
Programming Declarative Goals Using Plan Patterns

Jomi Hübner1, Rafael H. Bordini2, and Michael Wooldridge3

1 University of Blumenau (Brazil)
jomi@inf.furb.br

2 University of Durham (UK)
R.Bordini@durham.ac.uk

3 University of Liverpool (UK)
mjw@csc.liv.ac.uk

Abstract. AgentSpeak is a well-known language for programming intelligent
agents which captures the key features of reactive planning systems in a sim-
ple framework with an elegant formal semantics. However, the original language
is too abstract to be used as a programming language for developing multi-
agent system. In this paper, we address one of the features that are essential for
a pragmatical agent programming language. We show how certainpatternsof
AgentSpeak plans can be used to define various types of declarative goals. In or-
der to do so, we first define informally how plan failure is handled in the extended
version of AgentSpeak available inJason, a Java-based interpreter; we also de-
fine special (internal) actions used for dropping intentions. We present a number
of plan patternswhich correspond to elaborate forms of declarative goals. Fi-
nally, we give examples of the use of such types of declarative goals and describe
how they are implemented inJason.

1 Introduction

The AgentSpeak(L) language, introduced by Rao in 1996, provides a simple and elegant
framework for intelligent action via the run-time interleaved selection and execution of
plans. Since the original language was proposed, substantial progress has been made
both on the theoretical foundations of the language (e.g., its formal semantics [6]), and
on its use, via implementations of practical extensions of AgentSpeak [5]. However, one
problem with the original AgentSpeak(L) language is that it lacks many of the features
that might be expected by programmers in practical development. Our aim in this paper
is to focus on the integration of one such features, namely the definition of declarative
goals and the use of plan patters. Throughout the paper, we use AgentSpeak as a more
general reference to AgentSpeak(L) and its extensions.

In this paper, we consider the use ofdeclarative goalsin AgentSpeak programming.
By a declarative goal, we mean a goal thatexplicitly represents a state of affairs to be
achieved, in the sense that, if an agent has a goalp(t1, . . . , tn), it expects to eventu-
ally believep(t1, . . . , tn) (cf. [19]) and only then can the goal be considered achieved.
Moreover, we are interested not only in goals representing states of affairs, but goals
that may have complex temporal structures. Currently, although goals form a central

component of AgentSpeak programming, they are onlyimplicit in the plans defined by
the agent programmer. For example, there is no explicit way of expressing that a goal
should be maintained until a certain condition holds; such temporal goal structures are
defined implicitly, within the plans themselves, and byad hocefforts on the part of
programmers.

While one possibility would be to extend the language and its formal semantics
to introduce an explicit notion of declarative goal (as done in other languages, e.g.,
[19, 7, 22]), we show that this is unnecessary. We introduce a number ofplan patterns,
corresponding to common types of explicit temporal (declarative) goal structures, and
show how these can be mapped into AgentSpeak code. Thus, a programmer or designer
can conceive of a goal at the declarative level, and this goal will be expanded, via these
patterns, into standard AgentSpeak code. We then show how such goal patterns can be
used inJason, a Java-based implementation of an extended version of AgentSpeak [4].

In order to present the plan patterns that can be used for defining certain types of
declarative goals discussed in the literature, theplan failure handling mechanism im-
plemented inJason, and some pre-definedinternal actionsused for dropping goals,
need to be presented. Being able to handle plan failure is useful not only in the con-
text of defining plan patterns that can represent complex declarative goals. In most
practical scenarios, plan failure is not only possible, it is commonplace: a key com-
ponent of rational action in humans is the ability to handle such failures. After pre-
senting these features ofJasonthat are important in controlling the execution of plans,
we can then show the plan patterns that define more complex types of goals than has
been claimed to be possible in AgentSpeak [7]. We present (declarative) maintenance
as well as achievement goals, and we present different forms of commitments towards
goal achievement/maintenance (e.g., the well-known blind, single-minded, and open-
minded forms of commitment [18]). Finally, we discussJasonimplementations of ex-
amples that appeared in the literature on declarative goals; the examples also help in
showing why declarative goals with complex temporal structures are an essential fea-
ture in programming multi-agent systems.

