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Abstract. The agent designproblemis asfollows: Given an ervironment,to-
getherwith a specificationof atask,is it possibleto constructanagentthatwill
guarantedo successfullyaccomplishthe taskin the environment?In previous
researchit was shavn that for two importantclassef tasks(wherean agent
was requiredto either achieve somestateof affairs or maintain somestate of
affairs), the agentdesignproblemwas pspACE-complete.In this paper we con-
siderseveralimportantgeneralisationsf suchtasksIn anoptimisticagentdesign
problem,we simply askwhetheran agenthasat leastsomechanceof bringing
abouta goalstate.In acombineddesignproblem,anagentis requiredto achieve
somestateof affairs while ensuringthat someinvariantconditionis maintained.
Finally, in adisjunctivedesignproblem,we arepresentedavith anumberof goals
andcorrespondingnvariants— the aim is to designan agentthaton ary given
run, will achieze oneof the goalswhile maintainingthe correspondingnvariant.
We prove thatwhile theoptimisticachi&zementandmaintenanceesignproblems
areNP-completethe PsPaCE-completenesgesultsobtainedfor achiezementand
maintenanceéasksgeneraliseéo combinedanddisjunctive agentdesign.

1 Intr oduction

We are interestedin building agentsthat can autonomouslyact to accomplishtasks
on our behalfin comple, unpredictableervironments.Otherresearchersith similar
goalshave developeda rangeof softwarearchitecturedor agentg17]. In this paper
however, we focusontheunderlyingdecisionproblemsassociateavith thedeployment
of suchagents Specifically we studythe agentdesignproblem[16].

Theagentdesignproblemmaybestatedasfollows: Givenanernvironmenttogether
with a specificationof a task that we desireto be carried out on our behalfin this
ervironment,is it possibleto constructanagentthatcanbe guaranteedo successfully
accomplishthe taskin the environment?The type of taskto be carriedout is crucial
to the studyof this problem.In previousresearchit wasshavn thatfor two important
classef tasks(achiezementtasks,wherean agentis requiredto achieze somestate
of affairs,andmaintenanceéasks whereanagentis requiredto maintainsomestateof
affairs),the agentdesignproblemis PSPACE-completein the mostgenerakcase16].

In this paper we considerseveral importantvariationsof suchtasks.First, in an
optimisticagentdesignproblem,we simply askwhetherthereexists an agentthathas



at leastsomechanceof achieving the goal or maintainingthe conditionrespectiely.
In a combinedagentdesignproblem,the taskinvolvesachiering somestateof affairs
while at the sametime ensuringthat someinvariantconditionis maintainedIn a dis-
junctivedesignproblem,we are presentedvith a numberof goalsandcorresponding
invariants— the aim is to designan agentthaton ary givenrun, will achieve one of
the goalswhile maintainingthe correspondingnvariant.We prove that for optimistic
achiezrementand maintenanceasks,the agentdesignproblemis NP-complete while
the PsPACE-completeneseesultsobtainedfor achiesrementandmaintenanceéasksgen-
eraliseto combinedanddisjunctive agentdesignproblems.

We begin in the following sectionby settingup an abstractmodel of agentsand
ervironmentswhich we useto formally definethe decisionproblemsunderstudy We
theninformally motivate andintroducethe variousagentdesignproblemswe study
and prove our main results.We discussrelatedwork in section6, and presentsome
conclusionsn section?.

Notation: We usestandardsettheoreticandlogical notationwherever possible,aug-
mentedasfollows. If Sis aset,thenthe setof finite sequencesver Sis denotedby S*.
If ¢ € S* ands € S, thenthe sequencebtainedby appendings to ¢ is denoteds - s.
We write s € ¢ to indicatethatelements is presenin sequence, andwrite last(o) to
denotethefinal elementof o. Throughouthe paper we assumesomefamiliarity with
compleity theory[12].

2 Agentsand Environments

In this section,we presentan abstractformal model of agentsandthe ervironments
they occupy; we thenusethis modelto frame the decisionproblemswe study The
systemf interestto usconsistof anagentsituatedn someparticularervironment;the
agentinteractswith theervironmentby performingactionsuponit, andtheervironment
respondgo theseactionswith changesn state.lt is assumedhatthe ernvironmentmay
bein ary of afinite setE = {e, €, ...} of instantaneoustatesAgentsareassumedo
have arepertoireof possibleactionsavailableto them,which transformthe stateof the
environment.LetAc = {a, /,. ..} bethe(finite) setof actions.

