
This is MYWORLD:
The Logic of an Agent-Oriented DAI Testbed

Michael Wooldridge

Department of Computing, Manchester Metropolitan University
Chester Street, Manchester M1 5GD, United Kingdom

M.Wooldridge@doc.mmu.ac.uk

Abstract. The ultimate goal of the work presented in this article is to develop
practical frameworks for formally reasoning about multi-agent systems. Such
frameworks are particularly important, as multi-agent approaches are inherently
complex, and are already being applied in safety-critical domains such as air
traffic control. The article is in three parts. The first contains an informal over-
view of MYWORLD, a testbed for experimentation in Distributed Artificial Intelli-
gence (DAI). A MYWORLD system contains a number of concurrently executing
agents, each of which is programmed along the lines proposed by Shoham in his
Agent-Oriented Programming (AOP) proposal [22]. The second part of the art-
icle contains a detailed formal model of MYWORLD, which rigorously defines the
possible states and state transitions of MYWORLD agents. The third part develops
a logic that can be used to represent the properties of MYWORLD systems; this
logic is closely related to the formal model of MYWORLD, in that the histories
traced out in the execution of a system are used as the semantic basis for the
logic. We comment on the applications of the logic, and conclude by indicating
areas for future work.

1 Introduction

One area of much current interest in DAI is the use of mathematical logic for specifying
the properties of agents and multi-agent systems. Probably the best-known example of
this work is the Cohen-Levesque theory of intention [3]. To express this theory, the au-
thors developed a quantified multi-modal logic, with modalities for representing beliefs
and goals, and an apparatus for representing actions that was loosely based on dynamic
logic [13]; beliefs and goals were characterised using possible worlds semantics [12].
Various concepts were then defined in a layered fashion, each layer building on the
concepts introduced at the previous layer, until intention was introduced. The result
was a theory that satisfies many of the properties that one would expect of intention,
and which is also formal, with all the attendant advantages that rigour and formality
bring. Building largely on this work, attempts have been made to use similar logics to
capture various other properties of agents [18] and multi-agent systems [24].

Although this work is undoubtedly significant, it is important to realise what its lim-
itations are. Agent theories expressed in a modal logic with possible worlds semantics
can only serve as specifications in a very abstract sense; they cannot, in general, be
refined into implementations in the conventional way1. There are several reasons for
1 A notable exception is the situated automata paradigm [20].

this. First, there is no clear relationship between the logic used to express the specific-
ation, and the structure of (D)AI systems as they are typically built. In particular, it is
not generally clear what possible worlds might correspond to in an implemented sys-
tem. Secondly, such logics make unreasonable assumptions about the reasoning ability
of agents: this is the logical omniscience problem [15]. For these reasons, we have
proposed developing formalisms for reasoning about multi-agent systems where a pre-
cise relationship is maintained between the specification language and the systems we
ultimately hope to build [23]. The technique depends on borrowing some ideas from
mainstream computer science [16]. Specifically, we construct a formal model of the
type of system we wish to reason about, and then use the execution histories traced out
by such a system as the semantic foundation for a temporal logic, which can then be
used to reason about the systems we are modelling. Since there is a precise relationship
between the logic and the systems the logic is modelling, we can realistically claim that
statements in the logic actually express properties of the systems we hope to model.

In this article, we demonstrate this approach by applying it to MYWORLD, an im-
plemented testbed for DAI. A MYWORLD system contains a number of concurrently
executing agents, each of which is programmed along the lines proposed by Shoham
for his agent-oriented programming proposal [22]. Agents are given intentions and be-
liefs, and rules that define how they should generate and modify them. Additionally,
they are given rules that represent information about how to achieve intentions; to
achieve an intention, an agent must typically perform some actions. In the next sec-
tion, we present a more detailed review of MYWORLD; this is followed, in section 3,
by a formal model of MYWORLD agents and systems. In section 4, we present a logic
called

�
M (for MYWORLD logic), which can be used to represent and reason about the

properties of MYWORLD systems. The logic extends classical first-order logic with the
introduction of modalities for representing the beliefs, intentions, and actions of agents,
as well as temporal modal connectives for representing the time-varying properties of
MYWORLD systems. The article concludes with some comments on limitations of the
work presented, and issues for future work.

Related work: Surprisingly few attempts have been made by researchers within (D)AI
to develop formal models of real agents and multi-agent systems (although, as we ob-
served above, many abstract models have been proposed [3, 18, 24]). Genesereth and
Nilsson develop simple models of various classes of agents in [9, Chapter 13], though
these models are also very abstract. Seel developed formal models of simple reactive
agents, and investigated the use of temporal logics for reasoning about them [21]. The Z
language has been used in a number of agent specifications: Goodwin used it to develop
formal models various types of agents, and used these models to characterise various
attributes of agency (such as capability, reactivity, rationality, and so on) [11]; a 240-
page formal specification of the SOAR cognitive architecture has also been developed in
Z [17]; and Craig has used Z to specify his CASSANDRA blackboard model [4]. Finally,
in some work closely related to this article, Rao and Georgeff have considered the ex-
tent to which agents can be said to satisfy theories of agency [19]. However, they use
a theory of agency expressed in a modal logic of beliefs, desires, and intentions, with
a possible worlds semantics: such a logic is ultimately unsatisfactory for specifying

agents, for the reasons we outlined above.

Notational conventions: Most of the formalism in the article is presented using the
VDM specification language: the first eight chapters of [14] cover the relevant material.
Additionally, if

�
is a logical language, then we write Form(

�
) for the set of (well-

formed) formulae of
�

.

