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Abstract. In this paperwe considerthe issueof designingagentshatsuccess-
fully balancethe amountof time spentin reconsideringheir intentionsagainst
the amountof time spentactingto achiere them. Following a brief review of
the variouswaysin which this problemhaspreviously beenanalysedwe mo-
tivate andintroducea simple formal model of agentswhich is closely related
to the well-known belief-desire-intentionmodel. In this model,an agentis ex-
plicitly equippedwith mechanismsor deliberationandactionselectionaswell
asa meta-leel control function, which allows the agentto choosebetweende-
liberationandaction. Using the formal model, we definewhatit meansfor an
agentto be optimalwith respecto ataskenvironment,andexplore how various
propertieof anagents taskervironmentcanimposecertainrequirementsn its
deliberationand meta-leel control componentsWe thenshav how the model
cancapturea numberof interestingpracticalreasoningscenariosandillustrate
how ournotionof meta-level controlcaneasilybeextendedo encompashigher
ordermeta-level reasoningWe concludewith adiscussiorandpointersto future
work.

1 Intr oduction

Much of the researctactivity from the intelligentagentcommunityin the mid-to-late
1980swasfocussedroundtheproblemof designingagentghatcouldachieveaneffec-
tive balancebetweerdelibemation (theprocesof decidingwhatto do) andmeans-ends
reasoning(the processof decidinghowto do it) [2]. One particularly successfubp-
proachthatemepedat this time wasthe belief-desie-intention(sD1) paradigm[5, 2,
10, 13]. Thedevelopmenbf theBDI paradigmwasto agreatextentdrivenby Bratmans
theoryof (human)practicalreasonind1], in which intentionsplay a centralrole. Put
crudely sincean agentcannotdeliberateindefinitely aboutwhat coursesof actionto
pursuetheideais it shouldeventuallycommitto achiezing certainstatef affairs,and
thendevote resourceso achieving them.Thesechoserstatesof affairs areintentions,
andonceadoptedthey play a centralrole in future practicalreasonind1, 3].

A majorissuein thedesignof agentghatarebasediponmodelsof intentionis that
of whento reconsiderintentions.An agentcannotsimply maintainanintention,once
adoptedwithout ever stoppingto reconsideit. Fromtime-to-time,it will benecessary
to check,(for example),whetherthe intentionhasbeenachieved, or whetherit is be-
lievedto benolongerachiezable[3]. In suchsituationsijt is necessarjor anagentto



deliberateoverits intentionsand,if necessanto changefocusby droppingexistingin-

tentionsandadoptingnew ones Kinny andGeogef undertookan experimentaktudy
of differentintentionreconsideratiostratgjies[6]. They found thatdynamicerviron-
ments— ernvironmentsin which the rate of world changewashigh — tendto favour
cautiousintentionreconsideratiostratgies,i.e., stratgieswhich frequentlystopto re-
considerintentions.Intuitively, this is becausalthoughsuchagentsncur the costsof
deliberationthey do notwasteeffort attemptingo achieve intentionsthatarenolonger
viable,andareableto exploit new opportunitiesasthey arise.In contraststatic ervi-

ronments— in which therateof world changes low — tendto favour bold intention
reconsideratiostratgies,which only infrequentlypauseo reconsideintentions.

Our aim in this paperis to considerthe questionof whento deliberate(i.e., to
reconsideintentions)versuswhento actfrom aformal pointof view, in contrasto the
experimentaktandpoinbf Kinny andGeogef [6]. We developasimpleformalmodel
of practicalreasoningagents andinvestigatethe behaiour of this modelin different
typesof taskervironment.n thisagentmodel,(whichis very closelyrelatedto the BDI
model[5, 2,10]) anagentsinternalstateis characteriselly asetof beliefs(information
that the agenthasaboutits ervironment)and a set of intentions(commitmentsthe
agenthasmadeaboutwhatstatesof theworld to try andachiese). In addition,anagent
hasa deliberationfunction, which allows it to reconsiderandif necessarynodify its
intentions,andan actionfunction,which allow it to acttowardsits currentintentions.
Thesdunctionsaremediatedy a meta-levelcontrol function. Thepurposeof themeta-
level control functionis simply to choosebetweendeliberationandaction. The meta-
level control functionthusactssomevhatlik e the interpreterin the PRs [5], but more
closelyresembleshemeta-planshatareusedto managenagentsintentionstructures
in thePRs.

The remainderof this paperis structuredasfollows. In section2 we presentour
formal modelof agentsandwe definewhatit meansfor an agentto be optimal with
respecto a particulartaskervironmentIn section3, we investigatewvhatit meansfor
a task ervironmentto be real time, and discussthe relationshipshat must hold be-
tweenanagents meta-level controlanddeliberationcomponentsn orderfor anagent
to actoptimally in suchtaskernvironments.In particular we definenotionsof sound-
nessandcompletenestor meta-level controlanddeliberationstratgies,andshaw that
an optimal meta-lezel control function mustbe soundand completewith respecto a
deliberatiorfunctionin animportantclassof real-timetaskervironmentsin section4,
we shov how ourformalframenork cancaptureanumberof typical practicalreasoning
scenariogtakenfrom [2]). In section5, we generalise@ur modelof meta-level control
to capturehigherorder meta-lerel reasoningstratgies(intuitively, stratgiesto deter
minewhatsortof meta-level reasonindunctionto use),andwe integratethesewith our
agentmodel.Finally, in section6, we presentsomeconclusionsandissuesfor future
work.

2 Agentsand Environments

In this section we formalisea simplemodelof practicalreasoningagentsandthe ervi-
ronmentshey occupy, anddefinewhatwe meanby a run or history of anagentin an
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Fig. 1. Meta-level control, deliberation,and action in an architecturefor practical reasoning
agents.

ernvironment.An overview of our agentmodelis givenin Figurel.

