
Optimistic and DisjunctiveAgent DesignProblems

MichaelWooldridgeandPaulE. Dunne

Departmentof ComputerScience
Universityof Liverpool

LiverpoolL69 7ZF
UnitedKingdom�

M.J.Wooldridge, P.E.Dunne � @csc.liv.ac.uk
Abstract. The agent designproblemis as follows: Given an environment,to-
getherwith a specificationof a task,is it possibleto constructanagentthatwill
guaranteeto successfullyaccomplishthe task in the environment?In previous
research,it wasshown that for two importantclassesof tasks(wherean agent
was requiredto either achieve somestateof affairs or maintainsomestateof
affairs), theagentdesignproblemwasPSPACE-complete.In this paper, we con-
siderseveralimportantgeneralisationsof suchtasks.In anoptimisticagentdesign
problem,we simply askwhetheran agenthasat leastsomechanceof bringing
abouta goalstate.In a combineddesignproblem,anagentis requiredto achieve
somestateof affairswhile ensuringthatsomeinvariantconditionis maintained.
Finally, in adisjunctivedesignproblem,wearepresentedwith anumberof goals
andcorrespondinginvariants— theaim is to designanagentthaton any given
run,will achieve oneof thegoalswhile maintainingthecorrespondinginvariant.
Weprovethatwhile theoptimisticachievementandmaintenancedesignproblems
areNP-complete,thePSPACE-completenessresultsobtainedfor achievementand
maintenancetasksgeneraliseto combinedanddisjunctive agentdesign.

1 Intr oduction

We are interestedin building agentsthat can autonomouslyact to accomplishtasks
on our behalfin complex, unpredictableenvironments.Otherresearcherswith similar
goalshave developeda rangeof softwarearchitecturesfor agents[17]. In this paper,
however, wefocusontheunderlyingdecisionproblemsassociatedwith thedeployment
of suchagents.Specifically, westudytheagentdesignproblem[16].

Theagentdesignproblemmaybestatedasfollows:Givenanenvironment,together
with a specificationof a task that we desireto be carriedout on our behalf in this
environment,is it possibleto constructanagentthatcanbeguaranteedto successfully
accomplishthe task in the environment?The typeof task to be carriedout is crucial
to thestudyof this problem.In previousresearch,it wasshown that for two important
classesof tasks(achievementtasks,wherean agentis requiredto achieve somestate
of affairs,andmaintenancetasks,whereanagentis requiredto maintainsomestateof
affairs),theagentdesignproblemis PSPACE-completein themostgeneralcase[16].

In this paper, we considerseveral importantvariationsof suchtasks.First, in an
optimisticagentdesignproblem,we simply askwhetherthereexistsanagentthathas

at leastsomechanceof achieving the goal or maintainingthe conditionrespectively.
In a combinedagentdesignproblem,the taskinvolvesachieving somestateof affairs
while at the sametimeensuringthat someinvariantconditionis maintained.In a dis-
junctivedesignproblem,we arepresentedwith a numberof goalsandcorresponding
invariants— the aim is to designan agentthaton any givenrun, will achieve oneof
the goalswhile maintainingthe correspondinginvariant.We prove that for optimistic
achievementandmaintenancetasks,the agentdesignproblemis NP-complete,while
thePSPACE-completenessresultsobtainedfor achievementandmaintenancetasksgen-
eraliseto combinedanddisjunctiveagentdesignproblems.

We begin in the following sectionby settingup an abstractmodelof agentsand
environments,which we useto formally definethedecisionproblemsunderstudy. We
then informally motivateand introducethe variousagentdesignproblemswe study,
andprove our main results.We discussrelatedwork in section6, andpresentsome
conclusionsin section7.

Notation: We usestandardsettheoreticandlogical notationwherever possible,aug-
mentedasfollows.If S is a set,thenthesetof finite sequencesoverS is denotedby S� .
If ��� S� ands � S, thenthesequenceobtainedby appendings to � is denoted��� s.
We write s ��� to indicatethatelements is presentin sequence� , andwrite last	
��� to
denotethefinal elementof � . Throughoutthepaper, we assumesomefamiliarity with
complexity theory[12].

2 Agentsand Envir onments

In this section,we presentan abstractformal modelof agentsand the environments
they occupy; we thenusethis model to frame the decisionproblemswe study. The
systemsof interestto usconsistof anagentsituatedin someparticularenvironment;the
agentinteractswith theenvironmentbyperformingactionsuponit, andtheenvironment
respondsto theseactionswith changesin state.It is assumedthattheenvironmentmay
bein any of a finite setE �� e� e����������� of instantaneousstates.Agentsareassumedto
havea repertoireof possibleactionsavailableto them,which transformthestateof the
environment.Let Ac �������������������� bethe(finite) setof actions.