2 A Glimpse of MYWORLD

This section contains an informal overview of MYWORLD, adapted from [26]. At run-
time, a MYWORLD system has four components:

– an umpire, or world manager, which has top-level control of the system;
– an agent-oriented language, for programming agents;
– a world shell, which defines the characteristics of an experimental ‘world’; and
– a scenario, which represents a particular experiment.

The umpire is the part of MYWORLD that has overall, top-level control of the system.
Amongst other things, it is responsible for scheduling agent execution, monitoring the
user interface, and responding to requests from the latter. The umpire is the ‘generic’
part of MYWORLD, and was designed to allow as much flexibility and generality as
possible. However, it was found necessary to build certain basic principles into it, the
most important of which being the notions of animate and inanimate objects (animate
objects being agents), time, space, events, and actions.

The world shell is the part of MYWORLD that defines the environmental character-
istics of a particular ‘world’ in which experiments may be performed. For example, the
world shell defines what actions may be performed in an experiment, when such actions
are legal, and what the results of an action performed in some particular situation are.
Additionally, it defines what entities may appear in the world, and what their proper-
ties are. At the time of writing, we have implemented just one world shell; in future,
we hope to construct a library of such shells, to allow experimentation in a variety of
domains.

A scenario in MYWORLD represents a specific experiment carried out. It describes
the initial locations and properties of all the entities that appear in the experiment.

For the purposes of this article, the most important component of MYWORLD is the
agent-oriented part, for programming agents. This language characterises an agent in
terms of five attributes: (i) a set of beliefs; (ii) a set of intentions; (iii) a set of belief
rules; (iv) a set of intention adoption rules; and finally (v) a belief revision function.
These components, and the way that they interact to generate the behaviour of an agent,
will now be described in more detail.

Beliefs: An agent’s beliefs represent that agent’s information about the world it occu-
pies: in more traditional AI terms, an agent’s beliefs are its ‘knowledge’. In the current
implementation of MYWORLD, an agent’s beliefs are a set of ground atoms of first-order
predicate logic (cf. PROLOG facts).

Belief sets are not fixed: they may change over time, by new beliefs being added
and old beliefs being removed. New beliefs arise from three sources:

– from inferences made via belief rules;
– from perceiving the world; and
– from performing non-logical ‘cognitive’, or ‘private’ actions.

Belief rules define how new beliefs are generated from old ones. A belief rule cor-
responds closely to a rule in the standard AI sense: it has antecedent and consequent
parts, and will ‘fire’ if the antecedent unifies with the agent’s belief set. In the current
implementation, belief rules are applied exhaustively, in a forward chaining fashion, to
generate new beliefs.

Perception is modelled by a belief revision function (cf. [8]). This function looks at
the state of the system and the agent’s current beliefs, and generates a new set of beliefs
as a result. Old beliefs may also be removed by a belief revision function.

Finally, cognitive, or private actions, correspond to an agent exploiting its internal
computational resources. For example, imagine an agent consulting an internal data-
base; this would be an action that was not visible to other agents — hence the term
‘cognitive’ action. The result of such an action would be some information, which ap-
pears in the form of new beliefs.

Intentions: Intentions represent desires that an agent will attempt to bring about. An
intention contains a goal part, a motivation part, and a rating part. The goal represents
the ‘purpose’ of the intention — if it is ever believed to be satisfied, then the intention
is fulfilled. The motivation represents what must be believed in order for the intention
to be maintained — if the motivation ever becomes false, then there is no point in
maintaining the intention, and it is dropped. So an intention will be maintained until
either its goal is believed to be satisfied or its motivation is no longer present2. The
rating of an intention represents its priority; the higher the rating, the more important
the intention. The highest rated intention is called the current intention, and will guide
the actions of the agent, in a way that we describe below.

New intentions are generated via intention adoption rules (IARs). An IAR is a pair,
containing:

– an adoption condition; and
– an intention skeleton (an intention containing variables).

The idea is that on every cycle, the agent tries to match the adoption condition of each
IAR with its beliefs; if it succeeds, then the variables in the corresponding intention
skeleton are instantiated, and the resulting intention is added to its intention set.

Strategy rules: Intentions are linked to actions by strategy rules. Strategy rules rep-
resent information about how to achieve intentions. A strategy rule is a pair, consisting
of:

2 This is very close to what Cohen and Levesque call a persistent relativised goal [3].

– a condition, corresponding to the goal of an intention;
– a strategy function, which takes as its sole argument the state of the agent, and

returns an action, that the agent has chosen to perform.

Strategy rules loosely resemble knowledge areas in the PRS [10]. Strategy functions are
the closest that agents in MYWORLD come to doing any planning; they may be thought
of as crude procedural plans.

Agent execution: Let us now summarise the behaviour of an agent on a single sched-
uler cycle:

1. update beliefs through belief revision function; apply belief rules exhaustively;
2. update intentions by:

– removing those that are no longer applicable; and
– finding and adding those that have now become applicable;

3. find the highest rated intention and use strategy rules in order to find a strategy
function;

4. evaluate the strategy function in order to find some action;
5. execute the action that results.

3 A Formal Model of MYWORLD

In this section, we construct a formal model of MYWORLD, focussing particularly on
the agent-language component. In section 4, we use this formal model as the foundation
upon which to construct a logic for representing and reasoning about the properties of
MYWORLD systems.

Beliefs and belief rules: In the current implementation of MYWORLD, beliefs are s-
imply ground atoms of first-order logic: beliefs are thus similar to PROLOG facts. To
represent beliefs, we require a set of terms, made up of a set of constants and a set of
variables. We also require a set of predicate symbols.

Const = � a, b, c, … � Var = � x, y, z, … �
Term = Const ∪ Var Pred = � P, Q, … �

Notice that the only functional terms allowed are constants. An atom is an application
of a predicate symbol, (called the head of the atom), to a list of terms.

