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ABSTRACT

Game-theoretic models of bargaining are typically based on the as-
sumption that players have perfect rationality and that they always
play an equilibrium strategy. In contrast, research in experimental
economics shows that in bargaining between human subjects, par-
ticipants do not always play the equilibrium strategy. Such agents
are said to be boundedly rational. In playing a game against a
boundedly rational opponent, a player’s most effective strategy is
not the equilibrium strategy, but the one that is the best reply to
the opponent’s actual strategy. Against this background, this pa-
per studies the bargaining behavior of boundedly rational agents by
using genetic algorithms. Since bargaining involves players with
different utility functions, we have two subpopulations — one rep-
resents the buyer, and the other represents the seller (i.e., the pop-
ulation is asymmetric). We study the competitive co-evolution of
strategies in the two subpopulations for an incomplete information
setting, and compare the results with those prescribed by game the-
ory. Our analysis leads to two main conclusions. Firstly, our study
shows that although each agent in the game-theoretic model has a
strategy that is dominant at every period at which it makes a move,
the stable state of the evolutionary model does not always match
the game-theoretic equilibrium outcome. Secondly, as the players
mutually adapt to each other’s strategy, the stable outcome depends
on the initial population.

1. INTRODUCTION

Existing game-theoretic models of bargaining [13, 14, 15] are
predicated on the presumption that agents are perfectly rational,
and that this rationality is common knowledge. The participants
in these models compute the equilibrium strategy from a theoret-
ical analysis of the game and always play that strategy. In con-
trast, research in experimental economics [12] suggests that the per-
fect rationality assumption does not apply in human settings. This
research shows that human participants learn how to play games
through trial and error, and do not compute the equilibrium from
a theoretical analysis of the game. Rather, they experiment with
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strategies, observe their payoffs, try other strategies and find their
way to a strategy that works well. Such players are said to be
boundedly rational. This result means game theory cannot always
be used as a guide to behavior. An agent’s optimal actions may
be quite different depending upon whether it is playing against a
perfectly rational agent or a boundedly rational person.

This divergence led to the use of evolutionary methods for study-
ing the bargaining behavior of boundedly rational agents [18, 9,
4, 17, 1, 3]. Although for certain games the game-theoretic and
evolutionary equilibria coincide [17, 16], in general, it has been
shown that the game-theoretic outcome may not always be valid
when playing against boundedly rational agents [2]. For instance,
[18] and [4] show this in their evolutionary model for the Nash de-
mand game, as do Binmore et al [1] in their evolutionary analysis of
Rubinstein’s alternating offers game of complete information [13]
that has a sub-game perfect equilibrium. Generally speaking, how-
ever, this existing work comparing game-theoretic and evolutionary
outcomes is based on two main assumptions. Firstly, agents have
complete information about the bargaining parameters. Secondly,
agents are drawn from a single population, in which all individu-
als have the same utility function. However, we believe both of
these assumptions are unlikely to be true in most practical applica-
tions. To rectify this shortcoming, our objective in this paper is to
assess to what extent the evolutionary computation of agent strate-
gies matches the game-theoretic results for more realistic scenarios.
Thus, we focus not only on an incomplete information setting, but
also treat the population as asymmetric.

Specifically, the bargaining behavior of boundedly rational play-
ers is studied using genetic algorithms (GAs) in which the popula-
tion is composed of two separate subpopulations — one representing
the buyer and the other representing the seller. We use such asym-
metric populations because buyers and sellers have fundamentally
different aims and objectives (here represented by different utility
functions). Moreover, the buyer and the seller each have time con-
straints in the form of a deadline and a bargaining cost. In this
model, which has been analysed game-theoretically in [7], each
agent has a unique strategy that is dominant at every time period at
which it makes a move.

In short, the main contribution of this paper is to provide an
evolutionary analysis of the above model and compare it with its
game-theoretic counterpart. In more detail, our work extends the
existing work on comparison of game-theoretic and evolutionary
equilibria in the following three ways. Firstly, we analyze games of
incomplete information that also have time constraints. Secondly,
we study the competitive co-evolution of strategies for asymmetric
games. Thirdly, our work also highlights the influence of the initial
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Figure 1: Negotiation decision functions for the buyer.

population on the stable state of the evolutionary model. The re-
sults we obtain can then be used to select between the approaches
for agent mediated electronic commerce applications, since this de-
cision making involves not only a comparison of the outcomes they
generate but also the feasibility of their implementation.

The remainder of the paper is structured as follows. Section 2
gives an overview of our negotiation model. The equilibrium out-
comes for this model are presented in Section 3. Section 4 explains
the evolutionary system. The results of our experiments are de-
scribed in Section 5. Section 6 discusses related work and Section 7
gives some conclusions and states our future work.

