftgainst this background,
this paper has analysed the relation between the Shapleg ead its uncertainty for
the weighted voting game. Since the problem of determirtiegShapley value isr#
complete, we first presented a randomised method with paljaddime complexity.
Using this method, we computed the Shapley value and ctecelawith its uncer-
tainty. Our study shows that a player’s uncertainty firstéases with its Shapley value
and then decreases. Although our present work providesalpsamfor the case where
different players have different weights, the distribatif weights was assumed to be
normal. In future, we will generalise our results, by extegdhis analysis to other
types of distribution functions. Also, we will carry out teeme analysis for other com-
monly occurring games like the production-economy and thekat-economy.
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