The basicmodel of agentsinteractingwith their environmentsis asfollows. The
ervironmentstartsin somestate andtheagentbeginsby choosinganactionto perform
onthatstate.As aresultof this action,the ervironmentcanrespondwith a numberof
possiblestates.However, only one statewill actually result— thoughof course the
agentdoesnot know in advancewhichit will be.On the basisof this secondstate the
agentagainchoosesnactionto perform.The ervironmentrespondsvith oneof a set
of possiblestatesthe agentthenchoosesnotheraction,andsoon.

A run, r, of anagentin anervironmentis thusa sequencef interleaved erviron-
mentstatesandactions:

aQ a1 a2 [¢ %3 Qu—1
r-g—e — & —>6 — - — e

Let R bethesetof all suchpossibleruns.We user, ', . .. to standfor memberof R.



In orderto representhe effect thatan agents actionshave on an ervironment,we
introducea statetransformerfunction (cf. [5, p154]):

7:R —2F

Thus a statetransformerfunction mapsa run (assumedo end with the action of an
agent)to a setof possibleervironmentstates Therearetwo importantpointsto note
aboutthis definition.

First, ervironmentsare allowed to be history dependen{or non-Markovian). In
otherwords, the next stateof an environmentis not solely determinedby the action
performedby the agentandthe currentstateof the environment.The previous actions
performedby the agent,andthe previous ervironmentstatesalsoplay a partin deter
mining the currentstate Many ervironmentshave this property For example,consider
the well-known travelling salesmarproblem[12, p13]: history dependencarisesbe-
causehe salesmatis not allowedto visit the samecity twice. Notethatit is oftenpos-
sible to transforma history dependenenvironmentinto a history independenbne,by
encodinginformationaboutprior historyinto an ervironmentstate. However, this can
only be doneat the expenseof an exponentialincreasein the numberof ervironment
stateslIntuitively, givena historydependengnvironmentwith statesetE, which hasan
associatedetof runsR, we would needto create|R x E| ervironmentstates.Since
|R| is easilyseento be exponentialin the sizeof Ac x E (evenif we assumea poly-
nomial boundon the length of runs), this implies thatthe transformatioris not likely
to be possiblein polynomialtime (or space)Hencealthoughsucha transformations
possiblein principle,it is unlikely to be possiblen practice.

Second note that this definition allows for non-determinisnin the ervironment.
Thereis thusuncertaintyabouttheresultof performinganactionin somestate.

If 7(r) = @, (wherer is assumedo endwith anaction),thenthereareno possible
successostatedo r. In this casewe saythatthereareno allowableactions andthat
therunis complete Oneimportantassumptiorwe make is thatevery runis guaranteed
to completewith lengthpolynomialin the sizeof Ac x E. This assumptiommay at first
sight appearestrictve, and so somejustificationis necessaryOur main point is that
exponential(or worse)runsare of no practical interestwhatsoeer: the only tasksof
interesto usarethosethatrequirea polynomial(or better)numberof actionsto achieve.
To seethis, supposeave allowed runsthatwere exponentialin the sizeof Ac x E; say
O(2/A°*Ely, Now considemtrivial ervironmentwith just 10 statesand10actions Then
in principle, suchan ervironmentwould allow tasksthat require2!%® = 1.2 x 103°
actionsto accomplishEvenif our agentscould performa 10° actionspersecond then
suchataskwould requiremoretime to carryoutthantherehasbeensincethe universe
began.The exponentialengthof runswill rapidly eliminateary advantagewe gainby
multiplying the speedof our agentby a constanfactor The polynomialrestrictionon
run lengthis, therefore entirely reasonablé we areconcernedvith tasksof practical
interest.

Beforeproceedingwe needto make cleara coupleof assumptiongboutthe way
thattransformerfunctionsarerepresentedTo understandvhatis meantby this, con-

L A high performancelesktopcomputercancarry out aboutthis mary operationgersecond.