2. THE NEGOTIATION MODEL

We assume that a buyer b and a seller s bargain over the price
of a good/service. Each agent has an initial price (I P) at which
it starts negotiation and a reservation price (RP) beyond which it
does not concede. Let [IP%, RP®] denote the range of values for
price that are acceptable to agent a, where a € {b, s}; a denotes
agent a’s opponent. A price that is acceptable to both b and s,
i.e., the zone of agreement (Z), is the interval [RP*, RP®]. The
difference between RP® and RP* is called the price-surplus. T
denotes agent a’s deadline. Let p_, ; denote the price offered by b
to s at time ¢. We use an alternating offers protocol for our study.
Negotiation starts when the first offer is made. When an agent,
say s, receives an offer at time ¢, i.e., prS, it rates the offer using
its utility function U*. If U*(pf_,,,t) is greater than the utility

of the counter-offer agent s is ready to send at time ¢', i.e., pfﬁb
with ¢ = ¢ + 1, then agent s accepts. Otherwise a counter-offer is
made. This process of making offers and counter-offers continues
until either an agreement is reached, or a deadline is reached.

Since both agents have a deadline, we assume that they use a
time dependent tactic (i.e., linear, Boulware, or Conceder [5]) for
generating offers. These tactics vary the price depending on the
remaining negotiation time. In these functions, the predominant
factor used to decide which value to offer next is the time ¢. The
initial offer is a point in the interval [IP®, RP*]. Agents define
a constant v*, that, when multiplied by the size of the interval,
determines the price to be offered in the first proposal by a. The
offer made by a at time ¢ (0 < ¢ < 7%) is defined in terms of the
negotiation decision function (NDF), F'*, as follows:

Pa—a =

¢ [ IP*+ F*(t)(RP* — IP%) for b
RP® + (1 — F*(t))({P* — RP*) fors.
A wide range of functions can be defined by varying the way

in which F*(t) is computed. However, functions must ensure that
0 < F(t) <1, F*(0) = v* and F*(T*) = 1. That is, the offer
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Figure 2: lllustration of agreement and negotiation conflict.

will always be between the value range, at the beginning it will give
the initial constant, and when the deadline is reached it will offer
the reservation value. The function F*(t) is defined as follows:

Fit)=7"+(1-7% (7min¥; Ta)) ’

An infinite number of functions can be defined for different val-
ues of +. However, the following two extreme sets show clearly
different patterns of behavior [11] (see Figure 1).

1. Boulware (B). For this function ¢ < 1, and the initial offer
is maintained till time is almost exhausted, when the agent
concedes up to its reservation value.

2. Conceder (C). For this function ¢» > 1, and the agent goes
to its reservation value very quickly®. When ¢ = 1, price is
increased linearly (L).

The value of a counter-offer depends on the initial price (IP) at
which the agent starts negotiation, the final price (FP), beyond which
it does not concede, 1), and T¢. A tuple, S¢, of these four variables,
i.e, S* = (IP* FP® 4* T*), forms agent a’s strategy. The ne-
gotiation outcome (O) is an element of {(p,t), C}, where (p,t)
denotes the price and time of agreement and € denotes the conflict
outcome.

As an illustration, when §° = (IP®, RP®, B,T®) and S° =
(IP*, RP*, B, T?®), the outcome (O ) that results is shown in Fig-
ure 2. In this figure, and in all subsequent ones, the thick lines de-
note b’s strategy and the dashed lines denote s’s strategy. As shown
in the figure, agreement () is reached at a price RP°® + (price-
surplus/2) and at a time close to 7. But when the NDF in
both strategies is replaced with C, agreement (O) is reached at
the same price but near the beginning of negotiation. Figure 2(b)
illustrates a negotiation conflict; where the strategies for b and s
are S® x 8¢ = (IP®,RP* B,T% x (RP° RP® B,T®), and
T* < T®. As agents have different deadlines and both agents use
the B function, the strategies do not converge and result in a con-
flict. In general, an agent can avoid conflict by using a strategy that
offers a mutually acceptable price (i.e., within Z) by a mutually
acceptable time (the earlier deadline).

Agents’ utilities are defined with the following two functions that
incorporate the effects of bargaining costs:

a a o kS (RP® —p) + kit forb
U, 1) = Uy () + UF () :{ kEEp_Rp’3§+k%t for s,

! As 1 increases(decreases) F' becomes more Conceder(Boulware).
At very high(low) values of 1, F is an extreme Con-
ceder(Boulware).




For an agent, U;* increases with time if its bargaining cost, k¢, is
greater than 0. Consequently, the agent gains utility over time and
has the incentive to reach a late agreement. But if Uy decreases
with time (i.e., k¢ < 0), then the agent loses over time and has
an incentive to reach an early agreement. Agents are said to have
similar time preferences if both gain on time or both lose on time;
otherwise they have conflicting time preferences.

An agent’s utility from agreement is always higher than its con-
flict utility. Each agent therefore prefers to reach an agreement
rather than disagree and not reach any agreement.