The basicmodelof agentsinteractingwith their environmentsis asfollows. The
environmentstartsin somestate,andtheagentbeginsby choosinganactionto perform
on thatstate.As a resultof this action,theenvironmentcanrespondwith a numberof
possiblestates.However, only onestatewill actually result— thoughof course,the
agentdoesnot know in advancewhich it will be.On thebasisof this secondstate,the
agentagainchoosesanactionto perform.Theenvironmentrespondswith oneof a set
of possiblestates,theagentthenchoosesanotheraction,andsoon.

A run, r, of anagentin anenvironmentis thusa sequenceof interleavedenviron-
mentstatesandactions:

r � e "!$#%'& e()!+*%,& e-.!0/%,& e1.!02%,& ����� ! u 3 *%,& eu �����
Let 4 bethesetof all suchpossibleruns.We user � r ��������� to standfor membersof 4 .

In orderto representtheeffect thatanagent’s actionshave on anenvironment,we
introducea statetransformerfunction(cf. [5, p154]):5 �64 &87 E

Thusa statetransformerfunction mapsa run (assumedto endwith the actionof an
agent)to a setof possibleenvironmentstates.Therearetwo importantpointsto note
aboutthis definition.

First, environmentsare allowed to be history dependent(or non-Markovian). In
otherwords, the next stateof an environmentis not solely determinedby the action
performedby theagentandthecurrentstateof theenvironment.Thepreviousactions
performedby theagent,andthepreviousenvironmentstatesalsoplay a part in deter-
mining thecurrentstate.Many environmentshave this property. For example,consider
the well-known travelling salesmanproblem[12, p13]: history dependencearisesbe-
causethesalesmanis not allowedto visit thesamecity twice.Notethatit is oftenpos-
sible to transforma historydependentenvironmentinto a history independentone,by
encodinginformationaboutprior history into anenvironmentstate.However, this can
only be doneat the expenseof an exponentialincreasein the numberof environment
states.Intuitively, givenahistorydependentenvironmentwith statesetE, whichhasan
associatedsetof runs 4 , we would needto create 9 4;: E 9 environmentstates.Since9 4<9 is easilyseento be exponentialin the sizeof Ac : E (even if we assumea poly-
nomial boundon the lengthof runs),this implies that the transformationis not likely
to bepossiblein polynomialtime (or space).Hencealthoughsucha transformationis
possiblein principle,it is unlikely to bepossiblein practice.

Second,note that this definition allows for non-determinismin the environment.
Thereis thusuncertaintyabouttheresultof performinganactionin somestate.

If 5 	 r �=?> , (wherer is assumedto endwith anaction),thenthereareno possible
successorstatesto r. In this case,we saythat thereareno allowableactions, andthat
therun is complete. Oneimportantassumptionwemake is thatevery run is guaranteed
to completewith lengthpolynomialin thesizeof Ac : E. This assumptionmayat first
sight appearrestrictive, andso somejustificationis necessary. Our main point is that
exponential(or worse)runsare of no practical interestwhatsoever: the only tasksof
interestto usarethosethatrequireapolynomial(orbetter)numberof actionsto achieve.
To seethis, supposewe allowedrunsthatwereexponentialin thesizeof Ac : E; say
O 	 7A@ Ac B E @ � . Now consideratrivial environment,with just10statesand10actions.Then
in principle, suchan environmentwould allow tasksthat require 7 (C D 8E0� 7 :�EGF 1D
actionsto accomplish.Evenif ouragentscouldperforma EGF0H actionspersecond1 then
sucha taskwould requiremoretime to carryout thantherehasbeensincetheuniverse
began.Theexponentiallengthof runswill rapidlyeliminateany advantagewe gainby
multiplying thespeedof our agentby a constantfactor. Thepolynomialrestrictionon
run lengthis, therefore,entirely reasonableif we areconcernedwith tasksof practical
interest.

Beforeproceeding,we needto make cleara coupleof assumptionsabouttheway
that transformerfunctionsarerepresented. To understandwhat is meantby this, con-

1 A highperformancedesktopcomputercancarryoutaboutthis many operationspersecond.

siderthat the input to thedecisionproblemswe studywill includesomesortof repre-
sentationof thebehaviour of theenvironment,andmorespecifically, theenvironment’s
statetransformerfunction 5 . Now, onepossibledescriptionof 5 is asa tablethatmaps
run/actionpairsto thecorrespondingpossibleresultingenvironmentstates:

r (�D� (& � e(� e- �������������� & �����
rn �D� n

& �I�������
Such a “verbose”encodingof 5 will clearly be exponentially large (in the size of
E : Ac), but sincethe length of runs will be boundedby a polynomial in the size
of E : Ac, it will befinite. Oncegivensuchanencoding,finding anagentthatcanbe
guaranteedto achieve a setof goalstateswill, however, becomparatively easy. Unfor-
tunately, of course,no suchdescriptionof theenvironmentwill usuallybeavailable.In
this paper, therefore,we will restrictour attentionto environmentswhosestatetrans-
former function is describedasa two-tapeTuring machine,with the input (a run and
anaction)writtenononetape;theoutput(thesetof possibleresultantstates)is written
on theothertape.It is assumedthatto computetheresultantstates,theTuringmachine
requiresanumberof stepsthatis atmostpolynomialin thelengthof theinput.Werefer
to suchenvironmentrepresentationsasconcise. In theremainderof this paper, we will
assumethatall statetransformerfunctionsareconciselyrepresented.

