The Computational Complexity of
Agent Verification

Michael Wooldridge and Paul E. Dunne

Department of Computer Science
University of Liverpool
Liverpool L69 7ZF
United Kingdom

{M.J.Wooldridge, P.E.Dunne}@csc.liv.ac.uk

Abstract. In this paper, we investigate the computational complexity
of the agent verification problem. Informally, this problem can be under-
stood as follows. Given representations of an agent, an environment, and
a task we wish the agent to carry out in this environment, can the agent
be guaranteed to carry out the task successfully? Following a formal defi-
nition of agents, environments, and tasks, we establish two results, which
relate the computational complexity of the agent verification problem to
the complexity of the task specification (how hard it is to decide whether
or not an agent has succeeded). We first show that for tasks with spec-
ifications that are in X%, the corresponding agent verification problem
is II7 , ,-complete; we then show that for PSPACE-complete task specifi-
cations, the corresponding verification problem is no worse — it is also
PSPACE-complete. Some variations of these problems are investigated.
We then use these results to analyse the computational complexity of
various common kinds of tasks, including achievement and maintenance
tasks, and tasks that are specified as arbitrary Boolean combinations of
achievement and maintenance tasks.

1 Introduction

We share with many other researchers the long-term goal of building agents
that will be able to act autonomously in dynamic, unpredictable, uncertain en-
vironments in order to carry out complex tasks on our behalf. Central to the
deployment of such agents is the problem of task specification: we want to be
able to describe to an agent what task it is to carry out on our behalf without
telling the agent how it is to do the task.

Associated with the issue of task specification are several fundamental com-
putational problems. The first of these is the agent design problem: Given (spec-
ifications of) a task and an environment in which this task is to be carried out, is
it possible to design an agent that will be guaranteed to successfully accomplish
the task in the environment? The complexity of this problem was investigated
in [10,11] for a range of different task types and representation schemes. Two
main types of task were investigated in this work: achievement tasks and main-
tenance tasks. Crudely, an achievement task is specified by a set of “goal” states;

an agent is simply required to bring about one of these states in order to have
succeeded. Maintenance tasks are also specified by a set of states, (referred to
as “bad” states), but this time an agent is regarded as having succeeded if it
avoids these states. The complexity of the agent design problem for both achieve-
ment and maintenance tasks was shown to be PSPACE-complete when reasonable
assumptions were made about the representation of the task and the environ-
ment [10], although less tractable (more verbose) representations reduced the
complexity of the problem, rendering it NL-complete in the best case considered.
In [11], these results were shown to generalise to seemingly richer types of task
specifications: combined task specifications, (in which tasks are specified as a
pair consisting of an achievement and maintenance task — the agent is required
to bring about the goal while maintaining the invariant), and disjunctive task
specifications, (in which a task is specified as a set of pairs of achievement and
corresponding maintenance tasks: on any given run, the agent is required to
satisfy one of the goals while maintaining the corresponding invariant).

In this paper, we consider the closely related problem of agent verification.
Informally, the agent verification problem is as follows. We are presented with
(representations of) an environment, a specification of a task to be carried out
in this environment, and an agent; we are asked whether or not the agent can
be guaranteed to carry out the task successfully in the environment. When con-
sidering this problem, we view task specifications as predicates ¥ over execution
histories or runs. In this paper, we examine and characterise the complexity
of the agent verification problem for two general classes of task specification
predicate. In the first case, we examine the complexity of the problem for task
specifications ¥ that are (strictly) in X% for some w € IN. Notice that this in-
cludes perhaps the two most important complexity classes: P (i.e., X¥) and NP
(i.e., ZT). We prove that if ¥ is in X? then the corresponding agent verifica-
tion problem is IT? 1-complete. The second general result shows that if the task
specification ¥ is PSPACE-complete, then the corresponding verification problem
is no worse — it is also PSPACE-complete.

We then use these results to analyse a number of different task specification
frameworks. In particular, we analyse the complexity of verification for achieve-
ment and maintenance tasks, and the complexity of a more general framework
in which tasks are specified as arbitrary Boolean combinations of achievement
and maintenance tasks.

