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Although I agree with most of the points made in the paper,
Robin indicates that he is tempted to consider a global ubiq-
uitous computer. I think this would not work, as the scale of
such a system would be so large, it would not be practical to
apply design concepts, analyse or understand it. Software
Engineering has taught us how to break large systems down
into manageable components and similar concepts need to
apply to ubiquitous computing. We advocate considering a
Ubiquitous System (US) as multiple, interacting cells which
we call self managed cells (SMCs) [1]. An SMC could cor-
respond with a body area network which monitors (and in the
future controls) the health of a person as well as providing the
means to interact with other people. At another level an SMC
could correspond to a meeting room in which personal SMCs
interact with the other people in the meeting, as well as the
local ubiquitous environment in terms of devices such as print-
ers, displays, and audio systems supporting the meeting,
devices controlling the air-conditioning and lighting etc.
The meeting room SMC is part of a building SMC which
manages the whole infrastructure of the building to optimize
energy usage, environmental conditions, communication and
even people movement via lifts etc. A large-scale service
provider could also be considered an SMC providing commu-
nications services to both personal SMCs, vehicle SMCs and
building SMCs.

An SMC is more complex than current software engineering
concepts such as objects or components in that it is very
dynamic. The components of the SMC may join or leave
over short time-scales as people and vehicles are mobile.

An SMC provides a scope for designing autonomic
functions such as self-configuration, self-healing, self-
optimization, self-protection and context aware adaptation
which are essential for ubiquitous computing systems. An
SMC can provide a scope for applying theory for analysing,
modelling and understanding. A personal SMCwill also be the
means to support multi-modal interactions with the ubiquitous
environment and through the environment with other
people’s SMCs. Although a personal SMC may be a compara-
tively small-scale US, we also have to be able to consider

large-scale SMCs such as the communications service
provider supporting millions of personal, vehicle and building
SMCs.

From the above it can be seen that we have to consider the
following forms of interaction between SMCs and ways of
combining SMCs.

Peer-to-peer interactions support collaboration between
people in a meeting or typical social interactions. However,
peer-to-peer interactions also represent typical forms of
collaborations between service providers e.g. for routing of
communication; providing services to ‘foreign’ subscribers
who are unable to access their own service provider as
happens with mobile phone usage in a foreign country; or
the collaboration between emergency services at the scene
of an accident.

Hierarchical interactions are needed for supporting the
applications which are built up from simpler lower level
services, such as a location aware information service using
a communication service, location tracking service and access-
ing various information providers for weather, traffic condi-
tions or local restaurants.

Composition is needed to build a large SMC such as the
Building SMC from room SMCs or an intensive care ward
to manage the patient monitoring SMCs and supporting the
actions of medical staff with their own SMCs.

In my view the concept of an SMC provides a basis for
developing design methods, tools, models and theories
for interactions which will cater for the very large scale
global USs.

2. MARTYN THOMAS

Martyn Thomas Associates, UK.
Email: martyn@thomas-associates.co.uk

Robin Milner has drawn a visionary picture of ubiquitous
computing and sketched the software science1 that is needed
if the vision is to be realized. The science of ubicomp is a
Grand Challenge indeed, and one that may need rather more
than 20 years before it is fully realized. The scientific chal-
lenges are exciting, and I hope they will inspire a generation
of researchers, but I am deeply concerned about practical

1I adopt Robin Milner’s definition, in the hope that a useful term can be
rescued.
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issues of engineering. What will cause an industry to adopt the
new science when building real USs?

The answer should be obvious: if these complex systems are
built without the solid foundations of sound theory, they will
fail: projects will overrun, costs will escalate, the systems will
prove unreliable, insecure or unsafe in use and practical
deployment will be patchy, falter and perhaps stall completely.
That is a confident prediction because, as Robin Milner has
shown clearly, the ubicomp community is targeting levels of
complexity far beyond anything that has ever been built
before, and requiring that their systems continue to function
dependably whilst reconfiguring themselves to interact with
other systems that had not even been considered in the
original design.

That may seem a powerful argument for adopting software
science, but it has not proven a compelling one for today’s
software industry, who continue to build complex and some-
times safety-critical systems without making appropriate use
of the software science that exists today. As a consequence,
most new systems cost far more than they should, take longer
to develop than necessary and deliver fewer benefits than the
customers expected. This problem is not unique to the UK:
international surveys [2] and books [3–5] suggest that it is a
widespread (and probably universal) problem.