Beforediscussinghis modelin detail, it is importantto malke several pointsclear
First, the architecturds emphaticallynot intendedto be a proposalfor a new imple-
mentableagentarchitecturén the senseof the PRS, INTERRAP, andsoon [15]. Rather
it is intendedo beanabstractionof thekey functionalcomponentsf theBsDI architec-
ture, which we find to be usefulfor analysispurposesSecondnotethatalthoughthe
architecturas closelyrelatedto the BDI modelof ageng, it alsohassomekey differ-
encesPerhapsnostimportantly the reademwill notethatdesiesaremissing.Desires
in a BDI agentare essentially‘options” or “possibilities” available to the agent.The
agentchoosesand commitsto a subsetof its desireswhich thenbecomeintentions.
Desiresarethususedby anagentduringthe procesof intentionformation,andin par
ticular, they arenota key componentf theintentionreconsideratioprocesswhichis
our primary objectof studyin this paper Hencethey aresubsumeadvithin the deliber
ationcomponenbdf our architecturelf onewereto actuallyimplementhedeliberation
componenbf our architecturethenit mightwell beusefulto employ desires— but at
our analysidevel, they do notplay arny usefulrole.



Returningto Figure 1, our agentshave two maindatastructuresabeliefsetandan
intentionset An agents beliefsrepreseninformationthatthe agenthasaboutits envi-
ronmentIn implementedigentsystemgsuchaspPrs [5]), beliefsareoftenrepresented
symbolically asPrRoL 0G-lik e facts, but they maysimply bevariablesof aPascaL-like
programmindanguageHoweverthey arerepresentedyeliefscorrespondo anagents
informationstate Let B be the setof all beliefs. For the mostpart, the contentsof B
will not be of concernto us here.However, it is often usefulto supposehat B con-
tainsformulaeof somelogic, sothat, for example,it is possibleto determinewhether
two beliefsaremutually consistenbr not. An agents actionsat ary givenmomentare
guidedby its intentionset which representdts focus the “direction” of its actwities.
Intentionsmaybethoughtof asstateof affairsthatanagenthascommittedto bringing
about.Formally, let| bethesetof all intentions Again,we arenotconcernedherewith
the contentsof |. As with beliefs,however, it is oftenusefulto assumehatintentions
are expressedn somesort of logical language An agents local statewill thenbe a
pair (b, i), whereb C B is a setof beliefs,andi C | is a setof intentions.Thelocal
stateof anagents its internalstate:a snapshobf its informationandfocusatary given
instantLetL = p(B) x p(I) bethesetof all internalstatesWe usel (with annotations:
I’,11,...) to standfor memberf L. If | = (b, i), thenwe denotethe belief component
of | by by, andtheintentioncomponenbf | by i;.

Agentsdo not operatdasolation:they aresituatedin environmentswe canthink of
anagents ervironmentasbeingeverythingexternalto the agent.(This externalcom-
ponentmay, of coursejncludeotheragentswe leave theexplorationof this possibility
to futurework.) We assumeéhatthe ervironmentexternalto theagentmaybein ary of
asetE = {e,&,...} of states.

Togethey an agentand its ervironmentmake up a system The global stateof a
systemat ary time is thusa pair containingthe stateof the agentandthe stateof the
ervironment.Formally, let G = E x L bethe setof all suchglobal statesWe useg
(with annotationsg, ¢, . . .) to standfor memberof G.

2.1 Choice,Deliberation, and Action

As Figurel illustrates,our agentshave four main componentswhich togethergener
atetheir behaiour: a next-statefunction a meta-level contol function a deliberation
function andan action function The next statefunction canbe thoughtof asa belief
revision function On the basisof the agents currentstateand the stateof the envi-
ronment,it determines new setof beliefsfor the agent,which will includeary new
informationthat the agenthasperceved. An agents next-statefunction thusrealises
whatever perceptionthe agentis capableof. Formally, a next-statefunctionis a map-
ping NV : E x p(B) — p(B).

Thenext componenin ouragentarchitecturés meta-level control. Theideahereis
thatatary giveninstant,anagenthastwo choicesavailableto it. It caneitherdeliberate
(thatis, it canexpendcomputationatesourceslecidingwhetherto changeits focus),
or elseit canact (thatis, it canexpendresourcesattemptingto actually achieve its
currentintentions).Note that we assumehe only way an agentcan change its focus
(i.e., modify its intentions)is throughexplicit deliberation.To representhe choices
(deliberationversusaction) availableto an agent,we will assumea setC = {d,a},



whered denotedeliberation,anda denotesaction. The purposeof an agents meta-
level contmol functionit to choosebetweendeliberationand action. If it choosego

deliberatethenthe agentsubsequentlyeliberatesif its choosedo act,thentheagent
subsequentlycts.Formally, we canrepresensuchstratgiesasfunctionsM : L — C,

which onthebasisof the agents internalstate decidesvhetherto deliberatg(d) or act
(a).

Thedelibemation procesf anagentis representeddy a functionthat,on the basis
of an agents internal state(i.e., its beliefs and intentions),determinesa new set of
intentions.Formally, we canrepresenthis deliberatve processia afunctionD : L —
p(l).

If an agentdecidesto act, ratherthan deliberate thenit is actingto achiese its
intentions.To do so, it mustdecidewhich actionto perform.Theactionselectioncom-
ponentof an agentis essentiallya function that, on the basisof the agents current
state,returnsan action,which representshat which the agenthaschosento perform.
Let Ac = {a,d/,...} bethesetof actions.Formally, anactionselectionfunctionis a
mappingA : L — Ac.