siderthatthe input to the decisionproblemswe studywill includesomesortof repre-
sentatiorof the behaiour of the ervironment,andmorespecifically the ervironments
statetransformerfunction. Now, onepossibledescriptionof 7 is asatablethatmaps
run/actionpairsto the correspondingpossibleresultingernvironmentstates:

r,or — {el,ez, .. }

cee

fnyan = {...}
Sucha “verbose”encodingof 7 will clearly be exponentiallylarge (in the size of
E x Ac), but sincethe length of runswill be boundedby a polynomialin the size
of E x Ac, it will befinite. Oncegivensuchanencodingfinding anagentthatcanbe
guaranteedo achiese a setof goal stateswill, however, be comparatiely easy Unfor-
tunately of course no suchdescriptionof theenvironmentwill usuallybeavailable.In
this paper therefore we will restrictour attentionto ervironmentswhosestatetrans-
former function is describedas a two-tapeTuring machine,with the input (a run and
anaction)written on onetape;the output(the setof possibleresultanistates)s written
ontheothertape.lt is assumedhatto computetheresultantstatesthe Turing machine
requiresanumberof stepghatis atmostpolynomialin thelengthof theinput. We refer
to suchenvironmentrepresentationasconcise In the remainderof this paperwe will
assumehatall statetransformerfunctionsareconciselyrepresented.

Formally, we sayanervironmentEnv is atriple Env = (E, 7, &) whereE is a setof
ervironmentstatesy is a statetransformerfunction,representedonciselyande, € E
is theinitial stateof theervironment.

We now needto introducea modelof the agentghatinhabitsystemsMany archi-
tecturedor agentshave beenreportedin theliterature[17], andonepossibility would
thereforebe to directly useone of thesemodelsin our analysis.However, in orderto
ensurehatour resultsareasgeneralaspossible we chooseo modelagentssimply as
functionsthatmapruns(assumedo endwith anenvironmentstate)to actions(cf. [14,
pp580-581)):

Ag: R — Ac

Notice thatwhile environmentsareimplicitly non-deterministicagentsareassumedo
be deterministic.

We saya systenis a pair containinganagentandanernvironment.Any systenwill
haveassociatewvith it asetof possibleruns;we denotethesetof completerunsof agent
Ag in ervironmentEnv by R(Ag, Erv). Formally, a sequenceey, ag, €, a1, €, . .)
represents.runof anagentAgin ervironmentEnv = (E, 7, &) iff

1. & = 7(e) anday = Ag(ey) (Wheree is theemptysequence)and
2. foru> 0,

e, € 7((&, a0,-..,au-1)) Where
ay = Ag((e(),a(), .- 7eu))



3 Agent DesignTasks

We build agentdn orderto carry outtasksfor us. We canidentify mary differenttypes
of tasks.Thetwo mostobvious of theseareachievementasksandmaintenanceasks
asfollows[16]:

1. Achievementasksaretaskswith the generaform “achieve stateof affairs”.
2. Maintenanceasksaretaskswith the generaform “maintain stateof affairs¢”.

Intuitively, an achiezementtaskis specifiedoy a numberof “goal states”;the agentis
requiredto bringaboutoneof thesegoalstatesNotethatwe donotcarewhich goalstate
is achieved— all areconsidere@quallygood.Achievementasksareprobablythemost
commonlystudiedform of taskin artificial intelligence Many well-known A1 problems
(suchasthetowersof Hanoi) areinstance®f achiezementtasks.An achiezementtask
is specifiedby somesubsey; (for “good” or “goal”) of ervironmentstatesE. An agent
is successfubnaparticularrunif it is guaranteetb bringaboutoneof the states, that
is, if everyrun of theagentin the ervironmentresultsin oneof the statesj. We sayan
agentAg succeed# anernvironmentEnv if every run of theagentin thatervironment
is successfulAn agentthus succeedsn an ervironmentif it canguaranteeto bring
aboutoneof thegoalstates.

We referto atuple (Env, G), whereEnv is an ervironmentandG C E is a setof
ervironmentstatesasa taskervironment We canidentify the following agentdesign
problemfor achiezementtasks:

ACHIEVEMENT AGENT DESIGN

Given taskervironment(Env, G).

Answer “Yes”if thereexistsanagentAg thatsucceedi (Env, G), “No” oth-
erwise.

This decisionproblem amountsto determiningwhetherthe following second-order
logic formulais true,for agiventaskervironment(Ernv, G):

JAg- Vr € R(Ag,Env) - Je € G - eoccursinr.

We emphasiseghat achievementtasksare emphaticallynot simply graphsearchprob-
lems.Becausgheervironmentcanbehistorydependenthesolutionto anachiezement
designproblemmustbe a strateyy, which dictatesnot simply which actionto perform
for any givenenvironmentstate but which actionto performfor anygivenhistory. Such
stratgieswill be exponentiallylargein thesizeof E x Ac.