Robin Milner has generously suggested that this is the
inevitable result of a marketplace that is highly competitive
and rapidly developing, but I believe the reverse to be the case.
The marketplace for new complex systems is dominated by a
small number of very large companies, and when customers
increasingly outsource their entire IT, or seek to buy very large
systems from single prime contractors, it is impossible for the
smaller, innovative companies to compete. For example, there
are a number of European companies whose software devel-
opment methods, languages and tools are based on mathemati-
cally formal methods and sound computer science. They have
shown that they are able to develop systems that consistently
have 5% or fewer of the defects [6] that are routinely delivered
by their larger competitors (with no increase in development
costs) but these companies each have less than 200 staff: it
is not possible for them to win projects of the scale of the
National Identity Register, or the flight software for a new
aircraft. So competition is limited and new science is only
adopted slowly.

The result is that industry still uses design notations with
shallow semantics, programming languages that are ambigu-
ous and impossible to analyse mechanically to any depth, and
components that lack adequate specifications or warranties.
The problems that were identified in the NATO software
engineering conferences of 1968 [7] and 1969 [8] are still
with us, and yet the software science to overcome them has
been available for at least 35 years [9]. The two main
international standards [10] for safety critical systems are
currently being revised and, shockingly, neither of these
revisions will require that all developers of safety-critical

systems specify the required safety properties with mathe-
matical rigour.

This is a major barrier to practical ubicomp. Unless industry
can be persuaded or compelled to adopt the relevant software
science of the last 40 years, there is no hope that companies
will be in a position to adopt the output from Robin Milner’s
Grand Challenge. And, as the paper shows so clearly, without
the science, the applications will remain little more than
academic dreams.

3. KAREN SPARCK-JONES

Computer Laboratory, University of Cambridge, UK.
Email: Karen.Sparck-Jones@cl.cam.ac.uk

Taking USs seriously means thinking about systems
whose constituent subsystems can be properly described as
autonomous agents, i.e. systems that do not just have func-
tions, but have goals. However the presumption seems to be
that constituent agent activity is motivated and bounded by
the larger US. Subsystem agents are autonomous only in how
they achieve their goals.

Robin Milner writes about designing USs in a way that
assumes control over the whole enterprise: i.e. as if a US is
a single teleological construct that can be understood, because
of its ‘singlemindedness’, sufficiently to support a comprehen-
sive, but meticulously grounded, and rigorous design. (Variant
external user interests are negotiated into the design.)

This may seem reasonable. But USs will in general not be
greenfield operations. They will be built on top of existing
system(s). These existing systems, though viewed as US
constituents, will have their own prior functions, i.e. goals.

US builders will need to factor in these existing goals. This
will be problematic: first, because these goals will be hetero-
geneous and probably conflicting; second, because given the
subsystems already exist, perhaps as antique legacy, their
goals may be unobvious or inaccessible. However it will
not, in general, be sufficient to model the subsystems from
their observed behaviour. US designers will have to think, not
just about what a subsystem does, but about why it does it.

As an analogy, the bees in a hive are a miniature US. The
bees are autonomous agents, with class goals, e.g. get nectar,
and individual goals, e.g. for some worker bee, pick up this
blob of nectar, fly back to hive, or for a queen, lay eggs here,
start off swarm now. There is separate behaviour, e.g. foraging,
and collective behaviour, e.g. swarming, and communication.
This is the bee view. The beekeeper, who did not create the
bees but provided their hive, has his own goals, e.g. getting
honey, making money. There are also users, the honey buyers,
with their goals.

In designing his bee US, the beekeeper will not get a system
that satisfies his goals unless his model factors in the bees’
goals. Of course the bees’ goals are inaccessible. But to get a
nicely working hive producing honey he needs to think not just
about what he can see the bees doing when they’re foraging,
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but about why they might be doing it the way they are. For
example, they forage as they do so as to minimize journey time
to the hive. That will help him locate the hive well. Similarly
with swarming. If he does not accommodate the bees’ inferred
goals, he’ll get badly stung. But because he can only infer the
bees’ goals, he’ll get it wrong sometimes, so he needs to wear
protective clothing. Even then, he’ll get stung on occasion,
part of the price to pay for the honey.

4. JON CROWCROFT

Cambridge University, UK.
Email: Jon.Crowcroft@cl.cam.ac.uk

The three towers (with apologies to J.R.R. Tolkien)

Robin Milner has presented a view of the challenge of ubiq-
uitous computing from the perspective of software science. In
the process, he has also made a strong plea for the value of the
science of software, which I also subscribe to. The manifesto
for the challenge incorporates three viewpoints, the other
two covering the experiential and technological aspects of
the problem space.

I am interested in the engineering principles that will be
required to succeed in conquering the technological problems
in UbiComp. I’ll use two examples from the past to try to
illustrate what I think we need to do in this space for the future.