We begin in the following section by setting up an abstract model of agents
and environments, which we use to formally define the decision problems under
study. We then informally motivate and introduce the various agent verification
problems we study, and prove our main results. We discuss related work in
section 5, and present some conclusions in section 6. Throughout the paper, we
presuppose some familiarity with complexity theory [7].

2 Agents, Environments, and Tasks

In this section, we present an abstract formal model of agents, the environments
they occupy, and the tasks that they carry out. (Please note that because of
space restrictions, we simplified the presentation in this section by omitting
some self-evident technical details.)

Environments

The systems of interest to us consist of an agent situated in some particular
environment. The agent interacts with the environment by performing actions
upon it, and the environment responds to these actions with changes in state.
It is assumed that the environment may be in any of a finite set E = {e, ¢',...}
of instantaneous states. Agents are assumed to have a repertoire of possible
actions available to them, which transform the state of the environment. Let
Ac = {a,d/,...} be the (finite) set of actions.

The basic model of agents interacting with their environments is as follows.
The environment starts in some state, and the agent begins by choosing an
action to perform on that state. As a result of this action, the environment can
respond with a number of possible states. However, only one state will actually
result — though of course, the agent does not know in advance which it will be.
On the basis of this second state, the agent again chooses an action to perform.
The environment responds with one of a set of possible states, the agent then
chooses another action, and so on.

A run, r, of an agent in an environment is thus a sequence of interleaved
environment states and actions:

7‘:60&61&62&)63%-“@6”
Let R be the set of all such possible runs (over some Ac, E), let R4° be the
subset of R that end with an action, and let R¥ be the subset of R that end
with a state. We use r,7’,... to stand for members of R.
In order to represent the effect that an agent’s actions have on an environ-
ment, we introduce a state transformer function:

7 RAC = 2F,

Thus a state transformer function is a partial function that maps a run (assumed
to end with an allowable action of the agent) to a set of possible environment
states. There are two important points to note about this definition. First, en-
vironments are allowed to be history dependent (or non-Markovian). In other
words, the next state of an environment is not solely determined by the action
performed by the agent and the current state of the environment. The previous
actions performed by the agent, and the previous environment states also play
a part in determining the current state. Second, note that this definition allows
for non-determinism in the environment. There is thus wuncertainty about the
result of performing an action in some state.

If 7(r) = 0, (where r is assumed to end with an action), then there are no
possible successor states to r. In this case, we say that the run is terminated.
Similarly, if an agent has no allowable actions, then we say a run has terminated.
One important assumption we make is that every run is guaranteed to terminate
with length at most |Ac x FE|. This assumption may appear restrictive, and
so some justification is necessary. The most important point is that while the
restriction is of theoretical importance (it limits the generality of our results),
it is not likely to be of practical importance, for the following reason. Consider
an environment whose state is determined by k Boolean values; clearly, this
environment can be in 2* states. In practice, we will never have to consider runs
that go on for 2* time steps, for an environment defined by k& Boolean attributes.
So the restriction on run length, while being a theoretical limit to our work, is
reasonable if we are concerned with tasks of practical, everyday interest.

Before proceeding, we need to make clear a couple of assumptions about the
way that transformer functions are represented. To understand what is meant by
this, consider that the input to the decision problems we study will include some
sort of representation of the behaviour of the environment, and more specifically,
the environment’s state transformer function 7. We assume that the state trans-
former function 7 of an environment is described as a two-tape Turing machine,
with the input (a run and an action) written on one tape; the output (the set
of possible resultant states) is written on the other tape. It is assumed that to
compute the resultant states, the Turing machine requires a number of steps
that is at most polynomial in the length of the input.

Formally, an environment Env is a quad Env = (E, Ac, T, ¢g) where E is a
set of environment states, Ac is a set of actions, 7 is a state transformer function,
and ey € F is the initial state of the environment.

Agents

We model agents simply as functions that map runs (assumed to end with an
environment state) to actions (cf. [9, pp580-581]):

Ag:RY = Ac

Notice that while environments are implicitly non-deterministic, agents are as-
sumed to be deterministic.

