
Agent-Oriented SoftwareEngineering:
The Stateof the Art

Michael Wooldridge
�

and PaoloCiancarini �
�

Departmentof ComputerScience
Universityof Liverpool
LiverpoolL69 7ZF, UK
M.J.Wooldridge@csc.liv.ac.uk

�
Dipartimentodi Scienzedell’Informazione
Universityof Bologna
MuraAnteoZamboni7, 47127Bologna,Italy
ciancarini@cs.unibo.it

Abstract. Softwareengineerscontinuallystrive to developtoolsandtechniques
to managethe complexity that is inherentin software systems.In this article,
we arguethat intelligentagentsandmulti-agent systemsarejust suchtools.We
begin by reviewing what is meantby theterm“agent”, andcontrastagentswith
objects.Wethengoonto examineanumberof prototypetechniquesproposedfor
engineeringagentsystems,includingmethodologiesfor agent-orientedanalysis
anddesign,formal specificationandverificationmethodsfor agentsystems,and
techniquesfor implementingagentspecifications.

1 Intr oduction

Over thepastthreedecades,softwareengineershavederiveda progressively betterun-
derstandingof thecharacteristicsof complexity in software.It is now widely recognised
that interaction is probablythe most importantsinglecharacteristicof complex soft-
ware.Softwarearchitecturesthat containmany dynamicallyinteractingcomponents,
eachwith theirown threadof control,andengagingin complex coordinationprotocols,
aretypically ordersof magnitudemorecomplex to correctlyandefficiently engineer
than thosethat simply computea function of someinput througha single threadof
control.

Unfortunately, it turnsout thatmany (if notmost)real-world applicationshavepre-
cisely thesecharacteristics.As a consequence,a major researchtopic in computersci-
enceoveratleastthepasttwo decadeshasbeenthedevelopmentof toolsandtechniques
to model,understand,andimplementsystemsin which interactionis thenorm.

Many researchersnow believe that in future,computationitself will beunderstood
aschiefly asa processof interaction.This hasin turn led to the searchfor new com-
putationalabstractions,models,andtools with which to conceptualiseandimplement
interactingsystems.

Sincethe1980s,softwareagentsandmulti-agentsystemshave grown into what is
now oneof the mostactive areasof researchanddevelopmentactivity in computing

generally. Thereare many reasonsfor the current intensity of interest,but certainly
oneof the most importantis that the conceptof an agentasan autonomoussystem,
capableof interactingwith otheragentsin order to satisfy its designobjectives,is a
naturalonefor softwaredesigners.Justaswe canunderstandmany systemsasbeing
composedof essentiallypassive objects,which have state,and upon which we can
performoperations,sowecanunderstandmany othersasbeingmadeupof interacting,
semi-autonomousagents.

Our aim in this article is to survey the stateof the art in agent-orientedsoftware
engineering.Thearticleis structuredasfollows:

– in thesub-sectionsthatfollows,weprovidebrief introductionsto agentsandmulti-
agentsystems,andcommentontherelationshipbetweenagentsandobjects(in the
senseof object-orientedprogramming);

– in section2, we survey somepreliminary methodologies for engineeringmulti-
agentsystems— thesemethodologiesprovide structuredbut non-mathematical
approachesto theanalysisanddesignof agentsystems,andfor themostpart take
inspirationeitherfrom object-orientedanalysisanddesignmethodologiesor from
knowledge-engineeringapproaches;andfinally,

– in section3,wecommentontheuseof formalmethodsfor engineeringmulti-agent
systems.

We concludethe main text of the article with a brief discussionof openproblems,
challenges,and issuesthat mustbe addressedif agentsare to achieve their potential
as a software engineeringparadigm.In an appendix,we provide pointersto further
informationaboutagents.

1.1 What areAgent-BasedSystems?

Beforeproceedingany further, it is importantto gainanunderstandingof exactly what
we meanby anagent-basedsystem.By anagent-basedsystem, we meanonein which
thekey abstractionusedis thatof anagent. Agent-basedsystemsmaycontaina single
agent,(asin thecaseof userinterfaceagentsor softwaresecretaries[50]), but arguably
thegreatestpotentiallies in theapplicationof multi-agentsystems[5]. By anagent, we
meanasystemthatenjoys thefollowing properties[75, pp.116–118]:

– autonomy: agentsencapsulatesomestate(thatis notaccessibleto otheragents),and
makedecisionsaboutwhatto dobasedon thisstate,without thedirectintervention
of humansor others;

– reactivity: agentsaresituatedin anenvironment,(whichmaybethephysicalworld,
auservia agraphicaluserinterface,acollectionof otheragents,the INTERNET, or
perhapsmany of thesecombined),areableto perceivethis environment(through
theuseof potentiallyimperfectsensors),andareableto respondin atimely fashion
to changesthatoccurin it;

– pro-activeness: agentsdo not simply actin responseto their environment,they are
ableto exhibit goal-directedbehaviour by takingtheinitiative;

– social ability: agentsinteractwith otheragents(and possiblyhumans)via some
kind of agent-communicationlanguage [28], andtypically have the ability to en-
gagein social activities (suchas cooperative problemsolving or negotiation) in
orderto achievetheir goals.

Thesepropertiesaremoredemandingthanthey might at first appear. To seewhy, let
usconsiderthemin turn.First,considerpro-activeness: goaldirectedbehavior. It is not
hardto build a systemthatexhibits goal directedbehavior — we do it every time we
write a procedurein Pascal,a function in C, or a methodin Java.Whenwe write such
a procedure,we describeit in termsof the assumptionson which it relies (formally,
its pre-condition) andtheeffect it hasif theassumptionsarevalid (its post-condition).
The effectsof the procedureare its goal: what the authorof the softwareintendsthe
procedureto achieve. If the pre-conditionholdswhenthe procedureis invoked, then
weexpectthattheprocedurewill executecorrectly: thatit will terminate,andthatupon
termination,thepost-conditionwill betrue,i.e., thegoalwill beachieved.This is goal
directedbehavior: theprocedureis simply a planor recipefor achieving thegoal.This
programmingmodelis fine for many environments.For example,its workswell when
we considerfunctionalsystems— thosethat simply take someinput � , andproduce
asoutputsomesomefunction �����
	 of this input. Compilersarea classicexampleof
functionalsystems.

But for non-functionalsystems,this simplemodelof goal directedprogramming
is not acceptable,as it makes an important limiting assumption.It assumesthat the
environmentdoesnotchangewhile theprocedureis executing.If theenvironmentdoes
change,andin particular, if the assumptions(pre-condition)underlyingtheprocedure
becomefalsewhile theprocedureis executing,thenthebehavior of theproceduremay
not bedefined— often,it will simply crash.Similarly, it is assumedthat thegoal,that
is, the reasonfor executingthe procedure,remainsvalid at leastuntil the procedure
terminates.If thegoaldoesnot remainvalid, thenthereis simplynoreasonto continue
executingtheprocedure.

In many environments,neitherof theseassumptionsarevalid. In particular, in do-
mainsthataretoocomplex for anagentto observecompletely, thataremulti-agent(i.e.,
they arepopulatedwith morethanoneagentthatcanchangetheenvironment),or where
thereis uncertaintyin theenvironment,theseassumptionsarenot reasonable.In such
environments,blindly executingaprocedurewithoutregardto whethertheassumptions
underpinningtheprocedurearevalid is apoorstrategy. In suchdynamicenvironments,
an agentmustbe reactive, in just the way that we describedabove. That is, it must
be responsive to eventsthatoccurin its environment,wheretheseeventsaffect either
the agent’s goalsor the assumptionswhich underpinthe proceduresthat the agentis
executingin orderto achieve its goals.

As wehaveseen,building purelygoaldirectedsystemsis nothard.Similarly, build-
ing purely reactivesystems— onesthatcontinuallyrespondto their environment— is
alsonot difficult; we canimplementthemaslookuptablesthatsimply matchenviron-
mentalstimuli to actionresponses.However, whatturnsout to beveryhardis building
a systemthatachievesaneffective balancebetweengoal-directedandreactive behav-
ior. We wantagentsthatwill attemptto achieve their goalssystematically, perhapsby
makinguseof complex procedure-likerecipesfor action.But wedon’t wantouragents

to continueblindly executingtheseproceduresin an attemptto achieve a goal either
whenit is clearthat theprocedurewill not work, or whenthegoal is for somereason
no longervalid. In suchcircumstances,wewantouragentto beableto reactto thenew
situation,in timefor thereactionto beof someuse.However, wedonotwantouragent
to becontinuallyreacting,andhencenever focussingonagoallongenoughto actually
achieve it.

On reflection,it shouldcomeas little surprisethat achieving a goodbalancebe-
tweengoaldirectedandreactive behavior is hard.After all, it is comparatively rareto
find humansthat do this very well. How many of us have hada managerwho stayed
blindly focussedon someprojectlong aftertherelevanceof theprojectwaspassed,or
it wasclearthattheprojectplanwasdoomedto failure?Similarly, how many have en-
counteredmanagerswho seemunableto stayfocussedat all, who flit from oneproject
to anotherwithout ever managingto pursuea goal long enoughto achieve anything?
Thisproblem— of effectively integratinggoal-directedandreactivebehavior — is one
of thekey problemsfacingtheagentdesigner. As we shallsee,a greatmany proposals
havebeenmadefor how to build agentsthatcandothis— but theproblemis essentially
still open.

Finally, let us saysomethingaboutsocial ability, the final componentof flexible
autonomousactionasdefinedhere.In onesense,socialability is trivial: everyday, mil-
lions of computersacrosstheworld routinelyexchangeinformationwith bothhumans
andothercomputers.But theability to exchangebit streamsis not really socialability.
Considerthat in the humanworld, comparatively few of our meaningfulgoalscanbe
achievedwithout thecooperationof otherpeople,who cannotbeassumedto shareour
goals— in other words, they are themselvesautonomous,with their own agendato
pursue.This typeof socialability — involving theability to dynamicallynegotiateand
coordinate— is muchmorecomplex, andmuchlesswell understood,thansimply the
ability to exchangebitstreams.

An obviousquestionto askis why agentsandmulti-agentsystemsareseenasan
importantnew directionin softwareengineering.Thereareseveral reasons[40, pp.6–
10]:

– Natural metaphor.
Justasthemany domainscanbeconceivedof consistingof anumberof interacting
but essentiallypassive objects, so many otherscan be conceived as interacting,
active, purposefulagents. For example,a scenariocurrently driving much R&D
activity in theagentsfield is thatof softwareagentsthatbuy andsell goodsvia the
Interneton behalfof someusers.It is naturalto view the softwareparticipantsin
suchtransactionsas(semi-)autonomousagents.

– Distribution of dataor control.
For many softwaresystems,it is not possibleto identify a singlelocusof control:
instead,overall control of the systemsis distributedacrossa numbercomputing
nodes,which arefrequentlygeographicallydistributed.In orderto make suchsys-
temswork effectively, thesenodesmust be capableof autonomouslyinteracting
with eachother— they mustagents.

– Legacysystems.

A naturalwayof incorporatinglegacy systemsinto moderndistributedinformation
systemsis to agentify them:to “wrap” themwith an agentlayer, that will enable
themto interactwith otheragents.