In the manifesto we wrote that the principles will be visibly
uncovered when we can see them being taught and applied in
Masters courses, and in exemplar projects around 10–15 years
from now.

What I would like to add to Robin Milner’s discussion is
this: we could envisage three towers of models, leaning
together to make a tripod, a stable mutually supportive struc-
ture that contains experience, science and technology. I am not
the person to address a tower of models for the human factors,
interactive systems and experiential side of UbiComp. I will
attempt to assert that there will be a tower of engineering
design principles or rules, applicable in a similar way to the
tower of scientific models. As with the debate at the lecture
based on Robin Milner’s paper, I agree that the word ‘tower’ is
of course too restrictive—the application of models, or of
design rules, may be made in some arbitrary graph of course,
but the word tower is there and will stick.

I do not know precisely what the types of design rules and
principles will be specifically for this Grand Challenge (of
course, otherwise it would not be a challenge), but I would
like to point out that the idea of design principles for computer
systems has been successfully applied in at least two areas in
the last 25 years. The design philosophy of the DARPA Inter-
net was documented in the 1988 paper [11] by Dave Clark of
MIT (about 12 years after the migration of the ARPANET
from NCP to TCP/IP). An elegant expression of the set of rules
of thumb used to design successful cryptographic protocols
was documented by Abadi and Needham [12].

Other broader questions were discussed by Sally Floyd et al.
[13], and an economic and policy perspective was bought to
bear in [14]. These works represent a tip of the iceberg
of practices today. They took around one to two decades to
emerge as the underlying computing and communications
systems were being researched and prototyped. They
incorporate much material that is delivered in Masters
programmes today in communications systems, and in
security engineering (for example, we reference them
in material taught in Cambridge). They are referenced in
standard documents today.

They incorporate a web of other disciplines including
control theory, optimization, agents and game theory, queue-
ing systems, random and self-stabilizing algorithms, modular-
ization, virtualization, layering, viewpoints transparencies
(viz. ODP Affordance) as well as security principles.

However, there are some interesting meta-lessons from the
success of both security and inter-networking engineering
design. In both of these, I think the meta-lesson is that engi-
neering and science exist in a subtle relationship which
inform each other (and I am certain that one can make the
same argument for the third element of the challenge too,
although of course, we know the three body problem is a
tad trickier!

In the Internet, we have succeeded in designing a system
that is reliable (extraordinarily so compared to prior systems),
despite the unreliability of its components, Indeed, we are
starting to understand the performance and the behaviour of
the Internet in great detail, and yet the component computers
(hosts and routers) are a long way from being built out of
scientific software (the majority of computers run Microsoft
Windows, the majority of routers run Cisco IOS, and these
contain 20-year-old code written in C, with scarce attention
even to software engineering disciplines, let alone software
science).

In that same Internet, we routinely carry out secure trans-
actions. So secure are these that credit card and banking agen-
cies would like to stop using legacy mechanisms for absolute
cost reasons, and yet also are happy to underwrite the risk as it
is lower, and, crucially quantifiable so, than in those legacy
systems.

What this is supposed to illustrate is that one can envisage
UbiComp meeting some desirable goals, without the necessity
to apply a microscopic level of scientifically correct program-
ming at every level. By analogy, I would point out that while
we have a tower of models in physics (in some senses, all of
natural science is a tower of models from quantum mechanics
through chemistry, up through biology to ecosystems), we do
not need to use it to build systems that are correct.

To spell it out, we do not use quantum mechanics in
aeroplane design.

What emerges is that we can, through prototyping, develop
empirical results which can lend us assurance that the neces-
sary science could, in principle, be applied, but does not need
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to be. In fact, some of the engineering techniques we use allow
a more statistical approach to meeting desired behaviour—the
correct operation of a very large ensemble of systems, despite
faulty (even insecure and undermined) components is some-
thing we have developed methods to build (some mentioned
in the list above). Recent theoretic results from the control
theory world such as those reported by Doyle from Caltech
[15], have started to explain this success. Thus, I suppose, a
suitable challenge for the science of US could be to give us a
more predictive model for the combination of multiple such
systems. This is not in conflict with the tower of models Robin
Milner proposes, but is a holistic view of that tower!

5. MARTA KWIATKOWSKA

University of Birmingham, UK.
Email: m.z.kwiatkowska@cs.bham.ac.uk

Robin Milner’s lecture discusses ubiquitous computing and
the risks associated with our failure to develop proper scientific
foundation for ubiquity. We are already witnessing exemplars
of systems that use sensor and mobile devices in safety- and
business-critical applications such as medical monitoring and
banking, but less so coordinated attempts to address the
generic scientific principles that underpin the development
of USs.