Formally, wesayanenvironmentEnv is a triple Env ?J E � 5 � e GK whereE is asetof
environmentstates,5 is astatetransformerfunction,representedconcisely, ande � E
is theinitial stateof theenvironment.

We now needto introducea modelof theagentsthat inhabitsystems.Many archi-
tecturesfor agentshave beenreportedin the literature[17], andonepossibilitywould
thereforebe to directly useoneof thesemodelsin our analysis.However, in orderto
ensurethatour resultsareasgeneralaspossible,we chooseto modelagentssimply as
functionsthatmapruns(assumedto endwith anenvironmentstate)to actions(cf. [14,
pp580–581]):

Ag �64 & Ac

Noticethatwhile environmentsareimplicitly non-deterministic,agentsareassumedto
bedeterministic.

We sayasystemis apair containinganagentandanenvironment.Any systemwill
haveassociatedwith it asetof possibleruns;wedenotethesetof completerunsof agent
Ag in environmentEnv by 4L	 Ag� Env� . Formally, a sequence	 e ��� � e(��� (� e- �������M�
representsa runof anagentAg in environmentEnv "J E � 5 � e GK if f

1. e N 5 	
OP� and �Q R Ag	 e �� (where O is theemptysequence);and
2. for u STF ,

eu � 5 	U	 e �D� ���������D� u V (�D� where� u Ag	D	 e �D� ��������� eu �D�

3 Agent DesignTasks

We build agentsin orderto carryout tasksfor us.We canidentify many differenttypes
of tasks.Thetwo mostobviousof theseareachievementtasksandmaintenancetasks,
asfollows [16]:

1. Achievementtasksaretaskswith thegeneralform “achievestateof affairs W ”.
2. Maintenancetasksaretaskswith thegeneralform “maintainstateof affairs W ”.

Intuitively, anachievementtaskis specifiedby a numberof “goal states”;theagentis
requiredtobringaboutoneof thesegoalstates.Notethatwedonotcarewhichgoalstate
is achieved— all areconsideredequallygood.Achievementtasksareprobablythemost
commonlystudiedform of taskin artificial intelligence.Many well-known AI problems
(suchasthetowersof Hanoi)areinstancesof achievementtasks.An achievementtask
is specifiedby somesubsetX (for “good” or “goal”) of environmentstatesE. An agent
is successfulonaparticularrunif it is guaranteedto bringaboutoneof thestatesX , that
is, if every run of theagentin theenvironmentresultsin oneof thestatesX . We sayan
agentAg succeedsin anenvironmentEnv if every run of theagentin thatenvironment
is successful.An agentthussucceedsin an environmentif it canguaranteeto bring
aboutoneof thegoalstates.

We refer to a tuple J Env ��XYK , whereEnv is an environmentand X"Z E is a setof
environmentstatesasa taskenvironment. We canidentify the following agentdesign
problemfor achievementtasks:

ACHIEVEMENT AGENT DESIGN

Given: taskenvironment J Env �[XYK .
Answer: “Yes” if thereexistsanagentAg thatsucceedsin J Env ��XYK , “No” oth-
erwise.

This decisionproblem amountsto determiningwhetherthe following second-order
logic formulais true,for agiventaskenvironment J Env ��XYK :\

Ag �[] r �^4L	 Ag� Env��� \ e ��XL� e occursin r �
We emphasisethatachievementtasksareemphaticallynot simply graphsearchprob-
lems.Becausetheenvironmentcanbehistorydependent, thesolutionto anachievement
designproblemmustbea strategy, which dictatesnot simply which actionto perform
for any givenenvironmentstate,but whichactionto performfor anygivenhistory. Such
strategieswill beexponentiallylargein thesizeof E : Ac.

Example1. Considerthe environmentwhosestatetransformerfunction is illustrated
by the graphin Figure1. In this environment,anagenthasjust four availableactions
(�_(to �Q` respectively), andtheenvironmentcanbein any of six states(e to ea). His-
tory dependencein this environmentarisesbecausetheagentis not allowedto execute
the sameaction twice. Arcs betweenstatesin Figure 1 are labelledwith the actions
thatcausethestatetransitions— notethat theenvironmentis non-deterministic.Now
considertheachievementproblemsdeterminedby thefollowing goalsets:

e0

e1

e2

e3

e4

e5

α2

α2

α0

α2

α4

α0

α0, α1

α0, α1

α1
α2

Fig.1. The statetransitionsof an exampleenvironment:Arcs betweenenvironmentstatesare
labelledwith thesetsof actionscorrespondingto transitions.Notethatthisenvironmentis history
dependent, becauseagentsarenot allowedto performthesameactiontwice.So,for example,if
theagentreachedstateeb by performingced then c�b , it wouldnotbeableto perform c�b againin
orderto reachef .

