
Nash Equilibrium and Bisimulation Invariance�

Julian Gutierrez1, Paul Harrenstein2, Giuseppe Perelli3, and
Michael Wooldridge4

1 Department of Computer Science, University of Oxford, Oxford, United
Kingdom
julian.gutierrez@cs.ox.ac.uk

2 Department of Computer Science, University of Oxford, Oxford, United
Kingdom
paul.harrenstein@cs.ox.ac.uk

3 Department of Computer Science, University of Oxford, Oxford, United
Kingdom
giuseppe.perelli@cs.ox.ac.uk

4 Department of Computer Science, University of Oxford, Oxford, United
Kingdom
mjw@cs.ox.ac.uk

Abstract
Game theory provides a well-established framework for the analysis of concurrent and multi-agent
systems. The basic idea is that concurrent processes (agents) can be understood as corresponding
to players in a game; plays represent the possible computation runs of the system; and strategies
define the behaviour of agents. Typically, strategies are modelled as functions from sequences of
system states to player actions. Analysing a system in such a way involves computing the set
of (Nash) equilibria in the game. However, we show that, with respect to the above model of
strategies—the standard model in the literature—bisimilarity does not preserve the existence of
Nash equilibria. Thus, two concurrent games which are behaviourally equivalent from a semantic
perspective, and which from a logical perspective satisfy the same temporal formulae, nevertheless
have fundamentally di�erent properties from a game theoretic perspective. In this paper we
explore the issues raised by this discovery, and investigate three models of strategies with respect
to which the existence of Nash equilibria is preserved under bisimilarity. We also use some of
these models of strategies to provide new semantic foundations for logics for strategic reasoning,
and investigate restricted scenarios where bisimilarity can be shown to preserve the existence of
Nash equilibria with respect to the conventional model of strategies in the literature.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Pro-
grams, F.4.1 Mathematical logic (Temporal Logic), I.2.11 Distributed AI (Multiagent Systems)

Keywords and phrases Bisimulation, Nash Equilibrium, Multiagent Systems, Strategy Logic

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2017.17

1 Introduction

The concept of bisimilarity plays a central role in both the theory of concurrency [18,
16] and logic [26, 16]. In the context of concurrency, bisimilar systems are regarded as
behaviourally equivalent—appearing to have the same behaviour when interacting with an

� The authors acknowledge with gratitude the financial support of the ERC Advanced Investigator
grant 291528 (“RACE”) at Oxford.

© Julian Gutierrez, Paul Harrenstein, Giuseppe Perelli, and Michael Wooldridge;
licensed under Creative Commons License CC-BY

28th International Conference on Concurrency Theory (CONCUR 2017).
Editors: Roland Meyer and Uwe Nestmann; Article No. 17; pp. 17:1–17:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2017.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 Nash Equilibrium and Bisimulation Invariance

arbitrary environment. From a logical/verification perspective, bisimilar systems are known
to satisfy the same temporal logic properties with respect to languages such as LTL, CTL, or
the µ-calculus. These features, in turn, make it possible to verify temporal logic properties
of concurrent systems using bisimulation-based approaches. For example, temporal logic
model checking techniques may be optimised by applying them to the smallest bisimulation-
equivalent model of the system being analysed; or, indeed, to every other model within the
system’s bisimulation equivalence class. This is possible because the properties that one is
interested in checking are bisimulation invariant.

Model checking is not the only verification technique that can benefit from bisimulation
invariance. Consider abstraction and refinement techniques [9, 10] (where a set of states
is either collapsed or broken down in order to build a somewhat simpler set of states);
coinduction methods [25] (which can be used to check the correctness of an implementation
with respect to a given specification); or reduced BDD representations of a system [7] (where
isomorphic, and therefore bisimilar, subgraphs are merged, thereby eliminating part of the
initial state space of the system). Bisimulation invariance is therefore a very important
concept in the formal analysis and verification of concurrent and multi-agent systems.

Game theory [22] provides another important framework for the analysis of concurrent
and multi-agent systems. Within this framework, a concurrent/multi-agent system is viewed
as a game, where processes/agents correspond to players, system executions/computation
runs to plays, and individual process behaviours are modelled as player strategies, which are
used to resolve the possible nondeterministic choices available to each player. In logic and
computer science, games have also been extensively used for synthesis and verification. In
this case, one is usually focused on two-player zero-sum games where the desired solution
concept is given by the existence of winning strategies. Instead, in this paper, we are more
interested in the more general framework given by multi-player non-zero-sum games, where
the standard solution concept is given by of strategies forming a Nash equilibrium.

A widely-used model for strategies in (concurrent) multi-player games is to view a
strategy for a process i as a function fi which maps finite histories s0, s1, . . . , sk of system
states to actions fi(s0, s1, . . . , sk) available to the process/agent/player i at state sk. In
what follows, we use the terms process, agent, and player interchangeably. We refer to
this as the conventional model of strategies, as it is the best-known and most widely used
model in logic, AI, and computer science (and indeed in extensive form games [22]). For
instance, specification languages such as alternating-time temporal logic (ATL [4]), and
formal models such as concurrent game structures [4] use this model of strategies. If we model
a concurrent/multi-agent system as a game in this way, then the analysis and verification of
the system reduces to computing the set of (Nash) equilibria in the associated multi-player
game; in some cases, the analysis reduces to the computation of a winning strategy.

Because bisimilar systems are regarded as behaviourally equivalent, and bisimilar systems
satisfy the same set of temporal logic properties, it is natural to ask whether the Nash
equilibria of bisimilar structures are identical as well; that is, we ask the following question:

Is Nash equilibrium invariant under bisimilarity?

We show that, for the conventional model of strategies, the answer to this question is,
in general, ‘no’. More specifically, the answer critically depends on precisely how players’
strategies are modelled. With the conventional model of strategies, the answer is positive only
for some two-player games, but negative in general for games with more than two players.
This means, for instance, that, in the general case, bisimulation-based techniques cannot be
used when one is also reasoning about the Nash equilibria of concurrent systems that are
formally modelled as (concurrent) multi-player games.

J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge 17:3

s0

p̄q̄

s

Õ
1

p̄q̄

s1

p̄q̄

s3

p̄q

s2

pq̄

s4

p̄q̄

a, b , a

a, b , a

Õ

b , a, b

b , a, b

Õ

b , a, a

b , a, a

Õ

a, b , b

a, b , b

Õ

a, a, ú
b , b , ú

b , ú, a

a, ú, b

ú, b , a

Õ

ú, a, b

Õ

b , ú, a

a, ú, b

ú, b , a

Õ

ú, a, b

Õ

a, ú, a

b , ú, b

ú, a, a

Õ

ú, b , b

Õ

a, ú, a

b , ú, b

ú, a, a

Õ

ú, b , b

Õ

ú, ú, ú

ú, ú, ú

ú, ú, ú

Figure 1 A 3-player game with a Nash equilibrium.