Finally, we definean agentto be a 5-tuple (M, D, A, N, ly), where M is a meta-
level controlfunction, D is adeliberatiorfunction, 4 is anactionselectiorfunction, N/
is a next-statefunction,andly € L is aninitial state

Beforeproceedingary further, we statesomeassumptionsiponwhich laterresults
dependFirst, notethatalthoughwe chooseto abstractlymodelthe component®f an
agentasfunctions they will beultimatelybeimplementedy programsf somekind. If
f isaprogramthenwewrite cost for thetimecostof f. Theideais thatif f hastime cost
O(g(n)) andf’ hastime costO(h(n)), whereO(g(n)) > O(h(n)), thencost > cost:.
We assumehatthecostof deliberatioris approximatelyequalto thecostof acting(i.e.,
costp ~ costy). Secondywe assumehecostof meta-level controlis verymuchsmaller
thanthecostof deliberation(i.e.,cost < cost).

2.2 Runs

Recallthatan agentis situatedin an ervironment,andthatsuchan ervironmentmay
bein ary of a setE of statesIn orderto representhe effect that an agents actions
have on an ervironment,we introducea statetransformerfunction,  (cf. [4, p154]).
Theideais that T takesasinput an ervironmentstatee € E andanactiona € Ac,

andreturnsthe ervironmentstatethat would resultfrom performinge in e. Thus7 :

E x Ac — E. We areimplicitly assuminghat ervironmentsare deterministic there
is no uncertaintyaboutthe resultof performingan actionin somestate[11, p46]. In

addition,we assumehatthe only way an ervironmentstatecanchanges throughthe
performanceof an actionon the part of an agent(i.e., the ervironmentis static[11,

p46]). Droppingtheseassumptionss not particularly problematicand doesnot alter
ary of ourresults althoughit doesmalke theformalismsomeavhatmorecornvoluted.We

leavethereadeto maketherequiredmodificationsFormally, we defineanervironment
Envtobeatriple (E, 1, &), whereE is asetof environmentstatesasabove, 7 is a state
transformefunction,ande, € E is theinitial stateof Env.

A run of anagent/emironmentsystemcanbethoughtof asaninfinite sequence:
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In sucha run, gq is theinitial stateof the system(comprisedof the initial stateof
the ervironmentandthe initial stateof the agent)andc, € C is the choicedictated
by the agents meta-lerel control function on the basisof it's initial state.The state
g1 = (e, 1) is thatwhich resultsafter the agenthasmadeits choicecy. If the agent
choseto act (thatis, if cg = a), thene, = 7(ey, A(lg)) andl; = (N (e, by, ), i},), that
is, the ervironmentstatee, is thatwhich resultsfrom the agentperformingits chosen
actionin the initial state,andtheinternalstatel; is thatwhich resultsfrom the agent
updatingits beliefsvia its beliefrevisionfunctionandnot changingts intentions(since
it did notdeliberate).

If, however, the agentchoseto deliberate at time 0 (i.e., if ¢ = d) thene =
& (i.e., the environmentremainsunchangedsincethe agentdid not act),andl; =
(N(ey, b, ), D(lo)) (i-e.,theagents beliefsareupdatedasin the previouscaseandthe
agentsintentionsareupdatedhroughits deliberatiorfunctionD.

Formally, aninfinite sequencégy, g1, gs, - - -) over G represents run of anagent
Ag = (M,D, A,N,lg) in anervironmentErnv = (E, 7, &) iff go = (e&,lo) and
Yu € IN, we have

_ { (eu, W (eus b1, D(1))) if M(ly)
FL = (7w, AGL)), (N (0 b, 1)) T M (L) =

We will denoteby r(Ag, Env) therun of agentAg in ervironmentEnv, andlet Runbe
thesetof all possibleruns.

d
a

2.3 Optimal Behaviour

In orderto expresghevalue or utility of arun, we introducea functionV : Run— IR,
which assigngeal numbersndicating“payoffs” to runs. ThusV essentiallycapturesa
standarddecision-theoretinotion of utility. We will assumehatthereis someupper
boundto theutility thatV assigngo arun,sotherewill alwaysbeoneor more“optimal”
runs.ThefunctionV represents performancemeasue againswhich anagentwill be
measured.

A taskervironmentis definedto be a pair (Env, V), whereEnv is anernvironment,
andV : Run — IRis a utility function. We sayan agentAg is optimal with respect
to a taskervironment(Env, V) if thereis no agentAd suchthatV(r(Ad,Emnv)) >
V(r(Ag, Env)). Again, this is in essenceahe by-nov standardnotion of an optimal
agent(cf. [12, p583]).

Viewed at its most abstract,an agentis simply an action selectionor decision-
makingfunction,which mapsperceptualnputsto actions[11, p34]. The architectural
componentof an agent— its meta-lerel control function, deliberation,action, and
next-statefunction — are therein the serviceof this decisionmaking. An obvious
questionis thereforewhetheror not we candefinewhat it meansfor sucha compo-
nentto be optimal. Let us considerthe caseof the meta-lerel control. Supposehat
in somesituation,the meta-level control function choseto deliberateratherthanact,



and as a consequencehe agentlost someutility. (Imaginethat the agentwas about
to be hit by a speedingcar, andinsteadof choosingto jump, choseto deliberateabout
which way to jump.) Then clearly, the meta-level control function was sub-optimal
in this case— it would have done betterby choosingdifferently. This leadsus to

the following definition: a meta-level control function M is sub-optimalif thereis

someothermeta-level control function M’ suchthatif the agentused M’ insteadof

M, it would obtain a higher utility. Formally, if (M, D, A,N,ly) is an agent,then
M if optimal (with respectto (Env,V), D, A, and ) if thereis no M’ suchthat
V(I (M, D, AN, lp),Ev) > V(r(M,D, A,N,lg),Env). In asimilar way, we can
defineoptimality for D, A, and ' — the detailsareleft to thereaderNotice thatopti-

mality of a components definednot only with respecto a taskervironment,but also
with respecto the othercomponent®f anagent.Thefollowing theoremcaptureghe
relationshipbetweerpptimality for anagentandthe optimality of its components.