– X (�� e- �
An agentcan reliably achieve Xe(by performing �Y(, the result of which will be
eithere(, e- , or e1 . If e(results,theagentcanperform �� to take it to ea andthen��- to take it to e- . If e1 results,it cansimply perform �Q .

– X - �� e1 �
Thereis no agentthatcanbeguaranteedto achieve X - . If the agentperforms � (,
thenany of e(to e1 might result.In particular, if e(results,theagentcanonly get
to e1 by performing� - twice,which is not allowed.

A usefulwayto think aboutACHIEVEMENT AGENT DESIGN is astheagentplaying
a gameagainsttheenvironment.In theterminologyof gametheory[2], this is exactly
what is meantby a “gameagainstnature”.The environmentandagentboth begin in
somestate;theagenttakesaturnby executinganaction,andtheenvironmentresponds
with somestate;theagentthentakesanotherturn,andsoon.Theagent“wins” if it can
force the environmentinto oneof the goal statesX . The achievementdesignproblem
canthenbe understoodasaskingwhetheror not thereis a winning strategy that can
beplayedagainsttheenvironmentEnv to bring aboutoneof X . This classof problem
— determiningwhetheror not thereis a winning strategy for oneplayerin a particular
two-playergame— is closelyassociatedwith PSPACE-completeproblems[12, pp459–
474].

Justasmany taskscanbecharacterisedasproblemswhereanagentis requiredto
bring aboutsomestateof affairs,somany otherscanbeclassifiedasproblemswhere
theagentis requiredto avoid somestateof affairs, that is, to maintainsomeinvariant
condition.As an extremeexample,considera nuclearreactoragent,the purposeof
which is to ensurethat the reactornever entersa “meltdown” state.Somewhat more
mundanely, wecanimagineasoftwareagent,oneof thetasksof which is to ensurethat

a particularfile is never simultaneouslyopenfor bothreadingandwriting. We referto
suchtaskenvironmentsasmaintenancetaskenvironments.

A maintenancetaskenvironmentis formally definedby a pair J Env �DghK , whereEnv
is anenvironment,and giZ E is asubsetof E thatwereferto asthe“bad”, or “f ailure”
states— thesearethe environmentstatesthat the agentmustavoid. An agentis suc-
cessfulwith respectto a maintenancetaskenvironment J Env �DghK if no statein g occurs
on any run in 4L	 Ag� Env� .
Example2. Consideragainthe environment in Figure 1, and the maintenancetasks
definedby thefollowing badsets:

– g (�� ea �
Thereis clearlyanagentthatcanavoid ea . After theagentperformsits first action
(either � or � (), oneof thethreestatese(to e1 will result.
If thestatethatresultsis e(, thentheagentcanperform � - , afterwhicheitherè or
e- will result;therewill beno allowablemovesin eithercase.
If thestatethatresultsis e- , thentheagentcanonly perform � - , which will trans-
form the environmentto è . Theonly allowablemove will thenbe �� (if this has
not alreadybeenperformed— if it has,thenthereareno allowablemoves);if the
agentperforms�Q , thenenvironmentstatee- will result,from wheretherewill be
no allowablemoves.
Finally, if thestatethat resultsis e1 , thentheagentcanonly perform �Q andthen� - , which returnsthe environmentto statee1 from wherethereareno allowable
moves.

– g (�� e- �
No agentcanbeguaranteedto avoid e- . Whetheror not thefirst actionis � or � (,
it is possiblethate- will result.

Given a maintenancetaskenvironment J Env �UgjK , the MAINTENANCE AGENT DE-
SIGN decisionproblemsimply involvesdeterminingwhetheror not thereexists some
agentthat succeedsin J Env �UgjK . It is againuseful to think of MAINTENANCE AGENT

DESIGN asagame.Thistime,theagentwinsif it managesto avoid g . Theenvironment,
in therole of opponent,is attemptingto forcetheagentinto g ; theagentis successful
if it hasa winningstrategy for avoiding g . It is not hardto seethattheMAINTENANCE

AGENT DESIGN problemfor a given J Env �DghK amountsto determiningwhetheror not
thefollowing second-orderlogic formulais true:\

Ag �[] r �k4L	 Ag� Env���P] e �kgl� e doesnot occurin r �
Intuition suggeststhatMAINTENANCE AGENT DESIGN mustbeharder thatACHIEVE-
MENT AGENT DESIGN. This is becausewith achievementtasks,the agentis only re-
quiredto bringabout X once, whereaswith maintenancetasksenvironments,theagent
mustavoid g indefinitely. However, this turnsout not to bethecase.

Theorem1 (From [16]). Both ACHIEVEMENT AGENT DESIGN and MAINTENANCE

AGENT DESIGN are PSPACE-completein the mostgeneral case(where environments
maybehistorydependent).