2 Goals and Plans in AgentSpeak

In [17], Rao introduced the AgentSpeak(L) programming language. It is a natural ex-
tension of logic programming for the BDI agent architecture, and provides an elegant
abstract framework for programming BDI agents. In this paper, we only give a very
brief introduction to AgentSpeak; see e.g. [6] for more details.

An AgentSpeak agent is created by the specification of a set of initial beliefs and
a set of plans. Abelief atomis simply a first-order predicate in the usual notation, and
belief atoms or their negations arebelief literals. The initial beliefs define the state of the
belief base at the moment the agent starts running; the belief base is simply a collection
of ground belief atoms (or, inJason, literals).

AgentSpeak distinguishes two types of goals:achievement goalsand test goals.
Achievement goals are predicates (as for beliefs) prefixed with the ‘! ’ operator, while
test goals are prefixed with the ‘?’ operator. Achievement goals state that the agent
wants to achieve a state of the world where the associated predicate is true. (In practice,

these lead to the execution of other plans.) Atest goalstates that the agent wants to test
whether the associated predicate is a belief (i.e., whether it can be unified with one of
the agent’s beliefs).

Next, the notion of atriggering eventis introduced. It is a very important concept
in this language, as triggering events define which events may initiate the execution of
plans; the idea ofevent, both internal and external, will be made clear below. There are
two types of triggering events: those related to theaddition (‘+’) and deletion(‘ - ’) of
mental attitudes (beliefs or goals).

Plans refer to thebasic actionsthat an agent is able to perform on its environ-
ment. Such actions are also defined as first-order predicates, but with special predi-
cate symbols (calledaction symbols) used to distinguish them. The actual syntax of
AgentSpeak programs is based on the definition of plans, as follows. Ife is a trig-
gering event,b1, . . . , bm are belief literals, andh1, . . . , hn are goals or actions, then
e : b1 & . . . & bm ← h1 ; . . . ; hn. is aplan.

An AgentSpeak(L) plan has ahead(the expression to the left of the arrow), which is
formed from a triggering event (denoting the purpose for that plan), and a conjunction
of belief literals representing acontext(separated from the triggering event by ‘:’). The
conjunction of literals in the context must be satisfied if the plan is to be executed (the
context must be a logical consequence of that agent’s current beliefs). A plan also has
a body, which is a sequence of basic actions or (sub)goals that the agent has to achieve
(or test) when the plan is triggered.

Besides the belief base and the plan library, the AgentSpeak interpreter also man-
ages a set ofeventsand a set ofintentions, and its functioning requires threeselection
functions. The event selection function selects a single event from the set of events;
another selection function selects an “option” (i.e., an applicable plan) from a set of
applicable plans; and a third selection function selects one particular intention from the
set of intentions. The selection functions are supposed to be agent-specific, in the sense
that they should make selections based on an agent’s characteristics in an application-
specific way. An event has the form〈te, i〉, wherete is a plan triggering event (as in
the plan syntax described above) andi is that intention that generated the event orT for
external events.

Intentionsare particular courses of actions to which an agent has committed in order
to handle certain events. Each intention is a stack of partially instantiated plans. Events,
which may start the execution of plans that have relevant triggering events, can beex-
ternal, when originating from perception of the agent’s environment (i.e., addition and
deletion of beliefs based on perception are external events); orinternal, when generated
from the agent’s own execution of a plan (i.e., a subgoal in a plan generates an event of
type “addition of achievement goal”). In the latter case, the event is accompanied with
the intention which generated it (as the plan chosen for that event will be pushed on top
of that intention). External events create new intentions, representing separate focuses
of attention for the agent’s acting within the environment.

3 Plan Failure

We identify three cases of plan failure. The first cause of failure is alack of relevant
or applicable plans, which can be understood as the agent “not knowing how to do
something”. This happens either because the agent simply does not have the know-how
(in case it has no relevant plans) — this could happen through simple omission (the
programmer did not provide any appropriate plans) — or because all known ways of
achieving the goal cannot currently be used (there are known plans but whose contexts
do not match the agent’s current beliefs). The second is where a test goal fails; that is,
where the agent “expected” to believe in a certain condition of the world, but in fact
the condition did not hold. The third is where an internal action (“native method”), or a
basic action (the effectors within the agent architecture are assumed to provide feedback
to the interpreter stating whether the requested action was executed or not), fails.