3. EQUILIBRIUM OUTCOMES

Each agent has a reservation limit, a deadline, and a bargaining
cost. Thus band s each have three parameters denoted (RP®, T°, k?)
and (RP?®,T°, ki) respectively. The negotiation outcome depends
on all these six parameters. An agent’s strategic behavior depends
on the information it has about the bargaining parameters. The in-
formation state, 7, of agent a is the information it has about the
negotiation parameters. An agent’s own parameters are known to
it, but the information it has about the opponent’s parameters is not
complete. We consider the case where each agent knows its oppo-
nent’s reservation price, i.e., I* is defined as follows:

- (RP®, T kb Kk}, RP®) forb
| (RP*,T*, k5, ki, RP®) fors.

An agent, say b’s, optimal strategy depends on the opponent’s strat-
egy. Let k2 > 0. As shown in Figure 3, the possible strategies for
s are Si, S5, or S3. For each of these three s’s strategies, the
strategy that gives b the maximum utility is S¢ (out of S?, S5, and
%), since it results in agreement at the lowest price and at the lat-
est time. For the sake of clarity, Figure 3 shows only the extreme
Boulware and Conceder functions. However, note that S5 forms b’s
optimal strategy over the entire strategy space that lies between the
extreme Boulware and the extreme Conceder. Thus, when kf >0,
b’s optimal strategy is (RP*, RP®, B, T®). Analogously, s’s op-
timal strategy when kf > 0 becomes (RP®, RP®, B, T*). It has
been shown in [7] that the equilibrium strategy profile for the above
information state is

SP x 8¢ = (RP°,RP" B,T") x (RP", RP*, B, T*).

More specifically, & x S¢ forms a sequential equilibrium where S®
is b’s dominant strategy whenever it is b’s turn to make a move, and
S¢ is s’s dominant strategy whenever it is s’s turn to move. More-
over, this equilibrium is unique. The equilibrium strategies result
in an agreement at (P, T'), where P denotes RP°® if T* < T®, and
RPY if T® > T°. T denotes the earlier deadline. In other words,
the price-surplus goes to the agent with the longer deadline, and an
agreement is always reached at the earlier deadline. The equilib-
rium strategies and the corresponding outcomes for the remaining
scenarios (i.e., when k? > 0and k§ < 0,0r k% < 0and k§ > 0, or
kP < 0and k§ < 0) are summarised in Table 1 (see [7] for details).

4. THE EVOLUTIONARY SYSTEM

The evolutionary model imagines a game as being played not by
a single set of players, but by large populations of players. These
players are repeatedly and randomly matched to play the game.
Each agent is characterized by a strategy that it plays when it is
matched. As play proceeds, it observes the payoff of this strategy.
It also observes the payoffs and strategies of others (within its pop-
ulation), and has access to information concerning how others have
played. In the light of these observations, it adjusts its strategies.

k2 k$ 5t x S8, Equilibrium
Outcome

G,G | (RP*,RP® B,T® x (RP% RP*,B,T") (P,T)

GL | (RP*,RP% B,T®) x (RPY RP* C,T%) (RP*,Tp)

LG | (RP*,RP® C,T%) x (RP% RP*,B,T®) (RPY,Tp)

LL | (RP*,RPb,C,T% x (RP®,RP®,C,T%) | (RE'HRP® )

Table 1: Equilibrium strategies and outcomes for different ne-
gotiation scenarios. G indicates kf > 0 and L indicates k¢ < 0.
P denotes RP® if T° < T, and RP? if T* > T®. T denotes
the earlier deadline and Ty denotes the second time period.

These adjustments involve experimenting with strategies that it has
not tried, with the overall aim of switching away from strategies
that give low payoffs to strategies that give high payoffs.

Since bargaining involves two agents with different utility func-
tions, we treat the population as being composed of two different
subpopulations; one representing the buyer and the other represent-
ing the seller. In such asymmetric populations, the evolution of
strategies in each subpopulation affects the evolution of strategies
in the other subpopulation, (i.e., the strategies co-evolve). Thus
we study the competitive co-evolution in which the fitness of an
individual in one population is based on direct competition with
individuals of the other population.

We represent an agent’s fitness with its utility function and apply
the three standard operations of selection, crossover, and mutation.
An agent’s strategy was defined in Section 2 as a tuple of four ele-
ments, viz., the initial price, the final price, the negotiation decision
function and the deadline. Each individual is represented as a string
of fixed length. The bits of the string (the genes) represent the four
elements of an agent’s strategy. The range of values for these genes
are as follows. Since each agent knows its opponent’s reservation
price (see information state of an agent defined in Section 3), we fix
IP® to be RP®. This is because agreement can never take place
outside the zone of agreement. The final price lies in the range
[RP®, RP?] (i.e., Z). The NDF can be anywhere between an ex-
treme Boulware and an extreme Conceder for both the agents. The
last element is the time at which the final price is offered. Since
each agent knows its own deadline, we fix the last element of the
strategy at the agent’s deadline. In other words, the first and the last
elements of the strategy are fixed and do not change. For these two
fixed value?, the GA needs to find the most effective strategy by
varying the F'P and the NDF. (i.e., the second and third elements
of the strategy tuple).