Theorem1 If anagentis optimalwith respecto someaskervironmentthenthecom-
ponentsof that agentare mutuallyoptimal.

Proof. Supposedg = (M, D, A, N, lp) is globally optimal with respecto (Env, V),
but thatonecomponents sub-optimal Assumethis components M (thecasedor D,
A, or N areidentical).ThenV(r(M', D, A, N, o), EnV) > V(r(M,D, A, N, o), Env)
for someM'’ suchthat M’ # M. But in this case Ag is not optimal with respecto
(Env, V), whichis acontradiction.

Notice thatthe implicationin this theoremcannotbe strengthenedb a biconditional:
thefactthatthe componentsf anagentaremutually optimaldoesimply thattheagent
is itself optimal.We canthink of agentghathave mutuallyoptimalcomponentbut that
areglobally sub-optimalashaving achiereda kind of local maxima:an optimality of
sorts,but notthe bestthatcouldbe achieved.

To make the conceptof a valuationfunction and task ervironmentconcrete we
considerthe Tileworld scenariojntroducedby PollackandRinguette[9], andusedby
Kinny andGeogef in their investigationinto agentcommitmentstratgjies[6]. In this
scenariothe ervironmentis a two-dimensional'grid world”. The agentis situatedin
this grid world, and canmove aroundit in singlesteps.The grid world is alsooccu-
pied by a numberof randomlydistributed blocks,and holesinto which an agentcan
shove blocks.An agentdoesthis by moving aroundthe world, pushingblocksahead
of it. The“optimal” agentis the onethat,on average maximiseshe numberof blocks
shovedinto holes.Thevaluationfunction Vi for the Tileworld cansimply be defined
asVrw(r) = blodkg(r)/unsuccessf(t) whereblodks(r) denoteghe numberof blocks
thatweresuccessfullyshovedinto holesduringr andunsuccessft) denoteshenum-
ber of time stepson r duringwhich a block wasnot shovedinto a hole. Note thatthe
valuationfunctionVVryw rangesrom 0 (theagentfailedto shove ary blockinto a hole),
to 1 (ablockwasshovedinto a holeat everytime step).

An agententeringsucha Tileworld could,in principle,computeanoptimalplanfor
shoving blocksinto holes, (althoughas a variantof the travelling salesmarproblem,
the computatiorof sucha planwould be NP-complete) However, decisionmakingin
the Tileworld is complicatedby the fact that blocksthemselesappearanddisappear
at random.The agenthasno way of knowing in advancewhereholeswill appearor



disappearandif it is to operateeffectively, it mustmonitorsuchervironmentakchanges,
and,whereappropriatemodify its courseof action.We will returnto the Tileworld and
commenfurtheronthisissuein thefollowing section.

For theremaindeof this paperwe will be particularlyconcernedvith therelation-
ship betweenjust two of the component®f an agent:its meta-lerel control function
anddeliberationcomponentWe shall thereforeassumdrom hereon that an agents
next-statefunctionandactionfunctionarefixedandoptimal.

3 Real-Time Task Environments

It shouldbe clearthat the performanceof an agentis very much dependenbn the
natureof the task environmentin which it is situated.An agentthat performsbadly
in onetask ervironmentmay do well in one that hasdifferent propertied11, p46].
An understandingf the relationshipbetweenagentsand the task ervironmentsthey
occuyy is therefordikely to be of greatbenefitwhenwe cometo build agentghatwill
operatdn realervironments.

Arguably the mostimportanteverydayclassof task ervironmentsare thosethat
comeunderthe bannerof real-time Putat its mostabstracta real-timetaskenviron-
mentis simply onein which time playsa partin the evaluationof an agents perfor
mance[12, p585].1t is possibleto identify severaldifferentsortsof real-timetaskenvi-
ronmentsfor example:

— thosein whichtheagentmustbring aboutsomestateof affairsasquickly aspossi-
ble— thesooneiit achievesthis stateof affairs, the higherits payof;

— onein whichanagentis requiredto repeasometask,with the optimalagentbeing
theonethatrepeatshetaskasoftenaspossible.

Real-timetaskervironmentsare problematichecausein generaljf anagentis to
operatesuccessfullyin suchan environment,thenit must successfullytrade-of the
amountof time it spenddeliberatingagainsthe amountof time it spendsacting.For
if anagentdeliberatesndefinitely, thenit will typically never achiere arything (cf. the
notionof reactvity in [15])".

Formally definingwhatit meandor ataskenvironmentto bereal-timeis notsimple,
since,asthe examplesabove indicate the conceptof real-timeactuallyencompasses
numberof relatedpropertiesRatherthanattemptto presensucha generaldefinition,
we definea classof taskervironmentsin which wastedeffort is penalised We argue
thatthis concepttapturesnary aspect®f real-timetaskervironments.

How might an agentwasteeffort? Thereareessentiallytwo possibilities.First, an
agentis wastingeffort if it is expendingresourceattemptingo achiezethe“wrong” in-
tentions.Considerthe Tileworld, discussedn the precedingsection.Supposenagent
hasobseredsomeblock, andhasformedanintentionto shove thatblock into a partic-
ular hole.Now if the agentis attemptingto achieve this intentionevenwhenthathole

LIt is easyto constructprovidential task ervironments,in which an optimal agentis onethat
alwayschooseso deliberateor alwayschoosedo act. However, we arguethatsuchtaskenvi-
ronmentgdo not correspondo mary interestingreal-world situations.



hasvanishedthenit is in somesensavastingeffort. It would do betterto reconsideits
intentions.A similar wasteof effort occursif anagentfails to exploit a serendipitous
situation(for examplewhena hole appeargo the sideof anagent,makingit possible
to obtainadditionalutility).