– Opensystems.
Many systemsareopenin thesensethatit is impossibleto know atdesigntimeex-
actlywhatcomponentsthesystemwill becomprisedof, andhow thesecomponents
will beusedto interactwith one-another. To operateeffectively in suchsystems,the
ability to engagein flexible autonomousdecision-makingis critical.

1.2 On the RelationshipbetweenAgentsand Objects

Programmersfamiliar with object-orientedapproachesoftenfail to seeanything novel
or new in theideaof agents.Whenonestopsto considertherelativepropertiesof agents
andobjects,this is perhapsnotsurprising.Objectsaredefinedascomputationalentities
thatencapsulatesomestate,areableto performactions,or methodson this state,and
communicateby messagepassing.Thereare clearly closelinks betweenagentsand
objects,which aremadestrongerby our tendency to anthropomorphisizeobjects.For
example,thefollowing is from atextbookon object-orientedprogramming:

Thereis a tendency [. . .] to think of objectsas“actors” andendow themwith
human-likeintentionsandabilities.It’s temptingto think aboutobjects“decid-
ing” whatto doaboutasituation,[and] “asking” otherobjectsfor information.
[. . .] Objectsarenot passivecontainersfor stateandbehaviour, but aresaidto
betheagentsof a program’sactivity. [37, p.7]

While thereareobvioussimilarities,therearealsosignificantdifferencesbetweenagents
andobjects.Thefirst is in thedegreeto which agentsandobjectsareautonomous.Re-
call that thedefiningcharacteristicof object-orientedprogrammingis the principleof
encapsulation— the ideathat objectscanhave control over their own internalstate.
In programminglanguageslike Java, we candeclareinstancevariables(andmethods)
to beprivate, meaningthey areonly accessiblefrom within theobject.(We canof
coursealsodeclarethempublic, meaningthat they canbeaccessedfrom anywhere,
andindeedwe mustdo this for methodssothat they canbeusedby otherobjects.But
theuseof public instancevariablesis usuallyconsideredpoorprogrammingstyle.)
In this way, an objectcanbe thoughtof asexhibiting autonomyover its state:it has
controlover it. But anobjectdoesnot exhibit controlover it’s behavior. That is, if an
objecthasa public methodm, thenotherobjectscaninvokem whenever they wish —
onceanobjecthasmadea methodpublic, thenit subsequentlyhasno controlover
whetheror not thatmethodis executed.

Of course,anobjectmustmakemethodsavailableto otherobjects,or elsewewould
be unableto build a systemout of them.This is not normallyan issue,becauseif we
build asystem,thenwedesigntheobjectsthatgo in it, andthey canthusbeassumedto
sharea “commongoal”. But in many typesof multi-agentsystem,(in particular, those
that containagentsbuilt by differentorganisationsor individuals),no suchcommon
goal canbe assumed.It cannotbe for grantedthat an agent � will executean action
(method)� justbecauseanotheragent wantsit to — � maynotbein thebestinterests

of � . We thusdo not think of agentsasinvoking methodsuponone-another, but rather
asrequestingactionsto beperformed.If requests� to perform � , then � mayperform
theactionor it maynot.Thelocusof controlwith respectto thedecisionaboutwhether
to executeanactionis thusdifferentin agentandobjectsystems.In theobject-oriented
case,the decisionlies with the object that invokesthe method.In the agentcase,the
decisionlies with theagentthat receivesthe request.This distinctionbetweenobjects
andagentshasbeennicely summarizedin thefollowing slogan:Objectsdo it for free;
agentsdo it becausethey wantto.

Thesecondimportantdistinctionbetweenobjectandagentsystemsis with respect
to thenotionof flexible (reactive,pro-active,social)autonomousbehavior. Thestandard
objectmodelhasnothingwhatsoever to sayabouthow to build systemsthat integrate
thesetypesof behavior. Onecouldpointout thatwecanbuild object-orientedprograms
thatdo integratethesetypesof behavior. And indeedwe can,but this argumentmisses
thepoint,which is thatthestandardobject-orientedprogrammingmodelhasnothingto
do with thesetypesof behavior.

Thethird importantdistinctionbetweenthestandardobjectmodelandour view of
agentsystemsis that agentsareeachconsideredto have their own threadof control.
Agentsareassumedto be continuallyactive, andtypically areengagedin an infinite
loop of observingtheir environment,updatingtheir internal state,and selectingand
executingan action to perform. In contrast,objectsare assumedto be quiescentfor
mostof the time, becomingactive only whenanotherobjectrequirestheir servicesby
dint of methodinvocation.

Of course,a lot of work hasrecentlybeendevotedto concurrencyin object-oriented
programming.For example,the Java languageprovidesbuilt-in constructsfor multi-
threadedprogramming.Therearealsomany programminglanguagesavailable(mostof
themadmittedlyprototypes)thatwerespecificallydesignedto allow concurrentobject-
basedprogramming.But suchlanguagesdo not capturethe ideawe have of agentsas
autonomousentities.Perhapstheclosestthat theobject-orientedcommunitycomesis
in theideaof activeobjects:

An activeobjectis onethatencompassesits own threadof control[. . .]. Active
objectsaregenerallyautonomous,meaningthatthey canexhibit somebehavior
without beingoperateduponby anotherobject.Passive objects,on the other
hand,canonly undergoastatechangewhenexplicitly actedupon.[6, p.91]

Thus active objectsare essentiallyagentsthat do not necessarilyhave the ability to
exhibit flexible autonomousbehavior.

To summarize,the traditionalview of an objectandour view of an agenthave at
leastthreedistinctions:

– agentsembodystrongernotion of autonomythanobjects,and in particular, they
decidefor themselveswhetheror not to performanactionon requestfrom another
agent;

– agentsarecapableof flexible (reactive, pro-active, social)behavior, andthe stan-
dardobjectmodelhasnothingto sayaboutsuchtypesof behavior;

– a multi-agentsystemis inherentlymulti-threaded,in thateachagentis assumedto
haveat leastonethreadof control.

2 Agent-Oriented Analysis and Design

Thefirst mainstrandof work we consideron approachesto developingagentsystems
involvesprincipledbut informaldevelopmentmethodologiesfor theanalysisanddesign
of agent-basedsystem.Thesecanbebroadlydividedinto two groups:

– thosethat take their inspirationfrom object-orienteddevelopment,andeitherex-
tend existing OO methodologiesor adaptOO methodologiesto the purposesof
AOSE[10,45,77,54,18,3,44,56,70];

– thosethatadaptknowledgeengineeringor othertechniques[8, 49,36,16].

In the remainderof this section,we review somerepresentative samplesof this work.
As representativesof thefirst category, wesurvey theAAII methodologyof Kinny etal
[45], theGaiamethodologyof Wooldridgeet al [77], andsummarisework on adapting
UML [54,18,3]. As representativesof thesecondcategory, we survey the Cassiopeia
methodologyof Collinot et al [16], theDESIREframework of Treuret al [8], andthe
useof Z for specifyingagentsystems[49].

Kinny et al: The AAII Methodology The AustralianAI Institute (AAII) hasbeen
developingagent-basedsystemsfor a decade.The primary developmentenvironment
in which thiswork hasbeencarriedout is thebelief-desire-intentiontechnology[74] of
theProceduralReasoningSystem(PRS) andits successor, theDistributedMulti-Agent
ReasoningSystem(DMARS) [62]. The PRS, originally developedat StanfordResearch
Institute,wasthefirst agentarchitectureto explicitly embodythebelief-desire-intention
paradigm,andhasprovedto bethemostdurableagentarchitecturedevelopedto date.It
hasbeenappliedin severalof themostsignificantmulti-agentapplicationssofar built,
including an air-traffic control systemcalled OASIS that is currentlyundergoingfield
trials at Sydney airport,a simulationsystemfor theRoyal AustralianAir Forcecalled
SWARMM, anda businessprocessmanagementsystemcalled SPOC (Single Point of
Contact),thatis currentlybeingmarketedby AgentisSolutions[29]. TheAAII method-
ology for agent-orientedanalysisanddesignwasdevelopedasa resultof experience
gainedwith thesemajorapplications.It drawsprimarily uponobject-orientedmethod-
ologies,andenhancesthemwith someagent-basedconcepts.The methodologyitself
is aimedat theconstructionof a setof modelswhich,whenfully elaborated,definean
agentsystemspecification.

The AAII methodologyprovidesboth internal andexternal models.The external
model presentsa system-level view: the main componentsvisible in this model are
agentsthemselves.Theexternalmodelis thusprimarily concernedwith agentsandthe
relationshipsbetweenthem.It is not concernedwith the internalsof agents:how they
areconstructedor what they do. In contrast,the internalmodel is entirely concerned
with theinternalsof agents:their beliefs,desires,andintentions.

The externalmodel is intendedto defineinheritancerelationshipsbetweenagent
classes,and to identify the instancesof theseclassesthat will appearat run-time.It
is itself composedof two further models:the agent modelandthe interaction model.
The agentmodel is then further divided into an agent classmodeland an agent in-
stancemodel. Thesetwo modelsdefinethe agentsandagentclassesthat canappear,

andrelatetheseclassesto one-anothervia inheritance,aggregation,and instantiation
relations.Eachagentclassis assumedto have at leastthreeattributes,for beliefs,de-
sires,andintentions.The analystis ableto definehow theseattributesareoverridden
duringinheritance.For example,it is assumedthatby default, inheritedintentionshave
lesspriority thanthosein sub-classes.Theanalystmaytailor thesepropertiesasdesired.

Detailsof the internalmodelarenot given,but it seemsclear that developingan
internalmodelcorrespondsfairly closelyto implementinga PRS agent,i.e., designing
theagent’sbelief,desire,andintentionstructures.

TheAAII methodologyis aimedat elaboratingthemodelsdescribedabove.It may
besummarisedasfollows:

1. Identify the relevant roles in the applicationdomain,and on the basisof these,
develop an agent class hierarchy. An example role might be weathermonitor,
wherebyagent� is requiredto makeagent awareof theprevailing weathercondi-
tionseveryhour.

2. Identify theresponsibilitiesassociatedwith eachrole, theservicesrequiredby and
provided by the role, andthendeterminethe goalsassociatedwith eachservice.
With respectto the above example, the goalswould be to find out the current
weather, andto makeagent awareof this information.

3. For eachgoal,determinetheplansthatmaybeusedto achieve it, andthecontext
conditionsunderwhicheachplanisappropriate.With respectto theaboveexample,
aplanfor thegoalof makingagent awareof theweatherconditionsmight involve
sendinga messageto .

4. Determinethe belief structureof the system— the informationrequirementsfor
eachplanandgoal.With respectto theabove example,we might proposea unary
predicate�����������
�����
����	 to representthe fact that the currentwind speedis � . A
planto determinethecurrentweatherconditionswouldneedto beableto represent
this information.

Note that the analysisprocesswill be iterative, asin moretraditionalmethodologies.
Theoutcomewill beamodelthatcloselycorrespondsto thePRS agentarchitecture.As
a result,themovefrom end-designto implementationusingPRS is relatively simple.