The different stages in an iteration of the GA are as follows. In-
dividuals in the two subpopulations are initialised with some strate-
gies. How the two populations are initialised is explained in Sec-
tion 5. Once initialised, the parent agents in one of the populations,
say the buyer population, start the negotiation process. The fit-
ness of the parent agents in both the populations is determined by
competition between the agents in the two populations. Each agent
competes against all the agents in the other population. The average
utility obtained in these negotiations is then used as the agent’s fit-
ness value. In the next stage, offspring agents are created for each

2Although the first and last elements of the strategy tuple could be
treated as search parameters, we treated them as constants in order
to reduce the search space. Note that this encoding includes all
possible feasible agreements in the search space, and excludes only
that part of the search space where an agreement can never take
place (i.e., points outside Z or beyond the deadline). Consequently
the time taken to reach the stable state is reduced.
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Figure 3: Possible buyer and seller strategies when k2 > 0 and k§ > 0.

population using the standard operations of selection, crossover,
and mutation. Each of these operations is explained below.

The buyer and seller population size were each set to N. Se-
lection was carried out using the fitness proportionate selection
method [10], where individuals are chosen with a probability pro-
portional to their fitness. To perform crossover within a population,
we select two individuals randomly. Two crossover points are then
chosen randomly and sorted in ascending order. Then the genes
between the successive crossover points are alternately exchanged
between the individuals with probability P.. Mutation is the pro-
cess of creating completely new strategies that are not present in
the initial population. To perform mutation, a gene (in our case, the
second or the third element of the strategy tuple) is selected ran-
domly, and a random value is chosen for it from the domain of the
gene. We perform mutation on the second and third elements of the
strategy tuple because an optimal value needs to be found for these
two elements. The mutation rate was P,,. We determined the sta-
ble outcome for different values of N, P., and P, in the ranges 20
t0 75, 0.1t0 0.9, and 0.005 to 0.05 respectively. Increasing the pop-
ulation size beyond 50 did not change the stable outcome but only
increased the time to stabilize. The stable outcome was, on an av-
erage, found to be closest to the equilibrium outcome for P, = 0.5,
and P,, = 0.01.

To indicate that fitness proportionate selection is a reasonable
method in this case, we carried out the above set of experiments
using the other common selection method, namely tournament se-
lection [10] with a tournament size of 2. Between the two selec-
tion methods, the stable outcome generated by fitness proportion-
ate selection was, on average, found to be closer to the equilibrium
outcome. Section 5 therefore describes the evolutionary experi-
ments for the fitness proportionate selection method for N = 50,
P, =0.5,and P,, = 0.01.

Note that all genetic operations are carried out within a subpop-
ulation, i.e., there is no transfer of strategies across the two sub-
populations. The simulations stop when the population is stable,
i.e., 95% of the individuals in each subpopulation have the same
fitness, for 10 successive generations. This is because, depending
on the initialization of the subpopulations, all the individuals in one
or both of the subpopulations can have the same fitness values in
the first iteration itself.

5. THE EVOLUTIONARY EXPERIMENTS

This section determines the stable outcomes and shows how the
initial population affects these outcomes. As mentioned in Sec-
tion 2, the deadlines are different for b and s. Let a; denote the
agent with the longer deadline and asp the one with the shorter
deadline. Let Pop; and Pop;p, denote the corresponding popula-
tions. To determine if the stable outcome depends on the initial

population, we ran the GA for the following different initial popu-
lations for each of the four possible negotiation scenarios listed in
Table 1.

I, Both Pop; and Popsp, are initialised to the game-theoretic
equilibrium strategies given in Section 3.

I, One of the populations is initialised to the equilibrium strat-
egy and the other to some random non-equilibrium strategies.

I3 Both Pop; and Popgy, are initialised to some random non-
equilibrium strategies.

5.1 Both buyer and seller prefer a late agree-
ment (£ > 0 and &; > 0)

The stable state for each of the three initializations is explained be-
low. When all the individuals in each subpopulation are initialised
to their respective equilibrium strategies (i.e., I1), the stable out-
come was identical to the game-theoretic equilibrium outcome. As
seen in Section 3, in the equilibrium outcome for this scenario,
the entire price-surplus goes to the agent with the longer dead-
line. This evolutionary behavior can be explained by examining
how the strategies in the two subpopulations co-evolve. Consider
Popsp, (wWhich represents the buyer) first. Since all the individu-
als in Popsp, are initialised to the equilibrium strategy (see Fig-
ure 4(a)), they all have the same average fitness values after the
first round of negotiations. The other population, i.e., Pop, is
also initialised to its equilibrium strategy, which gives all its in-
dividuals the same average fitness values after the first round of
negotiations. The new non-equilibrium strategies that get intro-
duced in Popss, due to mutation 3, either have a lower value for
F P than the FP in qu, or an NDF that differs from the NDF in
Sﬁ?q . These strategies mostly conflict with the vast majority of equi-
librium strategies of Pop; (the non-equilibrium strategies that are
subsequently introduced into Pop; form a very small fraction of
the entire population), resulting in relatively inferior fitness values,
and eventually dying out, while the equilibrium strategies, being
superior, survive to future generations. Turning now to Pop;, the
new non-equilibrium strategies that are generated in Pop; have a
higher value for F'P than the F'P in S¢,. In addition, the NDF can
be linear, Boulware or Conceder. Those strategies that use a Con-
ceder or linear NDF result in agreement at a lower price, yield a
fitness value that is lower than the equilibrium strategy fitness, and
as a result do not survive. Those non-equilibrium strategies that use
the Boulware NDF result in the same outcome as the equilibrium
strategies. In other words, even in Pop;, only those individuals that