Atom :: head : Pred
term-list : Term∗

A function at-vars is defined, which takes an atom and returns the set of variables it
contains.

at-vars : Atom → Var-set

at-vars(mk-Atom(P, tl)) � Var ∩ elems tl

A ground atom is one containing no variables.

GAtom = Atom where inv-GAtom(at) � at-vars(at) = ���
The set of possible beliefs is defined to be the set of ground atoms.

Bel = GAtom

Agents are able to reason by applying belief rules to their belief set. Conceptually, a
belief rule corresponds to a first-order formula of the form

∀x ⋅ ϕ(x, a) ⇒ ψ (y, b)

where x = x1, … , xm and y = y1, … , yn are tuples of variables, such that � y1, … , yn � ⊆� x1, … , xm � , a = a1, … , ao and b = b1, … , bp are tuples of constants, and ϕ(x, a)
and ψ (y, b) are conditions. Note that variables in the consequent must appear in the
antecedent. This form of rule is, of course, very similar to that which appears throughout
AI; the way in which such a rule may be applied is obvious. For simplicity, we shall
assume that conditions may contain only conjunctions; we do not consider disjunctions
or negations. This relieves us of the need to deal with issues such as negation as failure,
which would otherwise obscure more important points. We define a type for conditions.

Cond = Atom∗

A condition is thus a sequence of predicates, representing their conjunction. The func-
tion at-vars is extended to conditions, so that vars takes a condition and returns the set
of variables it contains.

vars : Cond → Var-set

vars(c) � � � at-vars(at) | at ∈ elems c �
Antecedents and consequents are then simply conditions; a belief rule is a pair contain-
ing an antecedent and a consequent, with the restriction on variables as above.

BelRule :: ante : Cond
conse : Cond

inv (mk-BelRule(an, cn)) � vars(cn) ⊆ vars(an)

The applicability of a belief rule with respect to a set of beliefs is determined by uni-
fication of the antecedent in the belief set; as we have no functional terms other than
constants, unification is a straightforward process. First, a binding is defined to be a
map from variables to constants.

Binding = Var
m��� Const

Next, a function at-apply is defined, which applies a binding to an atom: the function
returns the atom that results from replacing all variables with the constant they are
bound to.

at-apply : Binding × Atom → Atom

at-apply(β, at) �
let tl = term-list(at) in
let tl′ = � n 	� a | (n ∈ inds tl) ∧ (tl(n) = x) ∧ (x ∈ Var) ∧ (β(x) = a) � in
let tl′′ = tl † tl′ in
µ(at, term-list 	� tl′′)

The function at-unifiers takes a belief set and an atom, and returns that set of bindings
which, when applied to the atom, yield members of the belief set.

at-unifiers : Atom × Bel-set → Binding-set

at-unifiers(at, bs) � � β | (β ∈ Binding) ∧ (at-apply(β, at) ∈ bs) �
The function at-apply is extended to the function apply, which applies a binding to a
condition.

apply : Binding × Cond → Cond

apply(β, c) � � n 	� at-apply(β, c(n)) | n ∈ inds c �
The function unifiers is a similar extension of at-unifiers.

unifiers : Cond × Bel-set → Binding-set

unifiers(c, bs) �
 � at-unifiers(at, bs) | at ∈ elems c �
It is convenient to define a boolean-valued function fires, which takes a condition and
a belief set, and returns true iff the condition is satisfied by the belief set.

fires : Cond × Bel-set → �
fires(c, bs) � unifiers(c, bs) ≠ ���

The function fire-belrule takes a belief rule and a set of beliefs, and returns the set of
beliefs that results from firing the rule. If the rule cannot fire, then the function returns
the empty set.

fire-belrule : BelRule × Bel-set → Bel-set

fire-belrule(br, bs) �� � elems apply(β, conse(br)) | β ∈ unifiers(ante(br)) �
Finally, a function close is defined, which returns the closure of a belief set under some
belief rules; that is, it returns the belief set that results from exhaustively applying
the rules to the belief set. Note that the definition of close makes use of an auxilliary
function close-aux.

close-aux : � × BelRule-set × Bel-set → Bel-set

close-aux(u, brs, bs) �
if u = 0
then � at | ∃br ∈ brs ⋅ at ∈ fire-belrule(br, bs) �
else � at | ∃br ∈ brs ⋅ at ∈ fire-belrule(br, close-aux(u − 1, brs, bs)) �

close : BelRule-set × Bel-set → Bel-set

close(brs, bs) � � � close-aux(u, brs, bs) | u ∈ ��
Finally, we look at belief revision. In MYWORLD, a belief revision function maps an
environment state and a belief set into a new belief set; the type Env, for environment
state, is defined later.

BRF = Env × Bel-set → Bel-set

Intentions and intention adoption rules: An intention is a triple, containing: (i) a
goal part; (ii) a motivation part; and (iii) a rating. The goal represents what the agent
would believe if the intention was satisfied; the motivation represents what must be
believed by the agent in order for the intention to be maintained; and the rating repres-
ents how important the intention is considered to be. We begin by defining intention
skeletons. An intention skeleton is essentially an intention that can have a variable for
a rating.

IntSk :: goal : Cond
motivation : Cond

rating : � ∪ Var

An intention is then an intention skeleton that does not have a variable for a rating.

Int = IntSk where inv-Int(mk-Int(g, m, r)) � r ⁄∈ Var

Note that variables may appear in the goal or motivation parts of an intention, in which
case they are considered to be existentially quantified. An intention adoption rule is a
pair, consisting of an intention skeleton and an adoption condition.

