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Abstract. The Shapley value provides a unique solution to coalition games and
is used to evaluate a player’s prospects of playing a game. Although it provides
a unique solution, there is an element of uncertainty associated with this value.
This uncertainty in the solution of a game provides an additional dimension for
evaluating a player’s prospects of playing the game. Thus, players want to know
not only their Shapley value for a game, but also the associated uncertainty. Given
this, our objective is to determine the Shapley value and itsuncertainty and study
the relationship between them for the voting game. But sincethe problem of de-
termining the Shapley value for this game is #P-complete, we first present a new
polynomial time randomized method for determining the approximate Shapley
value. Using this method, we compute the Shapley value and correlate it with
its uncertainty so as to allow agents to compare games on the basis of both their
Shapley values and the associated uncertainties. Our studyshows that, a player’s
uncertainty first increases with its Shapley value and then decreases. This implies
that the uncertainty is at its minimum when the value is at itsmaximum, and that
agents do not always have to compromise value in order to reduce uncertainty.

1 Introduction

Coalition formation is the process of joining together of two or more agents so as to
achieve goals that individuals on their own cannot, or to achieve them more efficiently
[9]. Often, in such situations, there is more than one possible coalition and a player’s
payoff depends on the coalition it joins. Given this, a key problem in this area is to
ensure that none of the parties in a coalition has any incentive to break away from it and
join another coalition (i.e., the coalitions arestable). However, in many cases there may
be more than one solution (i.e., a stable coalition). In suchcases, it becomes difficult
to select a single solution from among the possible ones, especially if the parties are
self-interested (i.e., they have different preferences over stable coalitions).

In this context, cooperative game theory deals with the problem of coalition for-
mation and offers a number of solution concepts that possessdesirable properties like
stability, fair division of joint gains, anduniqueness[3, 7]. Multiagent systems research
has used and extended these game-theoretic solutions to facilitate automated coalition



formation [9, 14, 12]. In this work, one of the most extensively studied solution con-
cepts is theShapley value[13]. The Shapley value provides auniquesolution and is
therefore used to evaluate a player’s prospects of playing agame.

Although the Shapley value provides a unique solution, it has two key drawbacks.
First, for the weighted voting game that we consider, the problem of determining the
Shapley value is #P-complete [1]. Second, it provides the solution only with a limited
degree of certainty [11]. Thus the uncertainty in the Shapley value provides an addi-
tional dimension for evaluating a player’s prospects of playing a game and a measure
of uncertainty would serve as a useful tool to investigate this aspect of a game. Charac-
terizing a game by both its value and uncertainty is like characterising a weapon by its
power and precision, or a financial stock by its expected return and risk [4].

The concept of uncertainty in the outcome of a game is not entirely new. For in-
stance, Roth showed that the Shapley value of a game equals its utility, if and only if
the underlying player preferences are neutral to bothordinary1 andstrategicrisk [10,
11]. Otherwise, the Shapley value is not the same as utility and is therefore insufficient
for decision-making purposes. Kargin extended this concept further by introducing a
measure for determining the strategic risk [4]. This measure is called theuncertaintyof
the Shapley value and it provides a yardstick for quantifying the strategic risk. Thus, in
order for a player to make more informed decisions, it is important for it to not only
know its Shapley value, but also the relation between this value and its uncertainty.
However, to date, there has been no analysis of this relationship.

Given this, our objective is to analyse the relation betweenthe Shapley value and its
uncertainty for thevoting game(since it is an important mechanism for multiple agents
to reach consensus). However, uncertainty is defined in terms of the Shapley value (i.e.,
in order to find uncertainty, the Shapley value needs to be determined first). But, as
we pointed out, the problem of determining the Shapley valuehas been shown to be
#P-complete [1]. We therefore present a newrandomisedmethod (that has polynomial
time complexity) for computing theapproximateShapley value. Using this method, we
determine the Shapley value and correlate it with its uncertainty. Our study shows that
each player’s uncertainty first increases with its Shapley value and then decreases. This
implies that the uncertainty is at its minimum when the valueis at its maximum, and
that agents do not always have to compromise value in order toreduce uncertainty.

To our knowledge, the only work that addresses the problem ofuncertainty in the
Shapley value is [10, 11, 4]. While [10, 11] introduces the concept of strategic risk in
the context of the Shapley value, [4] defines a measure (called uncertainty) for this risk.
Our paper therefore makes a twofold contribution. First, wepresent a polynomial time
method along the lines ofMonte Carlo simulation(see Section 3 for details) for com-
puting the Shapley value for the voting game. Second, using this method we compute
the Shapley value and analyse its relation with uncertainty.