3Since all the individuals play the same strategy, crossover does not
yield new strategies. Crossover between two identical strategies
results in the same strategy.
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Figure 4: Buyer and seller population initialization.

play the equilibrium strategy reach the stable state. The majority of
individuals in both the populations continue to play their respective
equilibrium strategies. The stable outcome is therefore identical to
the game-theoretic equilibrium outcome.

For the second initialization (I2), the stable outcome was found
to depend on the initial population corresponding to the agent with
the earlier deadline. There are two possibilities for (I2). Either
Popsy, is initialised randomly and Pop; with its equilibrium strat-
egy, or Popsy, is initialised with its equilibrium strategy and Pop;
randomly. Each of these is explained below. When Popsp, is ini-
tialised with the equilibrium strategy and Pop; is initialised ran-
domly, both the populations stabilised at the equilibrium strategies.
To understand this, consider Popsp,. The initial populations for
this scenario are depicted in Figure 5(a). Since all the individu-
als in Popgy, play the same strategy, they all have the same fit-
ness values. The new strategies that are generated from mutation
are non-equilibrium strategies. The individuals that play the equi-
librium strategy have a higher fitness than those playing the non-
equilibrium strategy. The new strategies introduced from mutation
thus get eliminated, while the equilibrium strategy prevails. The
other population, i.e., Popy, is initialised randomly, resulting in a
different fitness value to each individual. The closer the strategy
is to the equilibrium strategy, the higher its fitness. The close-to-
equilibrium strategies thus flourish in Pop; at the expense of the
non-equilibrium strategies. The behavior of Pop; adapts to best
suit the predominantly equilibrium strategy of Popsy. Pop;’s best
reply to Popgy, is the equilibrium strategy. Thus Pop; dynamically
changes its strategy and stabilizes at the equilibrium strategy. Both
populations thus stabilize at the equilibrium strategy.

For (I2), when Pop,p was initialised randomly, the stable out-
come was found to be different from the equilibrium outcome. The
agent with the earlier deadline obtains a higher utility than its util-
ity from the equilibrium outcome. But the agent with the longer
deadline gets a lower than equilibrium utility. This is explained as
follows. Consider Pop; first, which is initialised to the equilibrium
strategy. The equilibrium strategy of Pop; conflicts with most of
the strategies of Popsp, since they are non-equilibrium (see Fig-
ure 5(b)). Moreover, since all individuals play the same strategy,
the fitness values are the same for all of them, and correspond to the
conflict outcome. The new strategies that are generated from mu-
tation, although being non-equilibrium strategies, result in agree-
ment and are thereby fitter than the equilibrium strategies (recall
that an agreement always gives an agent a higher utility than its
conflict utility). The number of non-equilibrium strategies thus in-
creases from one generation to the next. But the rate of this change
is very slow, since most of the individuals play the equilibrium
strategy. The chances that two strategies selected for crossover are
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Figure 5: Buyer and seller population initialization I».

identical is high. Crossover between two identical strategies yields
the same strategy. Thus while mutation can yield a new strategy,
the chance of generating new strategies through crossover is low.
Pop, thus has a very low rate of change. The other population,
Popsp, is initialised randomly but the fitness levels of the individ-
uals in this population too are equal, and correspond to the con-
flict outcome. However, as non-equilibrium strategies get gener-
ated in Pop;, the individuals in Pop,, have different fitness levels
since they play random strategies. Since all individuals play differ-
ent strategies, the rate of evolution of Popsy, is faster than Popy.
Eventually, Pop; evolves towards a strategy that differs slightly
from the equilibrium strategy, since only such strategies result in
a better agreement with the non-equilibrium strategies of Popsp,
and yield a higher payoff than the conflict outcome. On the other
hand, Pop,, evolves towards a strategy that is the best reply to
this non-equilibrium strategy of Pop;. Both populations thus shift
away from the initial conflict outcome and eventually stabilize at a
non-equilibrium one.

For initialization (I3), where both Pop,, and Pop; are initialised
randomly, the stable state was again different from the theoretical
equilibrium outcome. It was also different from the stable state for
the case where Popsp, was initialised randomly and Pop; with its
equilibrium strategy.

The experiments for each of the initialisations I, I, and I3 were
repeated 50 times. Despite the presence of randomness, we found
that the outcomes in these different runs did not vary by more than
3% and the relationship between the outcomes for I, I, and I3
always remained the same. These results (averaged over all the
runs) are summarised in Table 2. For all the runs, RP® was 100,
RP*® was 20, k¢ and &§ were both greater than 0, 7° was 90, and
T° was 195. As seen in the table, an agreement is always reached
at the earlier deadline (i.e., 7% = 90). The price of agreement lies
between RP° = 20 and RP® = 100 and is close to RP?, the
reservation price of the agent with the earlier deadline.