IARule :: adcond : Cond
intsk : IntSk

inv (mk-IARule(c, mk-IntSk(g, m, r))) � r ∈ Var ⇒ r ∈ vars(c)

The invariant on IARule ensures that if the rating part of the skeleton is a variable,
then it is one of the variables that occurs in the adoption condition. Thus, when the
rule fires, this variable will be instantiated. The function iar-apply takes an intention
adoption rule and a binding, and returns the intention that results from applying the
binding to all variables that occur in the intention skeleton.

iar-apply : Binding × IARule → Int

iar-apply(β, iar) �
let g = goal(intsk(iar)) in
let m = motivation(intsk(iar)) in
let r = rating(intsk(iar)) in
let r′ = if r ∈ Var then β(r) else rin
mk-Int(apply(β , g), apply(β, m), r′)

The function fire-iarule takes an intention adoption rule and a belief set, and returns
the set of intentions made current by the rule. Once again, the applicability of the rule
is determined by unification in the belief set. Note that if the rule cannot fire, then this
function returns the empty set.

fire-iarule : IARule × Bel-set → Int-set

fire-iarule(iar, bs) � � iar-apply(β, iar) | β ∈ unifiers(adcond(iar), bs) �
The boolean-valued function satisfied-int takes an intention and a belief set, and returns
true iff the intention is satisfied with respect to the belief set.

satisfied-int : Int × Bel-set → �
satisfied-int(int, bs) � fires(goal(int), bs)

The boolean-valued function applicable-int takes an intention and a belief set, and
returns true iff the intention is still applicable with respect to the belief set, i.e., if the
motivation is still present.

applicable-int : Int × Bel-set → �
applicable-int(int, bs) � fires(motivation(int), bs)

The function update-intentions takes a set of intentions, (representing those currently
held by an agent), a set of beliefs, (also representing those currently held by the agent),
and a set of intention adoption rules, and returns the set that results by removing those
that are no longer applicable, or that are satisfied, and adding those that have become
applicable.

update-intentions : Int-set × Bel-set × IARule-set → Int-set

update-intentions(ints, bs, iars) �
let sat = � int | (int ∈ ints) ∧ satisfied-int(int, bs) � in
let inap = � int | (int ∈ ints) ∧ ¬ applicable-int(int, bs) � in
let new = � � fire-iarule(iar, bs) | iar ∈ iars � in
let ints′ = (ints − (sat ∪ inap)) ∪ new in
let sat′ = � int | (int ∈ ints′) ∧ satisfied-int(int, bs) � in
let inap′ = � int | (int ∈ ints′) ∧ ¬ applicable-int(int, bs) � in
ints′ − (sat′ ∪ inap′)

This function ensures that newly adopted intentions will be consistent with an agent’s
beliefs: intentions will not be adopted if they are believed to be satisfied, or if there
is no motivation for them. Finally, the function highest-rated takes a set of intentions,
representing those currently held by an agent, and returns the highest rated of these.

highest-rated (ints: Int-set) int: Int

pre ints ≠ ���
post int ∈ ints ∧ ¬ (∃int′ ∈ ints ⋅ rating(int′) > rating(int))

Strategy rules: A strategy rule represents information about how to achieve intentions.
In the current implementation, a strategy rule has a condition part and a strategy function
part. A strategy function is best thought of as a kind of procedural plan, that operates
on an agent’s internal state to generate an action, representing that which the agent has
chosen to perform. The condition part of a strategy rule determines the circumstances
under which the associated strategy is applicable.

Ac = …

Strat = Bel-set × Int-set → Ac

StratRule :: cond : Cond
strat : Strat

(The content of the set Ac, of actions, is not significant.) We shall demand that an agent’s
set of strategy rules is strongly complete, in the sense that, for any given set of beliefs,
they are guaranteed to pick out precisely one strategy function3. This ensures that an
agent is never uncertain about which strategy function to apply. This notion of strong
completeness is formalised in the following boolean-valued function.

strongly-complete : StratRule-set → �
strongly-complete(srs) � ∀bs ∈ Bel-set ⋅ ∃! sr ∈ srs ⋅ fires(cond(sr), bs)

The function chosen-strategy takes a strategy rule set and a set of beliefs, and returns
the strategy picked out by the rule set.

chosen-strategy (srs: StratRule-set, bs: Bel-set) st: Strat

pre strongly-complete(srs)
post ∃str ∈ srs ⋅ fires(cond(str), bs) ∧ (strat(str) = st)

Agents and agent operation: We now have all the definitions required to introduce a
type for agents.

Agent :: bel : Bel-set
int : Int-set
br : BelRule-set

iar : IARule-set
sr : StratRule-set

brf : BRF

inv (mk-Agent(bs, ints, brs, iars, srs, brf)) �
strongly-complete(srs) ∧
∀int ∈ ints ⋅ applicable-int(int, bs) ∧ ¬ satisfied-int(int, bs)

The second invariant ensures that the agent’s intentions are consistent with its beliefs.
Next, we define a next-state function for agents. This function captures the idea of an

agent observing its environment, and updating its beliefs on the basis of its observations,
applying its belief rules where possible, and then updating its intentions in light of its
new beliefs. (The type Env, for environment state, is defined below.)

3 Weak completeness would mean that the rules picked out at least one action [23].

agent-next-state : Agent × Env → Agent

agent-next-state(mk-Agent(bs, ints, brs, iars, srs, brf), env) �
let bs′ = brf (env, bs) in
let bs′′ = close(bs′, brs) in
let ints′ = update-intentions(ints, bs′′, iars) in
mk-Agent(bs′′, ints′, brs, iars, srs, brf)

Finally, we define a function chosen-action, which takes an agent and returns the action
that the agent has chosen to perform.

chosen-action : Agent → Ac

chosen-action(mk-Agent(bs, ints, brs, iars, srs, brf)) �
chosen-strategy(srs, bs)(bs, ints)

Systems: A MYWORLD system may be regarded as containing a set of named entities,
which fall into two categories: inanimate entities, or objects, which have attributes, but
do not have any internal structure and are not able to change the state of the system,
and agents. The idea is that objects correspond to chairs, books, pints of beer, pieces
of string, and so on: things which do not originate actions, but rather have actions per-
formed on them. Agents are things that originate actions. We require types for attributes
and names.

