
On the Identification of Agents
in the Design of Production Control Systems

Stefan Bussmann1, Nicholas R. Jennings2, and Michael Wooldridge3

1DaimlerChrysler AG, Research and Technology 3
Alt-Moabit 96A, 10559 Berlin, Germany.

Stefan.Bussmann@daimlerchrysler.com
2Dept. of Electronics and Computer Science, University of Southampton

Southampton SO17 1BJ, United Kingdom.
nrj@ecs.soton.ac.uk

3Dept. of Computer Science, University of Liverpool
Liverpool L69 7ZF, United Kingdom.
M.J.Wooldridge@csc.liv.ac.uk

Abstract. This paper describes a methodology that is being developed for
designing and building agent-based systems for the domain of production
control. In particular, this paper deals with the steps that are involved in
identifying the agents and in specifying their responsibilities. The methodology
aims to be useable by engineers who have a background in production control
but who have no prior experience in agent technology. For this reason, the
methodology needs to be very prescriptive with respect to the agent-related
aspects of the design.

1 Introduction

Software agents are on the verge of becoming a key control technology for large-
series production control systems. With ever shorter product life-cycles, decreasing
product launch times, and increasing product variety, manufacturing processes must
provide more product flexibility and higher volume scalability while maintaining high
product quality and low manufacturing costs. Agent technology is well suited to
addressing the control aspects of these new manufacturing requirements [2]. As
autonomous decision-makers, agents are able to dynamically react to unforeseen
events, exploit different capabilities of components, and adapt flexibly to changes in
their environment. The ability of agents to adapt their behaviour at run-time reduces
the need for the designer to foresee all possible scenarios and changes that the system
will encounter: agents automatically adapt to changing products or varying volumes.

After more than a decade of research, the potential of agent technology has been
demonstrated in the context of large-series production. The DaimlerChrysler
prototype for manufacturing cylinder heads is controlled by a completely
decentralised agent-based system, which provides unprecedented flexibility and
scalability [3]. The system has been installed as a bypass to an existing transfer line
and was evaluated through exhaustive performance tests. The performance tests, as

well as the on-going operation of the prototype, proved the industrial feasibility and
underlined the competitive advantage of agent-based control. The technology is now
ready to be exploited in industrial production.

The widespread use of agent-based control, however, will require software
engineering methods and tools that support the development of industrial-strength
control systems. Although we have some experience in the application of agent
technology to cylinder head production, the application of agent technology to
different production processes (such as engine assembly or car painting) will still
require a major engineering effort. Such an engineering effort has to move agents out
of the laboratory and into the planning teams designing manufacturing systems.
Planning engineers, however, usually have no degree in agent technology or artificial
intelligence. Therefore to make the technology accessible to them, agent-based
control must provide a methodology that includes all the agent-related design
rationales necessary to apply an agent-based approach to a manufacturing system.
These design rationales tell a software engineer with no prior experience in agent
development how to make agent-related design decisions. To this end, many software
design methodologies have been developed, including object-oriented and even agent-
oriented approaches (see [6,9] for an overview). But none of these methodologies is
applicable to the design of agent-based production control systems; they either
provide analysis models that are inappropriate for production control or else they lack
comprehensive design rationales.

The aim of our research work is therefore to extend the state-of-the-art by
proposing a methodology for the design of agent-based production control systems
that can be successfully applied by an engineer with no prior experience in agent
technology. To this end, the methodology should provide: (i) a model of the decision
making necessary in production control in order to enable the designer to directly
move from the domain to the agent-oriented design aspects; and (ii) a set of criteria
for the design of the agent-related aspects which guide the designer with no prior
agent-related experience. In this paper, we take the first significant step towards this
goal by proposing a design method for identifying the agents of a production control
system. The identification of agents is central to the methodology. It allows the
designer to move from pure domain concepts (such as production processes), to
agent-oriented concepts (such as agents and decision responsibilities). In addition, the
identification of agents provides the basis for all other subsequent design steps, such
as interaction design or agent programming.

The presentation of the design method for agent identification is organised as
follows. The remainder of this section introduces the notion of a methodology and the
basic concepts of production control. Section 2 briefly discusses why existing
methodologies are not sufficient for the design of agent-oriented production control
systems. Section 3 then gives an overview of the design method proposed, and
sections 4 and 5, respectively, describe the analysis and design steps of the method.
Section 6, finally, draws some conclusions.

1.1 What is a methodology?

A methodology is a recipe that enables an engineer to find a solution to a specified set
of problems. It should be sufficiently precise to enable any engineer with a standard
education to successfully apply the recipe to a suitable problem, while at the same
time it should leave enough room for creativity. A methodology always consists of the
following components [8].

• A definition of the problem space to which the methodology is applicable.
• A set of models that represent different aspects of the problem domain or the

solution at different stages.
• A set of methods that transform instances of one model into another model.
• A set of procedural guidelines that define an order for the systematic application of

the methodological steps.

The application of a methodology starts with a problem statement and ends with a
solution to the problem. Methods and guidelines tell the designer how to go from the
problem statement to the solution. An agent-oriented design methodology for
production control is consequently a methodology that explains how to go from a
specification of a production control problem to an agent-oriented design of a control
system. However, for such a methodology to be widely used, the methodology must
provide all necessary methods and guidelines such that an engineer with only minimal
training and experience in agent development is able to successfully derive an agent-
oriented design. This is achieved if the concepts of the methodology are intuitively
related to the relevant concepts of the problem domain and if the methodology
includes all the (agent-related) rationales necessary to derive the agent-oriented
design. In terms of the above definition of a methodology, this translates into the
following requirements.

Model appropriateness. The models of a methodology should be easily related to the
relevant concepts of the problem domain. The initial model should be based on
domain concepts and any new concepts should be put into relation to concepts
already introduced. This applies in particular to the introduction of agent-oriented
concepts.