Motivated by this observation—which brings together in a striking way a fundamental
concept in game theory and a fundamental concept in logic/concurrency—the purpose of the
present paper is to investigate this issue in detail. We present three alternative models of
strategies in which Nash equilibria and their existence are preserved under bisimilarity. We
also study the above question for special classes of systems, and explore applications to logic.
Specifically, we investigate the implications of replacing the conventional model of strategies
with some of the models we propose in this paper in logics for strategic reasoning [19, 8],
in particular, the semantic implications with respect to Strategy Logic (SL [19]). We also
show that, within the conventional model of strategies, Nash equilibrium is preserved by
bisimilarity in certain two-player games as well as in the class of concurrent game structures
that are induced by iterated Boolean games [14], a logic-based framework for reasoning about
the strategic behaviour of di�erent kinds of multi-agent systems [28, 29].

A Motivating Example

So far we have mentioned some cases where one needs or desires a property to be invariant
under bisimilarity. However, one may still wonder why it is so important that the particular
property of having a Nash equilibrium is preserved under bisimilarity. One reason has
its roots in automated formal verification. To illustrate this, imagine that the system of
Figure 1 is given as input to a verification tool. It is likely that such a tool will try to
perform as many optimisations as possible to the system before any analysis is performed.
The simplest of such optimisations—for instance as done by virtually every model checking
tool—is to reduce the input system by merging isomorphic subtrees (e.g., when generating
the ROBDD representation of a system). If such an optimisation is made, the tool will
construct the (bisimilar) system in Figure 2. (Observe that the subgraphs rooted at s1
and s

Õ
1 are isomorphic.) However, with respect to the existence of Nash equilibria, such a

transformation is unsound in the general case.
For instance, suppose that the system in Figure 1 represents a 3-player game, where

each transition is labelled by the choices x, y, z made by player 1, 2, and 3, respectively, an
asterisk ú being a wildcard for any action for the player in the respective position. Thus,
whereas players 1 and 2 can choose to play either a or b at each state, player 3 can choose
between a, b, a

Õ, or b

Õ. The states are labelled by valuations xy over {p, q}, where x̄ indicates
that x is set to false. Assume that player 1 would like p to be true sometime, that player 2

CONCUR 2017

17:4 Nash Equilibrium and Bisimulation Invariance

s0

p̄q̄

s1

p̄q̄

s2

pq̄

s3

p̄q

s4

p̄q̄

a, b , ú
b , a, ú

b , ú, a

a, ú, b

ú, b , a

Õ

ú, a, b

Õ

a, a, ú
b , b , ú

a, ú, a

b , ú, b

ú, a, a

Õ

ú, b , b

Õ

ú, ú, ú

ú, ú, ú

ú, ú, ú

Figure 2 A 3-player game without Nash equilibria.

would like q to be true sometime, and that player 3 desires to prevent both player 1 and
player 2 from achieving their goals. Accordingly, their preferences/goals can be formally
represented by the LTL formulae “1 = F p, “2 = F q, and “3 = G ¬(p ‚ q), respectively.
Informally, F Ï means “eventually Ï holds” and G Ï means “always Ï holds.” Moreover, given
these players’ goals and the conventional model of strategies, we will see later in Section 4.2
that the system in Figure 1 has a Nash equilibrium, whereas no Nash equilibria exists in the
(bisimilar) system in Figure 2. This example illustrates a major issue when analysing Nash
equilibria in the most widely used models of strategies and games studied in the literature,
namely, that even the simplest optimisations commonly used in automated formal verification
are not sound with respect to game theoretic analyses.

2 Preliminaries

We begin by introducing the main technical concepts and models used in this paper.

Concurrent Game Structures

We use the model of concurrent game structures, which are well-established in the lit-
erature (see, for instance, [4]). A concurrent game structure (CGS) is a tuple M =
(Ag, AP, Ac, St, s

0
M , ⁄, ”), where Ag = {1, . . . , n} is a set of players or agents, AP a set

of propositional variables, Ac is a set of actions, St is a set of states containing a unique
initial state s

0
M . With each player i œ Ag and each state s œ St, we associate a non-empty

set Aci(s) of feasible actions that, intuitively, i can perform when in state s. By a direction
or decision we understand a profile of actions d = (a1, . . . , an) in Ac ◊ · · · ◊ Ac and we let Dir
denote the set of directions. A direction d = (a1, . . . , an) is legal at state s if ai œ Aci(s) for
all players i. Unless stated otherwise, by “direction” we will henceforth generally mean “legal
direction”. Furthermore, ⁄ : St æ 2AP is a labelling function, associating with every state s a
valuation v œ 2AP. Finally, ” is a deterministic transition function, which associates with
each state s and every legal direction d = (a1, . . . , an) at s a state ”(a1, . . . , an). As such ”

characterises the behaviour of the system when d = (a1, . . . , an) is performed at state s.

Computations, Runs, and Traces

The possible behaviours exhibited by a concurrent game structure can be described at at
least three di�erent levels of abstraction. Thus, we distinguish between computations, runs,
and traces. Computations carry the most information, while traces carry the least, in the

J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge 17:5

sense that every computation induces a unique run and every run induces a unique trace,
but not necessarily the other way round.

A state s

Õ is accessible from another state s whenever there is some d = (a1, . . . , an) such
that d is legal at s and ”(s, a1, . . . , an) = s

Õ. For easy readability we then also write s

d≠æ s

Õ.
An (infinite) computation is then an infinite sequence of directions Ÿ = d0, d1, d2, . . . such
that there are states s0, s1, . . . such that s0 = s

0
M and s0

d0≠æ s1
d1≠æ s2

d2≠æ · · · . Observe
that in every concurrent game model the states s0, s1, . . . in the above definition always exist
and are unique. A finite computation is finite prefix of a computation Ÿ. We also allow a
finite computation to be the empty sequence ‘ of directions. We also use ”

ú(s, d0, d1, . . . dk)
to denote the unique state that is reached from the state s after applying the computation
d0, d1, . . . dk.

An (infinite) run is an infinite sequence fl = s0, s1, s2 . . . of states of sequentially accessible
states, with s0 = s

0
M . We say that run s0, . . . , sk is induced by computation d0, . . . , dk≠1 if

s0
d0≠æ s1

d1≠æ s2
d2≠æ · · · and s0 = s

0
M . Thus, every computation induces a unique run and

every run is induced by at least one computation. A finite run is a finite prefix of a run. The
sets of infinite and finite runs are denoted by runsÊ

M and runsM , respectively.
An (infinite) trace is a sequence · = v0, v1, v2, . . . of valuations such that there is

a run fl = s0, s1, s2, . . . in runsÊ
M such that vk = ⁄(sk) for every k Ø 0, that is, · =

⁄(s0), ⁄(s1), ⁄(s2), In that case we also say that trace · is induced by run fl, and if fl is
induced by computation Ÿ, also that · is induced by Ÿ. By a finite trace we mean a finite prefix
of a trace. We denote the sets of finite and infinite traces of a concurrent game structure M

by tracesM and tracesÊ
M , respectively. We use flM (Ÿ) to denote the run induced by an infinite

computation Ÿ in M , and fiM (Ÿ), if Ÿ is finite, on the understanding that fiM (‘) = s

0
M .

Also, if fl = s0, s1, s2, . . . is a run, by ·M (fl) we denote the trace ⁄(s0), ⁄(s1), ⁄(s2), . . . , and
similarly for finite runs fi œ runsM . Finally, ·M (flM (Ÿ)) is abbreviated as ·M (Ÿ). When no
confusion is likely, we sometimes omit the subscript M and the qualification ‘finite’.