Section 2 defines the Shapley value and its uncertainty. Section 3 describes the
weighted voting game. Section 4 to Section 7 determine the relation between the Shap-
ley value and its uncertainty. Section 8 concludes.

1 Ordinary risk involves the uncertainty that arises from thechance mechanism involved in lot-
teries. On the other hand,strategic riskinvolves the uncertainty that arises as a result of inter-
action in a game of strategic players (i.e., those players that are not dummy).
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2 The Shapley value and its uncertainty

We begin by introducing coalition games and then define the weighted voting game.
Coalition games are of two types ([7]): those withtransferable payoffand those with
non-transferable payoff. A coalition game with transferable payoff,�� � � �, consists of
a finite set (� � ��� � � 	 	 	 � 
 �) of players and a function (�) that associates with every
non-empty subset� of � (i.e., acoalition) a real number� � � (the worth of� ).

For each coalition� , the number� � � is the total payoff that is available for division
among the members of� (i.e., the set of joint actions that coalition� can take consists
of all possible divisions of� � � among the members of� ). Coalition games with non-
transferable payoffs differ from ones with transferable payoffs in the following way.
For the former, each coalition is associated with aset of payoff vectors that is not
necessarily the set of all possible divisions of some fixed amount. In this paper, we
focus on the Shapley value for a game with transferable payoffs.

Let � denote the set� � ��� and �� � � � �� ���� be a random variable that
takes its values in the set of all subsets of� � ���, and has the probability distribution
function (� ) defined as:

� ��� � � � � � �
�� ��
 � �� � � �� �


 �

The random variable�� is interpreted as the random choice of a coalition that player
� joins. A player’s Shapley value [13] is defined in terms of itsmarginal contribution.
The marginal contribution of player� to coalition� with � �� � is a function��� that
acts in the following way:

��� � � � � �  ���� � � � �
Definition 1. The Shapley value (!�) of the game�� � � � for player� is the expectation
(" ) of its marginal contribution to a coalition that is chosen randomly, i.e.,!� � � � � �
" �� �� # �� �

The Shapley value is interpreted as follows. Suppose that all the players are ar-
ranged in some order, all orderings being equally likely. Then!� � � � � is theexpected
marginal contribution, over all orderings, of player� to the set of players who precede
him. Theuncertaintyof the Shapley value, is defined as follows [4]:

Definition 2. The uncertainty ($�) for player � is the variance (% &') of its marginal
contribution. Thus$ � � � � � � % &' �� �� # �� �
Thus, while a player’s Shapley value is the expectation (i.e., the mean), its uncertainty
is the variance (i.e., the square of the standard deviation)of its marginal contribution.
In other words, the uncertainty is the expectation of the squared difference between the
actual and expected marginal contributions.

The utility of a player that is not neutral to strategic risk depends on both its Shapley
value and the associated uncertainty. Furthermore, such a player’s utility function is
subjective and different players may have different functions for the same game. But
for a given game, the relation between the Shapley value and its uncertainty is not
subjective to player preferences and is the same for all players. We therefore analyse
this relation for the voting game described in Section 3.
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3 The weighted voting game

We adopt the definition of voting game given in [7]. There is a set of 
 players that
may, for example, represent shareholders in a company or members in a parliament.
The weighted voting game is a game� � �� � � � in which

� � � �
� � if � � � � ��

otherwise

for some� � ��� and� � � ���� , where� � � � 	 �
� � � for any coalition� . Thus� � is the number of votes that player� has and� is the number of votes needed to win
the game (i.e., thequota). For this game (denoted�� � � � � 	 	 	 �� �), a player’s marginal
contribution is either zero or one.

The problem of determining the Shapley value for the weighted voting game is #P-
complete [1]. A problem is #P-hard if solving that problem is as hard as counting sat-
isfying assignments of propositional logic formulae [8, p442]. Since #P-completeness
thus subsumesNP-completeness, this implies that computing the Shapley value for the
weighted voting game will be intractable in general. To overcome this problem, two
methods have been proposed:Monte Carlo simulation[5] and the method ofgenerat-
ing functions[6]. The former method treats the number ofswings2 for each player as
a random variable over a given distribution and defines the Shapley value in terms of
these random variables. While this method gives the approximate Shapley value, the
generating functions method is an exact procedure. Although it is an exact procedure,
it requires very large arrays (i.e., it requires substantial storage space) and can only be
applied to games with integer weights and quotas.