Wooldridge et al: Gaia TheGaia1 methodologyis intendedto allow ananalystto go
systematicallyfrom a statementof requirementsto a designthatis sufficiently detailed
thatit canbeimplementeddirectly. Notethatweview therequirementscapturephaseas
beingindependentof theparadigmusedfor analysisanddesign.In applyingGaia,the
analystmovesfrom abstractto increasinglyconcreteconcepts.Eachsuccessive move
introducesgreaterimplementationbias,andshrinksthespaceof possiblesystemsthat
couldbeimplementedto satisfytheoriginal requirementsstatement.(See[42, pp.216-
222] for adiscussionof implementationbias.)Analysisanddesigncanbethoughtof as
a processof developingincreasinglydetailedmodelsof thesystemto beconstructed.

1 Thenamecomesfrom theGaiahypothesisputforwardby JamesLovelock,to theeffectthatall
theorganismsin theearth’s biospherecanbeviewedasactingtogetherto regulatetheearth’s
environment.

AbstractConcepts ConcreteConcepts
Roles AgentTypes
Permissions Services
Responsibilities Acquaintances
Protocols
Activities
Livenessproperties
Safetyproperties

Table 1. Abstractandconcreteconceptsin Gaia

Gaiaborrowssometerminologyandnotationfrom object-orientedanalysisandde-
sign,(specifically, FUSION [15]). However, it is notsimplyanaiveattemptto applysuch
methodsto agent-orienteddevelopment.Rather, it providesanagent-specificsetof con-
ceptsthroughwhich a softwareengineercanunderstandandmodela complex system.
In particular, Gaiaencouragesa developerto think of building agent-basedsystemsas
a processof organisationaldesign.

ThemainGaianconceptscanbedividedinto two categories:abstractandconcrete;
abstractandconcreteconceptsaresummarisedin Table1. Abstractentitiesarethose
usedduringanalysisto conceptualisethesystem,but whichdonotnecessarilyhaveany
direct realisationwithin the system.Concreteentities,in contrast,areusedwithin the
designprocess,andwill typically havedirectcounterpartsin therun-timesystem.

The objective of the analysisstageis to develop an understandingof the system
andits structure(without referenceto any implementationdetail).In theGaiacase,this
understandingis capturedin thesystem’s organisation. An organisationis viewedasa
collectionof roles,thatstandin certainrelationshipsto oneanother, andthat take part
in systematic,institutionalisedpatternsof interactionswith otherroles.

Theideaof asystemasasocietyis usefulwhenthinking aboutthenext level in the
concepthierarchy:roles. It may seemstrangeto think of a computersystemasbeing
definedby a setof roles,but the ideais quitenaturalwhenadoptinganorganisational
view of theworld.Considerahumanorganisationsuchasatypicalcompany. Thecom-
pany hasrolessuchas“president”,“vice president”,andsoon.Notethat in a concrete
realisationof a company, theseroleswill be instantiatedwith actualindividuals:there
will beanindividualwho takeson therole of president,anindividualwho takeson the
role of vice president,andso on. However, the instantiationis not necessarilystatic.
Throughoutthecompany’slifetime, many individualsmaytakeon theroleof company
president,for example.Also, thereis not necessarilya one-to-onemappingbetween
rolesandindividuals.It is not unusual(particularlyin small or informally definedor-
ganisations)for oneindividual to take on many roles.For example,a singleindividual
might takeon therole of “teamaker”, “mail fetcher”,andsoon.Conversely, theremay
bemany individualsthattakeon a singlerole,e.g.,“salesman”.

A role is definedby four attributes: responsibilities, permissions, activities, and
protocols. Responsibilitiesdeterminefunctionality and,as such,are perhapsthe key
attribute associatedwith a role. An exampleresponsibilityassociatedwith the role of
company presidentmight becalling theshareholdersmeetingeveryyear. Responsibili-

tiesaredividedinto two types:livenesspropertiesandsafetyproperties[57]. Liveness
propertiesintuitively statethat “somethinggoodhappens”.They describethosestates
of affairs that an agentmustbring about,given certainenvironmentalconditions.In
contrast,safetypropertiesareinvariants. Intuitively, asafetypropertystatesthat“noth-
ing badhappens”(i.e., thatanacceptablestateof affairs is maintainedacrossall states
of execution).An examplemight be“ensurethereactortemperaturealwaysremainsin
therange0-100”.

In orderto realiseresponsibilities,a role hasa setof permissions. Permissionsare
the“rights” associatedwith arole.Thepermissionsof arole thusidentify theresources
thatareavailableto thatrole in orderto realiseits responsibilities.Permissionstendto
be informationresources. For example,a role might have associatedwith it theability
to reada particularitem of information,or to modify anotherpieceof information.A
role canalsohave theability to generate information.

Theactivitiesof arolearecomputationsassociatedwith therolethatmaybecarried
out by the agentwithout interactingwith other agents.Activities are thus “private”
actions,in thesenseof [65].

Finally, a role is alsoidentifiedwith a numberof protocols, which definetheway
thatit caninteractwith otherroles.For example,a“seller” rolemighthavetheprotocols
“Dutch auction”and“English auction”associatedwith it; theContractNet Protocolis
associatedwith theroles“manager”and“contractor”[66].

Odell et al: Agent UML Over thepasttwo decades,many differentnotationsandas-
sociatedmethodologieshave beendevelopedwithin the object-orienteddevelopment
community(see,e.g., [6,64,15]). Despitemany similarities betweenthesenotations
and methods,therewere neverthelessmany fundamentalinconsistenciesand differ-
ences.The Unified Modelling Language— UML — is an attemptby threeof the
main figuresbehindobject-orientedanalysisanddesign(GradyBooch,JamesRum-
baugh,andIvar Jacobson)to develop a singlenotationfor modellingobject-oriented
systems[7]. It is importantto notethat UML is not a methodology;it is, asits name
suggests,a languagefor documentingmodelsof systems;associatedwith UML is a
methodologyknown astheRationalUnified Process[7, pp.449–456].

The fact that UML is a de factostandardfor object-orientedmodellingpromoted
its rapidtakeup.Whenlookingfor agent-orientedmodellinglanguagesandtools,many
researchersfelt thatUML wastheobviousplaceto start[54,18,3]. Theresulthasbeen
anumberof attemptsto adapttheUML notationfor modellingagentsystems.Odelland
colleagueshave discussedseveralwaysin which theUML notationmight usefullybe
extendedto enablethemodellingof agentsystems[54,3]. Theproposedmodifications
include:

– supportfor expressingconcurrentthreadsof interaction(e.g.,broadcastmessages),
thus enablingUML to model suchwell-known agentprotocolsas the Contract
Net [66];

– a notionof “role” thatextendsthatprovidedin UML, andin particular, allows the
modellingof anagentplayingmany roles.

Both the ObjectManagementGroup(OMG) [55], andthe Foundationfor Intelligent
PhysicalAgents(FIPA) [27] arecurrentlysupportingthedevelopmentof UML-based

notationsfor modellingagentsystems,andthereis thereforelikely to beconsiderable
work in this area.

Treur et al: DESIRE In anextensiveseriesof papers(see,e.g.,[8, 19]),Treurandcol-
leagueshavedescribedtheDESIREframework.DESIREis a framework for thedesign
and formal specificationof compositionalsystems.As well asproviding a graphical
notationfor specifyingsuchcompositionalsystems,DESIREhasassociatedwith it a
graphicaleditorandothertoolsto supportthedevelopmentof agentsystems.

Collinot et al: Cassiopeia In contrastto Gaiaand the AAII methodology, the Cas-
siopeiamethodproposedby Collinot et al is essentiallybottomup in nature[16]. Es-
sentially, with theCassiopeiamethod,onestartsfrom thebehaviours requiredto carry
out sometask;this is rathersimilar to the behavioural view of agentsput forwardby
Brooksandcolleagues[9]. Essentially, themethodologyproposesthreesteps:

1. identify theelementarybehaviours thatareimplied by theoverall systemtask;
2. identify therelationshipsbetweenelementarybehaviours;
3. identify theorganisationalbehavioursof thesystem,for example,thewayin which

agentsform themselvesinto groups.

Collinot et al illustrate the methodologyby way of the designof a RoboCupsoccer
team(see[38]).

Luck and d’In verno: Agentsin Z Luck andd’Invernohavedevelopedanagentspec-
ification framework in theZ language[68], althoughthetypesof agentsconsideredin
this framework aresomewhatdifferentfrom thosediscussedabove [48,49]. They de-
finea four-tieredhierarchyof theentitiesthatcanexist in anagent-basedsystem.They
startwith entities, which areinanimateobjects— they have attributes(colour, weight,
position),but nothingelse.They thendefineobjectsto beentitiesthathavecapabilities
(e.g.,tablesareentitiesthatarecapableof supportingthings).Agentsarethendefinedto
beobjectsthathavegoals,andarethusin somesenseactive;finally, autonomousagents
aredefinedto be agentswith motivations.The ideais thata chair couldbe viewedas
takingon my goalof supportingmewhenI amusingit, andcanhencebeviewedasan
agentfor me.But we would not view a chairasanautonomousagent,sinceit hasno
motivations(andcannoteasilybeattributedthem).Startingfrom this basicframework,
Luck andd’Invernogoonto examinethevariousrelationshipsthatmightexist between
agentsof differenttypes.In [49], they examinehow anagent-basedsystemspecifiedin
theirframeworkmightbeimplemented.They foundthattherewasanaturalrelationship
betweentheir hierarchicalagentspecificationframework andobject-orientedsystems:

The formal definitions of agentsand autonomousagentsrely on inheriting
the propertiesof lower-level components.In the Z notation,this is achieved
throughschemainclusion [. . .]. This is easily modelledin C++ by deriving
one classfrom another. [. . .] Thus we move from a principled but abstract
theoreticalframework througha moredetailed,yet still formal, modelof the
system,down to anobject-orientedimplementation,preservingthehierarchical
structureat eachstage.[49]

TheLuck-d’Invernoformalismis attractive,particularlyin theway that it capturesthe
relationshipsthat canexist betweenagents.The emphasisis placedon the notion of
agentsacting for another, ratherthanon agentsasrationalsystems,aswe discussed
above. The typesof agentsthat the approachallows us to developarethusinherently
differentfrom the“rational” agentsdiscussedabove.So,for example,theapproachdoes
nothelpustoconstructagentsthatcaninterleavepro-activeandreactivebehaviour.This
is largely a resultof the chosenspecificationlanguage:Z. This languageis inherently
gearedtowardsthespecificationof operation-based,functionalsystems.Thebasiclan-
guagehasno mechanismsthatallow us to easilyspecifytheongoingbehaviour of an
agent-basedsystem2.