A secondypeof wastedeffort occursif anagenthas“correct” intentionsbut is not
actingonthem— in suchasituation,anagentis engagingn unnecessargeliberation.
For example suppos@nagentn the Tileworld hasanintentionof shoving somepartic-
ular blockinto a hole,andstopsto deliberate After deliberationthe agentsintentions
areunchangedandit continuego pushthe sameblock to the samehole. In this case,
all otherthingsbeingequal theutility accordedo theagentwouldbelessthanit would
have obtainedby not deliberatingatall (sincethe valueunsuccessfyt) hasincreased).
Theagentwould thushave donebetterby simply actinginstead.

In orderto formally definewhat we meanfor an agentto wasteeffort, we must
first definewhatit meandor anagentto have optimalintentions Intuitively, anagent
hasoptimal intentionsif thereis no goodreasonfor changingthem— if, giventhe
informationavailableto the agent,an optimal deliberationfunction would not choose
to changethem. Formally, if (M, D, A, N,ly) is an agentthatis currentlyin state
(b, 1), andthatis situatedn taskenvironment(Env, V), thenits intentionseti is optimal
for M, A, Nl iff D((b,i)) = i. Note thatthe notion of an optimal intention setis
inherentlyrelativeto a specificagent An intentionsetthatis optimalfor oneagentmay
well notbe optimalfor anotherAn agentAg = (M, D, A, N, o) in taskenvironment
(Env, V) is thensaidto wasteeffort iff r(Ag, Env) = (go,...) andfor someu € IN
we have eitheriy, is optimalfor M, A, N,y andc, = d or elsei,, is not optimal for
M, A, N,y andc, = a. Finally, ataskernvironmentis saidto penalisevastedeffort iff
ary optimalagentfor this taskenvironmentdoesnotwasteeffort.

Let us now turn to the relationshipbetweenmeta-level control and deliberation
for task ervironmentsthat penalisewastedeffort. The possibleinteractionsbhetween
meta-lerel control and deliberationin suchtask environmentsare summarisedn Ta-
ble 1 (adaptedand extendedfrom [2, p353]). Considersituation(1). In this situation,
the agentdoesnot have optimal intentions,and hencewould do well to deliberate.
However, it doesnot chooseo deliberateandhencethe meta-lerel reasoningunction
thatchoseto actwassub-optimalln situation(2), the agentagainhassub-optimalin-
tentions,but this time choosego deliberateratherthanact. Unfortunately the agents
deliberatiorfunctionD doesnotchangdocus,andis thussub-optimal Situation(3) is
essentialljthesameassituation(2), but thistime, thedeliberatiorfunctiondoeschange
focus.While it is clearthatthemeta-level reasonindunctionis optimalin this situation,
it is notcertainthatthe deliberatiorfunctionis optimal,sincewe do notknow whatthe
old intentionswerereplacedwith. However, it would certainly be sub-optimalnot to
changententions.

In situation(4), the agenthasoptimal intentions,and doesnot chooseto deliber
ate.Sincethe intentionsare optimal, the meta-level control functionis obviously cor
rectnot to deliberaten this situation,andis henceoptimal. In situation(5), the agent
hasoptimal intentions,but this time choosego deliberatethe deliberationfunction,
however, doesnot changgocus.Hencewhile the meta-level controlfunctionis clearly
sub-optimalthedeliberatiorfunctionis optimal.Situation(6) is assituation(5), except



Situation Optimal Choseto Changed M D
number intentionsdeliberate? focus? optimal?optimal?

1 No No — No —

2 No Yes No Yes No

3 No Yes Yes Yes Maybe
4 Yes No — Yes —

5 Yes Yes No No Yes
6 Yes Yes Yes No No

Table 1. PracticalReasoningituations(cf. [2])

thatthis time, the deliberatiorfunctionchangedocus.In this case poththe meta-level
controlanddeliberationcomponentsnustbe sub-optimal sincethe agentwastedtime
deliberatingandthenmodifiedits intentionsdespitethe factthatthereis no reasorto
doso.

Fromthe discussiorabove, we canextractthefollowing simpleprinciple:for task
ervironmentsthat penalisewastedeffort, a meta-leel control function shouldchoose
to deliberateonly whenits correspondingleliberationfunction would changefocus.
We will saya meta-level controlfunction M is soundwith respecto anoptimaldelib-
erationfunction D iff whenever M choosedo deliberate,D choosego changefocus
(i.e.,if M(I) = d impliesD(l) # i). Similarly, we say M is completewith respecto
D iff whenerer D would changefocus, M choosego deliberatg(i.e.,if D(l) # i im-
pliesM(l) = d). We caneasilyestablistthe following result,which relatessoundand
completemeta-level controlstratgiesto taskenvironmentgshatpenalisevastedeffort.

Theorem 2 For taskenvironmentghat penalisewastedeffort, an optimalagenthasa
meta-level contml functionthat is soundand completewith respecto its deliberation
function.

Proof. Assumean arbitrary agent(M, D, A, N, o) is optimal with respectto some
taskervironmentthat penalisesvastedeffort. We needto showv that M is soundand
completewith respecto D. For soundnesstartby assuminghat M is notsoundwith

respecto D. Thenfor somel € L, we have M(l) = d (themeta-level controlfunction

saysdeliberateput thatD(l) = ij (the deliberatiorfunctiondoesnotchooseto change
focus).But by definition, this is a wasteof effort, hence(M, D, A, N, 1) cannotbe

optimal,whichis a contradictionso M is sound.For completenesstartby assuming
that M is notcompletewith respecto D. Hencefor somel € L, we have D(l) # i) but

that M(l) = a. But thisis awasteof effort, hence(M, D, A, N, ly) cannotbeoptimal,

whichis acontradictionso M is complete.