Attribute = … Name = …

(The content of these two sets is not significant.) The state of a MYWORLD system
at some point during execution may then be characterised by two maps, which asso-
ciate names with attributes and agents respectively. A value of this type represents a
‘snapshot’ of a MYWORLD system during execution. We introduce a separate type for
environment state, which represents the state of every object in the system.

Env = Name
m��� Attribute-set

Sys :: objects : Env
agents : Name

m��� Agent

Finally, we model a world shell as a function that takes an action and an environment
state, and returns the returns the environment state that results from the attempted per-
formance of the action. Such a function represents the ‘natural laws’ of an experimental
world, and the environmental constraints that hold in it.

World = Ac × Env → Env

Note that this definition implicitly assumes that agents are not directly affected by the
performance of an action.

4 The Logic of MYWORLD

In this section, we develop the logic
�

M, which can be used to represent the properties
of MYWORLD systems.

�
M is closely related to the formal model of MYWORLD that

we constructed in the preceding section: we use the histories traced out in the execu-
tion of a system as its semantic basis. Although this technique has long been used in
mainstream computer science [16], it has only recently been applied in DAI [23]. This
earlier work made two limiting assumptions. First, a very simple model of agents was
used. Secondly, it was assumed that agents act in synchrony, rather than concurrently. In
developing

�
M, we make no such assumptions:

�
M is based on a more realistic model

of both agents and their execution.

Semantic concepts: We begin by setting the scene with a short discussion on agent ex-
ecution. Consider the behaviour of an agent during a single scheduler cycle. It begins by
perceiving its environment, updating its beliefs through its belief revision function, then
updating its intentions, and so on, until finally, it executes an action. A direct attempt
to model this behaviour would lead us to a number of difficulties. For example, what
are an agent’s beliefs while it is applying its belief rules? What action is it performing
during this time? To avoid such problems, we assume that agents update their internal
state instantaneously at the beginning of a scheduler cycle, and spend the rest of that
cycle with fixed beliefs and intentions, performing their chosen action. The results of
an action are assumed to come into effect at the end of the cycle. Finally, we shall also
assume that once an agent’s scheduler cycle is complete, it immediately begins another,
without any pause.

Before developing the structures used to represent execution histories, we must fix
on a model of time. We choose to let time be linear, (i.e., there is only one ‘timeline’),
bounded in the past (i.e., there was a time at which system execution began), and infinite
in the future, (i.e., the system is non-terminating). Unusually, we also choose to let time
be dense, meaning that for any two time points, it is possible to find a third between
them. A convenient temporal model is thus (� +, <), i.e., the positive reals ordered by the
less-than relation. The reason for fixing on such a model is that it allows us to represent
‘real’ concurrency with comparative ease [2]. The use of the temporal logic of reals for
modelling the behaviour of a group of agents was first proposed by Fisher, who used
the technique to give a semantics to his Concurrent METATEM language [5].

We now introduce the technical apparatus for dealing with time. An interval over� + between x, y ∈ � +, where x < y, is the subset of � + that falls between x and y.

interval : � + × � + → � +-set

interval(x, y) � � z | (z ∈ � +) ∧ (x ≤ z < y) �
The set of all intervals is Interval.

Interval = � interval(x, y) | (x, y ∈ � +) ∧ (x < y) �
We assume two functions start and end, which give the start and end points of an
interval, respectively — their formal definitions are trivial, and are therefore omitted.
To represent execution histories, we essentially use functions that map times to the state
of the entity they are modelling. The first such function is os, which gives the state of
every object in the system.

os: � + → Env

To model the time-varying state of agents, we use two functions. The first, cycle, takes
an agent name and a scheduler cycle number, and gives that interval of that cycle. Note
that scheduler cycles are indexed by the natural numbers, and we thus assume that each
agent has a countably infinite number of such cycles; this is a kind of (rather extreme)
fairness assumption [7].

cycle: Name × � → Interval

The second, as, takes a time and returns a map that gives the state of every agent at that
time.

as: � + → (Name
m��� Agent)

Unfortunately, the situation is complicated by the fact that various relationships exist
between the entities in a system. For example, once an agent performs an action, we
expect the effects of that action to be reflected in the subsequent state of the system. To
capture these relationships, we place a number of constraints on the functions repres-
enting execution histories.

Constraint 1: An agent’s scheduler cycles meet each other [1]. For example, if an
agent’s first cycle extends from t to t′, and its second extends from t′′ to t′′′, then t′ = t′′.
Formally, this constraint is expressed as follows.

∀i ∈ Name ⋅ ∀u ∈ � ⋅ end(cycle(i, u)) = start(cycle(i, u + 1))

Constraint 2: Every agent’s state is fixed within its scheduler cycles.

∀i ∈ Name ⋅ ∀u ∈ � ⋅ cycle(i, u) = ι ⇒ ∀x, y ∈ ι ⋅ as(x)(i) = as(y)(i)

Constraint 3: The end point of every scheduler cycle is unique.

∀i, j ∈ Name ⋅ (i ≠ j) ⇒ ∀u, v ∈ � ⋅ end(cycle(i, u)) ≠ end(cycle(j, v))

Constraint 4: An agent’s internal state during a cycle is a result of perceiving the world
at the beginning of that cycle.