Examplel. Considerthe environmentwhosestatetransformerfunctionis illustrated
by the graphin Figure 1. In this ervironment,an agenthasjust four available actions
(a; to ay respectiely), andthe ervironmentcanbein any of six statege, to e;5). His-
tory dependencen this ervironmentariseshecause¢he agentis not allowedto execute
the sameactiontwice. Arcs betweenstatesin Figure 1 arelabelledwith the actions
that causethe statetransitions— notethatthe ervironmentis non-deterministicNow
considertheachiezementproblemsdeterminedy thefollowing goalsets:



Fig. 1. The statetransitionsof an exampleenvironment: Arcs betweenervironmentstatesare
labelledwith the setsof actionscorrespondingo transitionsNotethatthis ervironmentis history
dependentbecausagentsarenot allowedto performthe sameactiontwice. So, for example,if
theagentreachedstatee, by performingao thenas, it would notbeableto performas againin
orderto reaches.

-G = {ez}
An agentcanreliably achieve G; by performinga;y, the resultof which will be
eitherey, &, or e;. If g resultstheagentcanperformay to take it to 5 andthen
as totakeit to e. If e3 results|t cansimply performay.

- Gy ={es}
Thereis no agentthatcanbe guaranteedo achiere G,. If the agentperformsa;,
thenary of e to e; mightresult.In particulay if e, results,theagentcanonly get
to e;3 by performingas twice,whichis notallowed.

A usefulwayto think aboutACHIEVEMENT AGENT DESIGN is astheagentplaying
a gameagainsthe ervironment.In the terminologyof gametheory[2], thisis exactly
whatis meantby a “game againstnature”. The ervironmentand agentboth begin in
somestatetheagenttakesaturn by executinganaction,andtheervironmentresponds
with somestate theagentthentakesanotherturn,andsoon. Theagent‘wins” if it can
force the ervironmentinto one of the goal states;. The achiezementdesignproblem
canthenbe understoodas askingwhetheror not thereis a winning strategy that can
be playedagainstthe environmentEnv to bring aboutone of G. This classof problem
— determiningwhetheror not thereis a winning strat@y for oneplayerin a particular
two-playergame— is closelyassociateavith PSPACE-completeproblemg12, pp459—
474].

Justasmary taskscanbe characterisedsproblemswherean agentis requiredto
bring aboutsomestateof affairs,so mary otherscanbe classifiedas problemswhere
the agentis requiredto avoid somestateof affairs, thatis, to maintainsomeinvariant
condition. As an extreme example, considera nuclearreactoragent,the purposeof
which is to ensurethat the reactornever entersa “meltdown” state.Someavhat more
mundanelywe canimaginea softwareagent,oneof thetasksof whichis to ensurehat



a particularfile is never simultaneoushppenfor both readingandwriting. We referto
suchtaskervironmentsasmaintenanceéaskervironments.

A maintenanceéaskervironmentis formally definedby a pair (Erv, B), whereEnv
is anervironment,andB C E is asubsebf E thatwe referto asthe“bad”, or “failure”
states— thesearethe ervironmentstatesthat the agentmustavoid. An agentis suc-
cessfulwith respecto a maintenancgéaskenvironment{Env, B) if no statein B occurs
onary runin R(Ag, Env).

Example2. Consideragainthe ervironmentin Figure 1, and the maintenancdasks
definedby thefollowing badsets:

- B ={es}
Thereis clearlyanagentthatcanavoid e;. After the agentperformsits first action
(eitherag or ay), oneof thethreestatese; to e; will result.
If thestatethatresultsis e, thentheagentcanperformas, afterwhich eitherey or
e will result;therewill beno allowablemovesin eithercase.
If the statethatresultsis e,, thenthe agentcanonly performas, which will trans-
form the ervironmentto e;. The only allowablemove will thenbe ay (if this has
not alreadybeenperformed— if it has,thenthereareno allowablemoves);if the
agentperformsay, thenervironmentstatee, will result,from wheretherewill be
no allowablemoves.
Finally, if the statethatresultsis e3, thenthe agentcanonly performeag andthen
a», which returnsthe environmentto statee; from wherethereareno allowable
moves.

- B ={e}
No agentcanbeguaranteedb avoid e;. Whetheror notthefirst actionis ag or ay,
it is possiblethate, will result.