2.1 Discussion

Thepredominantapproachto developingmethodologiesfor multi-agentsystemsis to
adaptthosedevelopedfor object-orientedanalysisanddesign:hencetheAAII method-
ology takesinspirationfrom Rumbaugh’s work, Gaiatakesinspirationfrom FUSION,
andsoon. Thereareobviousadvantagesto suchanapproach,themostobviousbeing
that theconcepts,notations,andmethodsassociatedwith object-orientedanalysisand
design(andUML in particular)areincreasinglyfamiliar to amassaudienceof software
engineers.However, thereareseveraldisadvantages.First, thekindsof decomposition
thatobject-orientedmethodsencourageis at oddswith thekind of decompositionthat
agentorienteddesignencourages.Putcrudely, agentsaremorecoarse-grainedcompu-
tationalobjectsthanareagents;they aretypically assumedto have the computational
resourcesof a UNIX process,or at leasta Java thread.Agent systemsimplemented
usingobject-orientedprogramminglanguageswill typically containmany objects(per-
hapsmillions), but will containfar feweragents.A goodagentorienteddesignmethod-
ologywouldencouragedevelopersto achievethecorrectdecompositionof entitiesinto
eitheragentsor objects.

Note that an alternative would be to modelevery entity in a systemasan agent.
However, while this may be in somesenseconceptuallyclean,doesnot lead to effi-
cientsystems(seethediscussionin [76]). Thesituationreflectsthetreatmentof integer
datatypesin object-orientedprogramminglanguages;in “pure” OOlanguages,all data
types,includingintegers,areobjects.However, viewingsuchprimitivedatatypesasob-
jects,while ensuringa consistenttreatmentof data,is not terribly efficient,andfor this
reason,morepragmaticOO languages(suchasJava) do not treat integers,booleans,
andthelikeasobjects.

Anotherproblemis that object-orientedmethodologiessimply do not allow us to
capturemany aspectsof agentsystems;for example,it is hardto capturein objectmod-
elssuchnotionsasanagentpro-actively generatingactionsor dynamicallyreactingto
changesin their environment,still lesshow to effectively cooperateandnegotiatewith
otherself-interestedagents.Theextensionsto UML proposedby Odell et al [54,18,3]
addresssome,but by no meansall of thesedeficiencies.At the heartof the problem
is theproblemof the relationshipbetweenagentsandobjects,which hasnot yet been
satisfactorily resolved.

2 Thereareof courseextensionsto Z designedfor this purpose.

Notethatavaluablesurvey of methodologiesfor agent-orientedsoftwareengineer-
ing canbefoundin [35].

3 Formal Methods for AOSE

Oneof themostactive areasof work in agent-orientedsoftwareengineeringhasbeen
on the useof formal methods(see,e.g.,[75] for a survey). Broadly speaking,formal
methodsplay threerolesin softwareengineering:

– in thespecificationof systems;
– for directlyprogrammingsystems;and
– in theverificationof systems.

In thesubsectionsthat follow, we considereachof theserolesin turn. Note that these
subsectionspre-supposesomefamiliarity with formalmethods,andlogic in particular.

3.1 Formal Methods in Specification

In this section,we considerthe problemof specifyingan agentsystem.What arethe
requirementsfor anagentspecificationframework?Whatsortof propertiesmustit be
capableof representing?Takingtheview of agentsaspracticalreasoningsystemsthat
we discussedabove,thepredominantapproachto specifyingagentshasinvolvedtreat-
ing themas intentionalsystemsthatmaybe understoodby attributing to themmental
statessuchasbeliefs,desires,andintentions[17,75,74].Following this idea,anumber
of approachesfor formally specifyingagentshave beendeveloped,which arecapable
of representingthefollowing aspectsof anagent-basedsystem:

– thebeliefsthatagentshave — theinformationthey have abouttheir environment,
which maybeincompleteor incorrect;

– thegoalsthatagentswill try to achieve;
– theactionsthatagentsperformandtheeffectsof theseactions;
– theongoinginteractionthatagentshave— how agentsinteractwith eachotherand

their environmentover time.

We refer to a theorywhich explainshow theseaspectsof agency interactto generate
thebehaviour of anagentasanagenttheory. Themostsuccessfulapproachto (formal)
agenttheoryappearstobetheuseof atemporal modallogic (spacerestrictionspreventa
detailedtechnicaldiscussionon suchlogics— see,e.g.,[75] for extensivereferences).
Two of the bestknown such logical frameworks are the Cohen-Levesquetheory of
intention[14], andtheRao-Georgeff belief-desire-intentionmodel[60,74].TheCohen-
Levesquemodeltakesasprimitive just two attitudes:beliefsandgoals.Otherattitudes
(in particular, thenotionof intention) arebuilt up from these.In contrast,Rao-Georgeff
takeintentionsasprimitives,in additionto beliefsandgoals.Thekey technicalproblem
facedby agenttheoristsis developinga formal model that givesa good accountof
the interrelationshipsbetweenthe variousattitudesthat togethercomprisean agents

internalstate[75]. Comparatively few seriousattemptshave beenmadeto specifyreal
agentsystemsusingsuchlogics— see,e.g.,[26] for onesuchattempt.

A specificationexpressedin sucha logic would be a formula � . The idea is that
sucha specificationwould expressthedesirablebehavior of a system.To seehow this
mightwork,considerthefollowing, intendedto form partof aspecificationof aprocess
controlsystem.

if
� believesvalve32 is open

then
� shouldintendthat shouldbelievevalve32 is open

Expressedin theBDI logic developedin [74], thisstatementbecomestheformula:

���! #"$�&%'�(���)��*���+�*���,.-/	0	�12��354$6&�7���! #"89%'�
�$�)��*.��+�*.��,:-:	�	0	
It shouldbe intuitively clear how a systemspecificationmight be constructedusing
suchformulae,to definetheintendedbehavior of asystem.

Oneof the main desirablefeaturesof a softwarespecificationlanguageis that it
shouldnotdictatehowaspecificationwill besatisfiedby animplementation.Thespec-
ificationabovehasexactly thisproperty:it doesnotdictatehow agent� shouldgoabout
making awarethatvalve32 is open.We simply expect � to behaveasa rationalagent
givensuchanintention[74].

Thereareanumberof problemswith theuseof languagessuchasfor specification.
The mostworrying of theseis with respectto their semantics.The semanticsfor the
modalconnectives(for beliefs,desires,andintentions)aregiven in the normalmodal
logic traditionof possibleworlds[11]. So,for example,anagent’sbeliefsin somestate
arecharacterizedby a setof differentstates,eachof which representsonepossibility
for how the world could actuallybe, given the informationavailableto the agent.In
muchthesameway, anagent’sdesiresin somestatearecharacterizedby asetof states
thatareconsistentwith theagent’s desires.Intentionsarerepresentedsimilarly. There
areseveraladvantagesto thepossibleworldsmodel:it is well studiedandwell under-
stood,andthe associatedmathematicsof correspondencetheoryis extremelyelegant.
Theseattractivefeaturesmakepossibleworldsthesemanticsof choicefor almostevery
researcherin formal agenttheory. However, therearealsoa numberof seriousdraw-
backsto possibleworldssemantics.First, possibleworldssemanticsimply thatagents
arelogically perfectreasoners,(in that their deductivecapabilitiesaresoundandcom-
plete),andthey have infinite resourcesavailablefor reasoning.No realagent,artificial
or otherwise,hastheseproperties.

Second,possibleworldssemanticsaregenerallyungrounded. That is, thereis usu-
ally no preciserelationshipbetweentheabstractaccessibilityrelationsthatareusedto
characterizean agent’s state,andany concretecomputationalmodel.As we shall see
in later sections,this makes it difficult to go from a formal specificationof a system
in termsof beliefs,desires,andso on, to a concretecomputationalsystem.Similarly,
givenaconcretecomputationalsystem,thereis generallynoway to determinewhatthe
beliefs,desires,andintentionsof thatsystemare.If temporalmodallogicssuchasare
to betakenseriouslyasspecificationlanguages,thenthis is a significantproblem.

3.2 Formal Methods in Implementation

Specificationis not (usually!)theendof thestoryin softwaredevelopment.Oncegiven
a specification,we mustimplementa systemthatis correctwith respectto this specifi-
cation.Thenext issuewe consideris this move from abstractspecificationto concrete
computationalmodel.Thereareat leastthreepossibilitiesfor achieving this transfor-
mation:

1. manuallyrefinethe specificationinto an executableform via someprincipledbut
informalrefinementprocess(asis thenormin mostcurrentsoftwaredevelopment);

2. directly executeor animatetheabstractspecification;or
3. translateor compilethespecificationinto a concretecomputationalform usingan

automatictranslationtechnique.

In thesubsectionsthatfollow, weshall investigateeachof thesepossibilitiesin turn.

Refinement. At the time of writing, mostsoftwaredevelopersusestructuredbut in-
formal techniquesto transformspecificationsinto concreteimplementations.Probably
themostcommontechniquesin widespreadusearebasedon the ideaof top-down re-
finement.In this approach,anabstractsystemspecificationis refinedinto a numberof
smaller, lessabstractsubsystemspecifications,which togethersatisfytheoriginalspec-
ification. If thesesubsystemsarestill too abstractto beimplementeddirectly, thenthey
arealsorefined.Theprocessrecursesuntil the derivedsubsystemsaresimpleenough
to bedirectly implemented.Throughout,we areobligedto demonstratethateachstep
representsa true refinementof the more abstractspecificationthat precededit. This
demonstrationmaytake theform of a formal proof, if our specificationis presentedin,
say, Z [68] or VDM [42]. More usually, justificationis by informal argument.Object-
orientedanalysisanddesigntechniques,which alsotendto bestructuredbut informal,
arealsoincreasinglyplayinga role in thedevelopmentof systems(see,e.g.,[6]).

For functionalsystems,which simply computea function of someinput andthen
terminate,the refinementprocessis well understood,and comparatively straightfor-
ward.Suchsystemscanbe specifiedin termsof pre- andpost-conditions(e.g.,using
Hoarelogic [32]). Refinementcalculi exist, which enablethesystemdeveloperto take
a pre-andpost-conditionspecification,andfrom it systematicallyderiveanimplemen-
tation throughtheuseof proof rules[53]. Part of thereasonfor this comparative sim-
plicity is that thereis oftenaneasilyunderstandablerelationshipbetweenthepre-and
post-conditionsthat characterizean operationand the programstructuresrequiredto
implementit.

For agentsystems,whichfall into thecategoryof Pnuelianreactivesystems(seethe
discussionin chapter1), refinementis notsostraightforward.This is becausesuchsys-
temsmustbespecifiedin termsof their ongoingbehavior — they cannotbespecified
simply in termsof pre-andpost-conditions.In contrastto pre-andpost-conditionfor-
malisms,it is not soeasyto determinewhatprogramstructuresarerequiredto realize
suchspecifications.As a consequence,researchershave only just begunto investigate
refinementanddesigntechniquefor agent-basedsystems.

Dir ectly Executing Agent Specifications. Onemajor disadvantagewith manualre-
finementmethodsis that they introducethe possibility of error. If no proofsarepro-
vided, to demonstratethat eachrefinementstepis indeeda true refinement,then the
correctnessof theimplementationprocessdependsuponlittle morethantheintuitions
of thedeveloper. This is clearlyanundesirablestateof affairsfor applicationsin which
correctnessis a major issue.Onepossibleway of circumventingthis problem,which
hasbeenwidely investigatedin mainstreamcomputerscience,is to getrid of therefine-
mentprocessaltogether, anddirectlyexecutethespecification.