Method prescriptiveness. The methods of the methodology should be prescriptive in
the sense that they define each step the designer has to go through, and for each
step clearly identify what the task of the designer is and – at least for any agent-
oriented aspect – explain how the task should be performed. The methods must
therefore clearly distinguish between domain and agent-oriented design reasoning.

As will be discussed in subsequent sections, the method for agent identification
presented in this paper fulfils the above requirements and can therefore be seen as a
first step towards an industrially relevant methodology for production control.

1.2 Production control

Production systems for discrete manufacturing usually consist of processing
components, such as machining or assembly stations, which are connected by a

transportation system consisting of conveyor belts and switches (see Figure 1).
During the operation of the production system, work pieces associated with specific
jobs are fed into the production system, transported to the next station, processed by
the station, moved to the next station, processed again and so on until the work pieces
are finished and leave the system.

machining steps assembly steps

entrance exit

switch conveyor beltmachine

Fig. 1. Example production system.

For such a production system, the task of the control system is to assign jobs to
stations (resource allocation) and to manage the material flow (transportation
allocation). To date, the pre-dominant approaches to performing these tasks in
practice have been to create a schedule beforehand, which is then simply executed at
run-time by the local controllers of the production components. This approach works
well if actions are executed as planned, but fails completely otherwise. In case of a
disturbance, a controller is unable to execute its actions or has to postpone them.
Since production operations are optimised in order to maximise productivity and
minimise costs, resource capacities are fully utilised and buffer sizes are reduced to a
minimum. As a consequence, any deviation from the schedule quickly affects
neighbouring units resulting in a cascading effect of the disturbance. Since the
schedule-driven control does not support re-scheduling, the impact of a disturbance
on production cannot be constrained. As every real production system is regularly
affected by disturbances, production operations soon deviate from the production
schedule. It is even "proverbial among shop foremen that the schedules produced by
the front office are out of date the moment they hit the floor" [19, p. 303].

To overcome this limitation of the current approach, it is necessary to interleave
scheduling and execution, i.e., to enable the local controllers to autonomously
perform the resource and transportation allocation. With more autonomy, the local
controller is able to choose the right action in its current situation. As before, the
controller is triggered by a sensor signal indicating that an action is required. But in
contrast to the schedule-driven approach, the controller now has to first choose an
appropriate action. To achieve this, the controller must first determine the set of
possible actions that can be performed in this situation (referred to as the decision
space). The controller then collects all decision-relevant information (the decision
input), and finally chooses an action according to a decision rule that evaluates the
different alternatives with respect to their goal achievement (see Figure 2). During
this decision process, the controller may interact with other controllers if necessary.
Once the decision has been made, the controller can initiate the action and monitor the
execution just as in the schedule-driven approach.

control decision
(decision space)

 sense trigger

decision input

decision rule

production process

initiate action

interaction

Fig. 2. Abstract model of control decisions.

This abstract model of a control decision is an obvious starting point of any design
methodology for production control, since it describes the basic task of the controller
and how it interfaces with the production process.

2 Related Work

With the shift from laboratory to industrial applications, it has become increasingly
apparent that existing methodologies, such as purely object-oriented approaches, are
insufficient to capture the key features of agent-based systems [1,14]. This experience
has led to the development of distinctively agent-oriented design methodologies over
the last few years. Most agent-oriented methodologies have been extensions of
existing methodologies, in particular knowledge-oriented and object-oriented
approaches. Only recently have methodologies based on purely agent-oriented
concepts been proposed.

The knowledge-oriented methodologies proposed for designing agent-based
systems are extensions of the knowledge-engineering methodology CommonKADS
[22], to which agent-oriented concepts are added. The CoMoMAS methodology [7]
extends CommonKADS by adding a social analysis model, identifying social
competencies of agents in terms of goals, intentions, and roles; and a co-operative
analysis model, modeling co-operation and conflict resolution methods. MAS-
CommonKADS [10] also extends CommonKADS by adding an agent, a co-
ordination, and an organisation model. Because of the underlying knowledge-
engineering approach, however, both methodologies view an agent system as a
problem solving system decomposing the system task into subtasks. In this way they
identify agents on the basis of task hierarchies and knowledge requirements. This
model is inappropriate for the decision-centric view of production control.

Several agent-oriented approaches have been inspired by object-oriented
approaches, such as OMT [21] and OOSE [11]. The methodology of Kendall,
Malkoun and Jiang [12] for manufacturing applications, for instance, creates first an
object-oriented and a manufacturing model of the system to be designed, and then
identifies agents in these two models. However, even though Kendall et al. view an
agent as an autonomous decision maker, their methodology identifies agents (in both

models) on the basis of their activeness, that is, whether a component pro-actively
performs or initiates an operation. Activeness, though, is also a property of conveyor
belts or lifts, which actively move work pieces, but which do not decide whether or
not to act. The activeness criterion can therefore identify as agents some entities that
are not autonomous decision makers. This critique also applies to the methodology of
Burmeister [1], which solely relies on object-oriented techniques to identify agents.

The limitations of methodologies that are based on concepts from other fields have
led to the development of methodologies that are purely (or mostly) based on agent-
oriented concepts. The dominant agent-oriented concept used is that of a role. Kendall
[13] defines a role as an abstraction of agent behaviour modelled in terms of
responsibilities, possible collaborators, required expertise, and co-operation
mechanisms used. The most important advantage of the concept of a role is that it can
be freely assign and reassigned to agents, as long as the agent assigned to the role
fulfils the role’s requirements. Role-based methodologies, e.g., [5,14,15,17,18,23], use
this abstraction to create a model of system behaviour, and then identify agents by
mapping the roles to agent instances. The Gaia methodology [23], for instance,
aggregates roles into agent types and instantiates as many agents as necessary in a
given scenario.