Bisimulations and Bisimilarity

One of the most important behavioural/observational equivalences in concurrency is bisimil-
arity, which is usually defined over Kripke structures or labelled transition systems (see, for
instance, [18, 16]). However, the equivalence can be uniformly defined for general concurrent
game structures, where decisions/directions play the role of “actions” in transition systems.
Formally, let M = (AP, Ag, Ac, St, s

0
M , ⁄, ”) and M

Õ = (AP, Ag, Ac, StÕ
, s

0
M Õ , ⁄

Õ
, ”

Õ) be two
concurrent game structures. A bisimulation, denoted by ≥, between states s

ú œ St and
t

ú œ StÕ is a non-empty binary relation R ™ St ◊ StÕ, such that s

ú
R t

ú and for all s, s

Õ œ St,
t, t

Õ œ StÕ, and d œ Dir:
s R t implies ⁄(s) = ⁄

Õ(t),
s R t and s

d≠æ s

Õ implies t

d≠æ t

ÕÕ for some t

ÕÕ œ StÕ with s

Õ
R t

ÕÕ,
s R t and t

d≠æ t

Õ implies s

d≠æ s

ÕÕ for some s

ÕÕ œ St with s

ÕÕ
R t

Õ.
Then, if there is a bisimulation between two states s

ú and t

ú, we say that they are bisimilar
and write s

ú ≥ t

ú in such a case. We also say that concurrent game structures M and M

Õ are
bisimilar—in symbols M ≥ M

Õ—if s

0
M ≥ s

0
M Õ . We furthermore say that runs fl = s0, s1, . . .

and fl

Õ = s

Õ
0, s

Õ
1, . . . are statewise bisimilar (in symbols fl ≥̇ fl

Õ) if sk ≥ s

Õ
k for every k Ø 0. Both

bisimilarity and statewise bisimilarity are equivalence relations, which is a standard result
in the literature (see, for instance, [11, 5, 18]). We, moreover, find that the sets of (finite)
computations as well as the sets of (finite) traces of two bisimilar concurrent game structures
are identical. Moreover, every (finite) computation Ÿ gives rise to statewise bisimilar (finite)

CONCUR 2017

17:6 Nash Equilibrium and Bisimulation Invariance

runs and identical (finite) traces in bisimilar concurrent game structures. However, as runs
are sequences of states and the states of di�erent concurrent game structures M and M

Õ may
be distinct, even if they are bisimilar, no identification of their sets runsÊ

M and runsÊ
M Õ of

runs can generally be made.

3 Games on Concurrent Game Structures

Concurrent game structures specify the actions the players can take at each state and which
states are reached if they all concurrently decide on an action. A full understanding of
the system that is being modelled, however, also depends on what goals the players desire
to achieve and on what strategies they may adopt in pursuit of these goals. We therefore
augment concurrent game structures with preferences and strategies for the players. Thus
they define a strategic game and as such they are amenable to game theoretic analysis by
standard solution concepts, among which Nash equilibrium is probably the most prominent.

3.1 Strategies and Strategy Profiles

Based on the distinction between computations, runs, and traces, we can also distinguish
three types of strategy: computation-based, run-based, and trace-based strategies. The
importance of these distinctions is additionally corroborated by Bouyer et al. [6], who show
how the specific model of strategies adopted a�ects the computational complexity of some
standard decision problems related to multi-agent systems.

A computation-based strategy for a player i in a concurrent game structure M is a function
f

comp

i : compsM æ Ac such that f

comp

i (Ÿ) œ Aci(sk) for every finite Ÿ œ compsM with
fiM (Ÿ) = s0, . . . , sk. Thus, f

comp

i (‘) œ Aci(s0
M), where ‘ is the empty sequence of directions.

Similarly, a run-based strategy for player i is a function f

run

i : runsM æ Ac where
f

run

i (s0, . . . , sk) œ Aci(sk) for every finite run (s0, . . . , sk) œ runs. Finally, a trace-based
strategy for i is a function f

trace

i : tracesM æ Ac such that f

trace

i (·) œ Aci(sk) for every
trace · œ tracesM and every run fi = s0, . . . , sk such that · = ⁄(s0), . . . , ⁄(sk).

A computation-based strategy profile is then a tuple f = (f1, . . . , fn) that associates with
each player i a computation-based strategy fi. Run-based and trace-based strategy profiles
are defined analogously. Every computation-based strategy profile f = (f1, . . . , fn) induces
a unique computation ŸM (f) = d0, d1, d2, . . . in M that is defined inductively such that
d0 = (f1(‘), . . . , fn(‘)) and dk+1 = (f1(d0, . . . , dk), . . . , fn(d0, . . . , dk)), for all k œ N. Simil-
arly, a run-based strategy profile f = (f1, . . . , fn) defines the unique computation ŸM (f) =
d0, d1, d2, . . . such that d0 = (f1(s0

M), . . . , fn(s0
M)) and dk+1 = (f1(fi(d0, . . . , dk)), . . . ,

fn(fi(d0, . . . , dk)), for all k œ N. Finally, the computation ŸM (f) defined by a trace-based
strategy profile f is such that d0 = (f1(⁄(s0

M)), . . . , fn(⁄(s0
M))) and dk+1 = (f1(·(d0, . . . , dk)),

. . . , fn(·(d0, . . . , dk)), for all k œ N. For f = (f1, . . . , fn) a profile of computation-based,
run-based, or trace-based strategies, we write with a slight abuse of notation fl(f1, . . . , fn)
for fl(Ÿ(f1, . . . , fn)) and ·(f1, . . . , fn) for ·(fl(f1, . . . , fn)).

Note that, as the computations and traces of bisimular concurrent games structures
coincide, so do the computation-based and trace-based strategies available to the players.
Moreover, the computations induced by them will be identical. With the states of bisimilar
structures possibly being distinct, however, similar observations do not straightforwardly
extend to run-based strategies and strategy profiles.

J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge 17:7

3.2 Preferences and Goals
We formally specify the preferences of a player i of a concurrent game structure M as a
subset �i of computations, that is, �i ™ compsÊ

M , and refer to �i as player i’s goal set.
Player i is then understood to (strictly) prefer computations in �i to those not in �i and
to be indi�erent otherwise. Accordingly, each player’s preferences are dichotomous, only
distinguishing between the preferred computations in �i and the not preferred ones not
in �i. Formally, player i is said to weakly prefer computation Ÿ to computation Ÿ

Õ if Ÿ œ �i

whenever Ÿ

Õ œ �i, and to strictly prefer Ÿ to Ÿ

Õ if i weakly prefers Ÿ to Ÿ

Õ but not vice versa.
If player i weakly prefers Ÿ to Ÿ

Õ and Ÿ

Õ to Ÿ, we say that i is indi�erent between Ÿ and Ÿ

Õ.
The choice of modelling players’ preferences as sets of computations—rather than say sets

of runs or sets of traces—is for technical convenience and flexibility. Observe that every set of
runs is induced by a set of computations, namely the set of computations that give rise to the
same runs, and similarly for every set of traces. Thus, we say that a goal set �i ™ compsÊ

M

is run-based if for any two computations Ÿ and Ÿ

Õ with fl(Ÿ) = fl(ŸÕ) we have that Ÿ œ �i if
and only if Ÿ

Õ œ �i. Similarly, �i is said to be trace-based whenever ·(Ÿ) = ·(ŸÕ) implies that
Ÿ œ �i if and only if Ÿ

Õ œ �i. Thus, run-based goals are computation-based goals closed under
induced runs, and trace-based goals are computation-based goals closed under induced traces.

