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In this paper we study techniques for reasoning about game-like concurrent systems, 
where the components of the system act rationally and strategically in pursuit of 
logically-specified goals. Specifically, we start by presenting a computational model 
for such concurrent systems, and investigate its computational, mathematical, 
and game-theoretic properties. We then define and investigate a branching-
time temporal logic for reasoning about the equilibrium properties of game-like 
concurrent systems. The key operator in this temporal logic is a novel path 
quantifier [NE]ϕ, which asserts that ϕ holds on all Nash equilibrium computations 
of the system.
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1. Introduction

Our goal in this paper is to develop a theory and techniques for reasoning about game-like concurrent 
systems: concurrent systems in which system components (agents) act strategically in pursuit of their 
own interests. Game theory is the mathematical theory of strategic interaction, and as such is an obvious 
candidate to provide the analytical tools for this purpose [43]. However, since the systems we are interested 
in modelling and reasoning about are interacting computer programs, it seems appropriate to consider how 
existing techniques for the analysis of computer systems might be combined with game-theoretic concepts. 
Temporal logics [13] and model checking [10] form the most important class of techniques for reasoning about 
computer programs, and in this paper we are concerned with extending such formalisms and techniques to 
the game-theoretic analysis of systems.

The artificial intelligence, computer science, and multi-agent systems literatures contain a great deal 
of work on logics intended for reasoning about game-like systems: e.g., Parikh’s Game Logic was an early 
example [44], and more recently ATL [3] and Strategy Logic [7] have received much attention. However, these 
formalisms are primarily intended for reasoning about the strategies/choices of players and their effects, 
rather than the preferences of players and the strategic choices they will make arising from them. It is, of 
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course, possible to use ATL or Strategy Logic (or indeed LTL, CTL, . . . ) to define the goals of agents and 
their preferences; but such languages do not provide any object language constructs for reasoning about the 
behaviour of such agents under the assumption that they act rationally and strategically in pursuit of their 
goals. In this paper, we present a branching time logic that is explicitly intended for this purpose. Specifically, 
we provide a logic for reasoning about the equilibrium properties of game-like concurrent systems.

Equilibrium concepts are the best-known and most widely applied analytical tools in the game theory 
literature, and of these Nash equilibrium is the best-known [43]. A Nash equilibrium is an outcome that 
can be obtained when no player has an incentive to deviate, i.e., to change its strategy. If we consider Nash 
equilibrium in the context of game-like concurrent systems, then it is natural to ask which computations 
(runs, histories, . . . ) will be generated in equilibrium? In [20], this question was investigated using the 
Iterated Boolean Games (iBG) model. In this model, each player is assumed to control a set of Boolean 
variables, and the game is played over an infinite sequence of rounds, where at each round every player 
chooses values for its variables. Each player has a goal, expressed as an LTL formula, and acts strategically 
in pursuit of this goal. Given this, some computations of a game can be identified as being the result of Nash 
equilibrium strategies, and [20] suggested that the key questions in the strategic analysis of the system are 
whether a given LTL formula holds in some or all equilibrium computations.

While the iBG model of [20] is useful for the purposes of exposition, it is not a realistic model of concurrent 
programs. Moreover, [20] provides no language for reasoning about the equilibria of systems: such reasoning 
must be carried out at the meta-level. This paper fills those gaps. First, we present a computational model 
that is more appropriate for modelling concurrent systems than the iBG model. In this model, the goals 
(and thus preferences) of players are given as temporal logic formulae that the respective player aspires to 
satisfy. After exploring some properties of this model, we introduce Equilibrium Logic (EL) as a formalism 
for reasoning about the equilibria of such systems. EL is a branching time logic that provides a new path 
quantifier [NE]ϕ, which asserts that ϕ holds on all Nash equilibrium computations of the system. Thus, EL 
supports reasoning about equilibria directly in the object language. We then investigate some properties of 
this logic.

In particular in this paper we show that via a logical characterisation of equilibria in infinite games we 
can check useful properties of strategy profiles. We consider four logics for players’ goals: LTL [45], CTL [9], 
the linear-time µ-calculus [51], and the modal µ-calculus [28]. Based on our logical characterisation, three 
problems are studied: Strategy-Checking, NE-Checking, and Equivalence-Checking, all of which 
are shown to be in PSPACE or in EXPTIME depending on the particular problem and temporal logic at 
hand. We also study the computational complexity of checking equilibrium properties, which can be ex-
pressed in the object language of EL. We show that the problem is 2EXPTIME-hard, even for LTL or CTL 
goals. This result shows, in turn, that checking equilibrium properties is equally hard in the linear-time 
and in the branching-time frameworks. We then investigate the complexity of model checking equilibrium 
computations with respect to dominant strategy equilibrium, a much stronger solution concept than Nash 
equilibrium. A summary of these complexity results is given at the end. We also present a class of games—
where players are allowed to have an ordered set of (temporal logic) goals they want to see satisfied—for 
which all the main complexity results in the paper can be extended.

Structure of the paper. Section 2 defines the structure we use to represent games and strategies. Section 3
defines the model of games and strategies we will use in this paper. Section 4 gives a logical characterisation 
of equilibrium computations and investigates its main computational questions. Section 5 introduces our 
Equilibrium logics, and Section 6 presents a number of examples. Then, Section 7 studies the complexity 
of evaluating the new modal equilibrium operator, and Section 8 extends the main complexity results from 
Nash to dominant strategy equilibrium and from the standard model of games we use throughout the paper 
to a more general model where players are allowed to have an ordered set of temporal logic goals. At the 
end, Section 9 provides conclusions and related work, and Section 10 outlines a number of different avenues 
for further developments as well as some ideas underlying ongoing work. Throughout the paper, we assume 
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familiarity with temporal logics such as LTL, CTL, the linear-time and the modal µ-calculus—see, e.g., 
[13,18,28,51] for details.

2. Models

Before giving formal definitions, let us start by describing some situations that can naturally be modelled 
as game-like concurrent systems.

Example 1. Consider a situation in which two agents can request a resource from a dispatch centre infinitely 
often; assume that the goals of both agents are to always eventually make use of the resource. For instance, 
in temporal logic notation, if the resource is modelled by “r” then their goals can be given by the Linear 
Temporal Logic (LTL [45]) formula GFr. The behaviour of the dispatch centre is as follows:

1. if only one of the agents requests the resource, it gets it;
2. if both agents request the resource, neither agent gets it;
3. if one agent requested the resource twice in a row while the other agent did not do so, the latter agent 

inevitably gets the resource for ever after regardless of the behaviour of either of the players afterwards 
(thus, punishing undesirable greedy behaviour).

Because of 2 and 3 it may be the case that an agent (or both) fails to achieve its goal of being granted the 
resource infinitely often. But, of course, we can see a simple solution: if both agents request the resource 
alternately, then they get their goals achieved. Indeed, a game-theoretic analysis reveals that in all equilibria 
of this system both agents get the resource infinitely often.

Example 2. Another illustration of our framework is a strategic workflow design setting in which, at every 
point of time, employees can form coalitions and, depending on the coalitions formed, perform certain 
tasks. The employees are assumed to be free in the coalitions they join, which grants them some power 
with respect to the tasks that are being performed at each time given the choices of the other players. 
Additionally, there is a manager overseeing the employees who wants to ensure the tasks to be performed 
in a certain order or a particular number of times. This she tries to achieve by assigning responsibilities to 
the employees. Each employee is assumed to adopt the fulfilment of the responsibility assigned to him as 
his sole goal. For instance, an employee may be made responsible for one particular task never preceding 
another one. Temporal logic formulae can be used to formulate such responsibilities. Clearly, different 
ways of assigning/distributing responsibilities lead to different behavioural properties of the system. One 
interesting question in this setting is therefore whether there is a way in which the manager can distribute 
responsibilities so as to ensure that her objectives are achieved in all Nash equilibria of the system.

The approach we develop in this paper enables us to formally model and reason about systems and 
situations like those in the examples above (in Section 6, we show how these examples may be formally 
represented using our framework). The components of our framework are as follows. First, we present 
a mathematical model that plays a dual role in the remainder of the paper. Essentially, the model is a 
directed graph in which both edges and vertices are labelled. This model is used to represent both the 
structure of a concurrent system (in which case we call it an arena) and also the reactive behaviour of 
system components (in which case we call it a strategy):

• When our model is used as an arena the vertices in the graph will correspond to system states, which are 
labelled with the propositions true in those states, while edges in the graph will correspond to choices
made by system components. We can think of the input language of the arena as being a sequence 
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Fig. 1. System architecture: multi-agent game-like concurrent system.

of choices, and the output language as being a sequence of system states, each labelled with a set of 
propositions. As will be clear from their formal definition (below), our basic model generalises both 
Kripke frames and transition systems, among others, thus allowing them to be used in very many 
different contexts. More importantly, compositions of these models naturally represent the behaviour of 
synchronous, multi-agent, and concurrent systems with interleaving semantics as well as of asynchronous 
systems [41].

• When our model is used to represent strategies the vertices in the graph will correspond to strategy 
states, each labelled with the choice made by the strategy in that state, while edges are labelled with 
information obtained from (that is true at) system states. Thus, we can think of the input language for 
a strategy as being a sequence of propositions, which are true at system states, and the output language 
as being a sequence of choices. As we will see, when we use our models to represent strategies, they can 
be understood as Moore machines.

Diagrammatically, the system architecture of the kind of multi-agent game-like concurrent systems we 
will define and use here is as in Fig. 1. While the arena represents the (global and external) “observable 
behaviour” of the concurrent and reactive multi-agent system—which may admit many different possible 
behaviours—the strategies/players will jointly determine (in a more local and internal manner) a particular 
choice of such behaviours.

Remark 3 (Arenas and strategies). Note that arenas and strategies contain dual information in our frame-
work. Because we will model them using the same mathematical structure, which thus far we have called 
a “model” above, we will uniformly denote such structures/models by M . Later on, we will differentiate 
arenas from strategies using the notations A and σ, respectively.

A graph-based model of concurrent and reactive behaviour Let

M = (V,E, v0,Ω,Λ,ω,λ)

be a Λ-labelled Ω-model M , where V is the set of vertices of M , v0 ∈ V is the initial vertex, E ⊆ V × V

is the set of edges, and ω : V → 2Ω and λ : E → 2Λ are two functions, the former indicating the set of 
‘properties’ of a vertex and the latter the ways to go/move from one vertex to another. Based on M , some 
sets can be defined. The set of transitions:

TM = {(v, a, v′) ∈ V × Λ × V | (v, v′) ∈ E & a ∈ λ(v, v′)};
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and the sets of sequences of adjacent vertices and transitions starting at v0, which we denote by V ∗
M

and T ∗
M .

Notation 4 (Graphs). We may write ‘nodes’ or ‘states’ when talking about vertices, and ‘events’ or ‘actions’ 
when referring to edges; similarly, we also write ‘words’ or ‘strings’ when talking about sequences.

A model is total if for every v ∈ V there is a v′ ∈ V and an a ∈ Λ such that (v, a, v′) ∈ TM ; a model is, 
in addition, Λ-total if for every v ∈ V and every a ∈ Λ there is v′ ∈ V such that (v, a, v′) ∈ TM . Observe 
that if M is total the sets T ∗

M and V ∗
M contain infinite sequences only. The sets T ∗

M and V ∗
M induce two 

additional sets of sequences, one over the elements in the set Λ (the action names labelling the transitions) 
and another one over the elements in the set 2Ω (the properties that hold, or can be observed, in the vertices 
of the model); namely the sets

A∗
M = {a, a′, . . . | (v0, a, v′), (v′, a′, v′′) . . . ∈ T ∗

M}

and

P∗
M = {ω(v0),ω(v′),ω(v′′), . . . | v0, v′, v′′, . . . ∈ V ∗

M}.