We remarkthatalthoughthepreciserelationshipof PSPACE-completeproblemsto, for
example,NP-completeproblemsis not(yet)known, it is generallybelievedthatthey are
muchharderin practice.For this reason,PSPACE-completenessresultsareinterpreted
asmuchmorenegativethan“mere” NP-completeness.

4 Optimistic Agent Design

In this paper, we focus on somevariationsof ACHIEVEMENT AGENT DESIGN and
MAINTENANCE AGENT DESIGN. Thesevariationsallow usto considerweakerrequire-
mentsfor agentdesign,andalsoprogressively morecomplex typesof tasksfor agents.
Thefirst variationwe consideris optimisticagentdesign(cf. [8]). Theintuition is that,
in our currentagentdesignproblems,we arelooking for anagentthatcanbeguaran-
teedto carryout thetask.Thatis, theagentis requiredto succeedwith thetaskonevery
possiblerun. This is a rathersevererequirement:afterall, whenwe carryout tasksin
therealworld, thereis frequentlysomepossibility— evenif ratherremote— thatwe
will fail. We would still be inclined to saythatwe have thecapabilityto carryout the
task,eventhoughweknow that,in principleat least,it is possiblethatwe will fail.

Thisconsiderationis ourmotivationfor amorerelaxednotionof agentdesign.If P
denoteseithertheACHIEVEMENT AGENT DESIGN or MAINTENANCE AGENT DESIGN,
thenby OPTIMISTIC P wemeanthevariantof thisproblemin whichanagentis deemed
to succeedif thereis at leastonerun of theagentin theenvironmentthatsucceedswith
respectto thetask.So,for example,aninstanceof OPTIMISTIC ACHIEVEMENT AGENT

DESIGN (OAD) is givenby a tuple J Env �[XmK , aswith ACHIEVEMENT AGENT DESIGN.
Thegoalof theproblemis to determinewhetheror notthereexistsanagentAgsuchthat
at leastonememberof X occursonat leastonerunof Agwhenplacedin Env. Formally,
anOAD problemcanbeunderstoodasdeterminingwhetherthefollowing second-order
logic formulais true:\

Ag � \ r �^4L	 Ag� Env��� \ e ��XL� e occursin r �
Notice thedifferencebetweenthepatternof quantifiersin this expressionandthat for
ACHIEVEMENT AGENT DESIGN.

Example3. Consideragainthe environmentin Figure1, and the optimistic achieve-
mentdesignproblemsdefinedby thefollowing sets:

– X,1N�� e(��
Recallthatno agentcanguaranteeto bring aboute(. However, thereclearlyexists
anagentthatcanoptimisticallyachievee(: theagentsimply performs�� .

Intuition tellsusthatoptimisticvariantsof ACHIEVEMENT andMAINTENANCE AGENT

DESIGN areeasierthantheirregularvariants,asweareprovinganexistentialratherthan
auniversal(onerunratherthanall runs).And for once,intuition turnsout to becorrect.
We canprovethefollowing.

Theorem2. BothOAD andOMD are NP-complete.

Proof. We do theproof for OAD: the OMD caseis similar. We needto showthat (i) the
problemis in NP; and(ii) someknownNP-completeproblemcanbereducedto OAD in
polynomialtime. Membership of NP is establishedby the following non-deterministic
algorithmfor OAD. Givenan instanceJ Env ��XYK of OAD, begin byguessinga run r �k4
such that this run endswith a memberof X , andverify that the run is consistentwith
the statetransformerfunction 5 of Env. Sincethe length of the run will be at most
polynomialin thesizeofAc : E, guessingandverifyingcanbedonein non-deterministic
polynomialtime. Givensuch a run, extracting the correspondingagent is trivial, and
canbedonein (deterministic)polynomialtime.

To prove completeness,we reducethe DIRECTED HAMILTONIAN CYCLE (DHC)
problemto OAD [6, p199]:

DIRECTED HAMILTONIAN CYCLE (DHC):
Given: A directedgraphG "	 V � F Z V : V �
Answer: “Yes” if G containsa directedHamiltoniancycle, “No” otherwise.

The idea of the reductionis to encodethe graph G directly in the statetransformer
function 5 of the environment:actionscorrespondto edgesof the graph,and success
occurswhena Hamiltoniancyclehasbeenfound.

Formally, givenan instanceG ?	 V � F Z V : V � of DHC, wegeneratean instance
of OAD asfollows.First,createthesetof environmentstatesasfollows:

E V n�� succeed�
We thendefinetheinitial stateof theenvironmentasfollows:

e v
We createan action � i o j correspondingto everyarc in G:

Ac ���� i o j 9pJ vi � vj Kh� F �
We defineX to bea singleton: Xq)� succeed�
Andfinally, wedefinethestatetransformerfunction 5 in two parts.Thefirst casedeals
with thefirstactionof theagent:5 	�O����Q o j �r s � vj � if J v $� vj Kj� F> otherwise.