Sometimes—as we did in the example in the introduction—players’ goals are specified
by temporal logic formulae. As the satisfaction of goals only depends on traces, they will
directly correspond to trace-based goals, given our formalisation of goals and preferences.

3.3 Games and Nash Equilibrium
With the above definitions in place, we now define a game on a concurrent game structure M

(also called a CGS-game) as a tuple, G = (M, �1, . . . , �n), where, for each player i, the goal
set �i ™ compsÊ

M specifies i’s dichotomous preferences over the computations in M .
The players of a CGS-game either all play computation-based strategies, all play run-based

strategies, or all play trace-based strategies. For each such choice of type of strategies, with
the set of players and their preferences specified, every CGS-game defines a strategic game
in the standard game theoretic sense. Observe that the set of strategies is infinite in general.
Thus the game theoretic solution concept of Nash equilibrium becomes available for the
analysis of games on concurrent game structures. If f = (f1, . . . , fn) is a strategy profile
and gi a strategy for player i, we write (f≠i, gi) for the strategy profile (f1, . . . , gi, . . . , fn),
which is identical to f except that i’s strategy is replaced by gi. Formally, given a CGS-game,
we say that a profile f = (f1, . . . , fn) of computation-based strategies is a Nash equilibrium
in computation-based strategies (or computation-based equilibrium) if, for every player i and
every computation-based strategy gi available to i, ŸM (f≠i, gi) œ �i implies ŸM (f) œ �i.
The concepts of Nash equilibrium in run-based strategies and Nash equilibrium in trace-based
strategies are defined analogously, where, importantly, fi and gi are required to be of the
same type, that is, both run-based or both trace-based. If Ÿ(f) /œ �i whereas Ÿ(f≠i, gi) œ �i,
we also say that player i would like to deviate from fi to gi. Thus, a run-based profile f is a
run-based equilibrium whenever no player would like to deviate from it to some run-based
strategy di�erent from fi. Similarly, a trace-based profile f is a trace-based equilibrium if no
player would prefer to deviate to another trace-based strategy.

We furthermore say that a computation Ÿ, run fl, or a trace · is sustained by a Nash
equilibrium f = (f1, . . . , fn) (of any type) whenever Ÿ = Ÿ(f), fl = fl(f), and · = ·(f),
respectively. We also refer to a computation, run, or trace that is sustained by a Nash
equilibrium as an equilibrium computation, equilibrium run, and equilibrium trace, respectively.

CONCUR 2017

17:8 Nash Equilibrium and Bisimulation Invariance

Computation-based equilibrium is a weaker notion than run-based equilibrium, in the
sense that, if f is a run-based equilibrium, there is also a corresponding computation-based
equilibrium, but not necessarily the other way round. Run-based equilibrium, in turn, is in a
similar way a weaker concept than trace-based equilibrium.

4 Invariance of Nash Equilibria under Bisimilarity

From a computational point of view, one may expect games based on bisimilar concurrent
game structures and with identical players’ preferences to display very similar behaviours,
in particular with respect to their Nash equilibria. We find that while this is indeed the
case for games with computation-based strategies as well as for games with trace-based
strategies, for games with run-based strategies the situation is considerably more complicated.
A key observation is that, by contrast to computation-based and trace-based strategies,
there need not be a natural one-to-one mapping between the sets of run-based strategies
in bisimilar concurrent game models. By restricting to so-called bisimulation-invariant
run-based strategies, however, we find that order can be restored.

4.1 Computation-based and Trace-based Strategies
If strategies are computation-based, players can have their actions depend on virtually all
information that is available in the system. In an important sense full transparency prevails
and di�erent actions can be chosen on bisimilar states provided that the computations
that led to them are di�erent. As, moreover, the strategies available to player in bisimilar
concurrent game structures are identical, we obtain our first main preservation result.

I Theorem 1. Let G = (M, �1, . . . , �n) and G

Õ = (M Õ
, �1, . . . , �n) be games on bisimilar

concurrent game structures M and M

Õ, respectively, and let f = (f1, . . . , fn) be a computation-
based profile. Then, f is a Nash equilibrium in computation-based strategies in G if and only
if f is a Nash equilibrium in computation-based strategies in G

Õ.

Since the sets of traces of two bisimilar concurrent game structure coincide, we can also
directly compare their trace-based Nash-equilibria. We find that trace-based Nash equilibria
are likewise preserved in CGS-games based on bisimilar concurrent game structures.

I Theorem 2. Let G = (M, �1, . . . , �n) and G

Õ = (M Õ
, �1, . . . , �n) be games on bisimilar

concurrent game structures M and M

Õ, respectively, and f = (f1, . . . , fn) be a trace-based
strategy profile. Then, f is a Nash equilibrium in trace-based strategies in G if and only if f

is a Nash equilibrium in trace-based strategies in G

Õ.

As an immediate consequence of Theorems 1 and 2, we also find that the properties of
computations and traces being sustained by, respectively, a computation-based equilibrium
and a trace-based equilibrium are preserved under bisimulation.

4.2 Run-based Strategies
The positive results obtained using computation-based and trace-based strategies (with
respect to both computation-based goals and trace-based goals) are now followed by a
negative result, already mentioned in the introduction of the paper, which establishes that
Nash equilibria in run-based strategies—probably the most widely-used strategy model in
logic, computer science, and AI—are not preserved by bisimilarity. Previously we observed
that the players’ run-based strategies cannot straightforwardly be identified across two

J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge 17:9

di�erent but bisimilar concurrent game structures. We would therefore have to establish
a correspondence between the run-based strategies of di�erent games in an arguably ad
hoc way. To cut this Gordian knot, we therefore show the stronger result that the very
existence of run-based equilibria is not preserved under bisimilarity. That is, there can be two
CGS-games, G and G

Õ, that are based on bisimilar concurrent game structures but that G

possesses a Nash equilibrium and G

Õ does not.

I Theorem 3. The existence of run-based Nash equilibria is not preserved under bisimilarity.
That is, there are games (M, �1, . . . , �n) and (M Õ

, �1, . . . , �n) on bisimilar concurrent game
structures M and M

Õ such that a run-based equilibrium exists in G but not in G

Õ.