Most role-based methodologies, however, require that the designer is able to
directly identify the roles in an application. However, this is not possible in
production control. A requirements specification of a production control system
consists only of a description of the physical components of a production system and
the production goals to be achieved. The specification of the physical components, in
turn, only describes a sensor and actuator interface to each component. To identify
roles in a specific production application, it is therefore necessary to derive an
understanding of the required control process first. None of the methodologies,
however, explain how the decision making should be modelled or combined to form
roles. For production control, it is therefore necessary to extend these methodologies
by a preceding analysis step that derives roles from the production control problem.

Parunak, Sauter, and Clark [20] take a different approach to building multi-agent
systems. They view a multi-agent system as consisting of many simple, interacting
agents which exhibit social coherence. In their methodology, Parunak et al. base the
identification of agents on a linguistic case analysis of the problem description. As
with the criterion of activeness, a linguistic case analysis may identify agents that
have no decisions to make, such as conveyor belts or lifts. Even the level of
abstraction is pre-determined by the system description. If the description speaks of
spindle, machining space, positioning and tools to describe the processing of work
pieces, a machine agent cannot be identified, even though such a level of abstraction
is more appropriate in many cases. Parunak et al. try to reduce the risk of identifying
inappropriate agents by providing a set of pre-defined agent types, such as unit,
resource, manager, part, customer and supplier agents. However, it is not clear
whether this pre-defined set is appropriate for all manufacturing applications or which
subtypes should be identified in one category. An agent-based production control
system will certainly have resource agents, but the pre-defined set of agent types does
not prescribe how the different resources should be assigned to agents. Finally,
Parunak et al. discuss principles for validating candidate agents that are useful and
relevant. Such principles include identifying things not functions, identifying small

agents, and determining where there is decentralisation. Given our experience in this
area, however, these principles are not sufficiently prescriptive to guide a designer in
identifying agents.

To summarise, there is currently no methodology for the design of an agent-based
production control system that satisfies the requirements stated in section 1.1. First of
all, most methodologies provide analysis models unsuitable for representing the
problem domain, i.e., to model the decision making necessary to control a production
process. Second, nearly all methodologies provide criteria for agent identification that
lead to an inappropriate set of agents for production control. It is therefore necessary
to extend existing design methodologies by developing a design method that captures
decision-making in its models and provides a comprehensive list of criteria for
identifying agents. Such a design method could be used, for example, to identify
(decision-based) roles of a production control application as required by the role-
based methodologies.

3 Overview of the Design Method

The design method proposed in this paper identifies the agents necessary to control a
given production process. The design method consists of two main steps: an analysis
step and an identification step. The analysis step creates a decision-based model of the
control task that contains all the decisions necessary to control the production process.
On the basis of this model, the identification step assesses the suitability of an agent-
based approach and identifies the agents of the system. The result of the method is a
list of agents and their associated decision responsibilities.

This section gives an overview of the design method. It specifies the design input,
as well as the design output, and outlines the two main steps of the method. The
subsequent sections then present each step of the method. This section also defines a
simple production system, which will be used to illustrate the design method.

3.1 Design input

The input to the design method is a requirements specification of the production
control problem. It must consist of two parts:

1. A specification of the (physical) production system to be controlled.
2. A specification of the production operation conditions and production goals.

The first part specifies the (mechanical) components of the production system and
their arrangement on the factory floor. Furthermore, the specification defines for each
component its physical behaviour and, optionally, its control interface. The control
interface provides information about the status of the production component to the
control system (through sensors) and allows actions to be executed by the component
(through actuators). Examples of components are machines, assembly stations,
conveyor belts, lifts, transportation switches, and buffers.

Example. Throughout this paper, the following simple production system will be
used to illustrate the design method. This simple production system consists of
one loading unit, several transportation switches, two flexible machining stations,
one unloading unit, and several conveyor belts (see Figure 3). The flexible
machines are able to process a wide range of products. Their capabilities are
overlapping, but not identical.

loading
unit

machining
station

unloading
unit

S2

S1

S3

S4

M1

M2

Fig. 3. Simple production system example.

The loading unit puts work pieces on the first conveyor belt as prescribed by the
order input stream. The transportation switches distribute the work pieces onto the
two machines. The machines process the work pieces if they have the requested
capabilities. A work piece may only enter a machine if operations requested by the
work piece are a subset of the machine’s capabilities. After processing, the work
pieces are moved to the unloading unit.

The second part of the problem specification defines conditions and goals for the
production process. The operation conditions specify the order mix fed into the
production system and the spectrum of possible changes and disturbances to the
production system during operation. Disturbances are unanticipated breakdowns of
components, while changes are induced by the production management and may
affect components or the input of the production system. The specification of the
production goals describes the expected behaviour of the production system under the
specified conditions. Examples of production goals are maximal throughput, minimal
investment costs, flexibility with respect to component or order changes, robustness
with respect to mechanical or control failures, volume scalability, and
reconfigurability of components.

Example. The input stream of the simple production example is an arbitrary mix of
different products to be produced. Changes to the production process are not
expected and the only possible disturbances are sudden breakdowns of machining
stations. The goal of the simple production system is to maximise the throughput
and to be robust against station failures.

3.2 Design output

The output of the design method is a list of the agents necessary to control the
production system specified. Each agent is defined by the decision tasks for which it
is responsible. Furthermore, the method specifies any dependencies between any
decision tasks of different agents.

The list of agents defines the global structure of the agent-based control system. It
serves as the basis for further design steps specifying the interactions or the agent
reasoning (these subsequent steps are not dealt with in this paper).