We say a system is a pair containing an agent and an environment. Any
system will have associated with it a set of possible runs: formally, a sequence
(€0, 0, €1,1,€a,...,er) represents a run of an agent Ag in environment Env =
(E, Ac, T, e) iff

1. e is the initial state of Env and ap = Ag(eo); and
2. for u>0

ew € 7((€0,0,-..,ay 1)) where
Qy = Ag((607a07 RN eu))

We denote the set of all terminated runs of agent Ag in environment Env by
R*(Ag, Env), and the set of “least” terminated runs of Ag in Env (i.e., runs
r in R*(Ag, Env) such that no prefix of r is in R*(Ag, Env)) by R(Ag, Env).
Hereafter, when we refer to “terminated runs” it should be understood that we
mean “least terminated runs”.

Tasks

We build agents in order to carry out tasks for us. We need to be able to describe
the tasks that we want agents to carry out on our behalf; in other words, we
need to specify them. In this paper, we shall be concerned with tasks that are
specified via a predicate ¥ over runs:

U:R— {t,f}

The idea is that ¥(r) = t means that the run r satisfies specification ¥, whereas
¥(r) = f means that run r does not satisfy the specification.

Given a complexity class C, we say that specification ¥ is in C if the runs
that satisfy ¥ form a language that can be recognised in C. In this paper, we
will focus primarily on two types of specification: those that are in the class
X? (for some u € IN), and those that are PSPACE-complete. (To be accurate,
in the first case we consider task specifications that are strictly in XF, that
is, in X2 \ ¥P_,. For convenience, we define ¥? =) for u < 0; thus a task
specification is in XF if it is in Z§ \ @ = P\ @ = p.) In both cases, we assume that
a specification ¥ is represented as a Turing machine Ty that accepts just those
runs which satisfy the specification. Any X? specification can be represented as
an alternating Turing machine that operates in polynomial time using at most u
alternations, and similarly, any PSPACE-complete specification can be represented
as an polynomial time alternating Turing machine (which must therefore use at
most a polynomial number of alternations).

3 Agent Verification

We can now state the agent verification problem:

AGENT VERIFICATION

Given: Environment Env, agent Ag, and task specification ¥.

Answer: “Yes” if every terminated run of Ag in Env satisfies specification
¥, “No” otherwise.

This decision problem amounts to determining whether the following second-
order formula is true:

Vr € R(Ag, Env) we have ¥(r) = t.

The complexity of this problem will clearly be determined in part by the
complexity of the task specification ¥. If ¥ is undecidable, for example, then

so is the corresponding verification problem. However, for more reasonable task
specifications, we can classify the complexity of the verification problem. We
focus our attention on the polynomial hierarchy of classes X2 (where u € IN) [7,
pp424-425] and the class PSPACE of task specifications that can be decided in
polynomial space [7, pp455-489]. (Recall that in the first case, we are concerned
with task specifications that are strictly in X2 — see the discussion above.)

Theorem 1. The agent verification problem for X¥ task specifications is ITY 1
complete.

Proof. To show that the problem is in II? 11, we sketch the design of a Turing
machine that decides the problem by making use of a single universal alterna-
tion, and invoking a X% oracle. The machine takes as input an agent Ag, an
environment Env, and a X task specification ¥ :

1. universally select all runs r € R(Ag, Env);
2. for each run r, invoke the X oracle to determine the value of ¥(r);
3. accept if ¥(r) = t, reject otherwise.

Clearly this machine decides the problem in

P = co-np”i = co-Xh =17 ;.