To see that the above statement holds, recall the three-player game G0 on the concurrent
game structure M0 in Figure 1. Assume, as before, that player 1’s goal set �1 is given
by those computations Ÿ such that ·M0(Ÿ) = v0, v1, v2, . . . , implies p œ vk for some k Ø 0.
Similarly, �2 consists of all computations Ÿ with ·M0(Ÿ) = v0, v1, v2, . . . and q œ vk for some
k Ø 0 and �3 by those computations Ÿ with ·M0(Ÿ) = v0, v1, v2, . . . and vk = ÿ for all k Ø 0.
Recall that, consequently, the preferences of players 1, 2, and 3 are trace-based and can be
represented by the LTL formulas “1 = F p, “2 = F q, and “3 = G ¬(p ‚ q), respectively.

Let f

ú
1 and f

ú
2 be any run-based strategies for players 1 and 2 such that f

ú
1 (s0) = f

ú
2 (s0) = a.

Let, furthermore, player 3’s run-based strategy f

ú
3 be such that f

ú
3 (s0) = a, f

ú
3 (s0, s1) = a

Õ,
and f

ú
3 (s0, s

Õ
1) = b. Let f

ú = (fú
1 , f

ú
2 , f

ú
3) and observe that flM0(fú) = s0, s4, s4, s4,

Accordingly, player 3 has her goal achieved and does not want to deviate from f

ú. Players 1
and 2 do not have their goals achieved, but do not want to deviate from f

ú either. To see
this, let g1 be any run-based strategy for 1 such that g1(s0) = b; observe that this is required
for any meaningful deviation from f

ú by 1. Then flM0(g1, f

ú
2 , f

ú
3) = s0, s1, s3, s3, s3, . . . or

flM0(g1, f

ú
2 , f

ú
3) = s0, s1, s4, s4, s4, . . . , depending on whether f

ú
2 (s0, s1) = b or f

ú
2 (s0, s1) = a,

respectively. In either case, player 1 does not get her goal achieved and it follows that she
does not want to deviate from f

ú. An analogous argument—notice that the roles of player 1
and 2 are symmetric—shows that player 2 does not want to deviate from f

ú either. We may
thus conclude that f

ú is a run-based equilibrium in G0.
Now, consider the game G1 on concurrent game structure M1 in Figure 2 with the players’

preferences as in M0. It is easy to check that M0 and M1 are bisimilar. Still, there is no
run-based equilibrium in G1. To see this, consider an arbitrary run-based strategy profile f =
(f1, f2, f3). First, assume that flM1(f) = s0, s1, s2, s2, s2, Then, player 1 gets his goal
achieved and players 2 and 3 do not. If f1(s0, s1) = a then f3(s0, s1) = b and player 3 would
like to deviate and play a strategy g3 with g3(s0, s1) = a. On the other hand, if f1(s0, s1) = b,
player 3 would like to deviate and play a strategy g3 with g3(s0, s1) = b. Player 3 would
similarly like to deviate from f if we assume that flM1(f) = s0, s1, s3, s3, s3 . . . , in whose case
it is player 2 who gets his goal achieved. Now, assume that flM1(f) = s0, s1, s4, s4, s4 In
this case player 3 does get her goal achieved, but players 1 and 2 do not. However, player 1
would like to deviate to a strategy g1 with g1(s0, s1) = b or g1(s0, s1) = a, depending on
whether f3(s0, s1) = a or f3(s0, s1) = b; in a similar fashion, player 2 would like to deviate
to a strategy g2 with g2(s0, s1) = b if f1(s0, s1) = a

Õ, and to one with g2(s0, s1) = a if
f1(s0, s1) = b

Õ. Finally, assume that flM1(f) = s0, s4, s4, s4, Then, neither player 1
nor player 2 gets his goal achieved. Now either f3(s0, s1) œ {a, b} or f3(s0, s1) œ {a

Õ
, b

Õ}.
If the former, player 1 would like to deviate to a strategy g1 with g1(s0) ”= f1(s0) and
g1(s0, s1) ”= f3(s0, s1). If the latter, player 2 would like to deviate to a strategy g2 with
g2(s0) ”= f2(s0) and either g2(s0, s1) = b if f3(s0, s1) = a

Õ or g2(s0, s1) = a if f3(s0, s1) = b

Õ.
We can then conclude that the CGS-game G1 does not have any run-based Nash equilibria.

CONCUR 2017

17:10 Nash Equilibrium and Bisimulation Invariance

The main idea behind this counter-example is that in G0 player 3 can distinguish which
player deviates from f

ú if the state reached after the first round is not s4: if that state is s1,
player 1 deviated, otherwise player 2 did. By choosing either a

Õ or b

Õ at s1, and either a

or b at s

Õ
1, player 3 can guarantee that neither player 1 nor player 2 gets his goal achieved

(“punish” them) and thus deter their deviating from f

ú. This possibility to punish deviations
from f

ú by players 1 and 2 in a single strategy is not available in G1: choosing from a and b

will induce a deviation by player 1, choosing from a

Õ and b

Õ one by player 2.
Observe that the games G0 and G1 do not constitute a counter-example against the

preservation under bisimilarity of either computation-based equilibria or trace-based equilibria.
The reasons why such games fail to do so, however, are distinct. For the setting of computation-
based strategies, player 3 can still distinguish and “punish” the deviating player in G1
as (a, b, a) and (b, a, a) are di�erent directions and player 3 can still have his action at s1
depend on which of these is played at s0. By contrast, if we assume trace-based strategies,
player 3 has to choose the same action at both s1 and s

Õ
1 in G0. As a consequence, and

contrarily to computation-based equilibria, trace-based equilibria exist in neither G0 nor G1.1
Also note that, as the goal sets �1, �2, and �3 are run-based as well as computation-based
both in G1 and G2, the counter-example still holds if preferences are more fine-grained.

Observe at this point that s1 and s

Õ
1 are bisimilar states. Yet, players are allowed to have

run-based strategies (which depend on state histories only) that choose di�erent actions at
bisimilar states. The above counter-example shows how this relative richness of strategies
makes a crucial di�erence. This raises the question as to whether we actually want players
to adopt run-based strategies in which they choose di�erent actions at bisimilar states. This
observation leads us to the next section.

4.3 Bisimulation-invariant Run-based Strategies
Bisimilarity formally captures an informal concept of observational indistinguishability on
the part of an external observer of the system. The players in a concurrent game structure
are in essentially the same situation as an external observer, if they are assumed to be only
able to observe the behaviour of the other players, without knowing their internal makeup.

Drawing on this idea of indistinguishability, it is natural to assume that players cannot
distinguish statewise bisimilar runs and, as a consequence, can only adopt strategies that
choose the same action at runs that are statewise bisimilar. The situation is comparable to
the one in extensive games of imperfect information, in which players are required to choose
the same action in histories that are in the same information set (cf., for instance, [22, 17]).

To make this idea precise, we say that a run-based strategy fi is bisimulation-invariant if
fi(fi) = fi(fiÕ) for all histories fi and fi

Õ that are statewise bisimilar. The concept of Nash
equilibrium is then similarly restricted to bisimulation-invariant strategies. Formally, a profile
f = (f1, . . . , fn) of bisimulation-invariant strategies is a Nash equilibrium in bisimulation-
invariant strategies (or a bisimulation-invariant equilibrium) in a game (M, �1, . . . , �n) if
for all players i and every bisimulation-invariant strategy gi for i, ·(f≠i, gi) œ �i implies
·(f) œ �i. In contrast to the situation for general run-based strategies, we find that
computations and traces that are sustained by a bisimulation-invariant Nash equilibrium
are preserved by bisimulation. Let M and M

Õ be bisimilar concurrent game structures.