As my research interests have been close to Robin’s, I
strongly agree with his analysis and conclusion. Robin men-
tions examples of models and theories developed in the past
that informed the practice of programming—data structures,
types and concurrent processes. The recently espoused syn-
ergy between the pi-calculus and business process languages
is indeed a very exciting prospect, with potential to influence
the W3C choreography standard. The role of these models and
theories goes far beyond informing the standards, however.
The mathematical formulation of the problem allows for
formal reasoning about system correctness, which is capable
of handling systems of huge, perhaps even infinite, scale, via
decomposition and mechanised theorem proving. Importantly
also, it makes it possible to automate aspects of the processes
of system validation and verification as embodied, for exam-
ple, in model checking software tools [16]. Examples include
the Static Device Verifier developed as part of the SLAM
project [17] at Microsoft and used for model checking of
compliance of device drivers to the specification.

The ubiquitous computing scenario, as aptly illustrated
by Robin, presents new and daunting challenges for formal
reasoning and model checking. We must consider stochastic
models of mobility, be able to deal with context and adapta-
tion, and address issues such as quality of service and security.
Techniques such as probabilistic model checking [17, 18]
can be of assistance, but currently can only handle static,
finite system configurations.

One issue that I find particularly intriguing is the argument
for scientific foundations that are not only descriptive, but also

predictive, and therefore more in line with established sci-
ences. The issue of whether our subject (variously referred
to as computer science, computing, computation, informatics)
is a science in the conventional sense is hotly disputed right
now. Personally, I agree with Alan Bundy [19] that strong
scientific foundations are necessary and look forward to
participating in the exciting future developments of our
discipline.

Notwithstanding, I have one disagreement with Robin, and
that is that I do not believe the tower of models is feasible or
appropriate. Rather, a looser collection of theories, perhaps
a graph, perhaps comprising subtowers, is what we should
aim for.

6. PAUL GARNER

Head of Pervasive ICT Research Centre, BT Group
Chief Technology Office, British Telecommunications
plc, 81 Newgate Street, London EC1A 7AJ, UK.
Email: paul.2.garner@bt.com

Robin’s paper discusses the lack of an underlying founda-
tion of fundamental computer science which, if it existed,
would allow us to more successfully model behaviour in
large-scale computing systems and therefore design more cor-
rectly from the outset. In industrial research we aspire to
develop a set of technologies that will allow the underlying
components of USs to be assembled in real time on-demand, to
provide useful, reliable and safe applications and services. In
an attempt to fill the science gap we have embraced a
nature-inspired approach to the creation of solutions to com-
plexity, with many leading software scientists in this area
being biologists by training. As set out in the IBM autonomic
computing agenda, we aim to create distributed autonomous
systems that are self! [20–22]. In order not to lose control over
such fully distributed systems, future engineers will have to be
able to make appropriate use of self-organization and ‘infer’
local rules capable of promoting the desired system behaviour
from statistical, and not deterministic, predictions. Such
self-managing solutions will play an important role in
making any future ubiquitous environment ‘invisible’ so
that users need not become full-time system administrators
to their pervasive home entertainment, or healthcare
systems. In support of this approach a new EU Integrated
Project called Cascadas [23] has been formed to create an
‘autonomic handbook’ of engineering guidelines and
decision support in how to build, understand and tune
UBs. It is taking an approach which draws on complexity
science and current principles of biological systems and
their organizational attributes and behaviours, such as
cooperation, coordination and communication.

Account also needs to be taken of future business and
economic models as they will be the ultimate drivers of
new applications. Detailed models need to be constructed
that expose the potential value of USs and which reveal
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how such value can be successfully delivered. We must engi-
neer adaptive ambient user interfaces that will engender trust.
USs that are adaptive and derive intelligence from our
environment must produce services that are understandable
and that have predictable behaviour in the eyes of the end
user. These requirements need to be balanced with the desire
for invisible technology, to avoid situations where end users
are unable to ascribe specific outcomes to their interaction
with USs.

This paper provides an excellent summary of the scientific
challenges we face in trying to understand the underlying
principles of viable ubiquitous computing applications for
the future.