To show the problem is II}, | -complete, we reduce the problem of determining
whether QBF 1y formulae are true to agent verification [7, p428]. An instance
of QBFy41,v 15 given by a quantified Boolean formula with the following structure:

Vi 372 V.’E_3 Qu-i—lxu-i-l X($_177$u+1) (1)

i which:

— the quantifier Qu41 is “V” if u is even and “3I” otherwise;

— each T; is a finite collection of boolean variables; and

— X(T1, - -, Tux1) is a propositional logic formula over the Boolean wvariables
z'_la sy Tyl

Such a formula is true if for all assignments that we can give to Boolean variables
21, we can assign values to Boolean variables zz, ..., such that x(T1,. .., Tut1)
is true. Here is an example of a QBFay formula:

V.Z'la.%z[(l'l \Y .1'2) A (1'1 \% _|.Z'2)] (2)

Formula (2) in fact evaluates to false. (If z; is false, there is no value we can
give to 2 that will make the body of the formula true.)

Given a QBFy 41,y formula (1), we produce an instance of agent verification
as follows. First, let T = xi,z2,...,z" be the outermost collection of univer-
sally quantified variables. For each of these variables z!, we create two possible
environment states, € and € gis corresponding to a valuation of true or false
respectively to the variable z{. We create an additional environment state e,

to serve as the initial state. The environment only allows the agent to perform
the action g, and the environment responds to the ith performance of action
oo with either e, or e_gi. After m performances of ag the run terminates. In
this way, each run determines a valuation for the universally quantified variables
o =z, 3, ..., 2", the set of all runs corresponds to the set of all possible valu-
ations for these variables. Given a run r, we denote by x (%1, . .., Tuy1)[r/Zi] the
Boolean formula obtained from x(Ti,. .., Tuy1) by substituting for each variable
x} the valuation (either true or false) made in run r to .
Finally, we define a task specification ¥ as follows:

o { t if the X2 formula 373 VT3 -+ Qui1Tutt X(@1,- .., Tut1)[r/T1] is true
r) =

f otherwise.

Clearly, the input formula (1) will be true if the agent succeeds in satisfying
the specification on all runs. Since the reduction is polynomial time, we are done.

We can also consider more expressive task specification predicates: those that
are PSPACE-complete. In fact, it turns out that having a PSPACE-complete task
specification predicate does not add to the complexity of the overall problem.

Theorem 2. The agent verification problem for PSPACE-complete task specifi-
cations is also PSPACE-complete.

Proof. PSPACE-hardness is obvious from the complexity of the task specification.
To show membership of PSPACE we first show that the complement of the agent
verification problem for PSPACE-complete task specifications is in PSPACE. The
complement of the agent verification problem involves showing that some run
does not satisfy the specification, i.e., that there is a run r € R(Ag, Env) of agent
Ag in environment Env such that ¥(r) = f. The following non-deterministic
algorithm decides the problem:

1. guess a run r € R(Ag, Env), of length at most |E x Ac|;
2. verify that ¥(r) = f.

This algorithm runs in

P P
NPSPACE!Y = pSPACET = PSPACE.

Hence the wverification problem is in co-PSPACE. But co-PSPACE=PSPACE [7,
p142], and so we conclude that the agent verification problem for PSPACE-complete
task specifications is in PSPACE.

An obvious question is whether “simpler” environments can reduce the com-
plexity of the verification problem. An obvious candidate is deterministic en-
vironments. An environment is deterministic if every element in the range of
T is either a singleton or the empty set. For such environments, the result of
performing any action is at most one environment state.

Theorem 3. Let C be a complexity class that is closed under polynomial time
reductions. Then the verification problem for deterministic environments and
task specifications that are in C is also in C.

Proof. Generate the run r of the agent in the environment (which can be done
with O(|E x Ac|) calls on the Turing machine representing the environment,
each of which requires at most time polynomial in |E x Ac|), and then verify that
U(r) =t (which can be done in C).

Another obvious simplification is to consider Markovian environments: an
environment is Markovian, or history independent, if the possible next states
of the environment only depend on the current state and the action performed.
Although they are intuitively simpler than their non-Markovian counterparts,
from the verification point of view, Markovian environments are in fact no better
than non-Markovian environments.

Theorem 4. The agent verification problem for Markovian environments and
XP strategy specifications is IV L1-complete.

Proof. The proof of Theorem 1 will suffice without alteration: the critical point
to note is that the environment generated in the reduction from QBFy,41yv is
Markovian.