3.3 Design steps

The design method prescribes two major steps in order to go from the design input to
the desired design output.

1. Analysis of decision making – The decisions necessary during the control process
are identified and analysed. The result of this step specifies the constraints that any
control system supposed to achieve the production goals must satisfy.

2. Identification of agents – The overall structure of the agent-based system is
designed. In particular, this step identifies the agents of the system, the decisions
for which they are responsible, and the need for interactions between the agents.

Each step of the design method is described in the following sections; section 4
describes the analysis of the decision making, and section 5 presents the agent
identification method.

4 Analysis of the Decision Making

The aim of the analysis phase is to develop a model of the control task that can be
used as a basis for the identification of the control agents. To achieve this, the analysis
step must model the decision making of the control process. A control system controls
a production system by monitoring the production process through sensors and by
commanding actions to be executed by the actuators of the production components.
Because of the discrete nature of most production systems, the operation to be
executed by a component can be chosen from a discrete set of possible operations (cf.
section 1.2). The analysis step therefore derives decision tasks and decision
constraints from the specification of the production control problem and creates a
decision model consisting of a set of decision tasks and dependency relations between
them. The resulting decision model then serves as a basis for the subsequent design
steps.

However, the decision model should only include those decision tasks and
constraints that all solutions to the control problem must make or satisfy. Imposing
tasks or constraints that do not apply to all potential solutions would limit the space of
possibilities in the subsequent design steps and could lead to sub-optimal design
decisions. Tasks and constraints that apply to all solutions, though, do not fully
determine the control process. The decision model therefore has to be completed in a
later design step in order to represent a full control strategy that is capable of
achieving the production goals.

The analysis is performed in three steps. First, all decisions at the control interface
which any control system has to make in order for the production process to advance
are collected. These decisions are called effectoric because of their immediate

execution by an actuator. Although a control system can make (preparatory) decisions
that are not immediately executed by a component, any decision must eventually
influence an effectoric decision in order to become effective in the production
process. It is therefore appropriate to start the analysis with the effectoric decisions.
Second, the possible dependencies between control decisions are identified and
modelled in a dependency diagram. Third, the decision dependencies are classified
with respect to their importance for the production goals and their intensity during
operation.

4.1 Identification of effectoric decisions

Effectoric decisions can be identified by looking at the possible choices a component
has for its behaviour. There must be more than one alternative in order to require a
real decision.

Example. Transportation switch S1 has two alternatives for any work piece reaching
it; move the work piece to machine M1 or to the switch S2. Transportation switch
S2 has no choice. Theoretically, the switch could delay transportation, but there is
no reason to do so. Practically, therefore, switch S2 has no choice but to allow the
work piece to proceed immediately.

Each identified decision task is characterised according to the following pre-defined
schema (Table 1). The parameters of a decision task characterise the subject and
object of the decision, i.e., who is deciding about whom; in other words, who
performs the action and who is affected by the action. The trigger slot specifies the
situation in which the decision becomes necessary. The decision space represents the
set of possible choices the component has in that particular situation. Finally, a unique
identifier for the decision task facilitates later reference.

Slot Description

id unique identifier

params subject and object of decision

trigger situation that triggers decision

decision space set of possible choices

Table 1. Schema for effectoric decisions.

Example. In the case of switch S1, a decision is required every time a work piece
reaches the switch (the switch is the subject and the work piece the object) (see
table 2). The switch must then choose one of the two possible exits and transfer
the work piece to this exit. This decision has to be made immediately in order not
to block the entry. Note that in this particular case, the switch can make its
decision earlier if it anticipates a work piece. The trigger is simply the latest
possible moment to make the decision.

Slot Description

id #2

params switch S1, work piece

trigger work piece at entry

decision space { left, right}

Table 2. Example effectoric decision at switch S1.

The set of decision tasks can be represented in a trigger diagram where arrows
indicate the temporal sequence of the decisions. An arrow expresses the fact that the
physical action enacted because of the first decision eventually or necessarily leads to
a situation triggering the second decision. The arrows thus identify all possible causal
relationships between decision tasks.

Example. Any decision taken at switch S1 leads to a decision about how to process
the work piece at one of the two succeeding machines (because the work piece
will either arrive at machine M1 or (via switch S2) at machine M2). In the decision
diagram there is therefore one arrow from the decision task of the switch S1 to the
decision task of machine M1 and one to the decision task of machine M2 (see
Figure 4).

load wp
proceed at
switch S1

process at
machine M1

process at
machine M2

decision task

physical flow

Fig. 4. The trigger diagram for the simple production system.

The trigger diagram illustrates the temporal sequence of decisions (as they are
triggered by the physical process) and it can be used as a visual aid in the following
analysis (and design) steps.

4.2 Identification of decision dependencies

As stated, the decision model only covers the purely local aspects of a decision. It
specifies the situation at the component that triggers the decision and lists the possible
reactions of which the component is capable. But it does not specify how to react, i.e.,
which action to choose. How to decide in a particular situation is determined by the
decision rule (cf. section 1.2).

Example. Transportation switch S1 has to choose one of the exits for each work piece
at its entry. Which exit it chooses is irrelevant to the switch. It can move a work
piece equally well to either of the exits (as long as they are both free). From the
point of view of system performance, however, it is by no means irrelevant onto
which exit a work piece is moved. First of all, a work piece may only be moved to
a machine that is able to process it. Secondly, the switch determines the
distribution of work pieces onto the machines and thus influences the workload on
each machine.

A decision task is called dependent on another decision if the former cannot be made
(optimally) without some kind of interaction with the latter. Two (or more) decision
tasks are called dependent (on each other) if one decision task depends on the other
and vice versa. Several researchers have looked at different types of dependencies
between tasks in order to derive necessary interactions (e.g., [4,16,25]). For the
following analysis, though, it is sufficient to detect that there is some kind of
dependency between two decision tasks.