It might seemthat suggestingthe direct executionof complex agentspecification
languagesis naive — it is exactly thekind of suggestionthatdetractorsof logic-based
AI hate.Oneshouldthereforebeverycarefulaboutwhatclaimsorproposalsonemakes.
However, in certaincircumstances,thedirectexecutionof agentspecificationlanguages
is possible.

Whatdoesit mean,to executeaformula � of logic ; ?It meansgeneratinga logical
model, < , for � , suchthat < = >?� [24]. If this could be donewithout interference
from theenvironment— if theagenthadcompletecontrolover its environment— then
executionwould reduceto constructive theorem-proving,wherewe show that � is sat-
isfiableby building amodelfor � . In reality, of course,agentsarenot interference-free:
they mustiteratively constructa modelin thepresenceof input from theenvironment.
Executioncanthenbeseenasa two-way iterativeprocess:

– environmentmakessomethingtrue;
– agentrespondsby doingsomething,i.e.,makingsomethingelsetruein themodel;
– environmentresponds,makingsomethingelsetrue;
– . . .

Executionof logical languagesandtheorem-proving arethuscloselyrelated.This tells
us that the executionof sufficiently rich (quantified)languagesis not possible(since
any languageequalin expressivepower to first-orderlogic is undecidable).

A usefulway to think aboutexecutionis asif the agentis playinga gameagainst
the environment.The specificationrepresentsthe goal of the game:the agentmust
keepthe goal satisfied,while the environmenttries to prevent the agentfrom doing
so. The gameis playedby agentandenvironmenttaking turns to build a little more
of the model. If the specificationever becomesfalsein the (partial) model, then the
agentloses.In realreactivesystems,thegameis neverover: theagentmustcontinueto
playforever. Of course,somespecifications(logically inconsistentones)cannoteverbe
satisfied.A winningstrategy for building modelsfrom (satisfiable)agentspecifications
in the presenceof arbitrary input from the environmentis an executionalgorithmfor
thelogic.

ConcurrentMETATEM is a programminglanguagefor multiagentsystems,that
is basedon the ideaof directly executinglinear time temporallogic agentspecifica-
tions[25,23].A ConcurrentMETATEM systemcontainsanumberof concurrentlyexe-
cutingagents,eachof which is programmedby giving it a temporallogic specification
of the behavior it is intendedthe agentshouldexhibit. An agentspecificationhasthe
form @BA#C A 1ED A , whereC A is a temporallogic formulareferringonly to thepresentor
past,and D A is a temporallogic formulareferringto thepresentor future.The C A 1FD A

formulaeareknown asrules. Thebasicideafor executingsucha specificationmaybe
summedup in thefollowing slogan:

on thebasisof thepastdo thefuture.

Thuseachrule is continuallymatchedagainstan internal, recordedhistory, and if a
matchis found,thentherulefires. If arulefires,thenany variablesin thefuturetimepart
areinstantiated,andthefuturetimepartthenbecomesacommitmentthattheagentwill
subsequentlyattemptto satisfy. Satisfyingacommitmenttypically meansmakingsome
predicatetrue within the agent.Hereis a simpleexampleof a ConcurrentMETATEM
agentdefinition:

GGGGGHHHHHIIIIIJJJJJKKKKKLLL �M��N!����)1PO�Q��R*�������	
�TS��M��N!����	MUV�WQ���*.�����
	�XYS��M��N!����	�	�	'1ESZQ��R*�������	
Q.��*��.���
	!X[Q��R*�����\]	712���^>_\]	

The agentin this exampleis a controller for a resourcethat is infinitely renewable,
but which mayonly bepossessedby oneagentat any giventime. Thecontrollermust
thereforeenforcemutualexclusion.Thepredicate�M��N!���
	 meansthatagent� hasasked
for the resource.The predicateQ���*.�����
	 meansthat the resourcecontrollerhasgiven
the resourceto agent� . The resourcecontroller is assumedto be the only agentable
to “give” theresource.However, many agentsmayaskfor theresourcesimultaneously.
Thethreerulesthatdefinethisagent’sbehavior maybesummarizedasfollows:

– Rule1: if someoneasks,theneventuallygive;
– Rule2: don’t giveunlesssomeonehasaskedsinceyou lastgave;and
– Rule 3: if you give to two people,thenthey mustbe the sameperson(i.e., don’t

give to morethanonepersonata time).

ConcurrentMETATEM agentscancommunicateby asynchronousbroadcastmessage
passing,thoughthedetailsarenot importanthere.

Compiling Agent Specifications.An alternative to directexecutionis compilation. In
thisscheme,wetakeourabstractspecification,andtransformit into aconcretecompu-
tationalmodelvia someautomaticsynthesisprocess.The main perceivedadvantages
of compilationover directexecutionarein run-timeefficiency. Direct executionof an
agentspecification,asin ConcurrentMETATEM, above, typically involvesmanipulat-
ing a symbolicrepresentationof thespecificationat run time. This manipulationgen-
erally correspondsto reasoningof someform, which is computationallycostly(andin
many cases,simply impracticablefor systemsthat mustoperatein anything like real
time). In contrast,compilationapproachesaim to reduceabstractsymbolicspecifica-
tions to a muchsimplercomputationalmodel,which requiresno symbolic represen-
tation. The “reasoning”work is thusdoneoff-line, at compile-time;executionof the
compiledsystemcanthenbedonewith little or no run-timesymbolicreasoning.As a
result,executionis muchfaster. The advantagesof compilationover direct execution
arethusthoseof compilationover interpretationin mainstreamprogramming.

Compilationapproachesusuallydependuponthecloserelationshipbetweenmod-
els for temporal/modallogic (which are typically labeledgraphsof somekind), and
automata-like finite statemachines.Crudely, the ideais to take a specification� , and
do a constructiveproof of the implementabilityof � , whereinwe show that thespec-
ification is satisfiableby systematicallyattemptingto build a modelfor it. If the con-
structionprocesssucceeds,thenthespecificationis satisfiable,andwe havea modelto
proveit. Otherwise,thespecificationis unsatisfiable.If wehaveamodel,thenwe“read
off ” theautomatonthatimplements� from its correspondingmodel.Themostcommon
approachto constructiveproof is thesemantictableauxmethodof Smullyan[67].

In mainstreamcomputerscience,the compilationapproachto automaticprogram
synthesishasbeeninvestigatedby a numberof researchers.Perhapstheclosestto our
view is thework of PnueliandRosner[58] on theautomaticsynthesisof reactive sys-
temsfrom branchingtime temporallogic specifications.The goal of their work is to
generatereactive systems,which sharemany of thepropertiesof our agents(themain
differencebeingthatreactivesystemsarenot generallyrequiredto becapableof ratio-
naldecisionmakingin thewaywedescribedabove).To do this, they specifya reactive
systemin termsof afirst-orderbranchingtimetemporallogic formula `
�[a�\cbd�e���Zf�\]	 :
thepredicate� characterizestherelationshipbetweeninputsto thesystem(�) andout-
puts(\). Inputsmaybe thoughtof assequencesof environmentstates,andoutputsas
correspondingsequencesof actions.The b is theuniversalpathquantifier. Thespecifi-
cationis intendedto expressthefactthatin all possiblefutures,thedesiredrelationship
� holdsbetweentheinputsto thesystem,� , andits outputs,\ . Thesynthesisprocessit-
self is rathercomplex: it involvesgeneratingaRabintreeautomaton,andthenchecking
this automatonfor emptiness.PnueliandRosnershow that thetime complexity of the
synthesisprocessis doubleexponentialin the sizeof the specification,i.e., %g�T-/hjilk m]	 ,
where n is a constantand �o>p= �q= is the sizeof the specification� . The sizeof the
synthesizedprogram(thenumberof statesit contains)is of thesamecomplexity.

Similarautomaticsynthesistechniqueshavealsobeendeployedto developconcur-
rent systemskeletonsfrom temporallogic specifications.MannaandWolper present
an algorithmthat takesas input a linear time temporallogic specificationof the syn-
chronizationpart of a concurrentsystem,andgeneratesasoutputa programskeleton
(baseduponHoare’s CSP formalism[33]) that realizesthespecification[52]. The idea
is thatthefunctionalityof a concurrentsystemcangenerallybedividedinto two parts:
a functional part, which actuallyperformsthe requiredcomputationin the program,
anda synchronizationpart,which ensuresthatthesystemcomponentscooperatein the
correctway. For example,thesynchronizationpartwill be responsiblefor any mutual
exclusionthatis required.

Perhapsthebest-known exampleof this approachto agentdevelopmentis thesitu-
atedautomataparadigmof RosenscheinandKaelbling[63]. In thisapproach,anagent
hastwo maincomponents:

– aperceptionpart,which is responsiblefor observingtheenvironmentandupdating
theinternalstateof theagent;and

– anactionpart,which is responsiblefor decidingwhatactionto perform,basedon
theinternalstateof theagent.

RosenscheinandKaelblingdevelopedtwo programsto supportthedevelopmentof the
perceptionandactioncomponentsof anagentrespectively. TheRULER programtakesa
declarativeperceptionspecificationandcompilesit down to afinite statemachine.The
specificationis givenin termsof atheoryof knowledge.Thesemanticsof knowledgein
thedeclarativespecificationlanguagearegivenin termsof possibleworlds,in theway
describedabove.Crucially, however, thepossibleworldsunderlyingthis logic aregiven
aprecisecomputationalinterpretation,in termsof thestatesof afinite statemachine.It
is this preciserelationshipthatpermitsthesynthesisprocessto takeplace.

Theactionpartof anagentin RosenscheinandKaelbling’s framework is specified
in termsof goal reductionrules, whichencodeinformationabouthow to achievegoals.
The GAPPS programtakes as input a goal specification,and a set of goal reduction
rules,andgeneratesasoutputa setof situationactionrules, which maybethoughtof
asa lookup table,definingwhat the agentshoulddo undervariouscircumstances,in
order to achieve the goal. The processof decidingwhat to do is thenvery simple in
computationalterms,involving no reasoningat all.

3.3 Formal Verification

Oncewehavedevelopedaconcretesystem,weneedto show thatthissystemis correct
with respectto our original specification.This processis known asverification, andit
is particularly importantif we have introducedany informality into the development
process.For example,any manualrefinement,donewithout a formal proof of refine-
mentcorrectness,createsthepossibilityof a faulty transformationfrom specificationto
implementation.Verificationis theprocessof convincingourselvesthatthetransforma-
tion wassound.We candivideapproachesto theverificationof systemsinto two broad
classes:(1) axiomatic; and(2) semantic(modelchecking).In thesubsectionsthat fol-
low, weshalllook at thewayin whichthesetwo approacheshaveevidencedthemselves
in agent-basedsystems.

Axiomatic Approaches:Deductive Verification. Axiomatic approachesto program
verificationwerethefirst to enterthemainstreamof computerscience,with thework of
Hoarein thelate1960s[32]. Axiomatic verificationrequiresthatwe cantake our con-
creteprogram,andfrom this programsystematicallyderivea logical theorythatrepre-
sentsthebehavior of theprogram.Call this theprogramtheory. If theprogramtheory
is expressedin thesamelogical languageastheoriginal specification,thenverification
reducesto aproof problem:show thatthespecificationis a theoremof (equivalently, is
a logicalconsequenceof) theprogramtheory.