Notation 5 (Sequences). Hereafter, for all sets and in all cases, we may omit their subscripts whenever 
clear from the context. Given a sequence ϱ (of any kind), we write ϱ[0], ϱ[1], . . . for the first, second, . . .
element in the sequence; if ϱ is finite, we write last(ϱ) to refer to its last element. We also write |ϱ| for the 
size of a sequence. The empty sequence is denoted by ϱ[ ] = ϵ and has size 0. Restrictions to parts of a 
sequence and operations on them are useful. Given k, k′ ∈ N, with k ≤ k′, we write ϱ[0 . . . k] for the sequence 
ϱ[0], ϱ[1], . . . , ϱ[k] (an initial segment of ϱ), ϱ[k . . . k′] for the sequence ϱ[k], . . . , ϱ[k′], and ϱ[k . . .∞] for the 
sequence ϱ[k], ϱ[k+1], . . .. We also write ϱ[k . . . k′) if the element ϱ[k′] of the sequence is not included. Given 
two sequences ϱ′, ϱ, we write ϱ′ ∈ ϱ if ϱ′[k] = ϱ[k] for all 0 ≤ k < |ϱ′|. If ϱ′ is finite, we also write ϱ′; ϱ for 
the binary operation on sequences/words—and resulting run—of concatenating a finite run ϱ′ with a run ϱ. 
When working with sequences, we assume the standard laws over them; in particular, when expressing 
concatenation “;” with the empty sequence ϵ, we write ϵ; ϱ = ϱ, for any ϱ, and write ϱ′; ϵ = ϱ′, for any 
finite ϱ′.

We find it useful to associate input and output languages with models. The input language Li(M) of a 
model M is defined to be A∗

M and the output language Lo(M) of M is defined to be P∗
M . Given a finite set 

of models M⃗ = {M1, . . . , Mn}, the input language of M⃗ is defined to be

Li(M⃗) =
⋂

1≤j≤n

Li(Mj).

The set Li(M⃗) determines synchronised runs V ∗
M⃗

for M⃗ , i.e., sequences

(v0
1 , . . . , v

0
n), (v′1, . . . , v′n), . . . ∈ (V1 × . . .× Vn)∗

such that there are a, a′, . . . ∈ Li(M⃗) such that for all 1 ≤ j ≤ n,

(v0
j , a, v

′
j), (v′j , a′, v′′j ), . . . ∈ T ∗

Mj
.

The set V ∗
M⃗

, in turn, determines the output language Lo(M⃗) of M⃗ , defined to be all sequences
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⋃

1≤j≤n

ωj(ϱ[0]),
⋃

1≤j≤n

ωj(ϱ[1]), . . . ∈ (2Ω1∪···∪Ωn)∗

where ϱ ∈ V ∗
M⃗

and ωj(ϱ[k]), with 0 ≤ k < |ϱ|, is the application of the ωj of Mj to the jth component of 
each ϱ[k]. Let L function equally for an input or output language of a model M or compound system M⃗ ; 
moreover, for finite ϱ′, let L[ϱ′] be the language of (sub)words {ϱ[|ϱ′| . . .∞] | ϱ′ ∈ ϱ ∈ L}. There is a tree 
language TreeL(L) for every (word) language L, defined as:

TreeL(L) = {T is a tree | ϱ ∈ L, for each maximal path ϱ in T },

that is, the tree language of a word language L is the set of all trees all of whose maximal paths are in L.

Remark 6 (Languages). Note that any non-empty word language induces a tree language comprising in-
finitely many trees, if such trees are allowed to be non-deterministic. For instance, the (singleton) word 
language L = {a} induces the tree language TreeL(L) containing the following trees: the empty tree, the 
tree with one a-labelled branch, the tree with two a-labelled branches, etc., and the infinite tree with in-
finitely many a-labelled branches. However, if non-determinism is not allowed (or restricted in some way) 
some finite word languages may always induce finite tree languages. For the sake of generality we impose 
no restrictions at this point.

Our models support two useful operations: restriction and projection. The former selects a subset of 
the output language; a restriction with respect to a subset of the input language. We denote by Lo(M)|L, 
where L ⊆ Li(M), such a subset of the output language. Projection, on the other hand, takes the sequences 
in the output language and forgets the elements in some subset of Ω. We write Lo(M)|Ω′ for such an 
operation and resulting set, which is formally given by:

{ϱ[0] ∩ Ω′, ϱ[1] ∩ Ω′, . . . ∈ (2Ω′)∗ | ϱ ∈ Lo(M)}.

Based on the model just given both games and strategies in a game can be defined, as presented in the 
next section.

3. Games and strategies

Games Using the model in Section 2, we will now define reactive games: a class of multi-player non-zero-sum 
games. In a reactive game, a finite set of players interact with each other by assigning values to variables 
they have control over. The game has a designated initial state and the values given to the variables at each 
round determine the next state of the game. The game is played for infinitely many rounds. Players in a 
reactive game have goals they wish to satisfy; such goals are expressed as temporal logic formulae.

Formally, a reactive game (sometimes just called a “game”) is a structure:

G = (N,C, (Ci)i∈N , (γi)i∈N , X,A)

where N = {1, . . . , n} is a set of agents (the players), C = {p, q, r, . . .} is a set of controlled variables, Ci ⊆ C

is the set of variables under the unique control of player i, and γi is a formula of some logical system1 over 
a set X = {x, y, . . .} of propositions; formula γi describes the goal that player i wants to achieve. There 

1 In this paper, we will consider several logical temporal languages for γi, e.g., LTL [45], CTL [9], or fixpoint linear-time and 
branching-time modal logics [51,28]. At this point, our definitions do not require us to fix on any one language for players’ goals, 
although we will consider several concrete possibilities later.
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is a requirement on C: the sets of variables C1, . . . , Cn form a partition of C, that is, Ci ∩ Cj = ∅ for all 
i ̸= j ∈ N , and C = C1 ∪ · · · ∪ Cn. A choice ci for agent i ∈ N is an assignment of values for the variables 
under its control. Let Chi be the set of choices for agent i. A choice vector c⃗ = (c1, . . . , cn) is a collection 
of choices, one for each player. Let Ch be the set of all choice vectors. Finally, A—the “arena” or “board”
where the game is played—is a Λ-total Ω-model where Λ = Ch and Ω = X.

Note that Λ-totality ensures in a simple and convenient manner that a reactive game is played for 
an infinite number of rounds without requiring further consistency or validity conditions on strategies. 
Moreover, it does not limit our modelling power. In particular, the inability of a player to make a choice at 
a particular vertex of the arena can be modelled by exploiting non-determinism and labelling all outgoing 
edges with all of its possible choices. Then, the successor state only depends on the other players’ choices, 
which comes down to the player not being able to make a meaningful choice.

Remark 7 (Games). Reactive games can be considered as a meta-model of infinite games of control since 
their definition does not specify the logic each γi belongs to, the kinds of strategies used in the game, the 
types of variables the players have control over, what the outcome of a game would be given a set of players’ 
strategies, or when the outcome of a game makes a player’s goal satisfied. As we will see later in the paper, 
different kinds of games and results will arise from different choices with respect to these properties. All we 
need to know for now is that

1. the games are played for infinitely many rounds,
2. the players have unique control over some given set of variables, and
3. the players’ goals are represented by formulae of some logical language.

Strategies Because in a reactive game a play is infinite, it is natural to think of a strategy for a player i as 
a function fi : E∗ → Chi or f ′

i : V ∗ → Chi, that is, a function from what has been played so far (or at least 
what a player knows so far), which may be given for instance by a finite sequence of arena states in V ∗ or a 
finite sequence of all players’ choices in E∗, to a particular choice ci for player i. However, sometimes such 
representations are less concrete than one would like them to be. For instance, one would like to know their 
particular structure and size in order to assess whether they can be effectively constructed and, if so, how 
complex such a construction process would be. With this consideration in mind, we use a strategy model 
that is finite, simple, and expressive enough for most computational purposes. Our definition of strategies is 
based on the model in Section 2. Similar representations have been used to study, e.g., the important class 
of ‘repeated games’ in game theory [43, pp. 140–143].

Formally, we define a strategy σi for player i in a reactive game G = (N, C, (Ci)i∈N , (γi)i∈N , X, A) as a 
structure

σi = (Qi, q
0
i , δi, τi)

modelled as a structure Mi = (V, E, v0, Ω, Λ, ω, λ) in which Qi = V is a finite and non-empty set of states, 
q0
i = v0 is the initial state, δi : Qi × Λ → (2Qi \ ∅), with Λ = 2X , is the transition function given by TMi , 

and τi = ω : Qi → Chi is a choice function. As one requires that a strategy for player i is able to react to 
any possible valid behaviour/strategy of the others, we only consider as valid the strategies that are based 
on structures Mi where δi is total. Hereafter, let Σi denote the class of strategies for player i.

Our strategies resemble Moore finite state machines, i.e., transducers where the output function is deter-
mined only by the states of the machine. It is easy to modify our definition of strategies to encode Mealy 
machines. (Recall that Moore and Mealy machines are equally powerful and, in fact, fully interchangeable.) 
Henceforth, given a game G with n players in N and a profile of strategies σ⃗ = (σ1, . . . , σn), we call σ⃗ or 
any subset of it a strategy profile. We write σ⃗−S , with S ⊆ N , for σ⃗ without the strategies σi such that 
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Fig. 2. An arena, where ∗ = {pq, p̄q, pq̄, p̄q̄}.

Fig. 3. Strategy σ1 for player 1 (left) and the strategies σ2 (middle) and σ′
2 (right) for player 2. Here ∗ = {x, x̄}.

i ∈ S; we omit brackets if S is a singleton set. Also, we write (σ⃗−i, σ′
i), with 1 ≤ i ≤ n, for the strategy 

profile σ⃗ where σi is replaced with σ′
i.

Example 8. Consider a game with N = {1, 2}, C1 = {p}, and C2 = {q} and arena as in Fig. 2. There, we 
have ωA(v0) = x, ωA(v′) = ωA(v′′) = x̄. The values the players can choose to assign to the variables they 
control are the Boolean constants ⊥ (“false”) and ⊤ (“true”). Moreover, the symbol p̄ denotes player 1’s 
choice to assign ⊥ to p, that is p := ⊥, and, similarly, p denotes the choice to assign ⊤ to p, that is, p := ⊤
(and likewise for q and x). Then, the set of choices of players 1 and 2 is the binary set of Boolean values. In 
this very simple game the players can guarantee x := ⊤ as long as they play the same Boolean values for 
the variables p and q they have control over. However, as soon as they play different Boolean values, the 
output of the game will be x := ⊥ ever after. A possible strategy for player 1 would be to always play p

and is depicted in Fig. 3 (left). The exact outcome(s) of the game—to be defined next—can be determined 
only once the strategy for player 2 is given.

Expressivity Our strategy model is simple but powerful; in particular, it can generate any word or tree 
ω-regular language. Formally, we have:

Fact 9. If T is an ω-regular tree, then there is a (possibly non-deterministic) strategy σ such that T ∈
TreeL(Lo(σ)).

It is important to note that the strategy σ may be non-deterministic. However, with respect to word 
languages, only deterministic strategies are needed: the linear-time languages we are interested in have 
ω-regular words as models. Because of this, a strategy model based on finite-state machines with output 
(transducers) is sufficiently powerful to generate and recognise such a kind of infinite words over any finite 
domain [46]. Specifically, with respect to our results, because ω-regular words are ω-regular trees that do 
not branch, the following statement also easily follows.

Fact 10. If w is an ω-regular word, then there is a deterministic σ such that w = Lo(σ).