In this domain, the identification of dependencies is usually straightforward (as in
the previous example). Many dependencies can be identified simply by studying the
trigger diagram since this represents (most of) the effects of the decisions in the
production process. Other dependencies can be identified by studying the related
decision parameters of the decision tasks. If two tasks refer to the same parameters, it
is likely that their decisions will be dependent. In the working example, for instance,
the transportation switch and the machine both make decisions about the same work
piece and are consequently linked in some way. In some cases, however, it can be
quite difficult to identify and prove the dependence between decision tasks.
Nevertheless, it is assumed that the designer is able (with acceptable effort) to identify
all relevant dependencies in the given production system.

The set of dependencies can also be represented in a diagram. A dependency arrow
spans from one decision task to another if and only if the former is dependent on the
latter. A dependency arrow is double-headed if and only if the decision tasks are
mutually dependent. Dependencies between more than two decision tasks are
represented by an arrow with more than one head (on each side).

Example. The decision of a transportation switch to move a work piece onto a
specific exit is highly dependent on the decision with respect to how to process a
work piece at a machine. As already pointed out, a work piece should only
proceed to a machine at which it can be processed. It is therefore necessary to
decide which machine is able and willing to process this work piece before the
work piece can proceed to the switch. The decision about which operations to
apply to the work piece can be delayed until the entry of the work piece into the
machine, but the choice of a suitable machine must be made beforehand.
Consequently, the decision at switch S1 is dependent on the decision whether to
process the work piece either at machine M1 or machine M2 (see Figure 5).

load wp
proceed at
switch S1

process at
machine M1

process at
machine M2

decision task

physical flow

dependency

Fig. 5. The dependency diagram for the simple production system.

4.3 Classification of decision dependencies

Each dependency identified in the decision model is characterised quantitatively
according to its intensity and its importance. This allows subsequent design steps to
uniformly assess the required interactions between decision tasks. The intensity of a
dependency indicates how intense an interaction has to be in order to cope with a
dependency. The importance of a dependency tells the designer whether it is
necessary to cope with the dependency at all.

Intensity: The intensity of a dependency is uniformly characterised by the degree of
the required interaction. The degree of a dependency measures the percentage of a
decision space that is affected by the dependency. A choice taken from the affected
decision space without interaction with the other decision tasks will affect the system
performance.

Example. The transportation switch is fully affected by the dependencies. It can only
choose an exit, if the next machine has also been determined. The machines, on
the other hand, are only partly affected. They can still decide how to process the
work piece once it has reached the machine entry. However, a machine must
decide whether or not to process a work piece before the work piece leaves a
switch.

Importance: The importance of a dependency can be rated from 0 to 1 by the
consequences on the system performance if the dependency is ignored during the
control process. If the consequences lead to the non-performance of the production
system, the importance is set to 1. If no consequences can be detected, the importance
is 0. In between, it is up to the designer to assign an appropriate value. Ideally, the
importance measure should be directly linked to a significant performance value (e.g.,
throughput).

Example. All dependencies are important because ignoring any of them would lead to
non-performance as soon as a work piece reaches a machine that cannot process it.

4.4 Output of analysis phase

The result of the analysis is a decision model of the production control tasks. The
decision model consists of four parts:

• a list of all decision tasks;
• a trigger diagram;
• a dependency diagram; and
• a classification of each dependency.

The decision model contains all the decisions that any control system must make in
order to solve the control problem. However this model is incomplete in the sense that
it fails to represent a full control strategy. The missing information has to be
completed in subsequent design steps.

5 Identification of the Agents

After analysing the decision making, it is possible to start the design process by
identifying the agents of the control system. The agents have to be identified first as
they are the basic building blocks of an agent-based control system; they define the
overall architecture of the system. Interactions can only be defined by specifying
which agent is interacting with which other. At the same time, however, the system
architecture also restricts the set of possible interactions, since it specifies the set of
agents existing in the control system. It is therefore crucial to identify a set of agents
that optimally supports the task of achieving the production goals.

Here an agent is viewed as an interacting decision maker that is able to pro-actively
achieve its goals while it is adapting to its dynamic environment. Consequently, it is
straightforward to identify an agent by assigning it a set of tasks from the decision
model for which it will be solely responsible. Unfortunately, not every assignment of
agents to decision tasks will lead to a well-defined agent-based system. For example,
if two agents are each responsible for controlling the same actuator, the agents are not
fully autonomous (in their behaviour). Only one agent may have full control over the
actuator, while the other must request the controlling agent to execute the desired
action. Moreover, not every decision network is equally suitable for agent
identification. The analysis focused on the decision aspects and deliberately did not
take into account any criteria for structuring an agent-based system. It must therefore
be possible to reorganise the decision network isomorphically (i.e., without changing
the semantics of the decision process) such that it becomes more suitable for agent
identification. To this end, section 5.2 describes allowable operations on the decision
network.

But even after a substantial reorganisation of the decision network according to
agent-oriented criteria, it may still be impossible to identify agents simply because an
agent-based approach is inappropriate for the given control problem. Section 5.3
therefore lists necessary criteria on the decision network that helps assess the
suitability of an agent-based approach. If a decision network fails to meet (most of)
the criteria, an agent-based approach is not appropriate and the (agent-oriented)

design process should terminate. If, on the other hand, the applicability of the agent-
based approach is confirmed, the assignment of decision tasks to agents can begin.
This assignment process is described in section 5.4.

The very first step, however, is to complete the decision network. The analysis
only includes those decision tasks in the decision model that all solutions to the
control problem must make (cf. section 4). As a consequence, though, the decision
model is incomplete. Section 5.1 therefore adds the missing decision aspects such that
the completed decision model represents a full control strategy capable of achieving
the production goals.