The developmentof a programtheory is madefeasibleby axiomatizingthe pro-
gramminglanguagein which the systemis implemented.For example,Hoarelogic
givesus moreor lessan axiom for every statementtype in a simplePascal-like lan-
guage.Oncegiven the axiomatization,the programtheory can be derived from the
programtext in a systematicway.

Perhapsthe mostrelevantwork from mainstreamcomputerscienceis the specifi-
cationandverificationof reactive systemsusingtemporallogic, in theway pioneered
by Pnueli,Manna,andcolleagues[51]. The ideais that the computationsof reactive

systemsareinfinite sequences,which correspondto modelsfor linear temporallogic.
Temporallogic canbeusedbothto developasystemspecification,andto axiomatizea
programminglanguage.This axiomatizationcanthenbeusedto systematicallyderive
thetheoryof a programfrom theprogramtext. Both thespecificationandtheprogram
theorywill thenbeencodedin temporallogic, andverificationhencebecomesa proof
problemin temporallogic.

Comparatively little work hasbeencarriedoutwithin theagent-basedsystemscom-
munityon axiomatizingmultiagentenvironments.I shallreview justoneapproach.

In [71], an axiomaticapproachto the verificationof multiagentsystemswaspro-
posed.Essentially, the ideawasto usea temporalbelief logic to axiomatizetheprop-
ertiesof two multiagentprogramminglanguages.Givensuchanaxiomatization,a pro-
gramtheoryrepresentingthepropertiesof thesystemcouldbesystematicallyderived
in theway indicatedabove.

A temporalbelief logic wasusedfor two reasons.First,a temporalcomponentwas
requiredbecause,aswe observedabove,we needto capturetheongoingbehavior of a
multiagentsystem.A belief componentwasusedbecausetheagentswe wish to verify
areeachsymbolicAI systemsin their own right. That is, eachagentis a symbolicrea-
soningsystem,which includesa representationof its environmentanddesiredbehav-
ior. A belief componentin the logic allows us to capturethesymbolicrepresentations
presentwithin eachagent.

Thetwo multiagentprogramminglanguagesthatwereaxiomatizedin thetemporal
belief logic were Shoham’s AGENT0 [65], and Fisher’s ConcurrentMETATEM (see
above).Thebasicapproachwasasfollows:

1. First, a simpleabstractmodelwasdevelopedof symbolic AI agents.This model
capturesthefactthatagentsaresymbolicreasoningsystems,capableof communi-
cation.Themodelgivesanaccountof how agentsmight changestate,andwhata
computationof suchasystemmight look like.

2. Thehistoriestracedout in theexecutionof suchasystemwereusedasthesemantic
basisfor atemporalbelief logic.Thislogic allowsusto expresspropertiesof agents
modeledat stage(1).

3. The temporalbelief logic wasusedto axiomatizethe propertiesof a multiagent
programminglanguage.Thisaxiomatizationwasthenusedto developtheprogram
theoryof a multiagentsystem.

4. The proof theoryof the temporalbelief logic wasusedto verify propertiesof the
system(cf. [20]).

Note that this approachrelieson theoperationof agentsbeingsufficiently simplethat
their propertiescanbe axiomatizedin the logic. It works for Shoham’s AGENT0 and
Fisher’s ConcurrentMETATEM largely becausetheselanguageshave a simpleseman-
tics, closelyrelatedto rule-basedsystems,which in turn have a simplelogical seman-
tics. For morecomplex agents,anaxiomatizationis not sostraightforward.Also, cap-
turing the semanticsof concurrentexecutionof agentsis not easy(it is, of course,an
areaof ongoingresearchin computersciencegenerally).

SemanticApproaches:Model Checking. Ultimately, axiomaticverificationreduces
to a proof problem.Axiomatic approachesto verificationare thus inherentlylimited

by thedifficulty of this proof problem.Proofsarehardenough,evenin classicallogic;
theadditionof temporalandmodalconnectivesto a logic makestheproblemconsider-
ablyharder. For this reason,moreefficientapproachesto verificationhavebeensought.
Oneparticularlysuccessfulapproachis thatof modelchecking [13]. As thenamesug-
gests,whereasaxiomaticapproachesgenerallyrely onsyntacticproof,model-checking
approachesarebasedon thesemanticsof thespecificationlanguage.

The model-checkingproblem,in abstract,is quite simple: given a formula � of
language; , and a model < for ; , determinewhetheror not � is valid in < , i.e.,
whetherornot <r= >tsu� . Verificationbymodelcheckinghasbeenstudiedin connection
with temporallogic [13]. The techniqueonceagainreliesuponthe closerelationship
betweenmodelsfor temporallogic and finite-statemachines.Supposethat � is the
specificationfor somesystem,and v is aprogramthatclaimsto implement� . Then,to
determinewhetheror not v truly implements� , we proceedasfollows:

– take v , andfrom it generatea model <xw that correspondsto v , in the sensethat
<yw encodesall thepossiblecomputationsof v ;

– determinewhetheror not < w = >z� , i.e., whetherthe specificationformula � is
valid in < w ; theprogramv satisfiesthe specification� just in casethe answeris
“yes.”

The main advantageof modelcheckingover axiomaticverificationis in complexity:
modelcheckingusingthebranchingtime temporallogic CTL [12] canbedonein time
%g�0= �e=:{|= <}= 	 , where = �e= is thesizeof theformulato bechecked,and = <}= is thesizeof
themodelagainstwhich � is to bechecked— thenumberof statesit contains.

In [61], RaoandGeorgeff presentan algorithmfor modelcheckingBDI systems.
More precisely, they give an algorithmfor taking a logical model for their (proposi-
tional) BDI logic, anda formulaof thelanguage,anddeterminingwhethertheformula
is valid in themodel.Thetechniqueis closelybasedon model-checkingalgorithmsfor
normalmodal logics [13]. They show that despitethe inclusionof threeextra modal-
ities (for beliefs,desires,andintentions)into the CTL branchingtime framework, the
algorithmis still quiteefficient, runningin polynomialtime.So thesecondstepof the
two-stagemodel-checkingprocessdescribedabovecanstill bedoneefficiently. Similar
algorithmshavebeenreportedfor BDI-like logicsin [4].

The main problemwith model-checkingapproachesfor BDI is that it is not clear
how thefirst stepmight berealizedfor BDI logics.Wheredoesthelogical modelchar-
acterizingan agentactuallycomefrom? Canit be derived from an arbitraryprogram
v , asin mainstreamcomputerscience?To do this, we would needto take a program
implementedin, say, PASCAL, and from it derive the belief-, desire-,and intention-
accessibilityrelationsthat areusedto give a semanticsto the BDI componentof the
logic. Because,aswe notedearlier, thereis noclearrelationshipbetweentheBDI logic
andthe concretecomputationalmodelsusedto implementagents,it is not clearhow
sucha modelcouldbederived.

3.4 Discussion

Thissectionis anupdatedandmodifiedversionof [73], whichexaminedthepossibility
of usinglogic to engineeragent-basedsystems.Sincethisarticlewaspublished,several
otherauthorshaveproposedtheuseof agentsin softwareengineering(see,e.g.,[39]).

Structuredbut informal refinementtechniquesarethemainstayof real-world soft-
ware engineering.If agent-orientedtechniquesare ever to becomewidely usedout-
side the academiccommunity, then informal, structuredmethodsfor agent-basedde-
velopmentwill beessential.Onepossibilityfor suchtechniques,followedby Luck and
d’Inverno,is to usea standardspecificationtechnique(in their case,Z), andusetradi-
tional refinementmethods(in their case,object-orienteddevelopment)to transformthe
specificationinto an implementation[49]. This approachhasthe advantageof being
familiar to a muchlargeruser-basethanentirelynew techniques,but suffers from the
disadvantageof presentingtheuserwith nofeaturesthatmakeit particularlywell-suited
to agentspecification.It seemscertainthattherewill bemuchmorework onmanualre-
finementtechniquesfor agent-basedsystemsin theimmediatefuture,but exactly what
form thesetechniqueswill take is not clear.

With respectto thepossibilityof directly executingagentspecifications,a number
of problemssuggestthemselves.The first is that of finding a concretecomputational
interpretationfor the agentspecificationlanguagein question.To seewhat we mean
by this,considermodelsfor theagentspecificationlanguagein ConcurrentMETATEM.
Theseare very simple: essentiallyjust linear discretesequencesof states.Temporal
logic is (amongother things)simply a languagefor expressingconstraints that must
hold betweensuccessive states.Executionin ConcurrentMETATEM is thusa process
of generatingconstraintsaspast-timeantecedentsaresatisfied,andthentrying to build
a next statethatsatisfiestheseconstraints.Constraintsareexpressedin temporallogic,
which implies that they may only be in certain,regular forms. Becauseof this, it is
possibleto deviseanalgorithmthatis guaranteedto build anext stateif it is possibleto
do so.Suchanalgorithmis describedin [1].

Theagentspecificationlanguageuponwhich ConcurrentMETATEM is basedthus
hasa concretecomputationalmodel,anda comparatively simpleexecutionalgorithm.
Contrastthis stateof affairswith languageslike , wherewe have not only a temporal
dimensionto the logic, but alsomodalitiesfor referringto beliefs,desires,andsoon.
In general,modelsfor theselogics have ungroundedsemantics.That is, the semantic
structuresthat underpintheselogics (typically accessibilityrelationsfor eachof the
modaloperators)have no concretecomputationalinterpretation.As a result, it is not
clearhow suchagentspecificationlanguagesmight beexecuted.

Anotherobvious problemis that executiontechniquesbasedon theorem-proving
areinherentlylimited whenappliedto sufficiently expressive(first-order)languages,as
first-orderlogic is undecidable.However, complexity is a problemevenin theproposi-
tional case.For “vanilla” propositionallogic, the decisionproblemfor satisfiabilityis
NP-complete[20, p.72];richerlogics,or coursehavemorecomplex decisionproblems.

Despitetheseproblems,theundoubtedattractionsof directexecutionhave led to a
numberof attemptsto devise executablelogic-basedagentlanguages.Rao proposed
an executablesubsetof BDI logic in his AGENTSPEAK(L) language[59]. Building
on this work, Hindriks and colleaguesdevelopedthe 3APL agentprogramminglan-

guage[30,31]. Lesṕerance,Reiter, Levesque,and colleaguesdevelopedthe GOLOG

languagethroughoutthelatterhalf of the1990sasanexecutablesubsetof thesituation
calculus[46,47]. Faginandcolleagueshave proposedknowledge-basedprogramsasa
paradigmfor executinglogical formulaewhich containepistemicmodalities[20,21].
Althoughconsiderablework hasbeencarriedoutonthepropertiesof knowledge-based
programs,comparatively little researchto datehasaddressedtheproblemof how such
programsmight beactuallyexecuted.