7. NICHOLAS R. JENNINGS

School of Electronics and Computer Science, University
of Southampton, Southampton SO17 1BJ, UK.
Email: nrj@ecs.soton.ac.uk

On computational service economies

The effective design and development of complex computer
systems is one of the biggest challenges facing computer sci-
entists. Such systems are characterized by their open nature
(components can come and go during the system’s lifetime),
their decentralized control regimes, the high degrees of
dynamism and uncertainty that are endemic within them,
and the fact that they contain components that represent
the aims and interests of multiple distinct stakeholders
[24]. Examples of these types of system include the
ubiquitous computing systems discussed in Robin Milner’s
paper, as well as grid computing systems, peer-to-peer
systems, the web, and autonomic systems. In all of these
seemingly diverse types of system, however, I believe there
is a common computational model that can be used as the
underpinning for conceptualization, design and implemen-
tation. This is the service-oriented model. In this, the
various components in the system are viewed as providing
services to one another. This needs to be done in a flexible
and responsive manner to cope with the dynamism and
uncertainty that is present in the environment and so I will
term the entities that produce and consume the services
software agents. Now, these agents need to interact with
one another in order to gain access to the services that
others provide. Since the agents are autonomous and
represent distinct stakeholders, the de facto form of
interaction will be some form of negotiation. If a negotia-
tion is successful it will result in some form of service
ageeement or contract that specifies the terms and
conditions under which the service is provided.

For me, this service-oriented view is the right high-level
model for UbiComp systems and so should form the top
of Milner’s tower of models. The other, more traditional,

computer science models mentioned in his paper are important
and useful, but they are too fine-grained to be an effective point
of departure for conceptualizing and designing the sorts of
complex systems that are being discussed. Clearly, a mapping
needs to be established to the more traditional models, but if
we start with these then I believe we are doomed to fail since
they are simply too low level a start point.

Given this standpoint, a natural source of concepts and
models is provided by game theory. In this way, the complex
system can be viewed as a computational service economy in
which the various agents cooperate, coordinate and compete
with one another in order to achieve their individual and
collective aims and objectives. Game theory is compelling
because it provides a series of concepts (such as preferences,
equilibria, incentive compatibility) for both analysing what
outcomes are likely in the system and how particular desire-
able characteristics (such as fairness or stability) can be
attained. However, game theory as it currently stands is not
a panacea. Traditionally, game theory has not considered
issues associated with computability, and issues assocated
with dynamism and uncertainty have not been to the fore.
Thus further work is needed to modify and adapt it to com-
puter settings (see [25] for a more comprehensive discussion).
Nevertheless, the successes of a number of projects that
have used game theoretic techniques to analyse and build
UbiComp systems (see, for example, [26, 27]) indicate that
it has much offer in this space.

8. VLADIMIRO SASSONE

ECS, University of Southampton, UK.
Perhaps because I have been involved with some of the

technical aspects covered in the paper, I was most struck by
Robin’s ‘philosophical’ remarks that our science is funda-
mentally different from the natural sciences, in that those
are driven by the desire to understand, while we are by the
need to build. I find his analysis of where this leads us
particularly interesting. Robin’s subsequent question, which
underlies the entire paper, is shall we ever catch up? Given that
advances and new technologies move the goalpost, shall we
ever converge?

An observation hidden in Robin’s argument is that the
universe works and will keep working relatively undisturbed
whether or not we understand it; computer systems will not.
We have no comprehensive theory of the universe yet, but the
laws of physics are not particularly perturbed by our
lack of certainties about dark matter and energy. Not so of
course for our ability to build artefacts, and I believe that
pointing this out helps put in focus how seriously we should
take our relative lack of foundational understanding of the
emerging field of ubiquitous computing.

What seems important—and to me perhaps not so
different between natural sciences and ‘sciences of the
artificial’—is that our wish for progress and advances must
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be underpinned at the same time by adequate technological
support, appropriate scientific understanding and suitable
economic/social drive. To reach the moon we needed the
models of Newtonian mechanics (the science), the thrust of
suitable propulsion engines (the technology), and the large
amount of money and drive of a cold-war competition to
get there first (the socio-economics). While for travels in
our solar system the science was at least 400 years ahead
of the technology, for computing the technological support
and the economic drive have a clear lead on the scientific
understanding. Is this an intrinsic property of computing, or
an ‘accident’ of history we will catch up with?

Whatever the answer, the important point made by Robin’s
lecture is that there will not be a single comprehensive,
all-explaining theory, even though that will always be our
ultimate ambition (as it is for the natural sciences). We will
have to have a tower, or perhaps a network, or even a patch-
work of theories and models relating to the objects of study
from different angles and perspectives. To develop all neces-
sary levels of abstraction, so that all models interlace together
properly is part of the present ‘challenge’. It is a task that
cannot be compartmentalized, e.g. in theory and engineering,
exactly as theoretical speculation over nature cannot proceed
isolated from observation and experimentation.

Robin suggests that at any one level of abstraction only a
small number of concepts may be relevant. I suspend a final
judgement on that, but I am happy to proceed with this
working hypothesis. We certainly need to build confidence
in the fact that theories can work seamlessly at different
abstraction levels, whereby lower levels implement and vali-
date assumptions made at higher levels which, in turn, will
have to be feasible and in agreement with the observations. At
an elementary level, Robin’s example of a high-level
axiomatic of trust can be mapped down to models based on
temporal properties of system execution traces, as e.g. [28].