Facts 9 and 10 are used to ensure that if some ω-regular word or tree needs to be realised, then such a 
word or tree can be generated by (i.e., be in the output language of) some finite-state machine strategy, 
as defined in our framework. This property of our strategy model will be used, later on, to give a formal 



J. Gutierrez et al. / Annals of Pure and Applied Logic 168 (2017) 373–403 381

interpretation of logical languages with ω-regular models, for instance, of temporal logics such as LTL or 
CTL.2

Outcomes and composition of strategies Given a finite set of strategies (σi)i∈N , which hereafter we will 
denote by σ⃗ whenever the set N is clear from the context, the histories (of choices) when playing such a 
set of strategies in a game G = (N, C, (Ci)i∈N , (γi)i∈N , X, A) are the sequences in the input language of A, 
denoted by Lσ⃗

i (A), given by

Lσ⃗
i (A) = Lo(σ⃗)|Li(σ⃗)∩Lo(A)[q⃗ 0],

where q⃗ 0 = (τ1(q0
1), . . . , τn(q0

n)).
Informally, since Lo(σ⃗), and hence Lσ⃗

i (A), is restricted to Li(σ⃗) ∩Lo(A)[q⃗ 0], we know that when playing 
a strategy profile there is an alternation in the interaction between strategies and the arena, with the 
strategies making transitions only after a transition in the arena has been made.

The histories of a game with respect to a strategy profile σ⃗ record the choices that the players make based 
on such a given strategy profile σ⃗. These choices, in turn, determine the outcomes of the game, denoted 
by Lσ⃗

o (A) and defined as

Lσ⃗
o (A) = Lo(A)|Lσ⃗

i (A).

Then, whereas histories are sequences in the input language of A, outcomes are sequences in its output
language.

As defined, the outcomes of a game form a set of words or infinite sequences over (2ΩA)∗. However, 
they naturally induce a set of trees with respect to the tree-unfolding of A. We write unf(A, v) for the 
usual tree-unfolding of A—when A is seen as a graph—with respect to a given vertex v ∈ V ; we simply 
write unf(A) whenever v = v0. The tree unf(A) can trivially be seen as an ordered set (W, ≤), with W
the set of vertices in the tree (which correspond to occurrences of states in the arena A) and ≤ the partial 
order induced by the set of edges in the tree (which correspond to occurrences of transitions in the arena A). 
A subtree T of unf(A) is a downclosed subset of (W, ≤) satisfying that for each vertex w of the subtree, 
there is another vertex w′ of the subtree, with w ̸= w′, such that w ≤ w′. In other words, every branch of 
a subtree has infinite length. Based on this definition of subtree, let us define the set of subtrees of unf(A)
as:

Tree(A) = {T | T is a subtree of unf(A)}.

We will abuse of notation, and write Tree(A) for the unique set of trees of valuations/properties associated 
with the trees of (occurrences of) states just defined. Then, using this notation and given a strategy profile σ⃗
in a reactive game G, the tree/branching outcomes of G are the trees in the set

TreeL(Lσ⃗
o (A)) ∩ Tree(A).

Then, the above set contains all the trees that can be generated by a (possibly non-deterministic) strategy σ⃗

which are consistent with the trees in the set of subtrees of unf(A), that is, the possible tree outcomes of 
a game on A.

Hereafter, regardless of whether we are talking about word outcomes or tree outcomes, we will uniformly 
denote by Out(G, ⃗σ) the outcomes of a game G when playing the set of strategies σ⃗. Similarly we will 

2 In fact, the class of strategies needed to show Facts 9 and 10 is quite simple and was called “myopic” in [23], where we used 
them to study games with LTL goals.
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Fig. 4. A non-deterministic arena where ∗ = {pq, p̄q, pq̄, p̄q̄}.

denote by OutG the set of all outcomes of the game G, that is, with respect to all valid sets of strategies, 
and omit the subscript G whenever which game G we are referring to is either clear or irrelevant. It is worth 
noting that Out is Lo(A) in case of word outcomes and, therefore, is TreeL(Lo(A)) ∩ Tree(A) in case of 
tree outcomes. Also, note that because we allow non-determinism, the set Out(G, ⃗σ) is not necessarily a 
singleton, as illustrated next.

Example 11. Consider again the game in Example 8 and the two strategies for player 2 depicted in Fig. 3. 
The profile σ⃗ = (σ1, σ2) induces the unique (word) outcome xω = x; x; x; . . . in Out; the strategy profile σ⃗′ =
(σ1, σ′

2), on the other hand, induces two outcomes, namely the two infinite sequences given by the ω-regular 
expression xω ∪ (x; ̄xω). The reason why σ⃗′ induces more than one outcome is that σ′

2 is non-deterministic; 
thus, multiple outcomes are possible even when the arena A is deterministic.

Also, given a set of deterministic strategies one can have a reactive game where multiple outcomes are 
possible if A is a non-deterministic arena, since the same players’ choice can lead to different successor 
vertices in A. In this case the next state of the game is selected non-deterministically in A, i.e., it is not 
under the control of any of the players.

Example 12. Take the deterministic strategies in the strategy profile σ⃗ in Example 11, and the arena in 
Fig. 4. The outcomes of the game are the infinite sequences given by the ω-regular expression xω ∪ (x+; ̄xω), 
but the situation here is different. Player 1 always plays p := ⊤ and player 2 always plays q := ⊤. In A this 
choice can lead to two different successor states from the initial one, namely the one labelled by x and the 
one labelled by x̄. The choice of which the next state will be is made non-deterministically in A, i.e., it is 
not under the control of any of the players.

Remark 13 (iBG model). Observe that our reactive games model strictly generalises the iBG model as 
introduced by Gutierrez, Harrenstein, and Wooldridge in [20], which can be represented as a simple reactive 
game where the arena is an implicitly defined clique whose nodes are the valuations of the variables the 
players have control over, the goals of the players are LTL formulae, and the strategies are deterministic. 
Moreover, the controlled variables, i.e., variables in C, are precisely those in the set X. It should be noted, 
however, that arenas are not explicitly represented in the iBG model, and that the size of a reactive game 
corresponding to an iBG can in general grow exponentially with respect to the size of the iBG itself.

Algebraic properties We finish this section by showing that the model we have defined to represent both 
arenas and strategies has useful mathematical and algebraic properties. Most notably, structures of this 
kind can be organised in categories [35]. Because such structures—which here we refer to as models—are 
used to represent both arena games and strategies, we can obtain categories of games and strategies in a 
uniform way.

Building a category of models is not the main purpose of this paper. However, it can be used to understand 
the relationships with other models of games and strategies at a more abstract mathematical level. It can 
also be used to relate with different models of concurrency for which categories are better known [41]. From 
a more practical point of view, categories have also been used to define methods for compositional reasoning, 
especially within the game semantics [1,26] research communities. It then seems quite reasonable to formally 
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define a category of our models to enable further investigations in any of the issues and questions above 
mentioned.

Before presenting this category of strategies and arena games, we need to define a suitable structure-
preserving morphism between such structures. Such a morphism—formally a partial map—is defined as 
follows (we write f(x) = ⋆ when a partial function f is undefined on x, and f(x) ̸= ⋆ otherwise):

Definition 14 (Morphism). Let M = (V, E, v0, Ω, Λ, ω, λ) and let M ′ = (V ′, E′, (v0)′, Ω′, Λ′, ω′, λ′) be two 
models as defined in Section 2. A morphism m : M → M ′ is a triple m = (κ, α, β) such that κ : V → V ′, 
α : Λ → Λ′, and β : 2Ω → 2Ω′ are partial maps satisfying the following properties:

1. κ(v0) = (v0)′;
2. (v, a, r) ∈ TM ∧ α(a) = ⋆ =⇒ κ(v) = κ(r), and

(v, a, r) ∈ TM ∧ α(a) ̸= ⋆ =⇒ (κ(v), α(a), κ(r)) ∈ TM ′ ;
3. κ(v) ̸= ⋆ =⇒ β(ω(v)) = ω′(κ(v)).

With respect to this definition, the following algebraic property follows:

Proposition 15. Our models for arena games and players’ strategies, with the structure-preserving morphism 
given in Definition 14, form a category.

4. Equilibria in logical form

Because players have goals, which they wish to satisfy, and their satisfaction depends on the outcomes—
whether word or tree outcomes—of the game, the players may prefer some sets of outcomes over others. To 
formalise this situation we define, for each player i, a preference relation ≤i over 2Out. Although ≤i can in 
principle be any binary relation over 2Out, it is natural to assume that it is a preorder: that is, a reflexive and 
transitive relation. We write <i whenever ≤i is strict—or asymmetric, i.e., X <i X ′ implies that X ′ ≤i X

does not hold. Because strategy profiles induce sets of outcomes, we abuse notation by writing σ⃗ ≤i σ⃗′ to 
mean Out(G, ⃗σ) ≤i Out(G, ⃗σ′), that is, that player i does not prefer the set of outcomes Out(G, ⃗σ) over the 
set of outcomes Out(G, ⃗σ′).

Based on players’ preferences, a notion of equilibrium can be defined. We provide the definition of the, 
arguably, main concept of equilibrium—also called solution concept—in game theory, namely, Nash equilib-
rium. However, many other solution concepts can be found in the game theory and even computer science 
literatures, e.g., dominant strategy, subgame perfect Nash, correlated, amongst others. We say that a strat-
egy profile σ⃗ is a Nash equilibrium if for every player i and strategy σ′

i ∈ Σi for i, we have

(σ⃗−i,σ
′
i) ≤i σ⃗.

Intuitively, a Nash equilibrium formalises the idea that no player can be better off (have a beneficial devia-
tion) provided that all other players do not change their strategies. Let NE(G) be the set of Nash equilibria 
of G.

Remark 16 (Nash equilibrium). Note that since strategies or arenas can be non-deterministic (implying that 
multiple outcomes can be induced) our definition of Nash equilibrium is in terms of sets of outcomes, rather 
than in terms of single outcomes only. Even though the definition of equilibrium is given with respect to 
preferences over sets of outcomes, we can think of such a definition as based on a preference relation over 
strategy profiles instead, since strategy profiles induce sets of outcomes. Thus, a preference relation allows 
one to define equilibria in a general way, not only for binary goals.
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We can think of equilibria with respect to the goals the players of the game wish to satisfy. To make this 
statement precise, we need to know which logic the goals of the players belong to and when a set of outcomes 
satisfies such goals, that is, we need to define a semantics of players’ goals with respect to 2Out—i.e., with 
respect to the outcomes of a game.

We can then abstractly think of the existence of a satisfaction relation “|=” between sets of outcomes 
and logical formulae, that is, a binary relation indicating whether a given goal γi for player i is satisfied or 
not by a set of outcomes Out(G, ⃗σ) in a game G played with a strategy profile σ⃗. Assuming the existence 
of a denotation function [[·] ] from goals to sets of outcomes, we can then write

Out(G, σ⃗) |= γi if and only if Out(G, σ⃗) ⊆ [[γi]].

Again, as strategy profiles induce sets of outcomes, we abuse notation and write σ⃗ |= γi if Out(G, ⃗σ) |= γi. 
And, in order to simplify notation used in the paper, we will also write [[σ⃗] ] for either the set of outcomes 
or the associated set of infinite sequences of vertices in V ∗

A induced by σ⃗; which one we are referring to will 
always be clear from the context.

Based on the definitions above one can now formally state with respect to the goals (γi)i∈N of the game, 
when a strategy profile σ⃗ is a Nash equilibrium. We say that a strategy profile σ⃗ is a Nash equilibrium if, 
for every player i and for every strategy σ′

i, we have that

(σ⃗−i,σ
′
i) |= γi implies σ⃗ |= γi.