4 Types of Tasks

In this section, we use the results established in the preceding section to analyse
the complexity of verification for three classes of task specifications: achievement
and maintenance tasks, and tasks specified as arbitrary Boolean combinations
of achievement and maintenance tasks.

4.1 Achievement and Maintenance Tasks

There are two obvious special types of tasks that we need to consider [10]:
achievement tasks and maintenance tasks. Intuitively, an achievement task is
specified by a number of “goal states”; the agent is required to bring about
one of these goal states. Note that we do not care which goal state is achieved
— all are considered equally good. Achievement tasks are probably the most
commonly studied form of task in artificial intelligence. An achievement task is
specified by some subset G (for “good” or “goal”) of environment states E. An
agent is successful on a particular run if it is guaranteed to bring about one of
the states G, that is, if every run of the agent in the environment results in one
of the states G. We say an agent Ag succeeds in an environment Env if every
run of the agent in that environment is successful. An agent thus succeeds in an
environment if it can guarantee to bring about one of the goal states.

Fig. 1. The state transitions of an example environment: Arcs between environment
states are labelled with the sets of actions corresponding to transitions. Note that this
environment is history dependent, because agents are not allowed to perform the same
action twice. So, for example, if the agent reached state e» by performing ao then as,
it would not be able to perform a» again in order to reach es.

Example 1. Consider the environment whose state transformer function is illus-
trated by the graph in Figure 1. In this environment, an agent has just four
available actions (a; to a4 respectively), and the environment can be in any of
six states (ep to e5). History dependence in this environment arises because the
agent is not allowed to execute the same action twice. Arcs between states in
Figure 1 are labelled with the actions that cause the state transitions — note
that the environment is non-deterministic. Now consider the achievement tasks
determined by the following goal sets:

- Y= {62}
An agent can reliably achieve G; by performing a;, the result of which will
be either e1, e2, or es. If e; results, the agent can perform ag to take it to
es and then as to take it to es. If eg results, it can simply perform ay.

— Go = {es}
There is no agent that can be guaranteed to achieve G,. If the agent performs
ai, then any of e; to e3 might result. In particular, if e; results, the agent
can only get to e3 by performing as twice, which is not allowed.

Just as many tasks can be characterised as problems where an agent is re-
quired to bring about some state of affairs, so many others can be classified as
problems where the agent is required to avoid some state of affairs, that is, to
maintain some invariant condition. As an extreme example, consider a nuclear
reactor agent, the purpose of which is to ensure that the reactor never enters a
“meltdown” state. Somewhat more mundanely, we can imagine a software agent,
one of the tasks of which is to ensure that a particular file is never simultaneously
open for both reading and writing. We refer to such tasks as maintenance tasks.

A maintenance task is formally defined by a set B C F that we refer to
as the “bad”, or “failure” states — these are the environment states that the
agent must avoid. An agent Ag in environment Env is deemed successful with
respect to such a maintenance specification if no state in B occurs on any run
in R(Ag, Env).

Example 2. Consider again the environment in Figure 1, and the maintenance
tasks defined by the following bad sets:

- Bl = {65}
There is clearly an agent that can avoid es. After the agent performs its first
action (either ap or aj), one of the three states e; to es will result. If the
state that results is e, then the agent can perform as, after which either e4
or ey will result; there will be no allowable moves in either case. If the state
that results is eg, then the agent can only perform as, which will transform
the environment to e;. The only allowable move will then be aq (if this has
not already been performed — if it has, then there are no allowable moves);
if the agent performs ag, then environment state e; will result, from where
there will be no allowable moves. Finally, if the state that results is ez, then
the agent can only perform «g and then as, which returns the environment
to state es from where there are no allowable moves.

— By ={e}
No agent can be guaranteed to avoid ez. Whether or not the first action is
Qg Or aq, it is possible that e; will result.

Given a an achievement task specification with good set G, or a maintenance
task specification with bad set B, it should be clear that the corresponding
specifications ¥g and ¥p will be decidable in (deterministic) polynomial time,
i.e., in X¥§. For example, to determine whether a run r € R satisfies g, we
simply check whether any member of G occurs on r. We can therefore apply
Theorem 1 to immediately conclude the following.