∀i ∈ Name ⋅
∀u ∈ � 1 ⋅

let ι = cycle(i, u − 1) in
let ι′ = cycle(i, u) in
let prev-ag-st = as(start(ι)) in
let cur-ag-st = as(start(ι′)) in
let cur-obj-st = os(start(ι′)) in
cur-ag-st(i) = agent-next-state(prev-ag-st(i), cur-obj-st)

Constraint 5: Actions have effects: they change the state of the system in which they
are executed. Recall from the preceding section that the effect an action has on a system
is determined by a world function. Also, we assumed that an action only achieves its
effects at the end of a cycle, at which time the system instantaneously changes state.
This leads to the following constraint, which can only be expressed with respect to
some world function ω ∈ World.

�
fmla � : : =

���
0-fmla � | ∀

�
var � ⋅

�
fmla �

| ¬
�
fmla � |

�
fmla � ∨

�
fmla �

|
�
fmla ��� �

fmla � |
�
fmla ��� � fmla �

| (Bel
�
name � ��� 0-fmla �) | (Intend

�
name � ��� 0-fmla � ��� 0-fmla � � nn �)

| (Do
�
name � � ac �)

Fig. 1. Syntax of
�

M

∀i ∈ Name ⋅
∀u ∈ � 1 ⋅

let ι = cycle(i, u − 1) in
let ι′ = cycle(i, u) in
let prev-obj-st = os(max ι) in
let cur-obj-st = os(start(ι′)) in
let prev-ag-st = as(start(ι))(i) in
let α = chosen-action(prev-ag-st) in
cur-obj-st = ω(α , prev-obj-st)

There are other constraints that we might wish to place on these functions. For ex-
ample, we might specify that the system remains unchanged except for the performance
of actions within it. However, we shall leave such refinements for future work.

Syntax:
�

M is a quantified multi-modal logic. It extends classical first-order logic by
the introduction of a set of temporal modal connectives for representing the time-
varying properties of MYWORLD systems, as well as three further connectives, for
representing the beliefs, intentions, and actions of agents within a system. For con-
venience, we shall assume an underlying classical first-order logic

�
0, defined over the

sets Pred of predicate symbols, Var of variable symbols, and Const of constant sym-
bols (see section 3). The syntax of the logic is defined by the grammar in Figure 1.
The terminal symbols, other than literals, that appear in this grammar are interpreted
as follows: � � 0-fmla � ∈ Form(

�
0), � var � ∈ Var, � name � ∈ Name, � nn � ∈ � , and� ac � ∈ Ac.

The temporal connectives � and � are called until and since, respectively. The
other modal connectives, Bel, Intend, and Do, are for representing the beliefs, intentions
and actions of agents, respectively. The classical connectives ∨ and ¬ have their stand-
ard interpretation, as does the universal quantifier ∀; the existential quantifier and the
remaining connectives of classical logic are introduced as abbreviations, in the standard
way.

Semantics: The semantics of
�

M-formulae are defined by a set of semantic rules, each
of the form � |= ϕ, where � is an interpretation structure and ϕ is a formula. Such an
expression means that the structure � satisfies ϕ; the symbol ‘|=’ is called the satisfaction
relation. For

�
M, interpretation structures are triples of the form � M, β, t � , where M is a

�
M, β , t � |= P(τ1, … , τn) iff at-apply(β , mk-Atom(P, [τ1, … , τn])) ∈

π(mk-Sys(os(t), as(t)))�
M, β , t � |= ¬ ϕ iff

�
M, β , t � ⁄|= ϕ�

M, β , t � |= ϕ ∨ ψ iff
�
M, β , t � |= ϕ or

�
M, β , t � |= ψ�

M, β , t � |= ∀x ⋅ ϕ iff
�
M, β † � x ! a " , t � |= ϕ for all a ∈ Const�

M, β , t � |= ϕ � ψ iff ∃t′ ∈ # + s.t. (t < t′) and
�
M, β , t′ � |= ψ and

∀t′′ ∈ # + if (t < t′′ < t′), then
�
M, β , t′′ � |= ϕ�

M, β , t � |= ϕ � ψ iff ∃t′ ∈ # + s.t. (t′ < t) and
�
M, β , t′ � |= ψ and

∀t′′ ∈ # + if (t′ < t′′ < t), then
�
M, β , t′′ � |= ϕ�

M, β , t � |= (Bel i ϕ) iff apply(β , ϕ) ∈ bel(as(t)(i)) ∪ br(as(t)(i))�
M, β , t � |= (Intend i ϕ ψ n) iff mk-Int(apply(β , ϕ), apply(β , ψ), n) ∈ int(as(t)(i))�
M, β , t � |= (Do i α) iff α = chosen-action(as(t)(i))

Fig. 2. Semantics of
�

M

logical model for
�

M, β ∈ Binding is a binding, and t ∈ � + is a reference time. Logical
models for

�
M are themselves structures, which have the form:

M = � os, as, cycle,π �
where os, as, and cycle are functions with constraints (1)–(4) holding between them as
defined earlier, and

π : Sys → GAtom-set

is an interpretation function, which takes a system and returns the set of ground atoms
that represent the properties of, and relationships between, the various objects in that
system4. The semantics of

�
M are given in Figure 2. Note that the rules make use of

various auxiliary functions (such as apply) that we defined in section 3. These functions
are syntactic abbreviations: they serve only to simplify the statement of the formal
semantics, and play no other part in the interpretation process.

Note that world functions do not appear in logical models. If we have a model M
and world ω ∈ World such that the components of M satisfy Constraint 5 with respect
to ω, then we say that M satisfies the laws of the world ω, and write Mω to indicate
this.