Table 2 also shows that the dominant strategy for as, (which
represents the buyer) is to initialize the population randomly since
this results in agreement at a lower price. The dominant strategy
for a; (which represents the seller) is to initialize all the individuals
with its equilibrium strategy. Note that b and s have similar time
preferences. The time of agreement in all cases was the earlier
deadline, which gives the maximum possible utility from time to
both the agents. The price of agreement favours a;.

To sum up, these experiments show that when each population
learns and adapts its behavior to best suit the opponent’s behavior,
the stable outcome is not always the same as the game-theoretic
equilibrium outcome.



| | Equilibrium Strategy | Random |

Eq. Strategy (200,90) (100,90)
Random (95,90) (80,90)

Table 2: Stable outcomes for different initialisations. Rows in-
dicate b and columns indicate s. The first entry in each pair
denotes the price, and the second entry the time of agreement.

5.2 Bothbuyerandseller prefer anearly agree-
ment (k! <0 and &; < 0)

The set of experiments described above was repeated for the case

where both b and s lose utility on time. The stable outcome was
the same as the equilibrium outcome, irrespective of whether the
two subpopulations were initialised with the equilibrium strategy or
randomly. This is explained below. Consider the case where both
Popsp, and Pop; are initialised with their respective equilibrium
strategies (i.e., I). All the individuals have the same fitness levels,
and new strategies that get generated from mutation, being rela-
tively inferior, do not reach the stable state. The stable outcome is
therefore the same as the equilibrium outcome. The situation where
Popsy, is initialised randomly and Popy is initialised with its equi-
librium strategy (i.e., I2) is depicted in Figure 4(b). As seen in the
figure, all the interactions initially result in an agreement. More-
over, the fitness level of all the individuals in Pop is the same,
since they all play the equilibrium strategy. The new strategies that
are generated by means of mutation, being inferior to the equilib-
rium strategy, get eliminated. This is because the constant k¢ in our
utility function is greater than the constant & (see Section 2 for the
definition of utility function which is used as an individuals fitness).
On the other hand, the individuals in Popsp, have different fitness
values, as they all play different random strategies. The closer a
strategy to the equilibrium strategy, the higher its fitness. Popp,
thus evolves to its equilibrium strategy. Both the subpopulations
thus stabilize at their respective equilibrium strategies and result in
a stable outcome that is identical to the equilibrium outcome.

When Pop,p, is initialised with the equilibrium strategy and Pop;
is initialised randomly, the stable outcome was the same as the
equilibrium outcome. As in the previous case, all the interactions
initially result in an agreement but, Pops, remains stable at the
equilibrium strategy, while Pop; evolves towards its equilibrium
strategy. This co-evolution of strategies eventually results in the
same stable outcome as the equilibrium outcome.

Finally, when both Pops, and Pop; are initialised randomly
(i.e., I3), both populations stabilized at the game-theoretic equi-
librium strategy.

To sum up, when k,’? < 0and k{ < 0, the stable outcome always
matched the equilibrium outcome.

5.3 Buyer prefersanearly agreementand seller
prefers a late one (k! <0 and & > 0)

When both Popsp, and Pop; are initialised to their respective equi-
librium strategies (i.e., I1), as in the previous two subsections, the
stable outcome was the same as the equilibrium outcome. For I,
when Popgy, is initialised randomly and Pop; with its equilibrium
strategy, then the stable outcome was the same as the equilibrium
outcome. In the initial populations depicted in Figure 6(b), the first
round of negotiations mostly result in conflict between the equilib-
rium strategy of Pop; and the random strategies of Popsp. More-
over, almost all the individuals in both the populations have the
same fitness value, which is equal to the conflict utility. In the next
generation, the new strategies that are generated through mutation
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Figure 6: Buyer and seller population initialization when k¢ <
0and ki > 0.

in Pop;, have a different NDF. They are either less Boulware, lin-
ear, or Conceder and result in agreement with some or all of the
strategies of Pops,. However the majority of the individuals still
play the equilibrium strategy, and thereby have the same fitness.
Pop; thus evolves slowly. Looking at Pops, we see that, since
all individuals play a different strategy, it evolves relatively faster
than Pop;. This is because new strategies are generated in Popsp,
through two operations (viz., crossover and mutation) as opposed
to the generation of new strategies in Pop; through mutation alone.
In other words, as Popsy, evolves faster, it moves towards the strat-
egy that is the most effective reply to the predominantly equilibrium
strategy played by Pop;. Eventually, Popsy, stabilizes at its equi-
librium strategy and Pop;, stabilizes at a strategy that is slightly less
Boulware than its equilibrium strategy. The stable and equilibrium
strategies for s (S5;q5,5:,) are depicted in Figure 8(a). As seen
in the figure, although the stable strategy of Pop is not the same
as the equilibrium strategy, agreement is still reached at the same
point as the equilibrium outcome. This is because the difference
in price between the two strategies (S¢, and S5;,5), is high at T,
and almost zero near the beginning of negotiation. Since Popsp
stabilises at its equilibrium strategy, which uses the Conceder func-
tion, the stable outcome results in agreement near the beginning of
negotiation and is the same as the equilibrium outcome. Contrast
this with the stable outcome corresponding to Figure 5(b), where
k% > 0. Since agreement takes place at 7°°, the stable outcome dif-
fers from the equilibrium outcome. But in Figure 8(a), k? < 0, and
the stable agreement takes place at the beginning of negotiation,
which is identical to the equilibrium outcome.