5.1 Completion of the decision network

The decision network is incomplete if any of the decision tasks are not fully specified.
According to the decision making model described in section 1.2, a decision task
consists of

1. a trigger, specifying the situation that activates the decision;
2. the decision space, specifying the set of possible choices;
3. the decision input, specifying the information necessary to make a decision; and
4. the decision rule, specifying how to make a decision (based on the decision input).

During the analysis process, the designer is only obliged to specify the trigger and the
decision space of a decision task. All other slots may be left unspecified. At this point
of the design process, however, the decision model must be completed such that all
mandatory slots are fully specified. It is therefore necessary to fill in the decision
input and decision rule slots (if they have not been specified so far). This can be done
in two ways:

1. The decision input only refers to information that can be provided by the sensors of
the production system, and the decision rule specifies how to make the decision
based on this information.

2. The decision input refers to sensory information and to the results of other
decisions that will be used as a basis for the decision rule to make its decision.

The second option allows additional decision tasks to be introduced that prepare
effectoric decisions. The effectoric decision tasks use the non-effectoric decisions to
simplify their own computation. Usually, these decisions cover decision aspects that
are common to several decision tasks and thus they increase the overall modularity of
the decision process.

Example. The decision task of transportation switch S1 can be greatly simplified if
the next machine is chosen before the work piece reaches the switch S1 (see Figure
6). Based on this abstract decision, the switch can immediately decide whether the
work piece must be moved onto the left or right exit. The corresponding
dependency diagram is shown in Figure 7.

Non-effectoric decisions can themselves use other decisions to prepare their own
decision, leading to an arbitrary hierarchy of decisions. The depth of this hierarchy
depends on the complexity of the decision process. The introduction of new decision

tasks, of course, requires that the dependency diagram is updated, and is eventually
extended by any new dependencies.

load wp

proceed at
switch S1

process at
machine M1

process at
machine M2

decision task

physical flow

information flow

choose
next machine

Fig. 6. Introduction of abstract decision Choose next machine.

It should be noted that the process of completing the decision model is non-trivial.
The decision model must be completed in such a way that the resulting decision
making process achieves the production goals. In particular, the decision tasks must
take into account the different dependencies that were identified in the analysis phase.
The development of a control strategy, however, depends strongly on the kind of
production process to be controlled and is therefore application-dependent. It is
assumed that the designer is able to find a control strategy that is capable of achieving
the production goals under the specified operation conditions.

load wp

proceed at
switch S1

process at
machine M1

process at
machine M2

decision task

physical flow

information flow

dependency

choose
next machine

Fig. 7. The extended dependency diagram.

5.2 Operations on the decision network

The decision network is developed in the analysis phase without any consideration of
criteria for structuring an agent-based system. It may therefore be difficult to identify
agents on the basis of this representation of the decision process. This section presents
a set of allowable operations on the decision network that improve the representation
of the decision process, but leave its semantics unchanged. That is, the modified
decision network executes the same control command as the original one and

consequently achieves the same goal satisfaction as the first. In this regard, the
original and the modified decision models are isomorphic.

A decision network is unsuitable for the identification of agents if – according to
the criteria for a well-formed agent-based system – a decision task must be assigned
to different agents. Such a situation is not permissible because it violates the
autonomy and integrity of an agent. In such cases the decision task must be split into
different aspects of the original decision that of course share a strong dependency.
The different aspects may then be assigned to different agents. There are two ways to
split a decision task:

• divide splits a decision task into independent aspects of the decision that are
considered in parallel (see Figure 8). Each new decision task has the same decision
space, but different criteria for making the decision.

Fig. 8. The divide operation.

• expand splits a single decision task into subsequent decision (sub)tasks. The
result of one decision is the input to another decision task (see Figure 9). Except
for the last, every decision subtask formally requires a new decision space and a
new decision rule.

Fig. 9. The expand operation.

After each operation, the dependency links must be adjusted accordingly. After a
split, a new decision task must inherit any dependency link if the dependency applies
to its (sub)task. Each dependency link must be inherited by at least one (sub)task.
Additionally, any dependencies between the newly introduced decision tasks must be
identified and characterised according to the schema described in section 4.3.

The operations described above may be applied in subsequent design steps in order
to make the decision network more suitable for agent identification.

5.3 Assessment of the suitability of an agent-oriented approach

Before the actual identification of the agents can start, it is necessary to assess
whether an agent-based approach is appropriate to the specific production control
problem. Not every control problem is appropriate for an agent-based, or even a
distributed, approach. A control problem must fulfil several criteria in order to be

appropriate. These criteria do not guarantee that an agent-based approach will be
successful, or that it is better than other approaches. However the criteria do rule out
applications that are obviously inappropriate.

For an agent-oriented approach to be adequate, the decision network must fulfil
three conditions:

1. There are multiple decision tasks.
An agent-based system is always distributed (at least logically). If there is only one
decision task, the decision process cannot be distributed. This condition is
therefore mandatory.

2. The decision process is dynamic.
A control system that has to make all decisions at once cannot make use of the full
power of agent technology. However, this does not rule out the use of agents. The
condition is therefore optional. If it is fulfilled, it supports the agent case.

3. The decisions are at least partly independent.
If the decisions are all highly dependent on each other, it is difficult to see how the
decision process could be distributed. Every decision task would communicate
heavily with every other decision task. This condition is therefore mandatory.
However, the condition is not "black and white". No application has purely
dependent or purely independent decision tasks. How much dependence is
acceptable depends on the particular agent techniques used and is therefore
ultimately left to the designer.