We now discuss the non-standard connectives of
�

M. First, the temporal modal
connectives. A formula ϕ � ψ means that at some time in the future, ψ is satisfied, and
until then, ϕ is satisfied. A formula ϕ � ψ means that ψ was satisfied at some time in
the past, and since that time, ϕ has been satisfied. Using just these two connectives, we
may define the remaining connectives of linear temporal logic (notice, however, that as
time is dense, there is no next time connective in

�
M). First, $ ϕ means that either now

or at some time in the future, ϕ is satisfied; ϕ means that ϕ is satisfied now and at
all future times. We can define these connectives as follows:

4 If we were defining the semantics of, for example, first-order logic, then we would make π a
function that gave the extension of each predicate symbol.

$ ϕ � true � ϕ ϕ � ¬ $ ¬ ϕ.

(In the first of these definitions, true is any classical tautology.) Just as the � connective
mirrors the behaviour of � in the past, so we can define two unary connectives, ♦ and

, that mirror the behaviour of $ and in the past (we omit the formal definitions,
as these are very similar to those for $ and).

We also have a weak version of the � connective: % allows for the possibility
that its second argument is never satisfied.

ϕ % ψ � ϕ � ψ ∨ ϕ

A past time version of the % connective is & (‘zince’).
Turning to the connectives for representing the properties of agents, a formula

(Bel i ϕ) means that the agent i believes ϕ. In the current implementation, this means
that either ϕ is one of the facts present in i’s belief set, or ϕ is one of i’s belief rules. A
formula (Intend i ϕ ψ n) means that i intends to achieve ϕ with respect to motivation
ψ and rating n ∈ � . A formula (Do i α) means that i is doing action α .

Finally, note that we have simplified the formal semantics in a number of ways.
First, we indicate that (Bel i ϕ) is satisfied if the

�
0 formula ϕ is present in i’s belief set

or belief rule-set. In the formal model of MYWORLD that we developed earlier, the ele-
ment’s of an agent’s belief set are defined to be VDM structures representing formulae,
rather than formulae themselves. However, the meaning should be clear. Similar com-
ments apply to the Intend connective. We have also assumed that the function apply,
(which applies a binding to a condition), has been extended to arbitrary

�
0-formulae.

Properties: The temporal fragment of
�

M inherits the expected properties of its un-
derlying Temporal Logic of Reals — an axiomatization is given in [2]. In addition to
these, there are a number of axioms relating to the agent part of

�
M

5. By knowing what
the beliefs, intentions, and various rule-sets of an agent are, these axioms allow us to
derive a set of formulae that capture many of the properties of that agent. These formu-
lae are called the theory of the agent: the systematic derivation of such a theory is the
first step on the road to formally verifying the properties of the agent, and the system
to which it belongs. We comment briefly on specification and verification below.

First, we have an axiom which tells us that agents apply belief rules exhaustively.
Suppose ϕ, ψ , ϕ′, and ψ ′ are

�
0-formulae, and ∃β ∈ Binding such that apply(β , ϕ) =

ϕ′ and apply(β, ψ) = ψ ′. Then the following axiom is sound:'
((Bel i ϕ ⇒ ψ) ∧ (Bel i ϕ′)) ⇒ (Bel i ψ ′). (A1)

Axiom (A2) tells us about the adoption of intentions via IARs. Suppose ϕ, ψ , χ, ϕ′,
ψ ′, and χ′ are

�
0-formulae, and ∃β ∈ Binding such that apply(β , ϕ) = ϕ′, …, and

apply(β, χ) = χ′. Then if agent i has an IAR with adoption condition ϕ, goal ψ , mo-
tivation χ, and rating n, then (A2) will correctly describe i:'

(Bel i ϕ′) ⇒ (Intend i ψ ′ χ′ n). (A2)
5 We shall not present formal proofs of these axioms, as they are all immediate from the model

given in the preceding section.

Note that it is much simpler to actually use axioms (A1) and (A2) than it is to state them
formally!

There are a number of other axioms that capture properties of intentions. Axiom
(A3) tells us that once an agent has adopted an intention, it keeps it until either it is
believed to be satisfied, or its motivation is no longer believed to be present.

'
(Intend i ϕ ψ n) ⇒

()
(Intend i ϕ ψ n)�

(Bel i ϕ) ∨ ¬ (Bel i ψ)

*+
(A3)

Axioms (A4) and (A5) tell us that an agent’s intentions are consistent with it’s beliefs.'
(Intend i ϕ ψ n) ⇒ ¬ (Bel i ϕ) (A4)'
(Intend i ϕ ψ n) ⇒ (Bel i ψ) (A5)

It is interesting to compare (A3)–(A5) with those axioms considered by researchers de-
veloping abstract theories of intention [3, 18]. For example, (A3) captures the important
properties of persistent relativised goals, as defined by Cohen-Levesque [3, pp254–
255]; the only significant property they lack is that according to the Cohen-Levesque
theory, an agent will drop a persistent relativised goal if it believes that it can never be
achieved. MYWORLD agents are not (yet!) capable of such reasoning.

Reasoning about MYWORLD systems: The issues surrounding the use of logics like�
M to reason about DAI systems are considered at length in [23], and more briefly

in [6, 25]; they will not, therefore, be discussed again here. Instead, we simply note
that

�
M can be used in both the specification and verification of MYWORLD systems. A

specification S is given as a set of
�

M-formulae; any system whose execution histories
all satisfy the formulae is considered to satisfy the specification. For verification, one
attempts to derive the theory T of a particular system, using axioms like (A1)–(A5),
above, and show via formal proof that the specification follows from the theory, i.e.,
that T

'
S. Although specification is a straightforward process, verification is generally

considered much more difficult; it is particularly awkward when one uses complex
logics like

�
M, for which automated theorem proving tools are not likely to become

available in the near future.