Turning to automaticsynthesis,we find that the techniquesdescribedabove have
beendevelopedprimarily for propositionalspecificationlanguages.If we attemptto
extendthesetechniquesto moreexpressive,first-orderspecificationlanguages,thenwe
againfind ourselvescomingup againsttheundecidabilityof quantifiedlogic. Even in
the propositionalcase,the theoreticalcomplexity of theorem-proving for modal and
temporallogics is likely to limit theeffectivenessof compilationtechniques:givenan
agentspecificationof size1,000,a synthesisalgorithmthat runs in exponentialtime
whenusedoff-line is no moreusefulthananexecutionalgorithmthatrunsin exponen-
tial timeon-line.

Anotherproblemwith respectto synthesistechniquesis that they typically result
in finite-state,automata-like machines,which arelesspowerful thanTuring machines.
In particular, the systemsgeneratedby the processesoutlined above cannotmodify
theirbehavior atrun-time.In short,they cannotlearn.While for many applications,this
is acceptable— evendesirable— for equallymany others,it is not. In expertassistant
agents,of thetypedescribedin [50], learningis prettymuchtheraisond’etre. Attempts
to addressthis issuearedescribedin [43].

Turningto verification,axiomaticapproachessuffer from two mainproblems.First,
thetemporalverificationof reactivesystemsreliesuponasimplemodelof concurrency,
wherethe actionsthat programsperformareassumedto be atomic.We cannotmake
thisassumptionwhenwemovefrom programsto agents.Theactionswethink of agents
asperformingwill generallybemuchmorecoarse-grained.As aresult,weneedamore
realisticmodelof concurrency. Onepossibility, investigatedin [72], is to modelagent
executioncyclesasintervalsover therealnumbers,in thestyleof thetemporallogic of
reals[2]. The secondproblemis the difficulty of the proof problemfor agentspecifi-
cationlanguages.Thetheoreticalcomplexity of proof for many of theselogics is quite
daunting.

Hindriks and colleagueshave usedPlotkin’s structuredoperationalsemanticsto
axiomatizetheir 3APL language[30,31].

With respectto model-checkingapproaches,the main problem,as we indicated
above, is againtheissueof ungroundedsemanticsfor agentspecificationlanguages.If
wecannottakeanarbitraryprogramandsay, for thisprogram,whatits beliefs,desires,
andintentionsare,thenit is not clearhow we might verify thatthis programsatisfieda
specificationexpressedin termsof suchconstructs.

4 Conclusions

Agent-orientedsoftwareengineeringis at anearlystageof evolution. While thereare
many goodpaperargumentsto supporttheview thatagentsrepresentanimportantdi-

rectionfor softwareengineering,thereis asyetadearthof actualexperienceto underpin
thesearguments.Preliminarymethodologiesandsoftwaretools to supportthedeploy-
mentof agentsystemsarebeginningto appear, but slowly. In thisfinal section,wepoint
to someof what we believe arethe key obstaclesthat mustbe overcomein orderfor
AOSEto become“mainstream”:

– Sorting out the relationshipof agentsto other software paradigms— objectsin
particular.
It is not yet clearhow the developmentof agentsystemswill coexist with other
softwareparadigms,suchasobject-orienteddevelopment.

– Agent-orientedmethodologies.
Although,aswe have seenin this article,a numberof preliminaryagent-oriented
analysisanddesignmethodologieshavebeenproposed,thereis comparatively little
consensusbetweenthese.In mostcases,thereis notevenagreementonthekindsof
conceptsthemethodologyshouldsupport.Thewatersaremuddiedby thepresence
of UML asthe predominantmodelling languagefor object-orientedsystems[7]:
we suggestedearlierthat the kinds of conceptsandnotationssupportedby UML
arenot necessarilythosebest-suitedto thedevelopmentof agentsystems.

– Engineeringfor opensystems.
We arguedthatagentsaresuitablefor opensystems.In suchsystems,webelieve it
is essentialto becapableof reactingto unforeseenevents,exploiting opportunities
wherethesearise,anddynamicallyreachingagreementswith systemcomponents
whosepresencecould not be predictedat designtime. However, it is difficult to
know how to specifysuchsystems;still lesshow to implementthem.In short,we
needabetterunderstandingof how to engineeropensystems.

– Engineeringfor scalability.
Finally, we needa betterunderstandingof how to safelyandpredictablyengineer
systemscomprisedof massivenumbersof agentsdynamicallyinteractingwith one-
anotherin orderto achievetheir goals.Suchsystemsseemproneto problemssuch
asunstable/chaoticbehaviours,feedback,andsoon,andmayfall prey to malicious
behaviour suchasviruses.

Appendix: How to Find Out Mor e About Agents

Therearenow many introductionsto intelligent agentsandmultiagentsystems.Fer-
ber [22] is an undergraduatetextbook,althoughasits namesuggests,this volumefo-
cussedonmultiagentaspectsratherthanonthetheoryandpracticeof individualagents.
A first-ratecollectionof articlesintroducingagentandmultiagentsystemsis Weiß[69].
Two collectionsof researcharticlesprovide a comprehensive introductionto the field
of autonomousrationalagentsandmultiagentsystems:Bond andGasser’s 1988col-
lection,Readingsin DistributedArtificial Intelligence, introducesalmostall the basic
problemsin themultiagentsystemsfield, andalthoughsomeof thepapersit contains
arenow ratherdated,it remainsessentialreading[5]; HuhnsandSingh’s morerecent
collectionsetsitself theambitiousgoalof providing a survey of thewholeof theagent
field, andsucceedsin this respectvery well [34]. For a generalintroductionto thethe-
ory andpracticeof intelligentagents,seeWooldridgeandJennings[75], which focuses

primarily on thetheoryof agents,but alsocontainsanextensive review of agentarchi-
tecturesandprogramminglanguages.For a collectionof articleson theapplicationsof
agenttechnology, see[41]. A comprehensive roadmapof agenttechnologywaspub-
lishedas[40].

References

1. H. Barringer, M. Fisher, D. Gabbay, G.Gough,andR.Owens.METATEM: A framework for
programmingin temporallogic. In REXWorkshopon StepwiseRefinementof Distributed
Systems:Models,Formalisms,Correctness(LNCSVolume430), pages94–129.Springer-
Verlag:Berlin, Germany, June1989.

2. H. Barringer, R. Kuiper, andA. Pnueli. A really abstractconcurrentmodelandits temporal
logic. In Proceedingsof theThirteenthACM Symposiumon thePrinciplesof Programming
Languages, pages173–183,1986.

3. BernhardBauer, Jörg P. Müller, andJamesOdell. AgentUML: A formalismfor specifying
multiagentsoftwaresystems.In P. CiancariniandM. Wooldridge,editors,Agent-Oriented
Software Engineering— Proceedingsof the First International Workshop(AOSE-2000).
Springer-Verlag:Berlin, Germany, 2000.

4. M. Benerecetti,F. Giunchiglia,andL. Serafini.A modelcheckingalgorithmfor multiagent
systems. In J. P. Müller, M. P. Singh,andA. S. Rao,editors,Intelligent AgentsV (LNAI
Volume1555). Springer-Verlag:Berlin, Germany, 1999.

5. A. H. BondandL. Gasser, editors. Readingsin DistributedArtificial Intelligence. Morgan
KaufmannPublishers:SanMateo,CA, 1988.

6. G. Booch. Object-OrientedAnalysisandDesign(secondedition). Addison-Wesley: Read-
ing, MA, 1994.

7. G. Booch,J. Rumbaugh,and I. Jacobson.The Unified Modeling Language User Guide.
Addison-Wesley: Reading,MA, 1999.

8. F. Brazier, B. Dunin-Keplicz,N. R. Jennings,andJ. Treur. Formal specificationof multi-
agentsystems:a real-world case. In Proceedingsof the First InternationalConferenceon
Multi-AgentSystems(ICMAS-95), pages25–32,SanFrancisco,CA, June1995.

9. R. A. Brooks.CambrianIntelligence. TheMIT Press:Cambridge,MA, 1999.
10. Birgit Burmeister. Modelsandmethodologiesfor agent-orientedanalysisanddesign. In

Klaus Fischer, editor, Working Notesof the KI’96 Workshopon Agent-OrientedProgram-
mingandDistributedSystems. 1996.DFKI DocumentD-96-06.

11. B. Chellas. Modal Logic: An Introduction. CambridgeUniversity Press:Cambridge,Eng-
land,1980.

12. E. M. Clarke andE. A. Emerson.Designandsynthesisof synchronizationskeletonsusing
branchingtimetemporallogic. In D. Kozen,editor, Logicsof Programs—Proceedings1981
(LNCSVolume131), pages52–71.Springer-Verlag:Berlin, Germany, 1981.

13. E. M. Clarke,O. Grumberg, andD. A. Peled.ModelChecking. TheMIT Press:Cambridge,
MA, 2000.

14. P. R.CohenandH. J.Levesque.Intentionis choicewith commitment.Artificial Intelligence,
42:213–261,1990.

15. D. Coleman,P. Arnold,S.Bodoff, C.Dollin, H. Gilchrist,F. Hayes,andP. Jeremaes.Object-
OrientedDevelopment:TheFUSION Method. PrenticeHall International:HemelHempstead,
England,1994.

16. AnneCollinot, Alexis Drogoul,andPhilippeBenhamou.Agentorienteddesignof a soccer
robotteam.In Proceedingsof theSecondInternationalConferenceon Multi-AgentSystems
(ICMAS-96), pages41–47,Kyoto,Japan,1996.

17. D. C. Dennett.TheIntentionalStance. TheMIT Press:Cambridge,MA, 1987.
18. RalphDepke, Reiko Heckel, andJochenMalte Kuester. Requirementspecificationandde-

signof agent-basedsystemswith graphtransformation,roles,anduml. In P. Ciancariniand
M. Wooldridge,editors,Agent-OrientedSoftware Engineering— Proceedingsof the First
InternationalWorkshop(AOSE-2000). Springer-Verlag:Berlin, Germany, 2000.

19. B. Dunin-KepliczandJ.Treur. Compositionalformal specificationof multi-agentsystems.
In M. WooldridgeandN. R. Jennings,editors,Intelligent Agents:Theories,Architectures,
andLanguages(LNAI Volume890), pages102–117.Springer-Verlag:Berlin, Germany, Jan-
uary1995.

20. R. Fagin,J.Y. Halpern,Y. Moses,andM. Y. Vardi. ReasoningAboutKnowledge. TheMIT
Press:Cambridge,MA, 1995.

21. R.Fagin,J.Y. Halpern,Y. Moses,andM. Y. Vardi. Knowledge-basedprograms.Distributed
Computing, 10(4):199–225,1997.

22. J.Ferber. Multi-AgentSystems. Addison-Wesley: Reading,MA, 1999.
23. M. Fisher. A survey of ConcurrentMETATEM — the languageand its applications. In

D. M. GabbayandH. J.Ohlbach,editors,Temporal Logic — Proceedingsof theFirst Inter-
nationalConference(LNAI Volume827), pages480–505.Springer-Verlag:Berlin,Germany,
July1994.

24. M. Fisher. An introductionto executabletemporallogic. TheKnowledge EngineeringRe-
view, 11(1):43–56,1996.

25. M. FisherandM. Wooldridge. Executabletemporallogic for distributedA.I. In Proceed-
ingsof theTwelfthInternationalWorkshoponDistributedArtificial Intelligence(IWDAI-93),
pages131–142,HiddenValley, PA, May 1993.