Corollary 1. The agent verification problem for achievement and maintenance
tasks is IT7 -complete (i.e., co-NP-complete).

4.2 Boolean Task Specifications

We can also consider a very natural extension to achievement and maintenance
tasks, in which tasks are specified as arbitrary Boolean combinations of achieve-
ment and maintenance tasks. We specify such tasks via a formula of proposi-
tional logic x. Each primitive proposition p that occurs in x corresponds to an
achievement goal, and hence a set E, C E of environment states. A negated
proposition —p corresponds to a maintenance task with bad states £, C E.
From such primitive propositions, we can build up more complex task specifica-
tions using the Boolean connectives of propositional logic. To better understand
the idea, consider the following example.

Ezample 3. Recall the environment in Figure 1, and suppose that we allow three
primitive proposition letters to be used: p1, p2, p3, where p; corresponds to envi-
ronment states {ez}, p2 corresponds to {es}, and ps corresponds to {e;}. Con-
sider the following task specifications:

- DN
This is an achievement task with goal states {e2}. Since p; corresponds to
{e2}, an agent can reliably achieve p; by performing a;, the result of which
will be either e;, ez, or es. If e; results, the agent can perform ag to take it
to es and then as to take it to es. If e3 results, it can simply perform aq.
- h
This is essentially a maintenance task with bad states {ez}. Since the agent
must perform either ag or ey, no agent can guarantee to avoid es.
—pVp
Since there is an agent that can be guaranteed to succeed with task p;, there
is also an agent that can be guaranteed to succeed with task p; V ps.
— PLAp2
This task involves achieving both es and e3. There is no agent that can be
guaranteed to succeed with this task.
- p1 A(p2V p3)
This task involves achieving e; and either ez or e;. There exists an agent
that can successfully achieve this task.
= (p1 A=p2) V (p2 A —ps)
This task involves either achieving e» and not es or else achieving es and not
e1. Since there exists an agent that can achieve es and not es, there exists
an agent that can succeed with this task.

Let us now formalise these ideas. We start from a set & = {p1,...,pn} of n
Boolean variables. A propositional formula x(®,) over &,, is inductively defined
by the following rules:

1. x(®,) consists of single literal (z or —z where z € &,,);
2. x(®,) = x1(r) 0 x2(P,), where § € {V,A} and x; and x2 are propositional
formulae.

Let fy(s,) be the Boolean logic function (of n variables) represented by x (®,).
Let S = (Ey, Es,...,E,) be an ordered collection of pair-wise disjoint subsets
of E (note that S does not have to be a partition of E) and x(®,) be a non-
trivial formula. If 7 € R is a run, then the instantiation, 8(r) = (b1, ba, ..., by)
of Boolean values to &@,, induced by r is defined by:

1 if r contains some state e € E;
b; = .
0 otherwise.

In other words, a proposition p; € &,, is defined to be true with respect to a run
r if one of the states in F; occurs in r; otherwise, p; is defined to be false.

A run, r, succeeds with respect to the formula x if £, (6(r)) = 1. An agent Ag
satisfies the Boolean task specification x in environment Env if Vr € R(Ag, Env)

we have f, (6(r)) = 1. Given arun r € R and a Boolean task specification x(%,)
the problem of determining whether f, (8(r)) = 1 is decidable in deterministic
polynomial time'. So, by Theorem 1, we can conclude:

Corollary 2. The agent verification problem for Boolean task specifications is
II? -complete.

5 Related Work

Verification is, of course, a major topic in theoretical computer science and soft-
ware engineering (see, e.g., [2]). Many techniques have been developed over the
past three decades with the goal of enabling efficient formal verification. These
approaches can be broadly divided into two categories: deductive verification and
model checking. Deductive approaches trace their origins to the work of Hoare
and Floyd on axiomatizing computer programs [4]. Deductively verifying that a
system S satisfies some property ¥, where ¥ is expressed as a formula of some
logic £, involves first generating the £-theory Th(S) of S and then using a proof
system . for £ to establish that Th(S) b, ¥. The theoretical complexity of the
proof problem for any reasonably powerful language £ has been a major barrier
to the automation of deductive verification. For example, a language widely pro-
posed for the deductive verification of reactive systems is first-order temporal
logic [5, 6]; but proof in first-order temporal logic is not even semi-decidable.