Remark 17 (Temporal logics). Since our model generalises Kripke structures and transition systems, amongst 
other structures, it can be used to give the standard semantics of conventional linear-time and branching-time 
temporal logics. In this paper, we will assume that players have ω-regular goals. In particular, in case of 
linear-time players’ goals we will let each γi be either a linear-time µ-calculus or an LTL formula, strategies 
be deterministic, and outcomes be word outcomes; in case of branching-time goals, we will assume that the 
goals are either CTL or µ-calculus formulae, that the strategies may be non-deterministic, and that the 
outcomes are tree outcomes.

The details of the semantics of the temporal logics mentioned above need not be given to obtain the 
results in this paper. All such details can be found, e.g., in [18,28,51]. Instead, what one needs to know is 
the complexities of their satisfiability and model checking problems, which are as follows: for satisfiability 
CTL and the µ-calculus are EXPTIME [15,16], whereas LTL and the linear-time µ-calculus are PSPACE [47,
51]; for model checking with respect to a product of transition systems, the logics LTL, CTL, and linear-time 
µ-calculus are PSPACE [32,24], while the µ-calculus is EXPTIME [32].

Because our specific models of concurrent and reactive multi-agent behaviour are strategies, the next 
question—which essentially corresponds to the model-checking problem in our framework—now becomes 
relevant:

Given: Game G, strategy profile σ⃗, formula ψ.
Strategy-Checking: Is it the case that σ⃗ |= ψ?

Clearly, the answer to this question depends on the logic to which ψ belongs. The following lemma answers 
this question for various logics.

Lemma 18. The Strategy-Checking problem for LTL, CTL, and the linear-time µ-calculus is PSPACE-
complete, and it is in EXPTIME for the modal µ-calculus. The problem is PSPACE-hard even for formulae ψ
of the form ψ = Fϕ, where ϕ is a propositional logic formula.
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The proof of membership of Lemma 18 can be found in the appendix. The proof describes how to solve
Strategy-Checking using the techniques developed in [32,17]. The hardness proof is omitted, but can 
be obtained via a reduction from the finite automaton intersection problem [27], where finite automata are 
translated into strategies in a game in which ψ = Fϕ represents the situation where all automata accept 
the same word.

Using Strategy-Checking we can, moreover, show that the following problem, namely, membership of 
a strategy profile in the set of Nash equilibria of a reactive game, may be harder only in the branching-time 
case.

Given: Game G, strategy profile σ⃗.
NE-Checking: Is it the case that σ⃗ ∈ NE(G)?

The previous problem is solved by describing the behaviour of the strategies in σ⃗ using an appropriate 
temporal logic and then solving a number of satisfiability and Strategy-Checking problems (up to 2|N |).

Formally, we have

Lemma 19. The NE-Checking problem for LTL and linear-time µ-calculus goals is PSPACE-complete. For 
CTL and µ-calculus goals the problem is EXPTIME-complete.

The proof of membership of Lemma 19 can be found in the appendix. The proof describes how to solve
NE-Checking using a variant of Algorithm 1 in [23]. It is worth noting that a solution of NE-Checking
has been implemented, see [48], for the case where both arenas and strategies are described using the 
Reactive Modules specification language [2] and goals are given by CTL formulae. It is also worth noting 
that even though NE-Checking can be solved using automata-theoretic techniques, as shown in [48], our 
logic-based technique allows for a simple implementation using conventional temporal logic satisfiability 
and model checking techniques/tools. Finally, the hardness proofs easily follow from the complexities of the 
corresponding (temporal logic) satisfiability problems, i.e., those for LTL and CTL.

Equivalences of equilibria The characterisation of equilibrium with respect to the goals of the game given 
above provides a natural way of comparing strategy profiles, and hence of comparing equilibria, in a logical 
way. But first, we provide a notion of equivalence of strategy profiles purely based on the outcomes they 
induce and later on a weaker definition with a more logical flavour. Given a game G, we say that two 
strategy profiles σ⃗ and σ⃗′ are equivalent, and write σ⃗ ∼ σ⃗′ in such a case, if and only if they induce the 
same set of outcomes, that is, if and only if [[σ⃗] ] = [[σ⃗′] ].

Even though the definition of ∼ immediately provides a definition for equivalence between equilibrium 
strategy profiles, such a definition is rather strong. Instead, one would like a definition where only the 
satisfaction of goals was taken into account. Having this in mind, we propose a weaker, logic-based definition 
of equivalence between strategy profiles. Formally, given a game G, we say that two strategy profiles σ⃗ and σ⃗′

are logically equivalent, and write σ⃗ ∼γ σ⃗′ in such a case, if and only if, they induce sets of outcomes that 
satisfy the same set of goals of the game, that is, if and only if for every goal in (γi)i∈N of G we have that

σ⃗ |= γi if and only if σ⃗′ |= γi.

Formally, with respect to the goals in (γi)i∈N of a reactive game given by G = (N, C, (Ci)i∈N , (γi)i∈N ,

X, A), the problem one wants to solve is:

Given: Game G, strategy profiles σ⃗, ⃗σ′.
Equivalence-Checking: Does σ⃗ ∼γ σ⃗′ hold in G?
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An immediate consequence of Lemma 18 is:

Corollary 20. The Equivalence-Checking problem for LTL, CTL, and linear-time µ-calculus goals is 
PSPACE-complete. For µ-calculus goals the problem is in EXPTIME.

Towards a logic for equilibrium In [20] we introduced a number of decision problems which, we believe, 
ask the main questions regarding the equilibria of a concurrent and multi-agent system. These questions 
are about the existence of equilibria in the system and about the satisfaction of temporal properties under 
the assumption that the agents (components, players, processes, etc.) in that system act independently, 
concurrently, and selfishly in pursuit of their own goals. Formally, such decision problems are as follows.

Let G be a reactive game, σ⃗ be a strategy profile, and ϕ be a formula of some logical formalism (LTL, 
CTL, etc.), whose semantics can be given in terms of the outcomes of G. Then, the following decision 
questions about the equilibrium properties of the system can be formulated:

Given: Game G.
Non-Emptiness: Is it the case that NE(G) ̸= ∅?

Given: Game G, formula ϕ.
A-Nash: Is it the case that σ⃗ |= ϕ, for all σ⃗ in NE(G)?

Given: Game G, formula ϕ.
E-Nash: Is it the case that σ⃗ |= ϕ, for some σ⃗ in NE(G)?

These problems ask the most natural questions regarding the equilibria of a game-like concurrent and 
multi-agent system: namely, whether the system has at least one Nash equilibrium, whether there is a 
property that is invariant in all of its Nash equilibria, and whether there is a property that can be achieved 
in some Nash equilibria. A limitation of the work in [20] is that there is no specification language for 
expressing these questions. In this paper, we address that problem. In particular, we will define a language 
with which the problems above can be expressed in a transparent, logical way.

5. Equilibrium logics

We now introduce two logics for expressing equilibrium properties of game-like concurrent and multi-agent 
games: these two logics are closely related to the branching time logics CTL and CTL∗ (see, e.g., [14]). We 
refer to our basic logical framework as Equilibrium Logic, (EL), and will refer to the two versions of this 
logic as EL (roughly corresponding to CTL) and EL∗ (roughly corresponding to CTL∗). Since EL∗ will be 
defined as an extension of CTL∗, the logic LTL will also appear as a syntactic fragment.

The basic idea of Equilibrium Logic is to extend the logic CTL∗ by the addition of two modal quantifiers, 
which we will write as “[NE]” and “⟨NE⟩”. In Equilibrium Logic, the modalities [NE] and ⟨NE⟩ quantify 
over paths that could arise as the consequence of processes (agents/players) selecting strategies in equilib-
rium. For example, if we are dealing with Nash equilibrium, then an EL formula [NE]Fp (where F is the 
“eventually” LTL modality) means that on all Nash equilibrium computations—i.e., on all computations 
(paths or trees) that correspond to runs or plays where a set of agents/players use a strategy profile in 
equilibrium—eventually p will hold. In this way, we can use Equilibrium Logic to directly reason about the 
equilibrium properties of game-like concurrent systems. Equilibrium Logic is parameterised by a solution 
concept, which determines the outcomes over which the “equilibrium modalities” quantify. For now, we 
consider Nash equilibrium as our by-default solution concept, but of course others can be considered too.
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Syntax The syntax of Equilibrium Logic is defined with respect to a set X of propositions, by the following 
grammars:

Path formulae: ϕ ::= ψ | θ | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ

State formulae: ψ ::= ⊤ | x | Aϕ

Equilibrium formulae: θ ::= [NE]ϕ

where x ∈ X. Thus, as in CTL∗, path formulae ϕ express properties of paths (cf. LTL), while state formulae 
ψ express properties of states. In addition, Nash equilibrium formulae also express properties of paths, but 
only if such paths are induced by strategy profiles in equilibrium.

Notation 21. All usual abbreviations for the Boolean operators not explicitly given in the grammars above 
are assumed to be defined. Also, we take the universal modalities A and [NE] as primitives, and define the 
existential modalities E and ⟨NE⟩ as their duals as usual: Eϕ ≡ ¬A¬ϕ and ⟨NE⟩ϕ ≡ ¬[NE]¬ϕ. We also 
use the following abbreviations: ⊥ ≡ ¬⊤, Fϕ ≡ ⊤Uϕ, and G ≡ ¬F¬ϕ. In addition, given a set of trees Θ, 
we write ϱ ∈ Θ if ϱ is a branch of a tree in Θ, that is, when using the notation “∈” between runs and sets 
of trees Θ, sets of trees will be seen as its associated set of branches.

Semantics The semantics of EL formulae is given here with respect to a reactive game G = (N, C, (Ci)i∈N ,

(γi)i∈N , X, A), where

A = (VA, EA, v
0
A,ΩA = X,ΛA = Ch,ωA,λA).

The semantics of path formulae (“|=P”) is essentially the same for LTL, and so given with respect to paths 
in A, with two additional rules for state and equilibrium formulae, respectively. The semantics of state 
formulae (“|=S”) is given with respect to states/vertices v ∈ V of A. The semantics of equilibrium formulae 
(“|=E”) is given with respect to the set of Nash equilibria of G. Let ϱ be a run of A, i.e., an infinite sequence 
of states over V ∗

A starting at v0
A, and t ∈ N. Define

(G, ϱ, t) |=P ψ iff (G, ϱ, t) |=S ψ

for state formulae ψ.

(G, ϱ, t) |=P θ iff (G, ϱ, t) |=E θ

for equilibrium formulae θ.

(G, ϱ, t) |=P ¬ϕ iff (G, ϱ, t) |=P ϕ

does not hold.
(G, ϱ, t) |=P ϕ ∨ ϕ′ iff (G, ϱ, t) |=P ϕ or (G, ϱ, t) |=P ϕ′

(G, ϱ, t) |=P Xϕ iff (G, ϱ, t + 1) |=P ϕ

(G, ϱ, t) |=P ϕUϕ′ iff (G, ϱ, t′) |=P ϕ′

for some t′ ≥ t and
(G, ϱ, k) |=P ϕ

for all t ≤ k < t′.

The satisfaction relation “|=S” for state formulae is defined as follows:

(G, ϱ, t) |=S ⊤ always
(G, ϱ, t) |=S x iff x ∈ ωA(ϱ[t])
(G, ϱ, t) |=S Aϕ iff (G, ϱ′, t) |=P ϕ

for all ϱ′ such that ϱ[0 . . . t] ∈ ϱ′.
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And the satisfaction relation “|=E” for equilibrium formulae is defined as follows:

(G, ϱ, t) |=E [NE]ϕ iff (G, ϱ′, t) |=P ϕ

for all σ⃗ and ϱ′ ∈ [[σ⃗]] such that
σ⃗ ∈ NE(G) and ϱ[0 . . . t] ∈ ϱ′.