5 Concluding Remarks

In this article, we hope to have demonstrated two points: (i) that it is both possible and
desirable to develop rigorous formal models of implemented multi-agent systems; and
(ii) that it is possible to use such formal models in the development of more abstract
formalisms for reasoning about implemented multi-agent systems. In future, we hope to
extend the work presented in this article in a number of ways. First, MYWORLD agents,
as described in this article, have a very simple structure — we are currently reimple-
menting the system to provide a more powerful agent language. The formal model will
need to be redeveloped when this work is complete. Secondly, the axiomatization given
in section 4 is not complete, in that there are properties of MYWORLD systems that we
cannot prove using it. In particular, the relationship between intention and action needs
further study.

References

1. J. F. Allen. Towards a general theory of action and time. Artificial Intelligence, 23(2):123–
154, 1984.

2. H. Barringer, R. Kuiper, and A. Pnueli. A really abstract concurrent model and its temporal
logic. In Proceedings of the Thirteenth ACM Symposium on the Principles of Programming
Languages, pages 173–183, 1986.

3. P. R. Cohen and H. J. Levesque. Intention is choice with commitment. Artificial Intelli-
gence, 42:213–261, 1990.

4. I. Craig. Formal Specification of Advanced AI Architectures. Ellis Horwood: Chichester,
England, 1991.

5. M. Fisher. Towards a semantics for Concurrent METATEM. In M. Fisher and R. Owens,
editors, Executable Modal and Temporal Logics. Springer-Verlag: Heidelberg, Germany,
1995.

6. M. Fisher and M. Wooldridge. Specifying and verifying distributed intelligent systems. In
M. Filgueiras and L. Damas, editors, Progress in Artificial Intelligence — Sixth Portuguese
Conference on Artificial Intelligence (LNAI Volume 727), pages 13–28. Springer-Verlag:
Heidelberg, Germany, October 1993.

7. N. Francez. Fairness. Springer-Verlag: Heidelberg, Germany, 1986.
8. P. Gärdenfors. Knowledge in Flux. The MIT Press: Cambridge, MA, 1988.
9. M. R. Genesereth and N. Nilsson. Logical Foundations of Artificial Intelligence. Morgan

Kaufmann Publishers: San Mateo, CA, 1987.
10. M. P. Georgeff and A. L. Lansky. Reactive reasoning and planning. In Proceedings of the

Sixth National Conference on Artificial Intelligence (AAAI-87), pages 677–682, Seattle, WA,
1987.

11. R. Goodwin. Formalizing properties of agents. Technical Report CMU–CS–93–159, School
of Computer Science, Carnegie-Mellon University, Pittsburgh, PA, May 1993.

12. J. Y. Halpern and Y. Moses. A guide to completeness and complexity for modal logics of
knowledge and belief. Artificial Intelligence, 54:319–379, 1992.

13. D. Harel. Dynamic logic. In D. Gabbay and F. Guenther, editors, Handbook of Philosoph-
ical Logic Volume II — Extensions of Classical Logic, pages 497–604. D. Reidel Publishing
Company: Dordrecht, The Netherlands, 1984. (Synthese library Volume 164).

14. C. B. Jones. Systematic Software Development using VDM (second edition). Prentice Hall,
1990.

15. K. Konolige. A Deduction Model of Belief. Pitman Publishing: London and Morgan
Kaufmann: San Mateo, CA, 1986.

16. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag: Heidelberg, Germany, 1992.

17. B. G. Milnes. A specification of the Soar cognitive architecture in Z. Technical Report
CMU–CS–92–169, School of Computer Science, Carnegie-Mellon University, Pittsburgh,
PA, August 1992.

18. A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture. In
R. Fikes and E. Sandewall, editors, Proceedings of Knowledge Representation and Reas-
oning (KR&R-91), pages 473–484. Morgan Kaufmann Publishers: San Mateo, CA, April
1991.

19. A. S. Rao and M. P. Georgeff. An abstract architecture for rational agents. In C. Rich,
W. Swartout, and B. Nebel, editors, Proceedings of Knowledge Representation and Reason-
ing (KR&R-92), pages 439–449, 1992.

20. S. Rosenschein and L. P. Kaelbling. The synthesis of digital machines with provable epi-
stemic properties. In J. Y. Halpern, editor, Proceedings of the 1986 Conference on Theoret-
ical Aspects of Reasoning About Knowledge, pages 83–98. Morgan Kaufmann Publishers:
San Mateo, CA, 1986.

21. N. Seel. Agent Theories and Architectures. PhD thesis, Surrey University, Guildford, UK,
1989.

22. Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51–92, 1993.
23. M. Wooldridge. The Logical Modelling of Computational Multi-Agent Systems. PhD thesis,

Department of Computation, UMIST, Manchester, UK, October 1992. (Also available as
Technical Report MMU–DOC–94–01, Department of Computing, Manchester Metropolitan
University, Chester St., Manchester, UK).

24. M. Wooldridge. Coherent social action. In Proceedings of the Eleventh European Con-
ference on Artificial Intelligence (ECAI-94), pages 279–283, Amsterdam, The Netherlands,
1994.

25. M. Wooldridge. Temporal belief logics for modelling distributed artificial intelligence sys-
tems. In G. M. P. O’Hare and N. R. Jennings, editors, Foundations of Distributed Artificial
Intelligence. John Wiley & Sons: Chichester, England, 1995. (To appear).

26. M. Wooldridge and D. Vandekerckhove. MYWORLD: An agent-oriented testbed for distrib-
uted artificial intelligence. In S. M. Deen, editor, Proceedings of the 1993 Workshop on
Cooperating Knowledge Based Systems (CKBS-93), pages 263–274. DAKE Centre, Uni-
versity of Keele, UK, 1994.