Given a maintenanceask ervironment(Env, B), the MAINTENANCE AGENT DE-
SIGN decisionproblemsimply involvesdeterminingwhetheror not thereexists some
agentthat succeedsn (Env, B). It is againusefulto think of MAINTENANCE AGENT
DESIGN asagame Thistime,theagentwinsif it manages$o avoid 5. Theervironment,
in therole of opponentjs attemptingto force the agentinto B; the agentis successful
if it hasawinning strat@y for avoiding B. It is nothardto seethatthe MAINTENANCE
AGENT DESIGN problemfor a given (Env, B) amountsto determiningwhetheror not
thefollowing second-ordelogic formulais true:

JAg- Vr € R(Ag, Env) - Ve € B - edoesnotoccurinr.

Intuition suggestshatMAINTENANCE AGENT DESIGN mustbe harderthatACHIEVE-

MENT AGENT DESIGN. This is becausawvith achiezementtasks,the agentis only re-
quiredto bring aboutG once whereasvith maintenanceéaskservironmentstheagent
mustavoid B indefinitely However, thisturnsout notto bethecase.

Theorem1 (From [16]). Both ACHIEVEMENT AGENT DESIGN and MAINTENANCE
AGENT DESIGN are PSPACE-completein the mostgeneml case(whele ervironments
maybe historydependent).



We remarkthatalthoughthe preciserelationshipof PSPACE-completeproblemsto, for

example NP-completeproblemss not (yet) known, it is generallybelievedthatthey are
muchharderin practice.For this reason pSPACE-completenessesultsareinterpreted
asmuchmorenegative than“mere” NP-completeness.

4 Optimistic Agent Design

In this paper we focus on somevariationsof ACHIEVEMENT AGENT DESIGN and
MAINTENANCE AGENT DESIGN. Thesevariationsallow usto considemwealerrequire-
mentsfor agentdesign,andalsoprogressiely morecomplex typesof tasksfor agents.
Thefirst variationwe consideris optimisticagentdesign(cf. [8]). Theintuition is that,

in our currentagentdesignproblemswe arelooking for an agentthat canbe guaran-

teedto carryoutthetask.Thatis, theagentis requiredto succeedvith thetaskon every
possiblerun. This is a rathersevererequirementafter all, whenwe carry out tasksin

therealworld, thereis frequentlysomepossibility— evenif ratherremote— thatwe

will fail. We would still beinclinedto saythatwe have the capabilityto carry out the

task,eventhoughwe know that,in principle atleast,it is possiblethatwe will fail.

This consideratioris our motivationfor amorerelaxednotion of agentdesign.If P
denotewitherthe ACHIEVEMENT AGENT DESIGN Of MAINTENANCE AGENT DESIGN,
thenby opPTIMISTIC P we meanthevariantof this problemin whichanagentis deemed
to succeedf thereis at leastonerun of theagentin the ernvironmentthatsucceedsvith
respecto thetask.So,for example,aninstanceof OPTIMISTIC ACHIEVEMENT AGENT
DESIGN (OAD) is givenby atuple (Env, G), aswith ACHIEVEMENT AGENT DESIGN.
Thegoalof theproblemis to determinevhetheror notthereexistsanagentAg suchthat
atleastonememberof G occursonatleastonerunof Agwhenplacedn Env. Formally,
anoAD problemcanbeunderstoodsdeterminingwhetherthefollowing second-order
logic formulais true:

JAg-3r € R(Ag,Env) - Je € G - eoccursinr.

Notice the differencebetweerthe patternof quantifiersin this expressiorandthatfor
ACHIEVEMENT AGENT DESIGN.

Example3. Consideragainthe ervironmentin Figure 1, andthe optimistic achieve-
mentdesignproblemsdefinedby the following sets:

- G3 ={e}
Recallthatno agentcanguaranteeto bring aboute, . However, thereclearly exists
anagentthatcanoptimisticallyachieve e, : theagentsimply performsay.

Intuition tells usthatoptimisticvariantsof ACHIEVEMENT andMAINTENANCE AGENT
DESIGN areeasiethantheirregularvariants aswe areproving anexistentialratherthan
auniversal(onerunratherthanall runs).And for once,intuition turnsoutto becorrect.
We canprove thefollowing.