Thesecondcasedealswith subsequentactions:

5 	 r � vi ��� i o j ��utv w > if vj occurs in r � vi andvj x v � succeed� if vj v andeveryv � V occurs in r � vi� vj � if J vi � vj Ky� F

An agent can only succeedin this environmentif it visits every vertex of the original
graph.Anagentwill fail if it revisitsanynode. Sincetheconstructionis clearlypolyno-
mial time, wearedone.

As anaside,notethatthis proof essentiallyinvolvesinterpretingtheHamiltoniancycle
problemas a gamebetweena deterministic,history dependentenvironment,and an
agent.Theobjectiveof thegameis to visit every vertex of thegraphexactly once.The
gameis historydependentbecausethe“player” is not allowedto revisit vertices.

5 Disjunctive Agent Design

The next variationsof agentdesignthat we considerinvolve combiningachievement
andmaintenanceproblems.The ideais that we specifya taskby meansof both a setXzZ E anda set g.Z E. A run will besaidto satisfysucha taskif it containsat least
onestatein X , andcontainsnostatesin g . As before,wesayanagentAgsucceedsin an
environmentEnv with sucha taskif every run of theagentin theenvironmentsatisfies
the task,i.e., if every run containsat leastonestatein X andno statesin g . Note that
we do not requirethesamestatesto beachievedon differentruns— all statesin X are
consideredequallygood.

Example4. With respectto theenvironmentin Figure1, considerthe following com-
bineddesigntasks:

– X ` �� e- � and g 1)� è � .
There is clearly an agentthat can be guaranteedto succeedwith this task. The
agentsimply usesthestrategy describedabovefor theachievementtaskof e- ; this
strategy avoidsè .

– X a �� e- � and g `)� ea � .
Thereis noagentthatcanbeguaranteedto bringaboute- while avoidingea .
We refer to a triple J Env �[X{�UgjK , whereEnv is anenvironment,and X{�Dg�Z E, asa

combinedtaskenvironment. Obviously, if XzZ|g , thenno agentwill exist to carryout
thetask.

It turnsout that the COMBINED AGENT DESIGN problemis in factno harderthan
eitherACHIEVEMENT AGENT DESIGN or MAINTENANCE AGENT DESIGN. (Theprob-
lemis of coursenoeasier, asany ACHIEVEMENT AGENT DESIGN problem J Env ��XYK can
trivially bereducedto a COMBINED AGENT DESIGN problem J Env ��X{��>$K .) We will see
thatit is in facta specialcaseof a yet moregeneraltypeof problem,calleddisjunctive
agentdesign.Theideain a disjunctive taskis thatwe give anagenta numberof alter-
nativegoalsto achieve, whereeachgoal is associatedwith a correspondinginvariant
condition.An agentis successfulwith sucha taskif, on every possiblerun, it brings
aboutoneof thegoalswithout invalidatingthecorrespondinginvariance.

To make this moreprecise,a disjunctive agentdesignproblemis specifiedusinga
setof pairswith theform: �IJ}X'(~�Ug{(�KP����������J�X n �Ug n K[�
Here, X i is a setof goal statesand g i is the invariantcorrespondingto X i . A run will
be saidto satisfysucha taskif every run satisfiesat leastoneof the pairs J�X i �Dg i K���IJ�X (�Ug (K����������GJ�X n �Ug n K[� . In otherwords,a run r satisfiestask �+J�X (�Dg (KP����������J}X n �Dg n KP�
if it satisfiesJ�X (�Ug (K or it satisfiesJ}X - �Ug - K or ����� or it satisfiesJ�X n �Ug n K .

Formally, thisprobleminvolvesaskingwhetherthefollowing second-orderformula
is true:\

Ag �[] r �k4L	 Ag� Env��� \ i �$��	 \ e ��X i � e is in r � and 	�] e �kg i � e is not in r ���
Noticethefollowing subtletiesof this definition:

– An agentis not requiredto bring about the samegoal on eachrun in order to
be consideredto have succeeded.Different goalson different runs are perfectly
acceptable.

– If anagentbringsaboutsomestatein X i on a run r andno statein r is in g i , then
the fact thatsomestatesin g j occurin r (for i x j) is not relevant— theagentis
still deemedto havesucceededon run r.

We canprovethefollowing.

Theorem3. DISJUNCTIVE AGENT DESIGN is PSPACE-complete.

Proof. As before, we needto establishthat DISJUNCTIVE AGENT DESIGN (i) is in
PSPACE, and (ii) is PSPACE-hard. PSPACE-hardnessfollows immediatelyfrom Theo-
rem1: anyinstanceof ACHIEVEMENT AGENT DESIGN or MAINTENANCE AGENT DE-
SIGN canbeimmediatelyreducedto an instanceof DISJUNCTIVE AGENT DESIGN. We
therefore focuson establishingmembershipof PSPACE.