We say that G is a model of ϕ (in symbols G |= ϕ) if (G, ϱ, 0) |=P ϕ for all ϱ of G, that is, for all paths 
or sequences of states of A starting at v0

A—sequences in V ∗
A. We also write |= ϕ if G |= ϕ for all models G.

With the definitions given above, it is easy to see that the three main decision problems described in 
the previous section, namely, Non-Emptiness, A-Nash, and E-Nash, can be expressed using EL in the 
following way:

1. Non-Emptiness corresponds to ⟨NE⟩⊤,
2. A-Nash corresponds to [NE]ϕ, and
3. E-Nash corresponds to ⟨NE⟩ϕ.

Remark 22 (Local reasoning). Since ϕ can be a player goal γi whenever they have LTL or CTL goals, 
some interesting questions can be naturally expressed. For instance, whether a player can always eventually 
achieve its goal in all Nash equilibrium computations of the system, expressed by [NE]GFγi. What is 
interesting is that using the knowledge of the goals the players have, one can reason about their particular 
(local) behaviour within the global context, which has to consider the complex concurrent behaviour of all 
the other independent, and rational, agents/processes in the system.

Expressivity Observe that apart from [NE] all other operators are intended to have the same meaning as 
in CTL∗. However, note that the semantics of Aϕ is not quite the same as its counter-part in CTL∗ because 
of the additional condition “such that ϱ[0 . . . t] ∈ ϱ′.” In the standard semantics of CTL∗ it would be “for 
all ϱ′ starting at ϱ[t]” instead. In other words, in CTL∗ the path used to reach the state ϱ[t] is forgotten. 
This information is actually needed only for the semantics of the equilibrium modality [NE], but must be 
remembered throughout. Formally, we have

Proposition 23. Let G be a game and ϕ be a [NE]-free EL∗ formula. Then, for all runs ϱ and t ∈ N, we 
have that

(G, ϱ, t) |= Aϕ iff (G, ϱ′, 0) |= ϕ,

for all ϱ′ starting at ϱ[t].

Thus, because of Proposition 23, we know that the semantics of EL∗ conservatively extends that of CTL∗. 
To be more precise, the fact that we must “remember” how we got to a particular state when evaluating 
an equilibrium formula in that state means that, technically, EL is a memoryfull extension of CTL∗; see, 
e.g., [31].

More interesting is the question as to whether EL∗ can be translated into a logic for strategic reasoning 
already in the literature. This is largely an open question. However, a few observations can be made at 
this point. Recall that the existence of Nash equilibria in multi-player games and with respect to a class of 
deterministic strategies and LTL goals can be expressed in the Strategy Logic developed in [38].3 Using their 
logical specification of the existence of a Nash equilibrium, we may be able to encode the ⟨NE⟩ operator 

3 Technically, strategies in Strategy Logic are different from ours: in their case, a strategy is a function from finite sequences of 
states in the arena to a particular player’s choice.
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(and hence any ⟨NE⟩ψ, with LTL ψ), if we were to restrict the setting to LTL goals, deterministic games 
where V = Ω, and a class of deterministic strategies that can be represented in both logics, for instance, if 
we considered the arenas induced by iBG [20]. Under all of these restrictions we will obtain a 2EXPTIME 
upper bound for the model checking problem of this fragment of Equilibrium logic. Note that the fragment 
is not only syntactic since the underlying reactive games model to be considered is also being restricted. 
Letting EL∗[LTL] be the (syntactic and semantic) fragment of EL∗ just described, the next complexity 
result immediately follows:

Proposition 24. The model checking problem for EL∗[LTL] formulae is in 2EXPTIME.

6. Examples

We will now present some examples to illustrate our framework, and in particular the kinds of specifica-
tions and systems we are interested in.

Example 25. The first observation is that all usual properties that can be expressed in CTL∗, e.g., liveness, 
safety, fairness, etc., can be expressed with respect to “rational” behaviour simply by taking them to be 
either A-Nash or E-Nash properties. For instance, the strong fairness CTL∗ formula ϕ = GFx → GFx′

(which expresses that if a request, denoted by x, is always eventually enabled, then it is always eventually 
served, denoted by x′) can be checked against rational process behaviour with the E-Nash formula ⟨NE⟩ϕ. 
More interestingly, expected behaviours from a game theoretic point of view find EL∗ specifications that 
are valid. For instance, the formula

E
∧

i∈N

γi → ⟨NE⟩
∧

i∈N

γi

expresses that if there is a run that satisfies all players’ goals, then there is also a run supported by a Nash 
equilibrium that satisfies all players’ goals. This contrasts sharply with the formula γi → ⟨NE⟩γi which is, 
in general, not valid: for instance, a Nash equilibrium may exist only if a player, say i, has no way to get its 
goal achieved. For different game-theoretic reasons, the formula E 

∧
i∈N γi → [NE]

∧
i∈N γi is not valid: a 

game can have multiple Nash equilibrium computations, not all of which need to satisfy all players’ goals; 
this formula would be valid only if we focus on Pareto optimal runs, since in such a case any equilibrium 
run satisfying all goals would be preferred over any other equilibrium run. Finally, some formulae, such 
as (

∧
i∈N GE¬γi) → [NE]ϕ, with satisfiable ϕ, that might seem valid are not: it may be the case that 

a player i has a (winning) strategy to achieve γi, without γi → ϕ, and hence there may be some Nash 
equilibria where ϕ may not hold.

Example 26. The semantics of EL is such that the equilibrium operators [NE] and ⟨NE⟩ quantify over runs 
that are sustained by a Nash equilibrium. As all of which start at time 0, it cannot happen that a sequence 
ϱ[k, . . . , k′] is part of a run ϱ′ that is sustained by a Nash equilibrium without ϱ[0, . . . , k′] being a prefix 
of ϱ′. This fact is expressed by the following formula being satisfied in every model, at every run, and at 
every time:

EF⟨NE⟩⊤ ↔ ⟨NE⟩⊤.

Observe that this is due to the type of quantification over equilibrium runs that is specific to the semantics 
of the equilibrium operators in EL. The above formula would also hold if subgame perfect Nash equilibrium 
had been our solution concept of choice. Moreover, as a direct consequence we can also conclude that, for 
state formulae ϕ,
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(⟨NE⟩⊤ ∧ [NE]ϕ) → ϕ

holds in all models, at all runs, and at all times.
We also have the general validity of

[NE]GAϕ → AG[NE]ϕ.

To see this, assume (G, ϱ, t) |= [NE]GAϕ. Then, (G, ϱ′′, t′) |= ϕ for all σ⃗ ∈ NE(G), all ϱ′ ∈ [[σ⃗] ] with 
ϱ[0, . . . , t] ∈ ϱ′, all t′ ≥ t, and all runs ϱ′′ with ϱ′[0, . . . , t′] ∈ ϱ′′. Now consider an arbitrary run ϱ′′′

with ϱ[0, . . . , t] ∈ ϱ′′′, an arbitrary t′′ ≥ t, as well as an arbitrary σ⃗∗ ∈ NE(G) and ϱ∗ ∈ [[σ⃗′] ] such that 
ϱ′′′[0, . . . , t′′] ∈ ϱ∗. Then also ϱ[0, . . . , t] ∈ ϱ∗ and t′′ ≥ t. It follows that (G, ϱ∗, t′′) |= ϕ and, hence, 
(G, ϱ, t) |= AG[NE]ϕ as well.

By contrast, however,

AG[NE]ϕ → [NE]GAϕ

does not generally hold. To appreciate this, consider a game G for which there is some player i who at every 
time can choose actions ensuring that variable x is set to true or false, respectively. This would be the case 
for instance in the iBG setting where i controls variable x (see Remark 13). Also assume that γi = AFAGx, 
i.e., player i wants to guarantee x to be true from some time in the future onwards, whereas γj = ⊤ for each 
player j distinct from i. Thus, a run is a Nash equilibrium if and only if it satisfies player i’s goal. Let ϕ = Fx

and let ϱ be a run such that x /∈ ωA(ϱ[0]) and x ∈ ωA(ϱ[t]) for all t > 0. Then, it is not hard to establish 
that (G, ϱ, 0) |= AG[NE]Fx. It is not the case, however, that (G, ϱ, 0) |= [NE]GAFx. To appreciate this, 
observe that ϱ satisfies all players’ goals and that ϱ ∈ [[σ⃗] ] for some Nash equilibrium σ⃗ ∈ NE(G). Let, 
moreover, ϱ′ be a run such that x /∈ ωA(ϱ′[t]) for all t ≥ 0. In particular, let ϱ′[0] = ϱ[0]. Then, obviously, 
(G, ϱ′, 0) ̸|= GAFx. Still ϱ′[0] ∈ ϱ and, thus, (G, ϱ, 0) ̸|= [NE]GAFx.

It holds almost trivially that in all games G, all runs ϱ, and at all times AG[NE]ϕ → [NE]ϕ is satisfied. 
For this implication to hold with the A- and [NE]-operators interchanged, however, the existence of a Nash 
equilibrium is required. We thus find that

([NE]GAϕ ∧ ⟨NE⟩⊤) → Aϕ

is also generally satisfied.
It should be noted that the reflections above are not specific to the choice of Nash equilibrium as a 

solution concept. They also hold for, e.g., subgame perfect equilibrium, dominant strategy equilibrium, 
secure equilibrium, etc.

We now make good on our promise to formalise the examples given at the beginning of the paper. The 
first example, apart from illustrating in detail the arena and strategies for the multi-agent system described 
there, highlights an important difference between the path quantifiers in CTL∗ and the equilibrium (path) 
quantifiers in EL∗.

Example 27. The situation of Example 1 is modelled by the game G = (N, C, C1, C2, γ1, γ2, X, A), where 
X = {x, y}, C1 = {p}, C2 = {q} and A is the arena as in Fig. 5. Intuitively, x and y signify player 1 and 
player 2 get the resource, respectively. Setting p to true corresponds to player 1 requesting the resource, 
while setting p to false means refraining from doing so. Similarly, for q and player 2. The goals of the 
players are the LTL goals γ1 = GFx and γ2 = GFy. The structures in Fig. 6 are two strategies σ1 and σ2
for player 1 and 2, respectively. Strategy σ1 requests the resource by playing p until it gets it, and then 
refrains from doing so by playing p̄ once. Strategy σ2 toggles but between q̄ and q, beginning with the 
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Fig. 5. Formal model of the system in Example 1.

Fig. 6. Strategies σ1 (left) and σ2 (right).

former, and additionally threatens to set q to true for ever if p is true (at least) twice in a row, which can 
be deduced from x being set to true or ȳ while having set q to true previously. The profile σ⃗ = (σ1, σ2)
yields the following word languages: Lσ⃗

i (A) = {w : w ∈ (pq̄; p̄q)ω} and Lσ⃗
o (A) = {w : w ∈ x̄ȳ; (xȳ; ̄xy)ω}. 

The run ϱ = x̄ȳ, xȳ, ̄xy, xȳ, ̄xy, . . . in Lσ⃗
o (A) satisfies both players’ goals and as such σ⃗ is a Nash equilibrium. 

Thus, we have G |= ⟨NE⟩(γ1∧γ2). This is no coincidence, as we have for this game that G |= [NE](γ1∧γ2): 
in all Nash equilibria both players’ goals are satisfied. This contrasts sharply with the branching-time 
formula A(γ1 ∧ γ2), which does not hold in the game G.