26. M. FisherandM. Wooldridge. On the formal specificationandverificationof multi-agent
systems.InternationalJournalof CooperativeInformationSystems, 6(1):37–65,1997.

27. TheFoundationfor IntelligentPhysicalAgents.Seehttp://www.fipa.org/.
28. M. R. Geneserethand S. P. Ketchpel. Software agents. Communicationsof the ACM,

37(7):48–53,July1994.
29. M. P. Georgeff and A. S. Rao. A profile of the AustralianAI Institute. IEEE Expert,

11(6):89–92,December1996.
30. K. V. Hindriks, F. S. deBoer, W. vanderHoek,andJ.-J.Ch. Meyer. Formalsemanticsfor

an abstractagentprogramminglanguage.In M. P. Singh,A. Rao,andM. J. Wooldridge,
editors,IntelligentAgentsIV (LNAI Volume1365), pages215–230.Springer-Verlag:Berlin,
Germany, 1998.

31. K. V. Hindriks, F. S. deBoer, W. van derHoek,andJ.-J.Ch. Meyer. Control structuresof
rule-basedagentlanguages.In J. P. Müller, M. P. Singh,andA. S. Rao,editors,Intelligent
AgentsV (LNAI Volume1555). Springer-Verlag:Berlin, Germany, 1999.

32. C. A. R. Hoare. An axiomaticbasisfor computerprogramming. Communicationsof the
ACM, 12(10):576–583,1969.

33. C.A. R.Hoare.Communicatingsequentialprocesses.Communicationsof theACM, 21:666–
677,1978.

34. M. HuhnsandM. P. Singh,editors.Readingsin Agents. MorganKaufmannPublishers:San
Mateo,CA, 1998.

35. C. A. Iglesias,M. Garijo,andJ.C. Gonzalez.A survey of agent-orientedmethodologies.In
J. P. Müller, M. P. Singh,andA. S. Rao,editors,IntelligentAgentsV (LNAI Volume1555).
Springer-Verlag:Berlin, Germany, 1999.

36. CarlosIglesias,MercedesGarijo, Jośe C. Gonźalez,and JuanR. Velasco. Analysis and
designof multiagentsystemsusingMAS-CommonKADS.In M. P. Singh,A. Rao,andM. J.
Wooldridge,editors,Intelligent AgentsIV (LNAI Volume1365), pages313–326.Springer-
Verlag:Berlin, Germany, 1998.

37. NeXT Computer Inc. Object-OrientedProgramming and the Objective C Language.
Addison-Wesley: Reading,MA, 1993.

38. TheRobotWorld CupInitiative. Seehttp://www.RoboCup.org/.
39. N. R. Jennings. Agent-basedcomputing:Promiseandperils. In Proceedingsof the Six-

teenthInternational Joint Conferenceon Artificial Intelligence(IJCAI-99), pages1429–
1436,Stockholm,Sweden,1999.

40. N. R. Jennings,K. Sycara,andM. Wooldridge. A roadmapof agentresearchanddevelop-
ment.AutonomousAgentsandMulti-AgentSystems, 1(1):7–38,1998.

41. N. R. JenningsandM. Wooldridge,editors. Agent Technology: Foundations,Applications
andMarkets. Springer-Verlag:Berlin, Germany, 1998.

42. C. B. Jones.SystematicSoftware DevelopmentusingVDM (secondedition). PrenticeHall,
1990.

43. L. P. Kaelbling. Learningin EmbeddedSystems. TheMIT Press:Cambridge,MA, 1993.
44. ElizabethA. Kendall.Agentsoftwareengineeringwith role modelling. In P. Ciancariniand

M. Wooldridge,editors,Agent-OrientedSoftware Engineering— Proceedingsof the First
InternationalWorkshop(AOSE-2000). Springer-Verlag:Berlin, Germany, 2000.

45. D. Kinny, M. Georgeff, andA. Rao.A methodologyandmodellingtechniquefor systemsof
BDI agents.In W. VandeVeldeandJ.W. Perram,editors,AgentsBreakingAway:Proceed-
ingsof theSeventhEuropeanWorkshopon ModellingAutonomousAgentsin a Multi-Agent
World, (LNAI Volume1038), pages56–71.Springer-Verlag:Berlin, Germany, 1996.

46. Y. Lésperance,H. J. Levesque,F. Lin, D. Marcu,R. Reiter, andR. B. Scherl. Foundations
of a logicalapproachto agentprogramming.In M. Wooldridge,J.P. Müller, andM. Tambe,
editors,IntelligentAgentsII (LNAI Volume1037), pages331–346.Springer-Verlag:Berlin,
Germany, 1996.

47. H. Levesque,R. Reiter, Y. Lesṕerance,F. Lin, andR. Scherl. Golog:A logic programming
languagefor dynamicdomains.Journalof Logic Programming, 31:59–84,1996.

48. M. Luck andM. d’Inverno. A formal framework for agency andautonomy. In Proceedings
of theFirst InternationalConferenceon Multi-AgentSystems(ICMAS-95), pages254–260,
SanFrancisco,CA, June1995.

49. M. Luck, N. Griffiths, andM. d’Inverno. Fromagenttheoryto agentconstruction:A case
study. In J. P. Müller, M. Wooldridge,andN. R. Jennings,editors,Intelligent AgentsIII
(LNAI Volume1193), pages49–64.Springer-Verlag:Berlin, Germany, 1997.

50. P. Maes. Agentsthatreducework andinformationoverload.Communicationsof theACM,
37(7):31–40,July1994.

51. Z. MannaandA. Pnueli. Temporal Verification of ReactiveSystems— Safety. Springer-
Verlag:Berlin, Germany, 1995.

52. Z. MannaandP. Wolper. Synthesisof communicatingprocessesfrom temporallogic speci-
fications.ACM TransactionsonProgrammingLanguagesandSystems, 6(1):68–93,January
1984.

53. C. Morgan. ProgrammingfromSpecifications(secondedition). PrenticeHall International:
HemelHempstead,England,1994.

54. JamesOdell, H. Van Dyke Parunak,andBernhardBauer. Representingagentinteraction
protocolsin UML. In P. CiancariniandM. Wooldridge,editors,Agent-OrientedSoftware
Engineering— Proceedingsof the First International Workshop(AOSE-2000). Springer-
Verlag:Berlin, Germany, 2000.

55. TheObjectManagementGroup(OMG). Seehttp://www.omg.org/.
56. AndreaOmicini. Soda:Societiesand infrastructuresin the analysisanddesignof agent-

basedsystems.In P. CiancariniandM. Wooldridge,editors,Agent-OrientedSoftware Engi-
neering— Proceedingsof theFirst InternationalWorkshop(AOSE-2000). Springer-Verlag:
Berlin, Germany, 2000.

57. A. Pnueli.Specificationanddevelopmentof reactivesystems.In InformationProcessing86.
Elsevier SciencePublishersB.V.: Amsterdam,TheNetherlands,1986.

58. A. Pnueli andR. Rosner. On the synthesisof a reactive module. In Proceedingsof the
SixteenthACM Symposiumon the Principles of ProgrammingLanguages (POPL), pages
179–190,January1989.

59. A. S. Rao. AgentSpeak(L):BDI agentsspeakout in a logical computablelanguage. In
W. VandeVeldeandJ.W. Perram,editors,AgentsBreakingAway: Proceedingsof theSev-
enthEuropeanWorkshopon ModellingAutonomousAgentsin a Multi-AgentWorld, (LNAI
Volume1038), pages42–55.Springer-Verlag:Berlin, Germany, 1996.

60. A. S. RaoandM. Georgeff. BDI Agents:from theoryto practice. In Proceedingsof the
First International Conferenceon Multi-Agent Systems(ICMAS-95), pages312–319,San
Francisco,CA, June1995.

61. A. S.RaoandM. P. Georgeff. A model-theoreticapproachto theverificationof situatedrea-
soningsystems.In Proceedingsof theThirteenthInternationalJoint ConferenceonArtificial
Intelligence(IJCAI-93), pages318–324,Chamb́ery,France,1993.

62. A. S.RaoandM. P. Georgeff. Formalmodelsanddecisionproceduresfor multi-agentsys-
tems.TechnicalNote61,AustralianAI Institute,Level 6, 171La TrobeStreet,Melbourne,
Australia,June1995.

63. S.J.RosenscheinandL. P. Kaelbling.A situatedview of representationandcontrol. In P. E.
Agre and S. J. Rosenschein,editors,ComputationalTheoriesof Interaction and Agency,
pages515–540.TheMIT Press:Cambridge,MA, 1996.

64. J.Rumbaugh,M. Blaha,W. Premerlani,F. Eddy, andW. Lorensen.Object-OrientedModel-
ing andDesign. PrenticeHall, EnglewoodCliifs, NJ,1991.

65. Y. Shoham.Agent-orientedprogramming.Artificial Intelligence, 60(1):51–92,1993.
66. R. G. Smith. A Framework for DistributedProblemSolving. UMI ResearchPress,1980.
67. R. M. Smullyan.First-OrderLogic. Springer-Verlag:Berlin, Germany, 1968.
68. M. Spivey. TheZ Notation(secondedition). PrenticeHall International:HemelHempstead,

England,1992.
69. G. Weiß,editor. Multi-AgentSystems. TheMIT Press:Cambridge,MA, 1999.
70. Mark Wood andScott A. DeLoach. An overview of the multiagentsystemsengineering

methodology. In P. CiancariniandM. Wooldridge,editors,Agent-OrientedSoftware Engi-
neering— Proceedingsof theFirst InternationalWorkshop(AOSE-2000). Springer-Verlag:
Berlin, Germany, 2000.

71. M. Wooldridge.TheLogical Modellingof ComputationalMulti-AgentSystems. PhDthesis,
Departmentof Computation,UMIST, Manchester, UK, October1992.

72. M. Wooldridge. This is MYWORLD: The logic of an agent-orientedtestbedfor DAI. In
M. WooldridgeandN. R. Jennings,editors,IntelligentAgents:Theories,Architectures,and
Languages(LNAI Volume890), pages160–178.Springer-Verlag:Berlin, Germany, January
1995.

73. M. Wooldridge.Agent-basedsoftwareengineering.IEE ProceedingsonSoftwareEngineer-
ing, 144(1):26–37,February1997.

74. M. Wooldridge.ReasoningaboutRationalAgents. TheMIT Press:Cambridge,MA, 2000.
75. M. WooldridgeandN. R. Jennings.Intelligentagents:Theoryandpractice.TheKnowledge

EngineeringReview, 10(2):115–152,1995.
76. M. WooldridgeandN. R. Jennings.Pitfalls of agent-orienteddevelopment.In Proceedings

of theSecondInternationalConferenceonAutonomousAgents(Agents98), pages385–391,
Minneapolis/StPaul,MN, May 1998.

77. M. Wooldridge,N. R. Jennings,andD. Kinny. A methodologyfor agent-orientedanalysis
anddesign. In Proceedingsof the Third InternationalConferenceon AutonomousAgents
(Agents99), pages69–76,Seattle,WA, May 1999.