For I, when Pop; is initialised randomly and Pop,p with its
equilibrium strategy (see Figure 6(a)), the outcome was again the
same as the equilibrium outcome. Notice that in this case, initially
all the interactions result in agreement since Popsy, plays the equi-
librium strategy (i.e., the Conceder NDF). All the individuals in
Popsy, therefore have the same fitness values. On the other hand,
the individuals in Pop; have different fitness values. Pop evolves
faster than Popsp, and stabilizes at a strategy that is the best reply
to the equilibrium strategy played by Pops,. The new strategies
that get introduced in Pop,y, through mutation, being inferior to
its equilibrium strategy, do not survive. Both the populations there-
fore stabilise at their respective equilibrium strategies, and result in
equilibrium outcome.

When both Pops and Pop; are initialised randomly (i.e., I3), the
stable outcome was again found to be the same as the equilibrium
outcome. Thus, irrespective of the initialization (I, I», or Is) of
the two subpopulations, the stable outcome is always the same as
the equilibrium outcome.
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5.4 Buyer prefers a late agreement and seller
prefers an early one (k! > 0 and & < 0)

We begin with Iy, the case where both Pop,, and Pop; are ini-
tialised to their respective equilibrium strategies. As in the previous
subsections, the stable outcome was the same as the equilibrium
outcome. For I, when Popsp, is initialised randomly and Pop;
is initialised with its equilibrium strategy, the stable outcome was
the same as the equilibrium outcome. Figure 7(b) shows the initial
populations for this scenario. As seen in the figure, all the inter-
actions result in agreement. Moreover, since all the individuals in
Pop; play the equilibrium strategy, they all have the same fitness.
The new strategies that are generated through mutation, being infe-
rior to the equilibrium strategy, get eliminated. On the other hand,
the individuals in Popsy play random strategies and have different
fitness values. Popsp, thus evolves faster than Pop;, and stabilizes
at a strategy that is the best reply to the equilibrium strategy played
by Pop;. The best reply to Pop; is asp’s equilibrium strategy. Both
populations thus stabilize at their respective equilibrium strategies.
The stable outcome therefore matches the equilibrium outcome.

For I, when Popsy, is initialised with the equilibrium strategy
and Pop; is initialised randomly, the stable outcome was again the
same as the equilibrium outcome. As shown in Figure 7(a), all
the initial interactions between the two populations result in agree-
ment. Furthermore, since Popsp, is initialised with the equilibrium
strategy, all its individuals have the same fitness values, while the
individuals in Pop, have different fitness values as they are ini-
tialised randomly. Within Popy, the closer an individual’s strategy
is to the equilibrium strategy, the higher its fitness is, since it is the
best reply to the equilibrium strategy played by all the individuals
of Popsn. Pop; therefore evolves faster than Pop,p, and stabi-
lizes at its equilibrium strategy. On the other hand, the new non-
equilibrium strategies that are generated in Popsp, through mu-
tation, have an inferior fitness relative to the equilibrium strategy,
and thereby get eliminated. Thus Pop,, and Pop; both stabilize at
their respective equilibrium strategies, and result in the equilibrium
outcome.

Finally, when both Pop,, and Pop; are initialised randomly
(i.e., I3), the stable outcome was again found to be the same as
the equilibrium outcome. Pop; stabilized at the non-equilibrium
strategy. In the stable strategy of Pop.y, all the elements except the
second, (i.e., the final price) were the same as the elements in the
equilibrium strategy. Although the final price in the stable strategy
was less than RP?, it resulted in the equilibrium outcome since
the TP, the NDF and the deadline were the same as in SZ, (see
Figure 8(b)).
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Figure 8: Stable vs. equilibrium strategies. (a) ¥ < 0 and
E>0Mb) Kk >0andk§ <0.