The forthcoming round of ‘foothill projects’ will have to
build more sophisticated such mappings, and make them
significant.

9. EAMONN O’NEILL

Department of Computer Science, University of Bath,
Bath BA2 7AY, UK.
Email: eamonn@cs.bath.ac.uk

Understanding ubiquitous computing: a view from HCI

A substantial body of research approaches ubiquitous comput-
ing from a Human–Computer Interaction (HCI) perspective.
The goals of HCI as a discipline include concepts, theories,
models, design principles, methods, tools and techniques. We
may also agree on these goals for ubiquitous computing
across a wide range of disciplines but can attach very different
meanings to these terms.

Let us consider modelling. As noted byWegner [29, 30] and
others, interactive systems are very difficult to specify and to
model. In HCI, we emphasize interactivity. From time to time,
there are attempts to model more or less formally in HCI.
Examples include the syndetic modelling of Barnard et al.
[31]. This work, and HCI in general, reflects what Milner
calls a ‘holistic view’ that considers both human and
artefact. In contrast, Milner adopts a ‘dualistic view’ that
focuses on modelling the artefactual parts of the system.

Milner [32] presents an example of the dualistic approach
to modelling trust: ‘A simple axiom for trust may be
transitivity: if A trusts B and B trusts C then A trusts C’. Is
this simple? Yes. Is it useful? Often it is not—because for
people trust is not transitive. Of course, we can define trust
to be transitive (or anything else that we would like it to be)
but that does not help extend our modelling to cover human
behaviour and experience. Milner [32] notes that in the
dualistic approach, ‘in the case of concepts like . . . trust, as
they pertain to software agents,we shall not be concerned with
the full human interpretation; instead we expect to use
simpler pragmatic notions that are both definable and
implementable’. This simplification is of course necessary
in order to implement systems. But then people will come
along and perform all kinds of unmodelled behaviours
which subvert the simple model on which the system
design is based. For example, we have empirical evidence
that people will behave based on factors such as
convenience, regardless of trust [33]. Whether within a
dualistic or a holistic approach, we lack the ability
effectively to model the human behaviours in the whole
system.

For the Grand Challenge of ubiquitous computing, Milner
[32] identifies three perspectives of ubiquitous computing:
human experience (or HCI), design and science. He also
proposes three goals that, he claims, map respectively to
these three perspectives:

Methods and techniques that are sensitive both to the needs
of individuals and society and to the impact of ubiquitous
computing upon them;

Design principles that pertain to all aspects of ubiquitous
computing and are agreed among both academic and profes-
sional engineers;

A coherent informatic science whose concepts, calculi,
models, theories and tools allow descriptive and predictive
analysis of ubiquitous computing.

But these goals do not map neatly to the three perspectives.
For the HCI researcher, reducing the goal of HCI to the
development of methods and techniques (goal 1) is anathema.
Milner [32] asks if we can postulate criteria for success in
achieving our vision for new human experience with the
same clarity as criteria for success in the design and
science perspectives. The answer is yes, if and only if our
methods and techniques in HCI instantiate empirically
tested design principles (goal 2) that are founded on the
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concepts, models and theories of a coherent informatic science
(goal 3). Hence, the goals of HCI as an approach to ubiquitous
computing include concepts, theories, models, design
principles, methods, tools and techniques.

10. MICHAEL WOOLDRIDGE

Department of Computer Science, University of Liverpool,
L69 7ZF, UK.
Email: mjw@liv.ac.uk

What is correctness in the age of ubiquitous computing?

Robin paints a compelling picture of the future of computing
and clearly identifies the key issues that computer science
must address in order to realize this vision. In this response,
I want to comment on one particular issue that Robin’s vision
raises, which relates to one of the main underlying concerns
of computer science—and British computer science in par-
ticular. This is the issue of correctness.

There is a well-established set of formalisms and associated
technologies for investigating the correctness of computer sys-
tems of various types, of which model checking is perhaps the
best-known and most successful contemporary example [16].
While these approaches differ in manyways, they all start from
the assumption that there is some precise, formal specification
of the desired properties and behaviour of the system under
study; and the purpose of the verification exercise is to show
that the system does (or does not) satisfy this specification.
Typically, the specification is expressed in some form of
logic—for example, temporal logic in the case of model
checking. This formal system specification is, in AI
terminology, a goal; and a key purpose of the development
process is to develop a system that achieves this goal, i.e. is
correct with respect to the specification.