An optimalmeta-level controlfunctionfor taskervironmentsthat penalisewasted
effort thushasa kind of oraclefor its correspondingleliberationfunction. One might
thereforewonderwhatis the point of having both meta-level control and deliberation
componentsasan optimal meta-level control function needonly run the deliberation
functionasasubroutingo seeif it would changgocus,andchooseo deliberatgustin



casethe deliberationfunction doeschangefocus. Formally, sucha meta-level control
functionwould be definedasfollows:

_[a ifD() =i
M) = {d otherwisel.

Thiswouldindeedbeasuccessfustratay if thecostof themeta-level controlfunction
wasapproximatelyequalto the costof deliberation(i.e., if costyy ~ costp). However,

aswe pointedout earlier we requirethatthe costof meta-lerel control be significantly
lessthanthat of deliberation(cosfyy <« costp). Underthis assumptionrunningthe
deliberationcomponentn orderto decidewhetherto deliberatas notanoption.

4 An Example

In the previous section,we discussedhe notion of a real-timetaskenvironment,and
investigatedhe relationshipbetweenmeta-level control and deliberationin suchtask
environments.In this section,we shav how four illustrative practicalreasoningsce-
narios(introducedn [2]) canberepresentedvithin our frameavork. (More accurately
Bratmanandcolleaguegive six scenariossincetherearetwo variantseachof scenar
ios oneandfour. However, thesevariantsaremeaningles our framework.)

4.1 ScenarioOne

All four scenariosare basedon the following basicstory: Rosieis an agentthat has
beenassignedhe task of repairinga malfunctioningvbu. As a resultof sometask
analysis,she hasdecidedthat this might bestbe doneby replacingthe crT (which
shebelievesis burnt out), and so shehasadoptedhe intentionsof goingto the vbu
armedwith areplacementRrT, andthenusingthis new tubeto fix thevbu. In thefirst
scenarioRosiearrivesatthevbu to find thatthe CRT is not burnt out: the contrasthas
justbeenturnedway down. Shethereforehasthe optionof fixing thevbu by adjusting
the contrastThis informationis sufficientfor hermeta-leel controlfunctionto decide
thatit is worth deliberating,andin so doing, Rosiefinds that adjustingthe contrast
is cheapethanreplacingthe cRT. Shethusadoptsthe new intentionof adjustingthe
contrastShethenacts,adjustingthe contrastandcompletederinitial task.

In this, andall otherscenarioswe represenRosies world asa setof propositions.
The propositionsof interestto us are summarisedn Table2. While the intendedin-
terpretatiorfor mostof theseis self-evident, somerequireadditionalexplanation:s is
intendedto capturethe presencef the additionalCRT in scenarioghreeandfour; by
is intendedto capturethe factthat Rosieknows thatif it is possibleto fix the vDu by
justadjustingthe contrasthenthisis abetteroptionthanusingthe CRT shecarrieswith
her;b, is intendedo capturethefactthatrewiring thefaulty CRT is thebestoption,and
bs is intendedto capturethe factthatan additionalCRT in scenarioghreeandfour is
superiorto the CRT shecarrieswith her,

In addition,we will alsorepresenRosies possibleintentionsaspropositionssee
Table2. Again, mostof theseareself-explanatory but i, is neededo captureRosies
initial progressrom wherevershepicksupthefirst CRT to whereverthebrokenvpu is.



Beliefs

w VDU working

C CRT burntout

d Contrasturneddown

b; Adjustcontrasis better

r CRT canbefixedby re-wiring
b, Re-wiringis better

s Sparevbu

bs Sparevbu is better

Intentions

i Fix vDU usingoriginal CRT

¢ Fix vDu by adjustingcontrast

r Fix vDuU by re-wiring

a Fix vDU by usingalternatve CRT
v Gotovbu

Table 2. Rosies PossibleBeliefsandIntentions

For simplicity we will assumehateachof theseintentionscanbeachiezedby asingle
action(thougheachof thesecouldequallywell be a seriesof actions).Thusthe action
to achieve intentioni; is a;, theactionto achieve intentioni, is a,, andsoon.

We cannow formalise Rosies reasoninglnitially the stateof the world is g =
{-w, ¢, d} (thevDu is notworking,thecRT is notburntout,andthecontrasis turned
down).Rosiesinitial internalstatelg isthus:({-w, ¢, =d, by }, {iv, i0}). Shethusbegins
scenarioonewith falsebeliefs,sinceshewrongly believesthatthe CRT is burnedout.
Note that Rosies beliefsalsoincludethe preferencénformationb, . Sheinitially has
two intentions:to fix the vbu usingthe original CRT, andto go to the vbu.

The first part of Rosies operationis to decidewhetherto deliberateor act. She
choosesgo act,andexecutesheactiona, thatachiezesherintentioniy, andthusarrives
at the vbu. At this point shedeliberatesand removesthe now-achiezedintention of
maving to the vDu from herintentionset,so thatthe previously adoptedntention of
fixing the vDU usingthe cRT shebroughtwith her becomeghe main focus. At this
pointshecanidentify therealstateof theworld, andhernext-statefunction A/ updates
herbeliefsto reflectthis. Her internalstatebecomest; = ({-w,—c,d, b}, {io}). The
stateof the externalworld is unchangede;, = &.

Rosieagainapplieshermeta-level controlfunction:

M(l) = dif {-c,d,b;} Cbor{-cr,by} Chor{csbs} Ch
~ | a otherwise.