1 Based on a similar example, Almagor et al. [1] also observe that the existence of Nash equilibria in a
CGS-game may depend on the type of strategy that is being considered. Note, however, that this is
quite di�erent from our observation that Nash equilibria may di�er in di�erent but bisimilar CGS-games
given a fixed type of strategy, viz., run-based strategies.

J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge 17:11

Based on the concept of statewise bisimilarity, we associate with every bisimulation-invariant
strategy fi for player i in M , another bisimulation-invariant strategy f̃i for player i in M

Õ such
that for all fi œ runsM Õ and a œ Ac, we have f̃i(fi) = a if fi(fiÕ) = a for some fi

Õ œ runsM with
fi ≥̇ fi

Õ. Transitivity of ≥̇ guarantees that f̃i is well-defined. Given a profile f = (f1, . . . , fn),
let f̃ = (f̃1, . . . , f̃n). It can then be shown that f and f̃ induce identical computations, that
is, ŸM (f) = ŸM Õ(f̃), which prepares the ground for the following preservation result.

I Theorem 4. Let G = (M, �1, . . . , �n) and G

Õ = (M Õ
, �1, . . . , �n) be games on bisimilar

concurrent game structures M and M

Õ, respectively. Then, profile f is a bisimulation-
invariant equilibrium in G if and only if f̃ is a bisimulation-invariant equilibrium in G

Õ.

As an immediate corollary of Theorem 4, it follows that the property of a computation or
trace to be sustained by a bisimulation-invariant equilibria is also preserved under bisimilarity.

4.4 Two-player Games with Run-based Strategies
We now consider the setting of two-player games with run-based strategies and trace-based
goals (which include temporal logic goals). This is an important special case, since run-based
strategies, as we emphasised in the introduction, are the conventional model of strategies used
in logics such as ATLú or Stragegy Logic (SL), as well as in multi-agent systems represented
as concurrent game structures [4, 19].

The counterexample against the preservation of existence of Nash equilibria in Section 4.2
involved three players. We find that, if preferences are computation-based, the example can
be adapted so as to involve only two players. Hence, we have the following result.

I Theorem 5. There are two-player games (M, �1, �2) and (M Õ
, �1, �2) on bisimilar con-

current game structures M and M

Õ with �1 and �2 computation-based such that a run-based
Nash equilibrium exists in G but not in G

Õ.

By contrast, if players’ preferences are required to be trace-based in any two models to
be compared, sustenance of traces by run-based equilibrium—and hence also the existence of
Nash equilibria—is preserved under bisimilarity. To establish this, we associate with each
run-based profile f = (f1, f2) a bisimulation-invariant profile f̂ = (f̂1, f̂2). We then show
that f and f̂ induce the same traces and that f̂ is a bisimulation invariant equilibrium, if f

is a run-based equilibrium. We can then leverage Theorem 4, which yields the result.
We only give the definition of f̂1, as the construction of f̂2 is analogous. The key idea is

to select for every finite run fi = s0, . . . , sk a unique representative fî

s0,...,sk of the equivalence
class [fi]≥̇ of runs statewise bisimilar to fi and then define f̂1 such that f̂1(fi) = f1(fîs0,...,sk).
This ensures that f̂1 is bisimulation-invariant. The representative fî

s0,...,sk , however, has
to be chosen carefully. Assuming that from every subset of actions we can always select
a least element, we define inductively for every finite run fi = s0, . . . , sk in runsM another
statewise bisimilar finite run fî

s0,...,sk = t0, . . . , tk in runsM such that t0 = s

0
M and, for every

0 Æ m < k, tm+1 = ”(tm, x1, x2), where x1 and x2 are actions available to players 1 and 2
at tm such that:

x1 = f1(t0, . . . , tm) and x2 = f2(t0, . . . , tm), if ”(tm, f1(t0, . . . , tm), f2(t0, . . . , tm)) ≥ sm+1,
x1 = f1(t0, . . . , tm) and x2 is the least action available to player 2 at tm such that
”(tm, f1(t0, . . . , tm), x2) ≥ sm+1, if ”(tm, f1(t0, . . . , tm), f2(t0, . . . , tm)) ”≥ sm+1 and x2
exists, and
(x1, x2) is lexicographically the least pair of actions available to players 1 and 2 at tm

such that ”(tm, x1, x2) ≥ sm+1, otherwise.

CONCUR 2017

17:12 Nash Equilibrium and Bisimulation Invariance

By means of an inductive argument it can easily be shown that s0, . . . , sk ≥̇ fi

s0,...,sk , which
su�ces for fî

s0,...,sk to be well-defined, that is, that x1 and x2 exist for every 0 Æ m < k.
As, s0, . . . , sk ≥̇ t0, . . . , tk implies fî

s0,...,sk = fî

t0,...,tk , it follows that f̂1 is properly defined
as a bisimulation-invariant strategy. Importantly, flM (f̂1, f̂2) = flM (f1, f2), and hence also
·M (f̂1, f̂2) = ·M (f1, f2). Moreover, we find by a non-trivial argument that, if f = (f1, f2) is
a run-based equilibrium, so is f̂ = (f̂1, f̂2). Finally, as a bisimulation-invariant profile is a
bisimulation-invariant equilibrium if and only if it is a run-based equilibrium, we are in a
position to leverage Theorem 4 and obtain our result

I Theorem 6. Let G = (M, �1, �2) and G

Õ = (M Õ
, �1, �2) be two two-player games such

that �1 and �2 are trace-based in both M and M

Õ and let · be a trace in tracesÊ
M . Then, ·

is sustained by a run-based equilibrium in G if and only if · is sustained by a run-based
equilibrium in G

Õ.

As an immediate consequence of Theorem 6 we also find that the existence of Nash equilibria
is also preserved in two-player games with trace-based preferences. The case in which players’
preferences are run-based, however, we have to leave as an open question.

5 Strategy Logics: New Semantic Foundations

Several logics for strategic reasoning have been proposed in the literature of computer science
and AI, such as ATLú [4], Strategy Logic [19, 8], Coalition Logic [23], Coordination Logic [12],
Game Logic [24], and Equilibrium Logic [15]. In several cases, the model of strategies that is
used is the one that we refer to as run-based in this paper, that is, strategies are functions
from finite sequences of states (of some arena) to actions/decisions/choices of players in a
given game. As can be seen from our results so far, of the four options we have explored,
run-based strategies form the least desirable model of strategies from a semantic point of
view since in such a case Nash equilibrium is not preserved under bisimilarity.

This does not necessarily immediately imply that a particular logic with a run-based
strategy model is not invariant under bisimilarity. For instance, ATLú is a bisimulation-
invariant logic and, as shown in [13] one can reason about Nash equilibrium using ATLú

only up-to bisimilarity. A question then remains: whether any of these logics for strategic
reasoning becomes invariant under bisimilarity—as explained before, a desirable property—if
one changes the model of strategies considered there to, for instance, computation-based or
trace-based strategies. We find that this question has a satisfactory positive answer in some
cases. In particular, we will consider the above question in the context of Strategy Logic as
studied in [19], and in doing so we will provide new semantic foundations for strategy logics.