If the decision network scores low on the above conditions, the designer may still be
able to transform the decision network into a more suitable form by using the
allowable operations described in section 5.2. If, after extensive improvements, the
decision network still scores low on the above conditions, the control system should
not be developed as a (pure) agent-based system. This does not imply that it is
impossible to use an agent-based approach. Rather it only suggests that the designer
should reflect very carefully about what other (possibly application-dependent)
reasons are in favour of agent technology and why it is not more appropriate to use
other approaches.

Example. Despite its simplicity, the simple production example scores high on the
necessary conditions. First, the decision network has more than one decision task.
Second, the decision process is dynamic. There is a constant flow of (different)
work pieces into the system that must be distributed to the machines depending on
their current availability. Third, the decision tasks are partly independent, even
though they all relate to the same task: distributing work pieces onto two
machines.

5.4 Clustering of decision tasks

After confirming the applicability of agent technology to the given control problem,
the agents of the production control system can finally be identified. Here an agent is
identified by creating a cluster of decision tasks for which the agent is solely
responsible. Since every decision task should be assigned to an agent, the
identification of agents is essentially a problem of partitioning the decision network.

However, in order to create a well-formed agent-based system, the resulting clusters
should fulfil the following two modularity criteria (cf. also [24]):

1. The decision tasks of a cluster should be coherent.
2. There should be no strong coupling (dependence) between any two clusters.

Strong cohesion and low coupling for clusters of decision tasks can be achieved in
three ways:

• interface cohesion
All decision tasks in one cluster access the same sensors and effectors, whereas
decision tasks in different clusters do not access the same physical interface.

• responsibility cohesion
The responsibility for a local state of a production object (e.g., a machine or work
piece) is assigned to at most one cluster. Decision tasks in another cluster may not
directly alter this state.

• low interactive coupling
There is no strong coupling (i.e., dependence) between the decision tasks of
different clusters.

Note that the above criteria can be in conflict. It is a design decision to resolve a
conflict by preferring one particular criterion. Moreover, it may not be possible to
cluster the decision network created in the analysis phase according to any of the
above criteria. In such cases, the network first has to be transformed by the operations
described in section 5.2 before the clustering can be performed successfully.

Once the decision network has a suitable form for clustering, the following
strategies can be employed to cluster the decision model:

• Interface clustering
Cluster decision tasks that access the same physical interfaces. Several interfaces
may end up in one cluster, but an interface should never belong to more than one
cluster. In case of a conflict, a decision task can be split and the sub-decisions
assigned to different clusters.

• Data / State clustering
Cluster decision tasks which access and change the same logical data or status of
the production system (e.g., the work piece status).

• Dependence clustering
Cluster decision tasks which have a strong dependence.

• No bottleneck clustering
Distribute decision tasks such that the system has no bottlenecks.

Example. In the decision model of the simple production system, agents can be
identified in a straightforward fashion. First of all, a switch agent and a machine
agent are associated with each switch or machine respectively and they become
responsible for the decision task associated with the particular component.
Likewise, a loading agent is assigned to the loader and its decision task. All these
agents are static.

The decision task choose next machine, though, is not directly associated with a
single component. It involves all possible machines and the work piece that is

supposed to be processed. This decision task is therefore divided into several
aspects: A decision aspect for each machine and one for the work piece. The work
piece agent responsible for this decision task is created by the loading agent when
the corresponding work piece is put on the first conveyor belt. This work piece
agent then interacts with the machine agents in order to choose the next machine
and informs the switch agent of switch S1 about the next goal machine.

As with the modularity criteria, the above strategies can be in conflict too. Again it is
a design decision about which strategy should be preferred when there is a conflict.

Clustering strategies (in combination with the allowable operations) are applied to
the decision network until a satisfactory partitioning has been found. Even though the
modularity criteria indicate the quality of the partitioning, it is ultimately left to the
designer to decide whether the achieved quality is sufficient.

5.5 Output of the agent identification phase

The results of the first design step are twofold. First of all, an assessment of the
decision model created in the analysis phase indicates the suitability of an agent-
oriented approach to the particular production control problem. Secondly, in cases
where the suitability is confirmed, the design step identifies a list of agents, each
associated with a subset of the decision tasks. The agents are solely responsible for
the execution of their decision tasks, but depend on other agents whenever decision
dependencies exist between decision tasks that are assigned to different agents.

6 Conclusions and Future Work

This paper has presented a design method for the identification of agents in
production control systems. The design method consists of two main steps. First, the
decision making necessary to control the given production system is analysed. This
step identifies the decisions necessary to achieve the production goals and the
dependencies between these decisions. Second, the necessary agents to control the
production system are identified. This step transforms the decision network into a
more suitable form for an agent-oriented approach, assesses the appropriateness of an
agent-oriented approach and identifies the agents as well as the required interactions.
The result of the method is a set of agents associated with control responsibilities and
dependencies.

The proposed design method fulfils the requirements put forward in section 1.1.
First of all, the design process is based on models that are appropriate for production
control. The analysis model is centered on the concept of control decisions that are
central to the problem of controlling a production process. Likewise, decision
dependencies are derived by relating this notion to the effects on the production
performance. Finally, agents are identified by clustering decision tasks. Second, the
design method is prescriptive with respect to its agent-related aspects. The analysis
step clearly defines which information to provide in the analysis model. The design

step provides criteria for re-organising and clustering the decision network in order to
identify agents. Finally, the design method provides criteria for assessing the
suitability of an agent-oriented approach for the given production control problem. In
summary, the design method fulfils both requirements put forward in section 1.1.
Thus it allows an engineer with no prior experience in agent technology to
successfully apply the design method to a production control problem.

The next stage of this work is to complete the design method by dealing with the
interactions that occur between the agents. These interactions stem from the
dependencies that exist between the agents’ decision making responsibilities. To this
end, many interaction formalisms and design approaches have been proposed to date.
However none of these approaches addresses the question of how protocols are
derived from a problem description.