Wegivethedesignof a non-deterministicpolynomialspaceTuring machineM that
acceptsinstancesof theproblemthathavea successfuloutcome, andrejectsall others.
Theinputsto thealgorithmwill bea taskenvironmentJ Env ���IJ}X (�Ug (KP���������GJ�X n �Ug n K[�6K
togetherwitha run r "	 e 0���Q I����������� k V (6� ek � —thealgorithmactuallydecideswhether
or not there is an agentthatwill succeedin theenvironmentgiventhiscurrentrun. Ini-
tially, therun r will besetto theemptysequenceO . Thealgorithmfor M is asfollows:

1. if r endswith an environmentstatein X i , for someE�� i � n, thencheck whether
anymemberof g i occurs in r — if theansweris no, thenM accepts;

2. if thereare no allowableactionsgivenr, thenM rejects;
3. non-deterministicallychoosean action ��� Ac, and then for each e � 5 	 r �I�m�

recursivelycall M with therun r ����� e;
4. if all of theseaccept,thenM accepts,otherwiseM rejects.

Thealgorithmthusnon-deterministicallyexploresthespaceof all possibleagents.No-
tice that sinceanyrun will beat mostpolynomialin thesizeof E : Ac, thedepthof re-
cursionstack will bealsobeat mostpolynomialin thesizeof E : Ac.HenceM requires
only polynomialspace. HenceDISJUNCTIVE AGENT DESIGN is in non-deterministic
polynomialspace(NPSPACE). But sincePSPACE = NPSPACE [12, p150], it followsthat
DISJUNCTIVE AGENT DESIGN is alsoin PSPACE.

Notethatin DISJUNCTIVE AGENT DESIGN, werequireanagentthat,oneveryrun,both
achievessomestatein X i while avoiding all statesin g i . We canconsidera variantof
DISJUNCTIVE AGENT DESIGN, asfollows.Theideais thatonevery run,anagentmust

eitherachieve somestatein X i , or avoid all statesin g i. This conditionis givenby the
following second-orderformula:\

Ag �[] r ��4L	 Ag� Env��� \ i �0��	 \ e ��X i � e is in r � or 	�] e ��g i � e is not in r ���
We refer to this problemasWEAK DISJUNCTIVE AGENT DESIGN. It is not difficult to
provethatthisproblemis alsoPSPACE-complete.

Theorem4. WEAK DISJUNCTIVE AGENT DESIGN is PSPACE-complete.

Proof. PSPACE-hardnessfollows from Theorem1. To showmembership, we give the
designof a non-deterministicpolynomialspaceTuring machineM that will decidethe
problem—theideais similar to Theorem3:

1. if r endswith an environmentstatein X i , for someE�� i � n, thenM accepts;
2. if there are no allowableactionsgivenr, andthere is someE�� i � n such that no

elementof g i occurson r, thenM accepts;
3. if thereare no allowableactionsgivenr, thenM rejects;
4. non-deterministicallychoosean action ��� Ac, and then for each e � 5 	 r �I�m�

recursivelycall M with therun r ����� e;
5. if all of theseaccept,thenM accepts,otherwiseM rejects.

Theremainderof theproof is asTheorem3.

6 RelatedWork

Probablythemostrelevantwork from mainstreamcomputerscienceto thatdiscussedin
this paperhasbeenon theapplicationof temporallogic to reasoningaboutsystems[9,
10].Temporallogichasbeenparticularlyappliedto thespecificationof non-terminating
systems.Temporallogic is particularlyappropriatefor the specificationof suchsys-
temsbecauseit allows a designerto succinctlyexpresscomplex propertiesof infinite
sequencesof states.

We identifiedseveraldecisionproblemsfor agentdesign,andcloselyrelatedprob-
lemshave alsobeenstudiedin the computerscienceliterature.Perhapsthe closestto
our view is thework of Manna,Pnueli,Wolper, andcolleagueson theautomaticsyn-
thesisof systemsfrom temporallogic specifications[4, 11,13]. In this work, tasksare
specifiedasformulaeof temporallogic, andconstructive proof methodsfor temporal
logic areusedto constructmodel-like structuresfor theseformulae,from which the
desiredsystemcanthenbeextracted.

In artificial intelligence,theplanningproblemis mostcloselyrelatedto ourachieve-
menttasks[1]. Bylanderwasprobablythefirst to undertake a systematicstudyof the
complexity of the planningproblem;he showed that the (propositional)STRIPS deci-
sionproblemis PSPACE-complete[3]. Building onhiswork, many othervariantsof the
planningproblemhave beenstudied— a recentexampleis [8]. Themaindifferences
betweenour work andthis areasfollows:

– Mostcomplexity resultsin theplanningliteratureassumedeclarativespecifications
of goalsandactions— theSTRIPS representationis commonlyused.In somecases,
it is thereforenot clearwhetherthe resultsobtainedreflectthe complexity of the
decisiontask,or whetherthey arean artifact of the chosenrepresentation.Some
researchers,noting this, have considered“flat” representations,where,as in our
work, goalsarespecifiedassetsof states,ratherthanaslogical formulae[8].

– Most researchershave ignoredthepropertiesof theenvironment;in particular, we
are aware of no work that considershistory dependence.Additionally, most re-
searchassumesdeterministicenvironments.