Theorem 2. BothoAD andomD are NP-complete



Proof. We do the proof for oAD: the oMD caseis similar. We needto showthat (i) the
problemis in NP; and (i) someknownNP-completeproblemcanbereducedo OAD in
polynomialtime Membeship of NP is establishedy the following non-deterministic
algorithmfor oAD. Givenaninstance(Env, G) of OAD, begin by guessingrunr € R
sud that this run endswith a memberof G, and verify that the run is consistenwith
the statetransformerfunction = of Env. Sincethe length of the run will be at most
polynomialin thesizeof Acx E, guessingndverifyingcanbedonein non-deterministic
polynomialtime Givensud a run, extracting the correspondingagentis trivial, and
canbedonein (deterministic)polynomialtime

To prove completenessye reducethe DIRECTED HAMILTONIAN CYCLE (DHC)
problemto oAD [6, p199]:

DIRECTED HAMILTONIAN CYCLE (DHC):
Given AdirectedgraphG = (V,F C V x V)
Answer “Yes” if G containsa directedHamiltoniancycle “No” otherwise

Theidea of the reductionis to encodethe graph G directly in the statetransformer
functiont of the environment:actionscorrespondo edges of the graph, and success
occurs whena Hamiltoniancyclehasbeenfound.

Formally, givenaninstanceG = (V,F C V x V) of DHC, wegenemteaninstance
of oAD asfollows.First, createthe setof environmenttatesasfollows:

E = V U {succeed
We thendefinetheinitial stateof theernvironmentasfollows:
€ = Vo
We createan actione; ; correspondingo everyarcin G:
Ac={aij|(vi,Vv) € F}
We defineg to bea singleton:
G = {succeed

Andfinally, we definethe statetransformerfunctionr in two parts. Thefirstcasedeals
with thefirst action of theagent:

ooy vt (v,v) €F
T(e- o) = {(Z) otherwise

Thesecondcasedealswith subsequerdctions:

0 if vy occuisinr - v; andv; # Vg
7(r -vi - a5 j) = { {succeed if v = vy andeveryv € V occursinr - v;
{vi} if (vi,v) € F

An agent can only succeedn this ernvironmentif it visits every vertex of the original
graph.Anagentwill fail if it revisitsanynode Sincetheconstructionis clearly polyno-
mial time, weare done



As anaside hotethatthis proof essentiallyinvolvesinterpretingthe Hamiltoniancycle
problemas a gamebetweena deterministic,history dependentenvironment,and an
agent.The objective of the gameis to visit every vertex of the graphexactly once.The
gameis historydependenbecausehe “player” is not allowedto revisit vertices.

5 Disjunctive Agent Design

The next variationsof agentdesignthat we considerinvolve combiningachiezement
and maintenancgroblems.The ideais thatwe specifya taskby meansof both a set
G C EandasetB C E. A runwill besaidto satisfysuchataskif it containsat least
onestatein G, andcontainsnostatesn 5. As before we sayanagentAg succeed# an
ervironmentEnv with suchataskif everyrun of theagentin the environmentsatisfies
thetask,i.e., if every run containsatleastonestatein G andno statesn B. Note that
we do not requirethe samestatego be achievedon differentruns— all statesn G are
considerecquallygood.

Example4. With respecto the ervironmentin Figurel, considerthe following com-
bineddesigntasks:

— G4 ={e} andB; = {e4}.
Thereis clearly an agentthat can be guaranteedo succeedwith this task. The
agentsimply usesthe strat@y describedhbove for the achiavementtaskof e,; this
stratgy avoidsey.

- Gs ={&}andB; = {&}.
Thereis noagentthatcanbe guaranteedo bring aboute, while avoiding e;.

We referto atriple (Env, G, B), whereEnv is anervironment,andG, B C E, asa
combinedaskernvironment Obviously, if G C B, thenno agentwill existto carryout
thetask.

It turnsout thatthe COMBINED AGENT DESIGN problemis in factno harderthan
eitherACHIEVEMENT AGENT DESIGN Or MAINTENANCE AGENT DESIGN. (Theprob-
lemis of coursenoeasierasany ACHIEVEMENT AGENT DESIGN problem(Env, G) can
trivially bereducedo a COMBINED AGENT DESIGN problem(Env, G, ).) We will see
thatit is in facta specialcaseof a yet moregeneralype of problem,calleddisjunctive
agentdesign.Theideain a disjunctive taskis thatwe give anagenta numberof alter-
native goalsto achieve, whereeachgoaliis associatedvith a correspondingnvariant
condition. An agentis successfulvith sucha taskif, on every possiblerun, it brings
aboutoneof thegoalswithout invalidatingthe correspondindnvariance.