References

1. B. Burmeister: “Models and Methodology for Agent-Oriented Analysis and Design” . In K.
Fischer (ed.): Working Notes of the KI’96 Workshop on Agent-Oriented Programming and
Distributed Systems, pages 7 – 17. Document D-96-06. DFKI: Saarbrücken, Germany,
1996.

2. S. Bussmann, D.C. McFarlane: ”Rationales for Holonic Manufacturing Control” . In Proc.
of Second Int. Workshop on Intelligent Manufacturing Systems, pages 177 – 184, Leuven,
Belgium, 1999.

3. S. Bussmann, K. Schild: "Self-Organizing Manufacturing Control: An Industrial
Application of Agent Technology". In Proc. of the Fourth Int. Conf. on Multi-Agent
Systems, pages 87 – 94, Boston, MA, USA, 2000.

4. K.S. Decker: Environmental Centered Analysis and Design of Coordination Mechanisms.
PhD Thesis, University of Massachusetts, MA, USA, 1992.

5. M. Wood, S.A. DeLoach: "An Overview of the Multiagent Systems Engineering
Methodology". In this volume.

6. R.G. Fichman, C.F. Kemerer: "Object-Oriented and conventional analysis and design
methodologies – comparison and critique". In IEEE Computer, Vol. 25, No. 10, pages 22 –
39, 1992.

7. N. Glaser: “The CoMoMAS Methodology and Environment for Multi-Agent System
Development” . In C. Zhang, D. Lukose (eds.), Multi-Agent Systems – Methodologies and
Applications, LNAI 1286, pages 1 – 16. Springer-Verlag: Berlin, Germany, 1997.

8. H. Hußmann: Formal Foundations for Software Engineering Methods. LNCS 1322,
Springer-Verlag: Berlin, Germany, 1997.

9. C.A. Iglesias, M. Garrijo, J.C. Gonzalez: "A survey of agent-oriented methodologies". In
Pre-Proc. of the 5th Int. Workshop on Agent Theories, Architectures and Languages, Paris,
France, 1998.

10. C. A. Iglesias, M. Garijo, J.C. Gonzalez, J.R. Velasco: “Analysis and Design of Multiagent
Systems Using MAS-CommonKADS”. In M.P. Singh, A. Rao, M.J. Wooldridge (eds.),
Intelligent Agents IV (ATAL’97), LNAI 1365, pages 314 – 327. Springer-Verlag: Berlin,
Germany, 1998.

11. I. Jacobson: Object-Oriented Software Engineering: A Use Case Driven Approach.
Addison-Wesley, 1992.

12. E.A. Kendall, M.T. Malkoun, C.H. Jiang: "A Methodology for Developing Agent Based
Systems". In C. Zhang, D. Lukose (eds.), Distributed Artificial Intelligence – Architecture
and Modelling, LNAI 1087, pages 85 – 99. Springer-Verlag: Berlin, Germany, 1996.

13. E.A. Kendall: "Agent Software Engineering with Role Modelling". In this volume.
14. D. Kinny, M. Georgeff: "Modelling and Design of Multi-Agent Systems". In J.P. Müller,

M.J. Wooldridge, N.R. Jennings (eds.), Intelligent Agents III (ATAL’96), LNAI 1193, pages
1 – 20. Springer-Verlag: Berlin, Germany, 1997.

15. J. Lind: MASSIVE: Software Engineering for Multiagent Systems. PhD thesis, University of
Saarbrücken, Germany, 1999.

16. F. von Martial: Coordinating Plans of Autonomous Agents, LNAI 610. Springer-Verlag:
Berlin, Germany, 1992.

17. B. Moulin, M. Brassard: "A Scenario-Based Design Method and an Environment for the
Development of Multiagent Systems". In C. Zhang, D. Lukose (eds.), Distributed Artificial
Intelligence – Architecture and Modelling, LNAI 1087, pages 216 – 232. Springer-Verlag:
Berlin, Germany, 1996.

18. A. Omicini: "SODA: Societies and Infrastructure in the Analysis and Design of Agent-
based Systems". In this volume.

19. H.V.D. Parunak: "Manufacturing Experience with the Contract Net". In M.N. Huhns (ed.),
Distributed Artificial Intelligence, pages 285 – 310. Pitman: London, UK, 1987.

20. V. Parunak, J. Sauter, S. Clark: “Toward the Specification and Design of Industrial
Synthetic Ecosystems” . In M.P. Singh, A. Rao, M.J. Wooldridge (eds.), Intelligent Agents
IV (ATAL’97), LNAI 1365, pages 45 – 59. Springer-Verlag: Berlin, Germany, 1998.

21. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen: Object-Oriented Modeling
and Design. Prentice-Hall: Englewood Cliffs, NJ, USA, 1991.

22. G. Schreiber, B.J. Wielinga, R. de Hoog, H. Akkermans, W. Van de Velde:
"CommonKADS: A comprehensive methodology for KBS development". In IEEE Expert,
Vol. 9, No. 6, pages 28 – 37, 1994.

23. M. Wooldridge, N.R. Jennings, D. Kinny: "The Gaia Methodology for Agent-Oriented
Analysis and Design". In Autonomous Agents and Multi-Agent Systems, Vol. 3, No. 3,
pages 285 – 312, 2000.

24. E. Yourdon, L.L. Constantine: Structured Design. Prentice Hall: Englewood Cliffs, NJ,
USA, 1979.

25. E.S.K. Yu, J. Mylopoulos: "Understanding the 'Why' in Software Process Modelling,
Analysis, and Design". In Proc. of the 16th Int. Conf. on Software Engineering. Sorrento,
Italy, 1994.