– As far aswe areaware,no otherresearchin AI planninghasconsideredcomplex
taskspecifications— the focusappearsto be almostexclusively on achievement
goals.

Recently, therehasbeenrenewed interestby the artificial intelligenceplanningcom-
munity in Partially ObservableMarkov DecisionProcesses(POMDPs) [7]. Putsimply,
the goal of solving a POMDP is to determinean optimal policy for actingin an envi-
ronmentin which thereis uncertaintyaboutthe environmentstate,andwhich is non-
deterministic.Findingan optimalpolicy for a POMDP problemis similar to our agent
designproblem.

7 Conclusions

In this paper, we have investigatedthe computationalcomplexity of two important
classesof agentdesignproblem.In a combinedagentdesignproblem,we definea task
via asetof goalstatesandasetof statescorrespondingto aninvariant;weaskwhether
thereexistsanagentthatcanbeguaranteedto achieve thegoalwhile maintainingthe
invariant.In adisjunctiveagentdesignproblem,a taskis specifiedby asetof goalsand
correspondinginvariants;we askwhetherthereexistsanagentthatwill bring abouta
goal statewhile maintainingthe correspondinginvariant.We have demonstratedthat
both of theseproblemsare PSPACE-complete,andarehenceno worsethanthe (intu-
itively simpler)achievementandmaintenanceproblemsdiscussedin [16].

Wearecurrentlyinvestigatingoneobviousgeneralisationof agentdesignproblems,
to allow for arbitrarybooleancombinationsof tasks,ratherthansimpledisjunctions.
CaseswherethePSPACE-completenessresultscollapseto NP or P arealsobeinginves-
tigated.Finally, multi-agentvariantsseemworthyof study(cf. [15]).

Acknowledgments:We thankthereviewersfor theirdetailed,insightful,andextremely
helpful comments.

References

1. J. F. Allen, J. Hendler, and A. Tate,editors. Readingsin Planning. Morgan Kaufmann
Publishers:SanMateo,CA, 1990.

2. K. Binmore.FunandGames:A Text on GameTheory. D. C. HeathandCompany: Lexing-
ton,MA, 1992.

3. T. Bylander. The computationalcomplexity of propositionalSTRIPSplanning. Artificial
Intelligence, 69(1-2):165–204,1994.

4. E. M. Clarke andE. A. Emerson.Designandsynthesisof synchronizationskeletonsusing
branchingtimetemporallogic. In D. Kozen,editor, Logicsof Programs—Proceedings1981
(LNCSVolume131), pages52–71.Springer-Verlag:Berlin, Germany, 1981.

5. R. Fagin,J.Y. Halpern,Y. Moses,andM. Y. Vardi. ReasoningAboutKnowledge. TheMIT
Press:Cambridge,MA, 1995.

6. M. R. Garey andD. S. Johnson.Computers and Intractability: A Guideto the Theoryof
NP-Completeness. W. H. Freeman:New York, 1979.

7. L. P. Kaelbling,M. L. Littman, andA. R. Cassandra.Planningandactingin partially ob-
servablestochasticdomains.Artificial Intelligence, 101:99–134,1998.

8. M. L. Littman, J. Goldsmith,andM. Mundhenk. Thecomputationalcomplexity of proba-
bilistic planning.Journalof AI Research, 9:1–36,1998.

9. Z. MannaandA. Pnueli.TheTemporal Logic of ReactiveandConcurrentSystems. Springer-
Verlag:Berlin, Germany, 1992.

10. Z. MannaandA. Pnueli. Temporal Verification of ReactiveSystems— Safety. Springer-
Verlag:Berlin, Germany, 1995.

11. Z. MannaandP. Wolper. Synthesisof communicatingprocessesfrom temporallogic speci-
fications.ACM TransactionsonProgrammingLanguagesandSystems, 6(1):68–93,January
1984.

12. C. H. Papadimitriou.ComputationalComplexity. Addison-Wesley: Reading,MA, 1994.
13. A. Pnueli andR. Rosner. On the synthesisof a reactive module. In Proceedingsof the

SixteenthACM Symposiumon the Principles of ProgrammingLanguages (POPL), pages
179–190,January1989.

14. S.RussellandD. Subramanian.Provably bounded-optimalagents.Journal of AI Research,
2:575–609,1995.

15. M. TennenholtzandY. Moses.Oncooperationin amulti-entitymodel:Preliminaryreport.In
Proceedingsof theEleventhInternationalJoint ConferenceonArtificial Intelligence(IJCAI-
89), Detroit,MI, 1989.

16. M. Wooldridge.Thecomputationalcomplexity of agentdesignproblems.In Proceedingsof
the Fourth InternationalConferenceon Multi-Agent Systems(ICMAS-2000), Boston,MA,
2000.

17. M. WooldridgeandN. R. Jennings.Intelligentagents:Theoryandpractice.TheKnowledge
EngineeringReview, 10(2):115–152,1995.