To make this more precise a disjunctive agentdesignproblemis specifiedusinga
setof pairswith theform:

{<g1761>7 RN <gn76n>}

Here,G; is a setof goal statesand B; is the invariantcorrespondingo G;. A run will
be saidto satisfysucha taskif every run satisfiesat leastone of the pairs (Gi, Bi) €
{{G1,B1),...,{Gn, Bn)}. In otherwords,arunr satisfiedask{(G1, B1), ..., (Gn, Bn)}
if it satisfies(G,, B1) or it satisfieSG>, B2) or ... or it satisfies(Gn, Bn).



Formally, this probleminvolvesaskingwhetherthefollowing second-ordeformula
is true:

JAg-Vr € R(Ag,Env) -Ji- [(Je€ G -eisinr) and(Ve € B; - eis notin r)]
Noticethefollowing subtletiesof this definition:

— An agentis not requiredto bring aboutthe samegoal on eachrun in orderto
be consideredo have succeededDifferent goalson differentruns are perfectly
acceptable.

— If anagentbringsaboutsomestatein G; onarunr andno statein r is in B;, then
the factthat somestatesin B; occurin r (for i # j) is not relevant— the agentis
still deemedo have succeedednrunr.

We canprove thefollowing.

Theorem 3. DISIUNCTIVE AGENT DESIGN iS PSPACE-complete

Proof. As before, we needto establishthat DISIUNCTIVE AGENT DESIGN (i) is in
PSPACE, and (ii) is PSPACE-hard. PsPACE-hardnessfollows immediatelyfrom Theo-
rem1l: anyinstanceof ACHIEVEMENT AGENT DESIGN OF MAINTENANCE AGENT DE-
SIGN canbeimmediatelyreducedo aninstanceof DISIUNCTIVE AGENT DESIGN. We
therefore focuson establishingnembeship of PSPACE.

We givethe designof a non-deterministipolynomialspaceTuring macineM that
acceptsnstance®f the problemthathavea successfubutcomeandrejectsall others.
Theinputsto thealgorithmwill be a taskenvironment{Env, {(G1, B1),. .., {(Gn, Bn)})
togetherwitharunr = (e, ag, - - -, ak_1, &) —thealgorithmactuallydecidesvhether
or notthereis an agentthatwill succeedn the ervironmeniiventhis currentrun. Ini-
tially, therunr will besetto theemptysequence. Thealgorithmfor M is asfollows:

1. if r endswith an ervironmentstatein G;, for somel < i < n, thenchedk whether
anymembeiof B; occuisin r —if theansweris no, thenM accepts;

2. if there are no allowableactionsgivenr, thenM rejects;

3. non-deterministicallychoosean action« € Ac, andthenfor each e € 7(r - a)
recussivelycall M with therunr - o - €;

4. if all of theseacceptthenM acceptsptherwiseM rejects.

Thealgorithmthusnon-deterministicallyxploresthe spaceof all possibleagents.No-

tice thatsinceanyrun will beat mostpolynomialin the sizeof E x Ac, thedepthof re-

cursionstak will bealsobeat mostpolynomialin thesizeof E x Ac.HenceM requires

only polynomialspace HenceDISIUNCTIVE AGENT DESIGN is in non-deterministic
polynomialspace(NPSPACE). ButsincePSPACE = NPSPACE [12, p150], it followsthat

DISJUNCTIVE AGENT DESIGN is alsoin PSPACE.

Notethatin DISIUNCTIVE AGENT DESIGN, werequireanagenthat,oneveryrun,both
achievessomestatein G; while avoiding all statesin B;. We canconsidera variantof
DISJUNCTIVE AGENT DESIGN, asfollows. Theideais thaton every run,anagentmust



eitherachieve somestatein G, or avoid all statedn B;. This conditionis givenby the
following second-ordeformula:

JAg-Vr € R(Ag,Env)-3i-[(3e€ Gi-eisinr) or (Vee B; - eisnotinr)]

We referto this problemaswEAK DISJUNCTIVE AGENT DESIGN. It is not difficult to
provethatthis problemis alsoPsPACE-complete.