This model of correctness assumes that the specifier enjoys
a privileged position, in the sense that the specifier is able
to define the criteria by which the system is understood to
be correct or otherwise. Of course, the specification will
often have been derived from consultations with many stake-
holders, but nevertheless, ultimately, there is a single overall
position from which the correctness of the system is assessed.
And of course, the specifier is assumed to have a consistent
specification—the software cannot be required to satisfy logi-
cally inconsistent requirements.

But it is easy to see that this standard model of corectness
simply does not map to Robin’s ubiquitous computing world.
It implies that someody has unique ownership of the system,
and that the system can be designed to satisfy their goals.
But in a globally accessible network of software and hardware
components, there !can be no privileged position! from which
a unique standard of correctness is defined. The participants in
USs will have different goals and agendas, and these goals—
their specifications—will inevitably be mutually inconsistent.

So, what will replace this classical notion of correctness in a
system containing multiple interacting computing elements,
each seeking to achieve their mutually inconsistent goals?
One approach we have been following is to adapt ideas devel-
oped in game theory—the mathematical theory of interacting
self-interested agents. Central to game theory is the notion of
an equilibrium: a standard of behaviour that is ‘stable’, under
the assumption that agents within the system act rationally, i.e.
in pursuit of their personal goals. Instead of asking whether
the system is correct, we can then ask instead what are the
equilibria of the system, and whether these equilibria are desir-
able. We can also try to engineer a system so that its equilibria
are desirable from some point of view (e.g. so that any equi-
librium of the system leads to an outcome that is ‘fair’ to all
participants). Where the system involves a substantial legacy
component, the metaphor of a social contract becomes useful:
a social contract being an agreed standard of behaviour that
agents within a system will abide by in order that the benefits
of cooperation are not lost in conflicts [34, 35].

With respect to Robin’s hierarchy of models, I believe that
at one level in this hierarchy, we must recognize these multiple
agents with their potentially conflicting goals; the task of link-
ing these micro-level models to macro models characterizing
system-level behaviours seems to me to be a key challenge.

11. CARSTEN MAPLE

Institute for Research in Applicable Computing,
Department of Computing and Information Systems,
University of Luton, Park Square, Luton LU1 3JU, UK.
Email: Carsten.Maple@luton.ac.uk

The aim of ubiquitous computing research and implemen-
tation is the embedding of systems into everyday life in a
transparent manner: the user moves between locations and
tasks, largely or perhaps completely unaware of the computing
infrastructure [36]. Agent-based technologies have been
developed to facilitate this transparency. A user interacts
with some (software) agent or set of agents and this agent
then acts on behalf of the user to achieve some goal. In
achieving this goal, it is likely, certainly in a ubiquitous
computing environment, that this agent will have to interact
with other agents. This brings about issues concerning trust
both within agents and between the user and the interaction
agent. As He et al. note [37], users will need to become content
to let a piece of software make decisions on their behalf. This
will obviously require time and will only occur as agents
show what they are capable of. Herein lies a major issue: if
a user is to be content to allow some software agent to act on
their behalf, then clearly, it is better if the user has some (even
if it is quite basic) understanding of how that agent will attempt
to achieve that goal. If the user is unaware of the interactions
the agent will have to undertake with other agents, they will
not be in a suitable position in which to make an assessment
of risk. Each time that two agents interact, there is a possible
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trust (and security) implication. A great deal of work exists in
attempting to best formulate models of trust between agents,
much of it building upon the work of McKnight et al. [38]. As
the ubiquitous environment becomes more complex, in terms
of numbers of agent–agent interactions, the user (at the point
of interaction, and therefore often authentication) can soon
become quite distanced from the point of the goal being
achieved. As such theaverage user may have little real
awareness of the power they are potentially devolving to an
agent. It is possible that a rogue agent can use information
gained from an honest agent, to act in some malicious way.
The average user will have no idea of such possibilities: what
can be seen as a great time- and effort-saving environment can
be used to wreak unforeseen havoc if the appropriate risk
assessment has not been undertaken. It is therefore
imperative that the engineers of USs consider the distance
between points of authentication and goal satisfaction.
Should the maximum distance become too large, the user
may feel a loss of control. Standard graph-theoretic
techniques can be used to model USs and can provide a
measure of distance between interaction and goal.

If a user has a mobile telephone that is left unlocked,
most would be generally aware of the risks associated with
someone finding the telephone and acting maliciously. This is
largely due to the fact that goals achieved using the mobile
telephone are relatively close to the interaction point in a graph
representation of the system. Now consider mobile telephone
that is configured to allow access to bank account details
without the need for further authentication. Hence one inter-
action agent (the telephone interface) is used to access some
other service. This brings about different issues of security.
Due to the relatively simple system described most users can
understand the associated risk, and so would likely ensure that
there is a further need for authentication before accessing the
bank account details. If we consider more interconnected
devices and services in this ubiquitous environment: can a
user be sure what access an attacker has, and what distress,
inconvenience and cost malicious acts can result in? For a
small proportion of users, the technologically literate, this
might be easily answered; for those more innocent—users
who do not enable security features or just leave the default
setting [38]—they may be unaware of the danger, unable to
assess the risks or prepare for the consequences.