This example shows that even in small concurrent systems it is not obvious that a Nash equilibrium 
exists—let alone that a temporal property holds in some or all equilibrium computations of the system. 
The example also shows an important feature of game-like concurrent systems: that even though a de-
sirable property may not hold in general (cf., A(γ1 ∧ γ2)), it may well be the case that one can design 
or automatically synthesise a communication protocol or a synchronisation mechanism—directly from a 
logical specification—so that the desirable property holds when restricted to agents acting rationally (cf., 
[NE](γ1 ∧ γ2)).

Indeed, Equilibrium logics are designed to reason about what can be achieved in equilibrium and what 
cannot, while abstracting away from the particular strategies that the agents/players of the system/game 
may use.

Let us now, using our model for concurrent interactions, give a concrete representation of the multi-agent 
system initially described in Example 2.

Example 28. Consider the following strategic workflow design setting with three employees, players 1, 2, 
and 3, and four tasks, T1, T2, T3, and T4, none of which can be performed by a single player alone:

• At every point of time, each employee goes to one of two locations, L1 and L2. If two or three players 
meet at a location, they form a coalition;

• When formed, coalitions {1, 2}, {1, 3}, {2, 3}, and {1, 2, 3} will perform tasks T1, T2, T3, and T4, respec-
tively;

• There is a manager who wants to see T4 performed infinitely often.
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Fig. 7. The arena representing the system in Example 28.

Fig. 8. The strategies σ1 (left), σ2 (middle), and σ3 (right) as in Example 28.

We find that by burdening all employees with the responsibility of having T4 performed infinitely often 
does not result in the manager’s objective being achieved in all equilibria. Interestingly, however, we find 
below that there are other ways of assigning responsibilities which do ensure that the task T4 is performed 
infinitely often in all equilibria.

The setting described above can be formalised as a game-like concurrent system G = (N, C, C1, C2, C3, γ1,

γ2, γ3, X, A). We assume the players 1, 2, and 3 each control one variable, i.e., C1 = {p}, C2 = {q}, and 
C3 = {r}. Intuitively, if a player sets his variable to true, he will go to location L1 and if he sets his variable 
to false, to location L2. We have X = {x, y} and introduce the following abbreviations:

T1 = x ∧ y T2 = x ∧ ¬y T3 = ¬x ∧ y T4 = ¬x ∧ ¬y.

The arena A is depicted in Fig. 7. Observe, in particular, that the manager in the workflow system is not a 
player in the model.

First, consider the setting in which the players are all assigned responsibility for T4 being performed 
infinitely often, i.e., let the preferences of the players be given by the following goals:

γ1 = γ2 = γ3 = GFT4.

For better readability we let γ∗ abbreviate GFT4. As there are runs in which T4 is performed infinitely 
often, which then also satisfy all players’ goals, we obviously have G |= ⟨NE⟩γ∗. Nonetheless, G ̸|= [NE]γ∗

and, a fortiori, G ̸|= Aγ∗. To see this, consider the strategy profile σ⃗ = (σ1, σ2, σ3) in Fig. 8, which gives rise 
to T1 being performed at every point of time. Moreover, it can easily be seen that σ⃗ is a Nash equilibrium 
of the system: if player 1 deviates the outcomes of the game are runs that will lie within (T1 ∪ (T1; T2))ω; 
if player 2 deviates, within T1; (T1 ∪ T3)ω; and if player 3 deviates, within Tω

1 ∪ (T+
1 ; T4; (T2 ∪ T3)ω). Since 

none of these runs satisfies GFT4, the strategy profile σ⃗ is indeed a Nash equilibrium of the game.
Now, assume that the players have the following, more complex, goals:
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γ′
1 = G(T4 → ¬XT3) ∧ (GFT1 ∨ GFT4)

γ′
2 = G((T3 → ¬X(T1 ∨ T2)) ∧ (T4 → ¬XT2)) ∧ (GFT3 ∨ GFT4)

γ′
3 = G(T1 → ¬XT4)) ∧ (GFT2 ∨ GFT4)

The idea behind these goals is that there is an intended order in which the tasks T1 through T4 are to 
be performed: T4 has to be preceded by T3, and T3 in turn has to be preceded by either T1 or T2. This 
order is then to be repeated over time and each player is responsible for part of this sequence. Player 1 is 
responsible for T3 never happening immediately after T4, and for either T4 or T1 being performed infinitely 
often. Player 2 should see to it that neither T1 nor T2 immediately follows T3, and that T4 is not followed 
by T2. Moreover, player 2 has to ensure that either T3 or T4 are preformed infinitely often. Finally, player 3’s 
goal is that T4 never occurs immediately after T1, and that either T2 or T4 is performed infinitely often. We 
find that in the corresponding game G′ = (N, C, C1, C2, C3, γ′

1, γ
′
2, γ

′
3, X, A) we have

G′ |= [NE]γ∗.

The key to this insight is the observation that, given any strategies σj and σk for the other two players, 
for each player i, there is a strategy σ∗

i such that (σ∗
i , σj , σk) |= γ′

i, i.e., player i can deviate unilaterally 
and achieve his goal γi. For instance, fix strategies σ2 and σ3 of players 2 and 3, respectively. Then, for 
player 1 a strategy σ∗

1 can be designed in such a way that it mimics the behaviour of the arena A and the 
strategies σ2 and σ3, while keeping track of its own choices. In this way, σ∗

1 can predict how players 2 and 3
will set their variables at every time and, on basis of this information, output a suitable value for r. More 
concretely, whenever, at some time t, players 2 and 3 are going to set both q and r to true, σ∗

1 outputs p. 
Analogously, if players 2 and 3 are going to set both q and r to false. Thus, T4 will be true at t. On the 
other hand, if at t players 2 and 3 will choose opposite values for q and r, then σ∗

1 sets p to the same value 
as player 2 to q. Thus, T1 will hold at t.

Observe that in the run induced by (σ∗
1 , σ2, σ3) either T1 or T4 or both will be output by the arena 

infinitely often, i.e., (σ∗
1 , σ2, σ3) |= GFT1 ∨ GFT4. Moreover, neither T2 nor T3 will ever be output by the 

arena. Accordingly, trivially, we have that (σ∗
1 , σ2, σ3) |= G(T4 → ¬XT3) holds. Then, we can conclude that 

(σ∗
1 , σ2, σ3) |= γ′

1. As similar arguments hold for players 2 and 3, it follows that in every equilibrium of G′

the goals of all three players will be satisfied. Moreover, it can easily be established that the runs that satisfy 
all three players’ goals are characterised by the regular expression ((T1 ∪ T2)+; T+

3 ; T+
4 )ω, and as such also 

satisfy the manager’s objective γ∗.

7. Complexity lower bounds

In this section we show that the model checking problem for Equilibrium Logic is 2EXPTIME-hard, even 
for LTL or CTL players’ goals. More precisely, the model checking problem for Equilibrium logics is stated 
as follows:

Given: Game G, EL∗ formula ϕ.
EL∗ Model-Checking: Is it the case that G |= ϕ?

In fact, we will show a very strong claim: that the EL∗ Model-Checking problem is 2EXPTIME-hard, 
even for the EL∗ formula ϕ = ⟨NE⟩⊤ (the simplest equilibrium logic formula one can write) and for either 
LTL or CTL goals (two of the simplest temporal logics in the literature).

To show 2EXPTIME-hardness of checking equilibrium properties given that the players of the game have 
linear-time goals, we use a reduction from the two-player perfect-information LTL games in [5].

Formally, we have the following lemma:
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Lemma 29. The EL∗ Model-Checking problem where players’ goals are LTL formulae is 2EXPTIME-
hard.

Now, in order to show the 2EXPTIME-hardness of checking equilibrium properties given that the players 
of the game have branching-time goals, we use a reduction from the control-synthesis problem with respect 
to reactive environments [30]. The control-synthesis problem for reactive environments is similar to the 
LTL games in [5], except that one has to consider CTL goals instead of LTL goals, and non-deterministic 
strategies instead of deterministic ones—just as defined in our EL framework.

Formally, we have the following lemma:

Lemma 30. The EL∗ Model-Checking problem where players’ goals are CTL formulae is 2EXPTIME-
hard.

Since LTL and CTL are syntactic fragments of the linear-time µ-calculus and the modal µ-calculus, 
respectively, the hardness results transfer.

Corollary 31. The EL∗ Model-Checking problem, where players’ goals are linear-time µ-calculus or modal 
µ-calculus formulae, is 2EXPTIME-hard.

Notice that model checking the equilibrium operators of EL∗ formulae may require the solution of a 
number of “internal” synthesis problems for (γi)i∈N so that σ⃗ ∈ NE(G) can be checked and a run ϱ ∈ [[σ⃗] ]
can be determined before an EL∗ formula can be checked. This problem, known as reactive synthesis [30], is 
2EXPTIME-complete for both LTL and CTL specifications, and appears to be the main source of the high 
complexity of checking equilibrium properties. A discussion of the relationships between the verification of 
equilibrium properties and the solution of control and synthesis problems is appropriate, and therefore given 
in Section 9. We also discuss other temporal logics for strategic reasoning, in particular, their expressivity and 
the complexity of their model checking problems. We would also like to remark that, under our definition of 
satisfaction of branching-time goals, the use of non-deterministic strategies is necessary: if non-deterministic 
strategies were not allowed, then some of our hardness results would not be achievable, as one could not 
encode control-synthesis games in our framework.

8. Towards more stable strategic reasoning

Undoubtedly, Nash equilibrium is the most prominent solution concept in game theory, and many relevant 
solution concepts in the literature are either generalisations or refinements of it. However, there are well 
known weaknesses of Nash equilibria; for instance, it is not guaranteed to be unique, it is arguably unstable 
(nothing is ensured if, e.g., more than one player deviates or irrational moves are made), and it does not 
account for dynamic behaviour, amongst others. For this reason, we now explore the complexity of model 
checking EL formulae with respect to dominant strategy equilibrium, which is a solution concept known to 
be much more stable than Nash equilibrium; indeed, dominant strategy equilibrium ensures a player’s best 
response regardless of the behaviour of the other players. Thus, unlike Nash equilibria, dominant strategies 
behave well even with respect to “irrational” moves of other players, or with respect to deviations of multiple 
players.

8.1. Dominant strategies

Dominant strategy equilibrium [43] is a very appealing solution concept because of its stability/robust-
ness: it defines a best response for each player, no matter how other players in the game behave. Formally, 
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a strategy profile σ⃗ = (σ1, . . . , σi, . . . , σn) is a Dominant Strategy equilibrium if for every strategy profile 
(σ′

1, . . . , σ
′
n) and every player i, we have

(σ′
1, . . . ,σ

′
i, . . . ,σ

′
n) ≤i (σ′

1, . . . ,σi, . . . ,σ
′
n).

Intuitively, a dominant strategy equilibrium formalises the idea that no player can be better off by switching 
to a different strategy, no matter which strategies the other players in the game choose. Let DS(G) be the 
set of dominant strategy equilibria of a game G.

Since equilibrium logics can be parametrised with a solution concept, we can consider equilibrium formulae 
with respect to dominant strategy equilibria; we now do so. We shall write [DS]ϕ for formulae, whose 
semantics is given with respect to dominant strategy equilibrium paths as follows:

(G, ϱ, t) |=E [DS]ϕ iff (G, ϱ′, t) |=P ϕ

for all σ⃗ and ϱ′ ∈ [[σ⃗]] such that
σ⃗ ∈ DS(G) and ϱ[0 . . . t] ∈ ϱ′

Indeed, model checking equilibrium properties when considering dominant strategy equilibria is, as for 
Nash equilibria, a 2EXPTIME-hard problem. The proof of this result is obtained via a variation of the 
proof of Lemma 29. Essentially, via a reduction from the LTL games in [5] where the goals of the players in 
the constructed reactive game for dominant strategy equilibria are slightly different from the goals in the 
reactive game for Nash equilibria. Formally, we have the following result.