The method we present is similar to that of [5] in the sense that it is an approxima-
tion method. But the difference is that while [5] defines the Shapley value by treating a
player’s number of swings as a random variable, we treat the players’ weights as ran-
dom variables. Since the voting game is defined in terms of theplayers’ weights and
the number of swings are obtained from these weights, our method corresponds more
closely to the definition of the voting game. Furthermore, itdoes not require large ar-
rays and is therefore economical in terms of storage space. The proposed method has
polynomial time complexity. We first consider a simple voting game in which all play-
ers have equal weight. We then extend our analysis to a game with two types of players:
largeandsmall, and finally generalise it to more than two player types.

4 All players have equal weight

Consider the game�� � � � 	 	 	 � � � with � parties. Each party has� seats. If� � � , then
there would be no need for players to form a coalition. On the other hand, if� � ��
(� � �� �

is the number of players), only the grand coalition is possible. Thus, the
quota (�) satisfies the constraint:� � �� � � � � � � ��. A majority is decisive. The
value of a coalition is one if the weight of the coalition is greater than or equal to�,
otherwise it is zero.

2 A swing for a player� is a pair of coalitions (�, � � �) such that� is losing but� � � is winning.
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Fig. 1. Shapley value vs. uncertainty

Let ! denote the Shapley value for a player and$ denote its uncertainty. Consider
any one player. This player can join a coalition as the�th member where� � � � � .
However, the marginal contribution of the player is� only if it joins a coalition as
the �� �� �th member. In all other cases, its marginal contribution is zero. Thus, the
Shapley value for each player is! � ��� . We know from Definition 2, that a player’s
uncertainty is the variance of its marginal contribution. Hence, for each player, the
uncertainty (denoted$ ) is:

$ � � � !�! � � � � !��! (1)

Having expressed a player’s uncertainty in terms of its Shapley value, we can now
correlate them. To this end, Figure 1 shows how the uncertainty varies with the Shap-
ley value. Since the Shapley value lies in the interval�� � ��, Figure 1 plots uncertainty
for this interval. As seen in the figure, uncertainty first increases as the Shapley value
increases and then decreases. Uncertainty is maximum at! � ���. The following sec-
tions analyse the voting game for the case where all parties do not have equal weight.

5 A single large party

Consider a parliament in which there is one party with� � � seats, and� parties
each with one seat. Thus, there are two types of players:large (with weight � ) and
small(with unit weight). The quota for this game is�, i.e., we have a game of the form
�� � � � �� � � 	 	 	 � ��. The total number of players is� � ��. The value of a coalition is
one if the weight of the coalition is greater than or equal to�, otherwise it is zero. Let
! � denote the Shapley value for the large player and! � that for each small player. As
we will show, the Shapley value of this game depends on whether or not � is greater
than� . We therefore study the two possible cases:� � � and� � � :

1. Consider� � � first. The smallest possible value for� is � � �. This is because, if� � � , then the large party can win the election on its own, withoutthe need for a
coalition. Thus, the quota for the game satisfies the relation � � � � � � � � � � �.
Also, the lower and upper limits for� are � and � � �� respectively. The lower
limit is � because the weight of the large party has to be greater than each small
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one. Furthermore, the weight of the large party cannot be greater than� , since in
that case there would be no need for the large party to form a coalition. Recall that
for our voting game, a player’s marginal contribution to a coalition has only two
possible values: zero or one.
Consider the large party. This party can join a coalition as the �th member where
� satisfies� � � � � � ��. However, the marginal contribution of the large
party is one if it joins a coalition as the�th member where� satisfies the condition
� � � � �� � � � �. In all the remaining cases, its marginal contribution is zero.
Thus, out of the total� � �� possible cases, its marginal contribution is one in�
cases. Hence, the Shapley value of the large party is:

! � � � � � � �� (2)

Consider a small player. For a small player, the marginal contribution is one in
two cases. First, if it joins a coalition (that already has the large party in it) as the
� � � � ��th member. Out of the� � �� � possible permutations, the number of
permutations that satisfy this condition is� � � � � � �� �. Second, if it joins a
coalition (consisting of� � � small players) as the�th member. The number of
permutations that satisfy this condition is� � � � �� � � �� �. Hence, the Shapley
value of each small party is:

! � � � � � � ���� � � �� (3)

Using Definition 2, we get the uncertainty for the large partyas:

$ � � � � ! � �! � � � ! � � � ! � �� (4)

For each small party, the uncertainty is:

$ � � � � ! � �! � � � ! � � � ! � �� (5)

2. Consider� � � . As before, the quota satisfies the relation� � � � � � � � � � �.
Also, � � � � � � ��. Consider the large party. As before, this party can join
a coalition as the�th member where� � � � � � ��. However, its marginal
contribution is one only if it joins as the�th member where� � � � �� � � � �.
Thus, out of all� � �� possible cases, its marginal contribution is one in� cases.
Hence the Shapley value of the large party is:

! � � � � � � �� (6)

Consider a small player. Since� � � , a small player’s marginal contribution is one
in only one case: if it joins a coalition (that already has thelarge party in it) as the
� � � � ��th member. Out of the� � �� � possible permutations, the number of
permutations that satisfy this condition is� � � � � � �� �. Hence the Shapley value
of each small party is:

! � � � � � ��� � � �� (7)
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We get the uncertainty for the large party as:

$ � � � � ! � �! � � � ! � � � ! � �� (8)

For each small party, the uncertainty is:

$ � � � � ! � �! � � � ! � � � ! � �� (9)

Note that for each player, uncertainty (in Equations 4, 5, 8,and 9) has the same
relation with Shapley value as that for Equation 1. Therefore, the plot in Figure 1 ap-
plies to Equations 4, 5, 8, and 9 as well. Thus, for the voting game with a single
large player, each player’s uncertainty first increases as its Shapley value increases. A
player’s uncertainty is at a maximum when its Shapley value is ���. As the Shapley
value increases further, uncertainty decreases.

6 Multiple large and multiple small parties

Consider a parliament in which there are� parties. The set of parties consists of��
large parties and� � � �� small parties where

� � � � �. As before, each large party
has� seats and each small one has one seat. The total seats in a coalition of size� is� �� � � � � �� . Thus, in a given population of players, the proportion of large players
is �. Here, the quota (�) satisfies the constraint� � �� � � � ��� � � � � �� � ��.
As before, the lower and upper limits for� are� and � � �� respectively. Finally, the
value of a coalition is one if it has� or more seats, otherwise it is zero.
A Randomised Method for the Shapley Value. In order to determine a player’s Shap-
ley value, we consider a sample from the above defined population of players. Let this
sample be a large random coalition of size� . Let

�� denote the proportion of large play-
ers in this sample. Irrespective of how the population is distributed, the proportion of
large players in a sample of size� is distributed approximatelynormally, with mean� � � and variance� � � � � � ��� (see [2] p435), i.e., we have:

�� � � � � � � � � �
� � (10)

On the basis of Equation 10, we obtain the Shapley value as follows. Consider a large
party. The marginal contribution of this party to the randomsample is one if the weight
of the sample is less than the quota (�) but is greater than or equal to� � � �. Otherwise,
its marginal contribution is zero. We know that the mean weight of the sample is

��� � �
� �

�� �� . Let & denote the proportion of large players that is required for the random
sample to have mean weight� � � � (i.e., & � � � � � � �� � � � ���). Also, let �
denote the proportion of large players that is required for the random sample to have
mean weight� � �� (where� is an infinitesimally small positive number) (i.e.,� �
� � � � ��� � � � ���). The expected marginal contribution of a large player to
the random sample is the area under the curve defined by the normal distribution of
Equation 10 between the limits& and�, i.e.,

�	� � �

�� � �

� 
� �� �������� �� (11)
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Fig. 2.A large player’s Shapley value and uncertainty for a varyingweight.

Therefore, a large player’s Shapley value is:

! � � �� �
�
	 � � �	� (12)

and its uncertainty is:

$ � � �� �
�
	 � � �	� � ! � �� (13)

Consider a small party. The marginal contribution of this party, when added to a
sample, is one if the weight of the sample is less than the quota (�) but is greater than or
equal to� � ��. Otherwise, its marginal contribution is zero. We know thatthe mean
weight of the sample is

��� � � � �
�� �� . Let � denote the proportion of large players

that is required for the random sample to have mean weight� � �� (i.e., � � � � � �
� �� � � � ���). Also, let� denote the proportion of large players that is required for
the random sample to have mean weight� � � (i.e., � � � � � � ��� � � � ���).
The marginal contribution of a small player is the area underthe curve defined by the
normal distribution of Equation 10 between the limits� and�, i.e.,

�	� � �

�� � �

� �
� �� �������� �� (14)

Therefore, for each small player, the Shapley value is:

! � � �� �
�
	 � � �	� (15)

and the uncertainty is:

$ � � �� �
�
	 � � �	� � ! � �� (16)
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Fig. 3.A small player’s Shapley value and uncertainty for a varyingweight.