Agent technology holds out the possibility of connecting
multiple, seemingly (to the user) unrelated agents. In this
scenario new risks appear notwithstanding inter-agent nego-
tiation [39]: anyone who has access to one password or, say, an
open phone may now have access to a wealth of personal
information. In a world in which technologists offer up
wearable computing, pervasive access control sensors and
single sign-on, users stand to gain much in terms of
immediate task fulfilment, yet may be rendered unable to
conduct usability-versus-security risk assessments. Thus,
embedding security into USs and at the same time engaging

users in understanding and employing security measures
remains a significant challenge.

12. GRORGE COULOURIS

Digital Technology Group, Computer Laboratory,
Cambridge University, UK.
Email: george.coulouris@cl.cam.ac.uk

My concern about the Ubiquitous Computing Grand
Challenge is that it lacks an industrial perspective and has
received little input from the potential producers and end-
users. Fifteen years after Weiser’s original vision statement,
ubiquitous and pervasive computing remain predominantly
research programmes with little associated industrial activity.
The need for further research is perfectly understandable: the
emergence of new technologies follows no set timescales
and the more complex and generic the goals, the longer the
required research activities needed to yield the necessary
understanding. That is one of the important messages of
Robin Milner’s excellent paper. But he also identifies
experience-led activities as one of three domains within
which understanding must be advanced and the Grand
Challenge mamifesto elaborates on that theme. I take this
to refer to the design of systems that enhance human activity
and the experience of using information systems. (Weiser
expected the ubiquitous computer to be ‘invisible’, but he
presumably also expected an enhanced experience to result
from it). Reflection on the history of the major developments in
interactive computing—time sharing, interactive graphical
systems and the personal computer—shows that these devel-
opments took place largely in research environments but
were all stimulated and focussed by a day-to-day awareness
of needs in industry and more widely. Although improved
methods for the evaluation of HCI have emerged from recent
research, it remains the case that the constraints of real-world
needs and market forces are an essential context for design.
(Eamonn O’Neill points out that the problem may be less
prevalent for Japanese and other Asian researchers.)

13. DAN CHALMERS

Department of Informatics, University of Sussex, UK.
Email: D.Chalmers@sussex.ac.uk

The idea of user intention and training was raised, however,
we should remain aware that pervasive computing will be
subject to use by those who are curious, half-asleep, taking
drugs, violent, suicidal or otherwise hard to plan for. It may
be that there is no ‘intention’, or that intentions will not be
those anticipated by the designers.

The component devices of pervasive computing will be
mass-produced and subject to day-to-day life: chewed by
babies; modified for cosmetic effect and to alter their perfor-
mance (cf. over-clocking of PC CPUs); fitted or worked round
by DIY enthusiasts; and taken to harsh environments such
as the beach, the garden or the kitchen. To be viable, without
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causing an ecological disaster, these multitudes of devices
must be self-sufficient: not requiring regular servicing, remain-
ing embedded in, and decaying with, their environment. Any
careful calibration will soon be lost, so we must consider that
their data about the world will be noisy or wrong and that
individual devices will become unreliable and fail.

So, in addition to being wary of assuming we understand our
users, we should be wary of assuming we understand the
context of operation. In real deployments we are frequently
reminded of this, but when forming theories it is easy to start
simplifying the world into a clean, precise, logical place.
Instead, we should endeavour to embed the idea of uncertainty
in our models, as a connecting structure within and between
the various layers of Robin’s ‘tower of models’.

Finally, in specifying correct behaviour the idea of the
unknown arises again. We are already building and deploying
the first components of the vision, based on current practice,
varying quality specifications and a drive to market. However
good our specifications they cannot incorporate the unantici-
pated, but we should expect fluid adaptation not obsolescence
and restriction. We should be able to use models, of computers
and of people, to examine from various viewpoints what may
happen in emerging situations. A sound theoretical basis to our
understanding will let us adapt our creations, in rather the same
way as new uses for old buildings can be analysed; modifica-
tions, limits and anticipated properties specified; but their use
evolved in ways which the original architects never dreamt of.
As pointed out in the lecture, this requires the grand challen-
ge’s combination of experience, engineering and theory com-
ing together to develop both real applications and scientific
principles.
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