Lemma 32. EL∗ Model-Checking for dominant strategy equilibrium, with players’ goals given by LTL 
formulae is 2EXPTIME-hard.

Obviously, this hardness result automatically transfers to reactive games where players’ goals are given by 
linear-time µ-calculus formulae. And, for the same reasons given in the Nash equilibrium case, the hardness 
result also extends to the branching-time framework.

Formally, we have the following corollary:

Corollary 33. EL∗ Model-Checking for dominant strategy equilibrium, with players’ goals given by CTL 
formulae is 2EXPTIME-hard.

Before we finish this section, we would like to remark that the technique used to obtain the 2EXPTIME-
hardness results in this and the previous section, that is, via reductions from the games in [5,30] will be 
likely to apply to other solutions concepts provided that the goals of the players in the constructed reactive 
game can be expressed as LTL/CTL formulae. For the sake of clarity and completeness, the general proof 
technique is outlined in the appendix, where the overall construction of the reactive game is described.

8.2. Equilibria beyond binary pay-off sets

As mentioned in the previous section, one way of addressing the issue of having a reasoning framework that 
is strategically unstable is by investigating solution concepts that are more stable than Nash equilibrium, 
for instance dominant strategies. Two other ways of trying to tackle this problem are to consider mixed 
strategies or fully quantitative pay-off sets (so far we have only considered binary pay-off sets given by 
a single temporal logic goal). However, as shown in [50,49], considering either mixed strategies or full 
quantitative outcomes for a game immediately leads to undecidability results. Then, unfortunately, because 
of those undecidability results, our reasoning framework may be one of the most general ones that we could 
hope for.
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Because of this computational limitation a number of intermediate solutions have been investigated. For 
instance, there is a fairly general multi-objective setting where decidable games can be defined: one where 
players are given not just a single temporal logic formula, but an ordered set of temporal logic goals. In this 
section, we discuss such a case. Formally, the new games are defined as follow. A reactive game with ordered 
goals is a structure:

G = (N,C, (Ci)i∈N , (Γi)i∈N , X,A)

where Γi = {γ1
i , . . . , γ

k
i } is a set of size k ∈ N, such that each γm

i ∈ Γi is a temporal logic formula satisfying 
that [[γm

i ] ] <i [[γm+1
i ] ], with 1 ≤ m < k.

It should be easy to see that all of the problems we have studied for EL (in Sections 5, 7, and 8.1) are 
also 2EXPTIME-hard in this setting, since having only one single temporal logic goal for each player in 
the game is just a special case, that is, the case where Γi is a singleton set for each i. It is also not hard 
to show that the decision problems we studied in Section 4 remain within the same complexity classes. All 
one needs to do is to check, using the decision procedures already defined in Section 4, if a unilateral and 
beneficial deviation for each player i is possible with respect to any goal in Γi.

Lemma 34. The complexity of NE-Checking, Equivalence-Checking, and EL Model-Checking with 
respect to reactive games with ordered goals is the same as the complexity of the same problems for reactive 
games.

Note that in the definition of a reactive game with ordered sets, we have chosen a strict order: for each i, 
we have that [[γm

i ] ] <i [[γm+1
i ] ]. However, note that because the complexities of the problems in Section 4 are 

all either PSPACE or EXPTIME, the way in which the goals of each player i are ordered within Γi can, in 
general, be using any preorder relation. Then, although the multi-objective setting we have defined in this 
section may not be as general and stable as those where either mixed strategies or quantitative pay-off sets 
are used, a multi-objective setting would substantially help mitigate the lack of stability when using Nash 
equilibria—interestingly, without paying an additional (worst-case) computational complexity cost.

9. Concluding remarks and related work

Equilibrium checking vs. control-synthesis problems The main results of this paper clearly emphasise that 
model checking equilibrium properties is a computationally difficult problem (at least 2EXPTIME-hard), 
in particular, because it involves the solution of a control-synthesis problem: in order to model check an 
equilibrium logic formula, regardless of the solution concept under consideration, one may first have to 
synthesise a set of “controllers” (strategies)—see the semantics of equilibrium logic formulae. Then, the two 
problems, namely, equilibrium checking and control-synthesis are very closely related. A good reference for 
results and analyses of the relationships between these two problems can be found in [12]. On the other 
hand, as discussed in [29], the high computational complexity of solving synthesis problems may be, in fact, 
rather misleading, since specifications are most usually rather small when compared with systems to be 
model checked.

Complexity We have shown that checking the equilibrium properties of a concurrent and multi-agent system 
is a computationally hard problem as any interesting property is at least in PSPACE. On the positive side, 
we have also shown that, in most cases, the difficulty of checking equilibrium properties is independent of 
whether the goals of the players are given by linear-time or branching-time formulae. Table 1 summarises 
our main complexity results.
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Table 1
Summary of computational complexity results. In this table, TLµ stands for the linear-time 
µ-calculus, Lµ for the modal µ-calculus, St-Check for Strategy-Checking, NE-Check for NE-
Checking, Eq-Check for Equivalence-Checking, EL∗-MC for EL∗ Model Checking, inEXPT for in 
EXPTIME, and 2EXPT-h for 2EXPTIME-hard.

St-Check NE-Check Eq-Check EL∗-MC[NE] EL∗-MC[DS]
LTL PSPACE PSPACE PSPACE 2EXPT-h 2EXPT-h
CTL PSPACE EXPT PSPACE 2EXPT-h 2EXPT-h
TLµ PSPACE PSPACE PSPACE 2EXPT-h 2EXPT-h
Lµ inEXPT EXPT inEXPT 2EXPT-h 2EXPT-h

As an aside, we should point out that there is substantial work on the complexity of Nash equilibrium 
in the algorithmic game theory community [42]. A central question in this community was the complex-
ity of computing mixed (randomised) Nash equilibria in 2-person strategic games. This problem received 
considerable attention before it was finally shown to be PPAD-complete in 2006 [11]. Our work is similar 
in spirit, but differs in many important respects. First, we are here concerned with pure strategy Nash 
equilibria, as opposed to mixed strategy equilibria. Second, our model of preferences is dichotomous, based 
on the use of temporal formulae γi to specific desirable temporal structures (paths or trees) that players 
wish to see satisfied—this contrasts with the utility-theoretic preference model of strategic games. Third, 
many of our problems implicitly embody highly complex temporal reasoning problems (such as synthesis 
or satisfiability) and the complexity of these problems tends to dominate the complexity of the strategic 
reasoning problems we consider. Finally, we are concerned with developing logical languages for reasoning 
about temporal equilibrium properties, which is not typically considered in algorithmic game theory.

Concurrency There are a number of concurrency models similar to ours. We will mention a few that are 
relevant with respect to our model. The concurrent systems in [32] are defined by a set of independent 
sequential processes and, based on them, an interleaving global system is determined. In this model, all 
behaviours represented by the global system are allowed behaviours in the underlying concurrent processes. 
There are two main differences with our model. Firstly, because our processes have a strategic interpre-
tation, they carry more structure than plain labelled transition systems. More specifically, our processes 
are machines that must behave, locally, as controllers in order to resolve non-deterministic choices in the 
global system. Secondly, we explicitly represent the global system by an arena (which has a game-theoretic 
interpretation), and such a global system only represents potential behaviours of the concurrent system; the 
particular reactive behaviour of the concurrent system is known only when strategies over such an arena 
are given. Similar considerations hold with respect to other models such as synchronous and asynchronous 
products of transitions systems [17].

Other models, like ours, come with game-theoretic interpretations: see, for instance, [3,40]. These models 
are also transition-based frameworks and have been used for modelling and verification (synthesis and 
model-checking). Unlike ours, none of these models has a notion of control over variables. This notion, as used 
in our model, stems from models for AI and multi-agent systems, such as those similar to, or based on, the 
model of distributed control in Boolean games [25]. The interaction between players (processes/strategies) 
and the arena (global system) is also technically different from our model. In [40] there is a unique and 
hostile environment; we do not make such assumptions. On the other hand, in [3], the treatment of strategies 
more closely relates to traditional presentations of strategies as functions between histories of partial plays. 
Instead, our model formally justifies both all interactions between players and observable behaviours of 
the global system via manipulations of languages, for both word languages and tree languages. Because 
of this, we believe there is room for extensions of our model to the semantically finer “noninterleaving” 
concurrency framework via a generalisation to Mazurkiewicz trace languages [41]. Finally, good references 
to other game-based models for studying concurrent systems can be found in [19,52].
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Logic Our work relates to logics either that are to reason about the behaviour of game-like systems or 
that are memoryfull. In [31] a memoryfull branching-time logic, called mCTL∗, that extends CTL∗ was 
introduced. This logic has a special atomic proposition (“present”) that allows one to reason about compu-
tations starting in the present or computations starting somewhere in the past (in CTL∗ all formulae are 
interpreted with respect to computations that start in the present). This logic is not more powerful than 
CTL∗, but can be exponentially more succinct. No equilibrium issues are addressed there. In the linear-time 
framework, memoryfull logics have also been studied. In [33] and extension of LTL with past is extended 
with an operator (“Now”) that allows one to “forget the past” when interpreting logical formulae. This logic 
is exponentially more succinct than LTL with past, which in turn is exponentially more succinct than LTL; 
all such logics are nevertheless equally expressive. Thus, it seems that adding memory to temporal logics, 
either in the linear-time or in the branching-time framework, can make them more succinct but not any 
more powerful. Another common feature of memoryfull temporal logics is that their verification problem is 
at least EXPSPACE. It follows from our 2EXPTIME-hardness results that checking equilibrium properties, 
which requires the use of a memoryfull logic, is a harder problem.

Another memoryfull logic, this time one designed to reason about game-like scenarios, is Strategy 
Logic [7]. Strategy Logic has strategies as first-class objects in the language and based on this feature 
one can indirectly reason about equilibrium computations of a system. In Equilibrium logic reasoning is 
done the other way around: we can directly refer to equilibrium computations of a system, and based on 
them reason about the strategic power of the players in a game. Verification is extremely hard in Strategy 
Logic too: it is (d + 1)EXPTIME-complete, where d is the alternation between universal and existential 
strategy quantifiers in the logic, which has LTL as base language—a logic in the linear-time framework. 
Strategy Logic as defined in [7] is a logic with a two-player semantic game. This logic was later on extended 
to the multi-player setting in [38]. Recent works, for instance [36,37], have focused on the discovery of syn-
tactic fragments of Strategy Logic which are expressive enough, e.g., to express the existence of equilibria, 
and yet with decidable satisfiability and model checking problems.

Finally, in [39] a memoryfull extension of ATL, called mATL∗, is studied. Again, this logic identifies the 
need for memoryfull power when reasoning about strategic interactions. Since mATL∗ extends ATL, it is 
an alternating-time temporal logic [3]. This logic, as mCTL∗, extends ATL∗ with a “present” proposition 
to differentiate between (and reason about) computations that start in the present state of play and com-
putations that start far in the past—in a state previously visited. The verification problem for this logic, as 
it is for ATL∗, is in 2EXPTIME. In addition, such logics (bisimulation-invariant logics) cannot, in general, 
express the existence of Nash equilibria in multi-player games [22] when considering deterministic concur-
rent game structures as arenas, and strategies defined as functions from finite sequences of arena states to 
players’ actions.

10. Future work

All complexity results in this paper are given for systems and players’ goals in their full generality. It 
would be interesting to discover “easy” classes of reactive games for which the decision problems studied in 
the paper are computationally simpler. Because of the nature of the problems at hand, all relevant questions 
about equilibria are expected to be at least NP-hard.