Theorem 1. The time complexity of the above randomised method for determining the
Shapley value is polynomial in the number of players. The inaccuracy of this method
decreases with� and increases with�.
Proof. The time required to compute the marginal contribution of a player to a coalition
of size� (for � � � � � ) is independent of the number of players (see Equations 11 and
14). A player can join the coalition as the�th member (for� � � � � ). The marginal
contribution of a player is determined for each of these� possible cases. Therefore,
the time taken to compute the Shapley value is� � �.

The accuracy of the proposed method depends firstly on� . We know from [2], that
the inaccuracy in Equation 10 decreases as� increases. Consequently, the inaccuracy
of the proposed method decreases with� . The second source of inaccuracy is� � �

. It
is obvious that the closer� is to zero, the higher the accuracy. Thus, the inaccuracy of
the proposed method increases with�. �

We now analyse the relation between the Shapley value and itsuncertainty. From the
above equations, we know that the Shapley value and its uncertainty depend on three
parameters: the number of players (� ), the weight associated with each large party
(� ), and the quota (�) for the game. Thus, we systematically vary these parameters in
order to study the relation between a player’s Shapley valueand its uncertainty. These
parameters are varied as follows. We varied� between

� 	� and
� 	�. This is because we

want multiple large and multiple small players, and for a large� , this range for� gives
us that. For each�, we varied the parameters� , � , and� such that the following two
constraints are satisfied:
� � No player can win an election on its own (i.e.,� � �).� � The maximum number of parties required to win an election is less than the total

number of parties (i.e.,� � � �� � � � � �� ).

Thus, for each�, we determined the Shapley value and its uncertainty for different
values of� and � that satisfy constraints

� � and
� � . This entire set of variations was

repeated for different values of� .
Although a player’s Shapley value and its uncertainty vary with � , �, �, and� , the

uncertainty was always found to increase with Shapley value. More specifically, for the
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Fig. 4. A large player’s Shapley value and uncertainty for a varyingquota.
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Fig. 5. A small player’s Shapley value and uncertainty for a varyingquota.

constraints defined above, if the number of players is large (i.e., � � ��) and there
are multiple large and multiple small players, we found the following relation. For each
player, the uncertainty increases as its Shapley value increases (see Figures 2 to 7).

To begin, consider Figure 2. For� � ��� and � � ���, this is a plot of a large
player’s Shapley value and uncertainty for differing weights (i.e., different values for� ). For each value of� , the figure shows the Shapley value and uncertainty for all�
between

� 	� and
� 	�. Likewise, Figures 3 is a plot for each small player.

For� � ��� and� � �, Figure 4 is a plot for a large player’s Shapley value and
uncertainty for a varying quota. For each quota (i.e.,�), the figure shows the Shapley
value and uncertainty for all� between

� 	� and
� 	�. Figure 5 is a plot for each small

player.
Consider Figure 6. For� � � and� � ��, this is a plot of a large player’s Shapley

value and uncertainty for a varying number of players. For each� , the figure shows the
Shapley value and uncertainty for� between

� 	� and
� 	�. Likewise, Figures 7 is a plot

for each small player.
Thus, for two player types and variations of� , � , �, and� that satisfy constraints

� �
and

� � , the uncertainty for each player (large or small) increasesas its Shapley value
increases. It is worth noting that in all the above figures, the number of players is at
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Fig. 6.A large player’s Shapley value and uncertainty for a varyingnumber of players.
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Fig. 7.A small player’s Shapley value and uncertainty for a varyingnumber of players.

least��, and there is more than one player of each type (i.e.,
� 	� � � � � 	�). For such

games, the Shapley value of each player is less than
� 	�. Thus, the relation between the

Shapley value and its uncertainty is the same as that for the left half of the curve of
Figure 1 (i.e., for! � � 	�).

7 More than two player types

Consider a voting game with more than two types of players. Let � � denote the weight
of player�. Thus, for� players and for quota� the game is of the form�� � � � �� � � 	 	 	 ��

�
�.