Thustherearethreesituationsn which shewill chooseto deliberateall of which can
be glossedas“thereis now somereasorto suspecthatthereis a betteralternatie to
repairthevpu”. Clearlythisis justanillustrative fragmentof the completemeta-level
control function which is appropriateto this example.Since Rosienow believes —c,



shechoosedo deliberate Thatis, M(l;) = d sincethe cRT is known to not be burnt
out,thecontrasis known to beturneddown, andit is known thatadjustingthe contrast
gives a bettermeansof fixing the vbu thanreplacingthe crT. To find the result of

deliberationwe needto defineD. We have:

{ic} if {-c,d,b;} Ch
{ir} if {=c,r,b2} Ch
{ia} if {c,s b3} C by

li  otherwise.

D(l) =

The deliberationfunction D thusdecidesto adjustthe contrast:D(l;) = {ic}. Note
thatD shouldreally checkthatthe agenthasa meansof adoptingthe intentionbefore
it decidesto adoptit — if Rosieis unableto adjustthe contrast(becauseshehasthe
wrong kind of gripperfor instancethenhowever gooda solutionthis might be,there
is nopointin changingocusto try andachieveit. For our purposeswe canignorethis
subtlety however.

After deliberation,Rosies internal statebecomesi, = ({-w,—c,d,b;},{ic}),
while the externalworld remainsunchangede, = e, = g. Thistime M chooses
to act, andsince A(l2) = ac, the contrastis adjustedwhich repairsthe vbu. This
changen the world causesRosieto revise her beliefsaboutthe stateof the vbu and
the contrastcontrol. Thefinal stateof the ervironmentis thuse; = {w, —c, =d}, while
Rosies internalstateis I3 = ({w, —c, —~d, b; }, 0).

Thecompleterun for scenariconeis thus:

. a d a
l:9 —01 —>0—03

4.2 ScenarioTwo

In this scenarioRosiearrivesat the vbu to find thatthe CRT is not burnt out andcan
be fixed by re-wiring. However, this fix will only be shortterm,andthe crRT will soon
burn outanyway. This informationis sufficientfor Rosies meta-lerel controlfunction
to decideit is not worth deliberatingto seeif sheis ableto fix the vbu by rewiring,
andsosheacts,replacingthe crT in line with herunchangedntention.The startthis
scenarids describedy:

€ = {—|W,—|C, r}
IO = ({_'W7 C,r, _'b2}7 {IV})

So,althoughthe CRT is not burntout andthe vbu canbefixedby re-wiring (factsthat
Rosieinitially doesnot know), Rosiedoesknow thatre-wiring is a worseoption than
replacingthe CRT. After moving to the vbu, poppingthe intentionstack,andrevising
beliefs,just asin the previous scenariothe ervironmentstateremainsunchangedut
Rosiesinternalstateis |; = ({—w, =c,r, =by}, {io}).
Rosiethenapplieshermeta-level controlfunction,anddespitethefactthatthereis
reasorfor herto suspecthatdeliberatiormightleadto analternatve meansf repairing
thevDu (asituationwhichis actuallytrue), M returnsa becaus®osiealsoknowsthat
fixing the CRT by re-wiringis aworseoptionthanthe oneshehasalready Thusshecan



rejecttheideaof changincherfocuswithoutgoingasfar asestablishingvhetheror not
shecanbuild anew planin orderto fix thevbu. Having decidedo act,Rosieperforms
A(io) = ao andthesituationbecomes:

& = {WJ _'Car}
|2 = ({Wa C,r,ﬁbg},@)

Thecompleterun for Scenariolwo is thus:

ay a
f2:9o — 01 — O

4.3 ScenarioThree

In ScenarioThree,Rosiearrivesat the vbu to find a spare(andthereforefree) CRT

sitting by the terminal,but notesthatthe spareis inferior to the tube shebroughtwith

her Her meta-level controlmechanisnthereforerealiseshatthereis no advantageo

seeingf thenew tubecanbe used,andsochoosedo act. Rosiethenreplaceghe CRT

in line with heroriginal intention.Scenariol hreethusbeginswith the following state
of affairs:

e = {-w,c,s}
lo = ({_'W7 C, =S, _‘b3}a {IV})

As before,Rosieproceedso the vDU andthis time finds the sparetube. After belief
revision, the ervironmentstateremainsunchangedut Rosies internalstatebecomes
I = ({-w,c,s,—bs},ig). Thistime M tells herto act,becausehe newly visible CRT
is worsethanthe onesheis carryingwith her Sheacts, A(l1) = «, by replacingthe
CRT andthesituationbecomes:

& ={-w,~c,s}
|2 = ({_|W7 —C, S, _'b3}7 @)

Thecompleterun for Scenariorl hreeis thus:

ay a
l3:90 — 01 — O

4.4 ScenarioFour

In Scenarid~our, Rosiearrivesatthe vDU to againfind a sparecRrT sitting by theter-
minal,andthistime notesthatthespareis superiorto thetubeshebroughtwith her. Her
meta-level controlmechanisnhereforerealiseghatthereis considerableadvantageo
seeingif the new tube canbe usedsincethe saving in the costof the tubeis greater
thanthe costof deliberation.So shechoosedo deliberate Deliberationresultsin the
adoptionof theintentionto usethe new tube,andRosiethenreplaceghe CRT in line
with this new intention. This scenarias almostthe sameasthe third, exceptthat this
time the “new” CRT is superiorto the onethat Rosiebringswith her Thusthe initial
situationis:



e = {-w,c,s}
lo = ({-w,¢,=s,bs}, {iv})

After moving to the vDU andrevising beliefs,the ervironmentis unchangede; = &)
but Rosies internal stateis Iy = ({-w, ¢, s,bs},{io}). This time M(l;) = d and
D(l1) = {ia}. After this, the ervironmentstateagainremainsunchangedut Rosies
internalstateisl, = ({-w, ¢, s, bs}, {ia}), andRosieproceeds$o actA(l;) = a, giving
thefollowing globalstate:

e = {-w,—C, s}
|3 = ({_'Wa -G, S, b3}7®)

Thecompleterun for Scenarid-our is thus:

a d aa
l:9—01 —>02—03

Thereare several pointsto note aboutthis example.The first is that both M and D

are optimal for the caseggiven. Thereis no setof actionswhich could be chosento

give abetterresult. Theseconds thatit is easyto alterthe examplesothatRosieis not
optimal.Considewhatwould happerin Scenarid-ourif shehadnomeansf usingthe
additionalcrT (whichwould meanthattherewasnointentioni,, or, worsenoactiona;,

for achievingi). M would chooseo deliberatesincethe cRT is superiorbut eitherthis
deliberationwould notchangeheintentions(if therewasnoiy,), or whenRosiecameto

acton the changedntention,shewould be unableto achieve thatintentionandwould

have to revertto i,. Thefinal point to noteis thatit is this consideratiorof intentions
andactionswhichjustifiesourassumptiorthatthetime costof M is lessthanthatof D.