Another interesting avenue for further work is the study of other game-theoretic solution concepts. For 
instance, solution concepts such as correlated or subgame-perfect Nash equilibrium, which are considered to 
have more attractive theoretical properties when compared with Nash equilibrium. In this paper, apart from 
Nash equilibrium, we also studied dominant strategy equilibria since they are known to be much more stable 
than Nash equilibria, and hence may characterise equilibrium computation paths which can be regarded as 
being more robust from a game theoretic point of view.
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Certain features of our framework and decision problems related to equilibrium logics were only lightly 
discussed in this paper and, thus, could be studied in more detail. For instance, the study of richer preference 
relations as well as quantitative and imperfect information, which are well beyond the scope of this particular 
paper. From a more logical point of view, we would like to have a better understanding of the expressivity 
of equilibrium logics. They certainly offer a different paradigm for reasoning about equilibria in infinite, 
concurrent and multi-agent systems modelled as games, but whether such temporal logics can be translated 
into one of those already in the literature (or the other way around) is an open and interesting question.

Finally, our results naturally lead to further algorithmic solutions and a tool implementation, for instance, 
as done using temporal logics such as ATL and probabilistic variants of CTL∗ in model checkers such as 
PRISM [8], MCMAS [34], or MOCHA [4], just to name a few available online. In fact, a tool implemen-
tation of a solution to NE-Checking is presented in [48,53] for the case where arenas and strategies are 
represented using the Reactive Modules specification language [2] and goals using CTL formulae. However, 
an implementation of the whole framework presented here is still needed.

Some of the questions and problems raised in this section are, in fact, already within reach. However, 
they are beyond the scope of this paper as each deserves a long and detailed presentation. Here we have, 
nevertheless, laid the foundations of our general framework and studied the most important computational 
and model-theoretic questions for equilibrium logics.
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Appendix A. Proofs

Proposition 15. Our models for arena games and players’ strategies, with the structure-preserving morphism 
given in Definition 14, form a category.

Proof. The morphism m preserves initial states (rule 1) and transitions, whenever α is defined (rule 2)—
hence it preserves reachable states, i.e., if v is reachable in M then κ(v) is reachable in M ′. Moreover, the 
identity morphism is the map where κ is the identity function on states, α is the identity function on transi-
tions, and β is the identity function on the powerset of Ω. Finally, the composition of two morphisms m, m′, 
where m : M → M ′ and m′ : M ′ → M ′′ is the map denoted by m′⊙m : M → M ′′ where each internal map 
in m and m′ composes as functions compose. It then follows that the composition of morphisms is reflexive 
and transitive, as needed. ✷

Lemma 18. The Strategy-Checking problem for LTL, CTL, and the linear-time µ-calculus is PSPACE-
complete, and it is in EXPTIME for the modal µ-calculus. Moreover, the problem is PSPACE-hard even for 
formulae ψ of the form ψ = Fϕ, where ϕ is a propositional logic formula.

Proof. To check if σ⃗ |= ψ we need to check whether Out(G, ⃗σ) ⊆ [[ψ] ]. Because of the definitions of outcomes 
and composition of strategies, we know that both Out(G, ⃗σ) ⊆ Lo(A) and Out(G, ⃗σ) ⊆ {ωA(q0

A); ϱ | ϱ ∈
Li(σ⃗)}—because of the alternation between the strategies and the arena.

Then, it follows that

Out(G, σ⃗) ⊆ (Lo(A) ∩ ωA(v0);Li(σ⃗)),

where ωA(v0); Li(σ⃗) stands for {ωA(v0); ϱ | ϱ ∈ Li(σ⃗)}.
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On the other hand, we know that

Lσ⃗
i (A) = Lo(σ⃗)|Li(σ⃗)∩Lo(A)[q⃗ 0]

where q⃗ 0 = (τ1(q0
1), . . . , τn(q0

n)), and that

Lσ⃗
o (A) = Lo(A)|Lσ⃗

i (A),

and thus it follows that

(ωA(v0);Li(σ⃗) ∩ Lo(A)) = Out(G, σ⃗).

Thus, Out(G, ⃗σ) ⊆ [[ψ] ] iff (ωA(v0); Li(σ⃗) ∩ Lo(A)) ⊆ [[ψ] ], and hence also iff

ωA(v0);Li(σ⃗) ⊆ {ϱ | if ϱ ∈ Lo(A) then ϱ ∈ [[ψ]]}.

Let ϕA be a formula (either of LTL or CTL) such that [[ϕA] ] = Lo(A). It is known that such formulae exist 
and are polynomial in the size of A (for instance, see [13] for the LTL case and [6] for the CTL case).

Thus, we have that

σ⃗ |= ψ iff (ωA(v0);Li(σ⃗)) ⊆ [[ϕA → ψ]].

Since

Li(σ⃗) =
⋂

0≤j≤n

Li(σj)

we can translate every strategy σj into a “concurrent process” Pj as defined in [32, pp. 46] so that the output 
language of that “concurrent program” P+ =

∏
1≤j≤n P+

j is, by definition, exactly Li(σ⃗). Now, let s0
j be the 

initial state of every P+
j . We then simply add an additional state q0

j for every P+
j , such that q0

j
ωA(v0)−−−−−→ s0

j . 
Then, the output language of the new concurrent system, which we denote by P , is ωA(v0); Li(σ⃗).

Therefore, we have that

σ⃗ |= ψ ⇔ ωA(v0);Li(σ⃗) ⊆ [[ϕA → ψ]] ⇔ P |= ϕA → ψ.

It then immediately follows from [32] that Strategy-Checking is in PSPACE for LTL and CTL. 
Since CTL is a syntactic fragment of the modal µ-calculus, the formula ϕA is also a µ-calculus formula 
and thus, again from [32], it follows that Strategy-Checking is in EXPTIME for the µ-calculus. For 
the linear-time µ-calculus, rather than defining a concurrent program P , we use the usual translation of 
finite-state transition systems to 1-safe nets (i.e., to synchronous products of transition systems)—e.g., as 
in [17]—and use the fact that linear-time µ-calculus model checking for 1-safe nets is in PSPACE [24] (recall 
that since LTL is a syntactic fragment of the linear-time µ-calculus, then ϕA is also a linear-time µ-calculus 
formula).

Then, for each temporal logic we have considered here, we have reduced Strategy-Checking to a 
model checking problem for either concurrent programs (as defined in [32]) or a synchronous product of 
transitions systems (a 1-safe net as defined in [17]), for which the relevant complexities are known.

PSPACE-hardness for goals in LTL, CTL, or the linear-time µ-calculus follows from a reduction from the 
Finite automaton intersection problem [27], where finite automata are translated into strategies in a game 
in which ψ = Fϕ represents the situation where all automata accept the same word. ✷
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Lemma 19. The NE-Checking problem for LTL and linear-time µ-calculus goals is PSPACE-complete. For 
CTL and µ-calculus goals the problem is EXPTIME-complete.

Proof. We use the next algorithm:

1. for i := 1 to n do
2. if σ⃗ ̸|= γi then
3. if γi ∧ ϕA ∧

∧
j∈N\{i} ϕj is satisfiable then

4. return “no”
5. end-if
6. end-if
7. end-for
8. return “yes”

where the temporal logic formula ϕj is as in the proof of Lemma 18—an LTL formula in case γi is an LTL 
or a linear-time µ-calculus formula and a CTL formula in case γi is a CTL or a µ-calculus formula—namely, 
ϕj is a temporal logic formula that characterises the behaviour of σi. And, as in Lemma 18, the formula ϕA

characterises the behaviour of A. Recall that ϕA has as models all, and only, the runs possible in A. 
The constructions of such formulae can be done, e.g., as described in [13] and [6] for linear-time and for 
branching-time goals, respectively.

Because of Lemma 18, we know that line (2) of the algorithm can be solved using a PSPACE (EXP-
TIME) oracle for Strategy-Checking if the goals are LTL, CTL, or linear-time µ-calculus (modal 
µ-calculus); additionally, line (3) is solved using a PSPACE (EXPTIME) oracle for satisfiability for linear-
time (branching-time) goals.

The correctness of the algorithm follows from the definition of Nash equilibrium with respect to binary 
preferences, that is, because the statement

(σ⃗−i,σ
′
i) |= γi =⇒ σ⃗ |= γi

must hold. Therefore,

σ⃗ ̸|= γi =⇒ (σ⃗−i,σ
′
i) ̸|= γi

for any strategy σ′
i, which is the statement that is checked by the algorithm above. Similar arguments and 

algorithm can be found in [20]. On the other hand, for hardness, one can use reductions from the LTL and 
CTL satisfiability problems, similar to the way is done in [20]. ✷

Proposition 23. Let G be a game and ϕ be a [NE]-free EL∗ formula. Then, for all runs ϱ and t ∈ N, we 
have that

(G, ϱ, t) |= Aϕ iff (G, ϱ′, 0) |= ϕ,

for all ϱ′ starting at ϱ[t].

Proof. One direction is trivial (⇐). The other direction (⇒) is proved by structural induction on ϕ. First, for 
(⇒), suppose that (G, ϱ, t) |=P Aϕ. Then, we know that (G, ϱ∗, t) |=P ϕ for all ϱ∗ such that ϱ[0 . . . t) ∈ ϱ∗. 
Here a structural induction on ϕ proves the statement since only path and state formulae have to be 
considered.



402 J. Gutierrez et al. / Annals of Pure and Applied Logic 168 (2017) 373–403

For the other direction, (⇐), suppose (G, ϱ′, 0) |= ϕ, for all ϱ′ starting at ϱ[t]. Then, by the definition of 
the semantics, we know that (G, ϱ, t) |= Aϕ since, in particular, it holds for all runs of the form ϱ[0 . . . t); ϱ′, 
as desired. ✷

Lemma 29. The EL∗ Model-Checking problem where players’ goals are LTL formulae is 2EXPTIME-
hard.

Proof (sketch). The proof uses a reduction from the LTL games in [5], which are 2EXPTIME-complete, to 
the EL∗ model checking problem with the EL formula ϕ = ⟨NE⟩⊤. Such games are two-player zero-sum 
perfect-information games played on a graph (which can be represented with our model of arenas) where one 
player, called player 0, wants to satisfy an LTL formula ψ while the other player, called player 1, wishes to 
refute such a formula ψ. The strategies in such a game can also be represented with our model of strategies. 
The main purpose of the reduction is to show that player 0 has a winning strategy in the given LTL game 
if and only if the constructed EL∗ Model-Checking problem for the formula ϕ = ⟨NE⟩⊤ has a positive 
solution, that is, if and only if there is a Nash equilibrium in the reactive game constructed from the given 
LTL game.

In order to do so we construct a 4-player game (with N = {0, 1, 2, 3}) where player 0/1 wants to 
satisfy/refute ψ and either to play consistently with the original LTL game or to make player 1/0 play 
inconsistently with the original LTL game; in addition, player 2/3 wants either to see ψ satisfied or to win 
a simple “matching pennies” game played against player 3/2. What is important in this proof is the fact 
that the goals of all players in the constructed reactive game can be represented as LTL formulae, and that 
only deterministic strategies need to be considered in the reactive game. ✷

Lemma 30. The EL∗ Model-Checking problem where players’ goals are CTL formulae is 2EXPTIME-
hard.

Proof Sketch. The game is constructed, essentially, as in Lemma 29. However, player 1 is now allowed to 
use a non-deterministic strategy. Because of this, the computation generated by the interaction between 
player 0 and player 1 is now an infinite tree rather than an infinite word, as in the LTL game case. All other 
constructions remain the same, that is, as in the LTL case, except for the goals, which are now defined as 
CTL formulae. ✷
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