Consider a player population in which each individual player’s weight has astandard
normal distribution3 – � � � ��. Since this distribution allows negative weights, we
transform this to� � � �� in order to get positive weights. We know from Definition 1,

3 Note that in Section 6 when we dealt with two player types, there was no restriction on how the
population was distributed. But for more than two player types, we assume that the population
has a normal distribution. Thus, while the results of Section 6 are valid for two player types
with any population distribution, the results of this section are valid for more than two player
types that have a normal distribution.
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Fig. 8. Shapley value and uncertainty for a game of�� players and a varying weight.

that the Shapley value for a player is the expectation (" ) of its marginal contribution to
a coalition that is chosen randomly. Thus, in order to determine the Shapley value for
the above population of players (i.e.,� � � ��), we use the following rule from Sampling
Theory (see [2] p417) that holds good for a normal distribution.

From a normal distribution (with mean� and variance� ), if a sample of size�
is drawn, then the sum of the weights of all� players in the sample has the distribu-
tion � �� �� � �. Thus, for the distribution (� � � ��) we defined above, the sum of
the weights of the players in a random sample of size� is given by the distribution
� �� �� �. We use this rule to determine the Shapley value as follows.
A Randomised Method for the Shapley Value. For player� with weight� �, let!� de-
note the Shapley value and$ � its uncertainty. Let� denote the size of a large random
sample drawn from a population in which individual player weights have the distribu-
tion� � � ��. The marginal contribution of player� to this random sample is one, if the
total weight of the� players in the sample is greater than or equal to� � � � but less
than�. Otherwise, its marginal contribution is zero. Thus, the expected marginal con-
tribution of player� (denoted�	� ) to the sample coalition is the area under the curve
defined by� �� �� � in the interval�� � � � � � � ��, i.e.,

�	� � �

�� � �

� ���
����

�� ����� ���
�

�� (17)

and its Shapley value is

!� � �

 �
�
	 � � �	� (18)

It is easy to verify that the time complexity of this method is� � �. Also, the two
sources of inaccuracy are� and �. As in the case of the randomised method of Sec-
tion 6, the inaccuracy decreases with� and increases with�. The uncertainty associated
with the Shapley value is:

$� � �

 �
�
	 � � ! � � �	� �� (19)
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Fig. 9. Shapley value and uncertainty for a game of�� players and a varying weight.
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Fig. 10.Shapley value and uncertainty for a game of��� players and a varying weight.

For the case of more than two player types, we define the following constraints on� and� � (for � � � � � ):
� �

No player can win the game on its own (i.e., (� � � �) for � � � � � ).� �
The number of players required to win an election is less than� (i.e., the quota is
less than

�� �
).

We use the above equations and systematically vary parameters �, � � (for � �
� � � ), and� , such that constraints

� �
and

� �
are always satisfied, and determine

the relation between the Shapley value and its uncertainty.These results are plotted in
Figures 8 to 10. Consider Figure 8. For each quota, an individual player’s weight is
varied between� and���. As seen in the figure, uncertainty first increases with Shapley
value and then decreases. Figure 9 is a plot for� � �� and Figure 10 that for� � ���.
In all these figures, a player’s uncertainty first increases with its Shapley value and then
decreases. Thus, the relation between the Shapley value andits uncertainty is the same
as that in Figure 1.

To sum up, our study provides a basis for agents to compare games on the basis of
both their Shapley values and the associated uncertainties. We showed that a player’s
uncertainty first increases with its Shapley value and then decreases. This implies that
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the uncertainty is at its minimum when the value is at its maximum, and that agents do
not always have to compromise value in order to reduce uncertainty. This is because, if
the Shapley value lies in the range�� 	� 		��, then an increase in value is associated with
a decrease in uncertainty.

8 Conclusions and future work

Although the Shapley value provides a unique solution that gives an indication of an
agent’s power relative to that of others, it also has an element of uncertainty associated
with it. Given this, the uncertainty is an additional dimension that an agent should take
into account for evaluating its prospects of playing a game.Against this background,
this paper has analysed the relation between the Shapley value and its uncertainty for
the weighted voting game. Since the problem of determining the Shapley value is #P-
complete, we first presented a randomised method with polynomial time complexity.
Using this method, we computed the Shapley value and correlated it with its uncer-
tainty. Our study shows that a player’s uncertainty first increases with its Shapley value
and then decreases. Although our present work provides an analysis for the case where
different players have different weights, the distribution of weights was assumed to be
normal. In future, we will generalise our results, by extending this analysis to other
types of distribution functions. Also, we will carry out thesame analysis for other com-
monly occurring games like the production-economy and the market-economy.
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