Perhaps closer to our view is the more recent body of work on verification
of finite state systems by model checking [3]. The idea is that a system S to
be verified can be represented as a model Mg for a branching temporal logic. If
we express the specification ¥ as a formula of the temporal logic, then model
checking amount to showing that ¥ is valid in Mg: this can be done in determin-
istic polynomial time for the branching temporal logic CTL [3, p38], wherein lies
much of the interest in model checking as a practical approach to verification.

The main difference between our work and that on model checking is that
we explicitly allow for a system to be composed of an environment part and an
agent part, and our environments are assumed to be much less compliant than
is usually the case in model checking (where environments are implicitly both
deterministic and Markovian, which allows them to be represented as essentially
directed graphs). Some researchers have begun to examine the relationship be-
tween model checking and agents in more detail [8, 1], and it would be interesting
to examine the relationship of our work to this formally.

6 Conclusions

In this paper, we investigated the complexity of the agent verification problem,
that is, the problem of showing that a particular agent, when placed in a partic-
ular environment, will satisfy some particular task specification. We established
! The proof is by an induction on the structure of x (.,), with the inductive base where

X(®~) is a positive literal (an achievement task) or a negative literal (a maintenance
task).

two main complexity results for this problem, which allow us to classify the com-
plexity of the problem in terms of the complexity of deciding whether the task
specification has been satisfied on any given run of the agent. We first proved
that for tasks with specifications that are in XP, the corresponding agent verifi-
cation problem is IT? 41-complete; we then showed that for PSPACE-complete task
specifications, the corresponding verification problem is also PSPACE-complete.
We then used these results to analyse the computational complexity of various
common kinds of tasks, including achievement and maintenance tasks and tasks
specified as arbitrary Boolean combinations of achievement and maintenance
tasks.

There are several important avenues for future work. The first is on the
relationship of the verification problem to model checking, as described above.
The second is on probabilistic verification: Given agent Ag, environment Env,
specification ¥, and probability p, does Ag in Env satisfy ¥ with probability at
least p?

Acknowledgments: This research was supported by the EPSRC under grant
GR/R60836 (“Algorithmics for agent design and verification”).

References

1. M. Benerecetti, F. Giunchiglia, and L. Serafini. Model checking multi-agent sys-
tems. Journal of Logic and Computation, 8(3):401-424, 1998.

2. R. S. Boyer and J. S. Moore, editors. The Correctness Problem in Computer
Science. The Academic Press: London, England, 1981.

3. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press:
Cambridge, MA, 2000.

4. C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576-583, 1969.

5. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag: Berlin, Germany, 1992.

6. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems — Safety.
Springer-Verlag: Berlin, Germany, 1995.

7. C. H. Papadimitriou. Computational Complezity. Addison-Wesley: Reading, MA,
1994.

8. A.S.Rao and M. P. Georgeff. A model-theoretic approach to the verification of sit-
uated reasoning systems. In Proceedings of the Thirteenth International Joint Con-
ference on Artificial Intelligence (IJCAI-93), pages 318-324, Chambéry, France,
1993.

9. S. Russell and D. Subramanian. Provably bounded-optimal agents. Journal of AI
Research, 2:575-609, 1995.

10. M. Wooldridge. The computational complexity of agent design problems. In Pro-
ceedings of the Fourth International Conference on Multi- Agent Systems (ICMAS-
2000), pages 341-348, Boston, MA, 2000.

11. M. Wooldridge and P. E. Dunne. Optimistic and disjunctive agent design problems.
In Y. Lespérance and C. Castelfranchi, editors, Proceedings of the Seventh Interna-
tional Workshop on Agent Theories, Architectures, and Languages (ATAL-2000),
2000.