Theorem4. WEAK DISJUNCTIVE AGENT DESIGN iS PSPACE-complete

Proof. pspACE-hardnessfollows from Theoem 1. To showmembeship, we give the
designof a non-deterministigolynomialspaceTuring madine M thatwill decidethe
problem—theideais similar to Theoem3:

1. if r endswith an ervironmenttatein G;, for somel < i < n,thenM accepts;

2. if there are no allowableactionsgivenr, andthereis somel < i < nsud thatno
elemenof B;j occursonr, thenM accepts;

3. if there are no allowableactionsgivenr, thenM rejects;

4. non-deterministicallychoosean actiona € Ac, andthenfor eath e € 7(r - )
recussivelycall M with therunr - o - €;

5. if all of theseacceptthenM acceptsptherwiseM rejects.

Theremainderof the proofis as Theoem3.

6 RelatedWork

Probablythe mostrelevantwork from mainstreantomputersciencedo thatdiscussedh
this paperhasbeenon the applicationof temporallogic to reasoningaboutsystemg9,
10]. Temporalogic hasbeenparticularlyappliedto thespecificatiorof non-terminating
systems.Temporallogic is particularly appropriatefor the specificationof suchsys-
temsbecausét allows a designerto succinctlyexpresscomplex propertiesof infinite
sequencesf states.

We identifiedseveral decisionproblemsfor agentdesign,andcloselyrelatedprob-
lemshave alsobeenstudiedin the computersciencditerature.Perhapghe closestto
our view is the work of Manna,Pnueli,Wolper, and colleagueon the automaticsyn-
thesisof systemsrom temporallogic specificationg4, 11,13]. In this work, tasksare
specifiedasformulaeof temporallogic, and constructve proof methodsfor temporal
logic are usedto constructmodel-like structuresfor theseformulae,from which the
desiredsystemcanthenbe extracted.

In artificial intelligence theplanningproblemis mostcloselyrelatedto ourachieve-
menttasks[1]. Bylanderwasprobablythe first to undertale a systematicstudy of the
compleity of the planningproblem;he shaved that the (propositional)STRIPS deci-
sionproblemis PsPACE-complete3]. Building on his work, mary othervariantsof the
planningproblemhave beenstudied— a recentexampleis [8]. The maindifferences
betweerour work andthis areasfollows:



— Mostcompleity resultsin theplanningliteratureassumeleclamtivespecifications
of goalsandactions— the STRIPS representatiois commonlyusedIn somecases,
it is thereforenot clearwhetherthe resultsobtainedreflectthe compleity of the
decisiontask, or whetherthey are an artifact of the chosenrepresentationSome
researchersyoting this, have consideredflat” representationsyhere,asin our
work, goalsarespecifiedassetsof statesratherthanaslogical formulae[8].

— Mostresearcherbave ignoredthe propertiesof the ervironment;in particular we
are aware of no work that considershistory dependenceAdditionally, most re-
searchassumesleterministicervironments.

— As faraswe areaware, no otherresearchin Al planninghasconsidereccomple
task specifications— the focus appeardo be almostexclusively on achiasement
goals.

Recently therehasbeenrenaved interestby the artificial intelligenceplanningcom-
munity in Partially ObservableMarkov DecisionProcesse$POMDPS) [7]. Putsimply,

the goal of solvinga POMDP is to determinean optimal policy for actingin an ervi-

ronmentin which thereis uncertaintyaboutthe ervironmentstate, and which is non-
deterministic.Finding an optimal policy for a POMDP problemis similar to our agent
designproblem.

7 Conclusions

In this paper we have investigatedthe computationalcompleity of two important
classe®f agentdesignproblem.In acombinedagentdesignproblem,we defineatask
via a setof goalstatesanda setof statescorrespondingo aninvariant;we askwhether
thereexists an agentthat canbe guaranteedo achieve the goal while maintainingthe
invariant.In adisjunctive agentdesignproblem,ataskis specifiedoy a setof goalsand
correspondingnvariants;we askwhetherthereexists an agentthatwill bring abouta
goal statewhile maintainingthe correspondingnvariant. We have demonstratedhat
both of theseproblemsare PsPACE-complete,and are henceno worsethanthe (intu-
itively simpler)achiezementandmaintenanc@roblemsdiscussedh [16].

We arecurrentlyinvestigatingpneobviousgeneralisatiomf agentdesignproblems,
to allow for arbitrary booleancombinationsof tasks,ratherthansimple disjunctions.
Caseawherethe PsPACE-completeneseesultscollapseto NP or P arealsobeinginves-
tigated.Finally, multi-agentvariantsseemworthy of study(cf. [15]).

AdknowledgmentsWe thankthe reviewersfor their detailed insightful, andextremely
helpful comments.
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