Deliberationwill typically involveanexpensveactiity suchasbuilding andevaluating
thequality of plansto achieve somesetof alternatve intentions Althoughthatactiity

mightbeassimpleaslooking to seeif thereis somealternatve intentionwhich canbe
adoptedashere,it is still anoverhead.

5 GeneralisedMeta-Level Reasoning

In this section,we will sketch out how an agentmight use higherorder meta-level
controlstratgyiesin its architectureandwhatrole suchstratgyiesmight play. Whatdo
we meanby a higherordermeta-level controlfunction?Let usreferto the meta-level
control stratgies as describedabove asfirst-order meta-level stratgies. Suchstrate-
giesmerelychoosewhetherto deliberateor to act. A second-oder meta-level control
functioncanbethoughtof asselectingwhich first-ordermeta-level controlfunctionto
use.For example asecond-ordemeta-lerel controlfunctionmightexaminetheagents
beliefsto seehow dynamictheagents ervironmentis. If it determineshattheernviron-
mentis highly dynamic(i.e., therateof world changeis high [6]), thenit might select
a cautiousfirst-ordermeta-level control function — onewhich frequentlycauseghe
agentto deliberatelf, in contrastthe environmentis relatively static(therateof world



changses low), thenit might selecta bold meta-level controlfunction(onethatfavours
actionover deliberation).

It is easyto imagineanagentwith a “tower” of suchmeta-level control stratayies,
with nth-orderfunctionselectingwhich functionto useatlevel n — 1. Theideais very
similar to theuseof meta-languaghierarchiesn meta-logic[8, 14].

We canincorporatesuchhigherordermeta-level reasoningnto our formal model
with easeFirst, let MLC; = L — C bethe setof all first-order meta-lerel control
stratgies.Thesearethe meta-level controlstratgiesthatwe discusse@bore. Thende-
fineMLC, = L — MLC,_,, for all u € IN suchthatu > 1. ThusMLGC; is thesetof all
second-ordemeta-level controlstratgies,MLC;s is the setof all third-ordermeta-level
control strat@ies,and so on. An agentbecomesa 5-tuple, (M, D, A, N, o), where
My is annth ordermeta-level controlfunctionandtheagents othercomponentsireas
before.Giventhis, we canredefinewhatit meandor arunto represent historyof an
agentin anervironment.Formally, aninfinite sequencégo, 91, 02, - - .) over G repre-
sentsarunof anagentAg = (My, D, A, N, lo) in anervironmentEnv = (E, 7, &) iff
go = (e, lo) @andvu € IN, we have

n—1 times
——N—
_ ) (eu, N (eu, 1,), D(1y))) if Mn(lu) (lo) -+ (ly) = d
Gt =0 (reu, AGiL)), N (e, b)) if Ma(l) (I0) -+~ (1) = a
——
n—1 times

Noticethatagentsvhichmake useof higherordermeta-level controlarestrictly speak-
ing no morepowerful than“ordinary” agentsasdefinedearlier For every higherorder
agentthereis an“ordinary” agentthat behaesin exactly the sameway. The pointis

thatfrom the point of view of anagentdesignerit may make senseo divide the func-

tionality of theagentup into differentlevelsof meta-reasoning.

6 Conclusions

In thispaperwe haveinvestigatedherelationshipbetweerthedeliberationaction,and
meta-level controlcomponentsf apracticalreasoningrchitectureWhile thisrelation-
shiphaspreviously beeninvestigatedrom anexperimentaperspectie (particularlyby
Kinny [6]), we havein contrastattempted formalanalysisWe have demonstrateow
it is possibleto constructa simplebut, we argue,realisticmodelof practicalreasoning
agentf thetype investigatedy Kinny andGeogeff, andwe have establishedome
basicpropertieof suchagentavhenplacedin differenttypesof taskenvironment.We
have focussedn particularon real-timetaskervironmentssincetheseare,we believe,
themostcommonclassof real-world taskervironmentthatoneencountersOur work,
whichattemptsan(admittedlypreliminary)formal analysisof therelationshipbetween
agentandervironment,is similarin spirit to thatof [7].

This work wasoriginally instigatedn an attemptto relatethe work of Russelland
Subramaniaion bounded-optimahgentdi.e.,agentshatperformaswell asary agent
cando undercertainarchitecturakonstraintd12]) to the increasinglylarge literature
on BDI agenty5, 2, 10, 13]. While thisinitial investigationled usinto someareasve



hadnot initially anticipatedvisiting, we believe that investigatingthe implicationsof
bounded-optimahgentsfor BDI modelwill be aninterestingresearchissue,andone
thatwe hopeto investigaten futurework. Anotherissuethatwe hopeto considelis the
moving from individual agentg¢o multi-agentsystems.

AdknowledgmentsT his paperhasbenefitedenormouslyfrom commentdy Rogiervan
Eijk, KoenHindriks, Jorg Muller, Tim Norman,Barnegy Pell,andMarthaPollack.
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