5.5 A summary of key results

The above analysis leads to two main conclusions. Firstly, al-
though game-theoretically each agent has a dominant strategy, the
results of our analysis show that when the population is asymmetric
and the strategies in the two populations co-evolve, the stable out-
come of the evolutionary approach does not always coincide with
the game-theoretic equilibrium outcome. Secondly, as the play-
ers mutually adapt to each other’s strategy, the stable outcome de-
pends on the initial population. More specifically, when & > 0
and k{ > 0, the outcomes of these two approaches differ. As seen
in Table 2, the dominant strategy for asp (which in our case repre-
sents the buyer) is to initialize the population randomly since this
results in agreement at a lower price. The dominant strategy for a;
(which represents the seller) is to initialize all the individuals with
its equilibrium strategy. Also, as shown in Table 2, the outcome
generated by the evolutionary approach is more in favour of asp,
than the equilibrium outcome. The difference however is small.
While the equilibrium price of agreement is 100, the price at the
stable state (for the right initialization) is 95. For all the remaining
scenarios (i.e., kf < 0 for at least one of the agents) the game-
theoretic equilibrium outcome matches the stable outcome of the
evolutionary model, irrespective of how the two populations are
initialised (i.e., I1, Iz, or I3).

From these findings it is clear that implementing software agents
using the game-theoretic approach is computationally simpler (since
the equilibrium strategies can be determined on the basis of the
agents’ information states). Once they are determined, the agents
just need to be coded with these strategies. In contrast, the stable
strategies in the evolutionary model depend on how the popula-
tions are initialised. However, an agent may not know exactly how
the opponent’s population is initialised and, consequently, the GA
learning needs to be done online every time there is a negotiation.

6. RELATED RESEARCH

A number of game-theoretic models have been studied for the bar-
gaining problem under time constraints [14, 15, 8, 6]. A small, but
growing body of literature exists in the field of the application of
evolutionary methods to bargaining [9, 18, 4, 1, 3]. Of these, the
ones closer to our work are [18, 4, 1, 3]. Young [18] and Ellingsen
[4] study the evolutionary model for the Nash demand game, while
Binmore et al [1] provide an evolutionary analysis of Rubinstein’s
alternating offers game of complete information [13] that has a sub-
game perfect equilibrium. Cressman and Schlag [3] show the dif-
ference between game-theoretic and evolutionary outcomes for ex-
tensive form games with distinct payoffs (i.e., games in which no



two paths yield the same payoff for one of the players). However,
all these models are based on the assumption that agents are drawn
from a single population, in which all the individuals have the same
utility function. In a more realistic bargaining scenario, the buyer
and the seller have different utility functions. We therefore treat
the population as being asymmetric, i.e., the population is com-
posed of two separate subpopulations - one representing the buyer
and the other representing the seller since they have different util-
ity functions. Our work thus considers competitive co-evolution,
in which fitness is based on direct competition between individu-
als selected from two independently evolving populations of buyers
and sellers. Moreover, we also show that when the two subpopu-
lations co-evolve, then the stable outcome depends on how the two
subpopulations are initialised.

Matos et al [9] use GAs to analyse multi-issue negotiation. The
population comprises of two subpopulations; one representing the
buyer and other representing the seller. They use a fitness function
based on the sum of the score across all the competitions. The b
and s populations evolve simultaneously. In real-life bargaining
situations each participant tries to maximize its own utility and not
the sum of the participants’ utilities. We therefore consider two
asymmetric subpopulations in which the strategies co-evolve.

In summary, existing evolutionary models study the bargaining
behavior of agents either for a symmetric population (i.e., they as-
sume that both the parties in a game have the same utility function)
or study the simultaneous evolution of strategies if the population
is asymmetric, by focussing on a specific negotiation scenario. Our
work differs from existing models in the following ways. Firstly,
we consider an asymmetric population and study the competitive
co-evolution of strategies in the two subpopulations. The second
difference lies in the stable outcomes generated by the evolutionary
models for symmetric and asymmetric populations. For symmetric
games of simultaneous offers it has been shown that the evolution-
ary equilibrium coincides with the Nash equilibrium [17], while
for symmetric games of alternating offers the evolutionarily stable
outcome are close to the game-theoretic equilibrium under certain
conditions [1]. In contrast to this, our study shows that, if the popu-
lation is asymmetric, the stable outcome of the evolutionary model
can differ from the game-theoretic outcome even when each agent
has a dominant strategy at every period at which it makes a move.
Furthermore, our study also highlights the effect of the initial pop-
ulation on the stable state.

7. CONCLUSIONS AND FUTURE WORK

This paper studied the bargaining behavior of boundedly rational
agents using GAs and compared the results with the game-theoretic
equilibrium outcome, for a particular model of negotiation based on
negotiation decision functions. In this negotiation game of incom-
plete information, each agent has a unique strategy that is domi-
nant at every information state at which it makes a move. In the
evolutionary counterpart of this model, there is a competitive co-
evolution of strategies between two asymmetric populations. Each
player learns the most effective strategy that is the best reply to
the opponent’s strategy. The key conclusion of our analysis is that
although the agents in the game-theoretic model have dominant
strategies, the stable state of the corresponding evolutionary model
does not always match the equilibrium outcome. Furthermore, as
the players mutually adapt to each other’s strategy, the stable out-
come depends on the initial population.

Our present work used genetic algorithm learning to study the
bargaining behavior of boundedly rational agents. In order to get
more general results, it would be interesting to extend the analysis
to other learning mechanisms.
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