Let us start by introducing the syntax and semantics under the run-based model of
strategies for Strategy Logic (SL [19]) as it has been given in [20]. Syntactically, SL extends
LTL with two strategy quantifiers, ÈÈxÍÍ and [[x]], and an agent binding operator (i, x), where
i is an agent and x is a variable. These operators can be read as “there exists a strategy
x”, “for all strategies x”, and “bind agent i to the strategy associated with the variable x”,
respectively. SL formulae are inductively built from a set of atomic propositions AP, variables
Var, and agents Ag, using the following grammar, where p œ AP, x œ Var, and i œ Ag:

Ï ::= p | ¬Ï | Ï · Ï | X Ï | Ï U Ï | ÈÈxÍÍÏ | [[x]]Ï | (i, x)Ï.

We can now present the semantics of SL formulae, where Str denotes the set of all
strategies of some specified type, i.e., computation-based, run-based, or trace-based. Given a
concurrent game structure M , for all SL formulae Ï, states s œ St in M , and assignments

J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge 17:13

‰ œ Asg = (Var fi Ag) æ Str, mapping variables and agents to strategies, the relation
M, ‰, s |= Ï is defined as follows:
1. For the Boolean and temporal cases, the semantics is standard (see, e.g., [19];
2. For all formulae Ï and variables x œ Var we have:

a. M, ‰, s |= ÈÈxÍÍÏ if there is a strategy f œ Str such that M, ‰[x ‘æ f], s |= Ï;
b. M, ‰, s |= [[x]]Ï if for all strategies f œ Str we have that M, ‰[x ‘æ f], s |= Ï.

3. For all i œ Ag and x œ Var, we have M, ‰, s |= (i, x)Ï if M, ‰[i ‘æ ‰(x)], s |= Ï.

Intuitively, rules 2a and 2b, respectively, are used to interpret the existential ÈÈxÍÍ and
universal [[x]] quantifiers over strategies, and rule 3 is used to bind an agent to the strategies
associated with variable x. All other rules are as in LTL over concurrent game structures.
Moreover, for a sentence Ï, i.e., a formula with no free variables or agents [19], we say that
M satisfies Ï, and write M |= Ï, if M, ÿ, s0 |= Ï, where ÿ is the empty assignment.

As it can be seen from its semantics, SL can be interpreted under di�erent models of
strategies and goals. As it was originally formulated, SL considers run-based strategies and
trace-based preferences/goals [21]. More specifically, the model of goals is a proper subset
of the trace-based one, represented by LTL goals over the set AP of variables. Let us fix
an interpretation of strategies. We say that SL with that kind of model is invariant under
bisimulation if, for all sentences Ï and bisimilar models M1 and M2, it holds that M1 |= Ï i�
M2 |= Ï. In SL, it is possible to represent the existence of a Nash equilibrium in a concurrent
game structure [19]. This implies, given Theorem 3, that SL under the standard (run-based
model) interpretation is not invariant under bisimulation, as the formula expressing the
existence of a Nash equilibrium can distinguish between two bisimilar models.

We now consider SL under the model of computation-based strategies, and find that in
such a case SL becomes invariant under bisimilarity. Formally, we have the following result.

I Theorem 7. SL with the computation-based model of strategies is invariant under bisimilarity.

An analogous statement to the above Theorem can also be proved if we consider the
model of trace-based strategies, leading to the next result on the semantics of SL.

I Theorem 8. SL with the trace-based model of strategies is invariant under bisimilarity.

6 Concluding Remarks and Related Work

We have shown that in the conventional model of strategies used in logic, computer science,
and AI, the existence of a given Nash equilibrium is not preserved under bisimilarity,
in particular for multi-player games played over concurrent games structures. With a few
examples we also illustrated some of the adverse implications of this result, for instance, in the
context of automated formal verification. To resolve this problem, we furthermore investigated
alternative models of strategies which exhibit some desirable properties, in particular, allowing
for a formalisation of Nash equilibrium that is invariant under bisimilarity.

We studied applications of these models and found that through their use, not only Nash
equilibria becomes invariant under bisimilarity, but also full logics such as Strategy Logic [21,
8, 19]. This renders it possible to combine commonly used optimisation techniques for
model checking with decision procedures for the analysis of Nash equilibria, thus overcoming
a critical problem of this kind of logics regarding practical applications via automated
verification. Some work also in the intersection between bisimulation equivalences, concurrent
game structures, and Nash equilibria is summarised next.

CONCUR 2017

17:14 Nash Equilibrium and Bisimulation Invariance

Logics for Strategic Reasoning.

From the current (enormous) set of logics for strategic reasoning in the literature, ATLú [4]
and SL [19] stand out, both due to their adoption by a number of practical tools for
automated verification and because of their expressive power. On the one hand, ATLú is
known to be invariant under bisimilarity using the conventional model of strategies. As such,
Nash equilibria can be expressed within ATLú only up to bisimilarity [13]. On the other
hand, SL, which is strictly more expressive than ATLú, allows for a simple specification of
Nash equilibria, but su�ers from not being invariant under bisimilarity with respect to the
conventional model of strategies. In this paper, we have put forward a number of solutions
to this problem. An additional advantage of replacing the model of strategies for SL (and
therefore for concurrent game structures) is that other solution concepts in game theory
also become invariant under bisimilarity. For instance, subgame-perfect Nash equilibria
and strong Nash equilibria—which are widely used when considering, respectively, dynamic
behaviour and cooperative behaviour in multi-agent systems—can also be expressed in SL.
Our results therefore imply that these concepts are also invariant under bisimilarity, when
considering games over concurrent game structures and goals given by LTL formulae.

Bisimulation Equivalences for Multi-Agent Systems.

Even though bisimilarity is probably the most widely used behavioural equivalence in
concurrency, in the context of multi-agent systems other relations may be preferred, for
instance, equivalence relations that take a detailed account of the independent interactions and
behaviour of individual components in a multi-agent system. In such a setting, “alternating”
relations with natural ATLú characterisations have been studied [3, 11]. Our results also
apply to such alternating relations. On the one hand, the counter-example shown in Figures 1
and 2 also apply to such alternating (bisimulation) relations. On the other hand, because
these alternating relations can be characterised in ATLú, they are at most as strong as
bisimilarity. These two facts together imply that Nash equilibria is not preserved by the
alternating (bisimulation) equivalence relations in [3, 11] either. Nevertheless, as discussed
in [27], the right notion of equivalence for games and their game theoretic solution concepts
is most certainly an important and interesting topic of debate.

Computations vs Traces.

A di�erence between computations and traces is that even though Nash equilibria and their
existence are preserved under bisimilarity by three of the four strategy models we have
studied, it is not the case that with each strategy model we obtain the same set of Nash
equilibria in a given system, or that we can sustain the same set of computations or traces.
For instance, consider the games in Figures 1 and 2. As we discussed above, if we consider
the model of computation-based strategies and LTL goals (i.e., trace-based goals) as shown
in the example, then we obtain two games, each with an associated non-empty set of Nash
equilibria, which is preserved by bisimilarity. However, if we consider, instead, the model of
trace-based strategies and same LTL goals, then we obtain two games both with empty sets
of Nash equilibria—thus, in this case, the non-existence of Nash equilibria is preserved by
bisimilarity! To observe this, note that whereas in the case of computation-based strategies
player 3 can implement a uniform “punishment” strategy for both player 1 and player 2, in
the case of trace-based strategies player 3 cannot do so, even in the game in Figure 1.

J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge 17:15

Two-Player Games with Trace-Based Goals.

In this paper we also showed that if we consider two-player games together with the
conventional model of strategies, the problems that arise with respect to the preservation of
Nash equilibria disappear. This is indeed an important finding since most verification games
(e.g., model and module checking, synthesis, etc.) can be phrased in terms of two-player
games together with temporal logic specifications (e.g., using LTL, CTL, or ATLú). Our
results, then, provide proof that, if only two-player games and temporal logic goals are
needed, then all equilibrium analyses can be carried out using the conventional model of
strategies—along with their associated reasoning tools and verification techniques.

Boolean Game Structures.

Boolean game structures are the special type of concurrent game structure in which each
player i has unique control over a subset APi of propositional variables and the set Aci(s) of
actions available to player i at state s is a non-empty subset of partial valuations in 2APi .
The key idea is that the choice player i makes with respect to the variables in APi at a
state s defines the labelling of the subsequent state with respect to APi. Formally, for every
direction d

Õ = (a1, . . . , an) in 2AP1 ◊ · · · ◊ 2APn and every state s, it holds that ”(s, d

Õ) = s

Õ

implies ⁄(sÕ) = a1 fi · · · fi an.
Boolean game structures are a particularly well-behaved class of games, of which iterated

Boolean games [14] and multi-agent systems modelled using the Reactive Modules specification
language [2] are special cases. We thus find that, in Boolean game structures, (existence of)
Nash equilibrium is invariant under bisimilarity regardless of the model of strategies or goals
that one chooses. As in this setting, it is readily shown that if two finite runs are statewise
bisimilar, they have to be identical, it immediately follows that run-based strategies are
bisimulation-invariant. Hence, by Theorem 4 that (the existence of) run-based equilibria
is invariant under bisimulation. For the settings with computation-based and trace-based
strategies, Theorems 1 and 2 give the result, respectively.

References
1 S. Almagor, G. Avni, and O. Kupferman. Repairing multi-player games. In L. Aceto and

D. de Frutos Escri, editors, Proceedings of the Twenty-Sixth Annual Conference on Con-
currency Theory (CONCUR’15), Leibniz International Proceedings in Informatics (LIPIcs),
pages 325–339, Madrid, Spain, 2015.

2 R. Alur and T. A. Henzinger. Reactive modules. Formal Methods in System Design,
15(1):7–48, 1999.

3 R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi. Alternating refinement relations.
In Proceedings of the 9th International Conference on Concurrency Theory (CONCUR’98),
volume 1466 of LNCS, pages 163–178. Springer-Verlag, Berlin, Germany, 1998.

4 R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-Time Temporal Logic. Journal
of the ACM, 49(5):672–713, 2002.

5 C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.
6 P. Bouyer, R. Brenguier, N. Markey, and M. Ummels. Nash equilibria in concurrent games

with büchi objectives. In IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS’11), Mumbai, India, pages 375–386, 2011.

7 R. E. Bryant. Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM
Computing Surveys, 24(3):293–318, 1992.

8 K. Chatterjee, T.A. Henzinger, and N. Piterman. Strategy logic. Information and Compu-
tation, 208(6):677–693, 2010.

CONCUR 2017

17:16 Nash Equilibrium and Bisimulation Invariance

9 Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and abstraction.
ACM transactions on Programming Languages and Systems, 16(5):1512–1542, 1994.

10 P. Cousot and R. Cousot. On abstraction in software verification. In Forteenth International
Conference on Computer Aided Verification (CAV’02), volume 2404 of LNCS, pages 37–56.
Springer, 2002.

11 S. Demri, V. Goranko, and M. Lange. Temporal Logics in Computer Science: Finite State
Systems, volume 58 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 2016.

12 B. Finkbeiner and S. Schewe. Coordination logic. In Anuj Dawar and Helmut Veith, editors,
International Workshop on Computer Science Logic (CSL’10), volume 6247 of LNCS, pages
305–319. Springer, 2010.

13 J. Gutierrez, P. Harrenstein, and M. Wooldridge. Expressiveness and complexity results
for strategic reasoning. In Proceedings of the Twenty-Sixth Annual Conference on Concur-
rency Theory (CONCUR’15), volume 42 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 268–282, Madrid, Spain, 2015.

14 J. Gutierrez, P. Harrenstein, and M. Wooldridge. Iterated Boolean games. Information
and Computation, 242:53–79, 2015.

15 J. Gutierrez, P. Harrenstein, and M. Wooldridge. Reasoning about equilibria in game-like
concurrent systems. Annals of Pure and Applied Logic, 169(2):373–403, 2017.

16 M. Hennessy and R. A. Connolly Milner. Algebraic laws for nondeterminism and concur-
rency. Journal of the ACM, 32(1):137–161, 1985.

17 M. Maschler, E. Solan, and S. Zamir. Game Theory. Cambridge University Press, 2013.
18 R. Milner. Communication and Concurrency. Prentice Hall, 1989.
19 F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi. Reasoning about strategies: On the

model-checking problem. ACM Transactions on Computational Logic, 15(4):1–47, 2014.
20 F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi. Reasoning about Strategies: On the

Satisfiability Problem. Logical Methods in Computer Science, 13(1:9), 2017.
21 F. Mogavero, A. Murano, and M. Y. Vardi. Reasoning about strategies. In K. Lodaya

and M. Mahajan, editors, Proceedings of the IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS’10), volume 8 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 133–144, 2010.

22 M.J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.
23 M. Pauly. A modal logic for coalitional power in games. Journal of Logic and Computation,

12(1):149–166, 2002.
24 M. Pauly and R. Parikh. Game logic—an overview. Studia Logica, 75(2):165–182, 2003.
25 Davide Sangiorgi. On the origins of bisimulation and coinduction. ACM Transactions on

Programming Languages and Systems, 31(4):111–151, 2009.
26 J. F. A. K. van Benthem. Modal Correspondence Theory. PhD thesis, University of Ams-

terdam, 1976.
27 J. F. A. K. van Benthem. Extensive games as process models. Journal of Logic, Language

and Information, 11(3):289–313, 2002.
28 M. Wooldridge, J. Gutierrez, P. Harrenstein, E. Marchioni, G. Perelli, and A. Toumi. Ra-

tional verification: From model checking to equilibrium checking. In D. Schuurmans and
M. Wellman, editors, Proceedings of the Thirtieth AAAI Conference on Artificial Intelli-
gence (AAAI’16), pages 4184–4190, Phoenix, AZ, 2016.

29 M.J. Wooldridge. Introduction to Multiagent Systems. John Wiley & Sons, 2001.