Regardless of the reason for a plan failing, the interpreter generates a goal deletion
event (i.e., an event for “−!g”) if the corresponding goal achievement (+!g) has failed.
This paper introduces for the first time an (informal) semantics for the notion of goal
deletion as used inJason. In the original definition, Rao syntactically defined the possi-
bility of goal deletions as triggering events for plans (i.e., triggering event with-! and
-? prefixes), but did not discuss what they meant. Neither was goal deletion discussed
in further attempts to formalise AgentSpeak or its ancestor dMars [12, 11]. Our own
choice was to use this as some kind of plan failure handling mechanism4, as discussed
below (even though this was probably not what they originally were intended for).

The idea is that a plan for a goal deletion is a “clean-up” plan, executed prior to
(possibly) “backtracking” (i.e., attempting another plan to achieve the goal for which a
plan failed). One of the things programmers might want to do within the goal deletion
plan is to attempt again to achieve the goal for which the plan failed. In contrast to
conventional logic programming languages, during the course of executing plans for
subgoals, AgentSpeak programs generate a sequence of actions that the agent performs
on the external environment so as to change it, the effects of which cannot be undone by
simply backtracking (i.e., it may require further action in order to do so). Therefore, in
certain circumstances one would expect the agent to have to “undo” the effects of certain
actions before attempting some alternative courses of action to achieve that goal, and
this is precisely the practical use of plans with goal deletions as triggering events.

It is important to observe that omitting possible goal deletion plans for existing
goal additions implicitly denotes that such goal should never be backtracked, i.e., no
alternative plan for it should be attempted in case one fails. To specify that backtracking
should always be attempted (e.g., until special internal actions in the plan explicitly
cause the intention to be dropped), all the programmer has to do is to specify a goal
deletion plan (for a given goalg addition) with empty context and the same goal in the
body, as in “-! g: true ← ! g. ”.

4 The notation−!g, i.e., “goal deletion” also makes sense for such plan failure mechanism; if a
plan fails there is a possibility that the agent may need to drop the goal altogether, so it is to
handle such event (of the possible need to drop a goal) that plans of the form−!g : . . . are
written.

When a failure happens, the whole intention is dropped if the triggering event of the
plan being executed was neither an achievement nor a test goaladdition: only these can
be attempted to recover from failure using the goal deletion construct (one cannot have
a goal deletion event posted for a failure in a goal deletion plan). In any other circum-
stance, a failed plan means that the whole intention cannot be achieved. If a plan for a
goal addition (+! g) fails, the intentioni where that plan appears is suspended, and the
respective goal deletion event (〈−!g, i〉) is included in the set of events. Eventually, this
might lead to the goal addition being attempted again as part of the plan to handle the
-! g event. When the plan for-! g finishes not only itself but also the failed+! g plan
below it5 are removed from the intention. As it will be clear later, it is a programmer’s
decision to attempt the goal again or not, or even to drop the whole intention (possi-
bly with special internal action constructs, whose informal semantics is given below),
depending on the circumstances. What happens when a plan fails is shown in Figure 1.

+!g1(t): ct
<− a(t);
 !g2(t);
 ?g2(t);

te ct:
<− !g1(t);

(a) An Intention
before Plan Failure

 !g2(t);
 ?g2(t);

te ct:
<− !g1(t);

<− a(t);
+!g1(t): ct

 !g1(t);

<− ... ;
−!g1(t): ct

(b) That Intention
after Plan Failure

Fig. 1. Plan Failure.

In the circumstance de-
scribed in Figure 1(a) above,
supposea(t) fails, or otherwise
after that action succeeds an
event for +!g2(t) was created
but there were no applicable
plans to handle the event, or
?g2(t) is not is the belief base,
nor there are applicable plans
to handle a+?g2(t) event. In
any of those cases, the intention
is suspended and an event for
−!g1(t) is generated. Assuming
the programmer included a
plan for −!g1(t), and the plan
is applicable at the time the
event is selected, the intention
will eventually look as in Fig-
ure 1(b). Otherwise the original
goal addition event is re-posted

or the whole intention dropped, depending on a setting of theJasoninterpreter that is
configurable by programmers. (See [1] for an overview of how various BDI systems
deal with the problem of there being no applicable plans.)

The reason why not providing goal deletion plans in case a goal is not to be back-
tracked works is because an event (with the whole suspended intention within it) is dis-
carded in case there are no relevant plans for a generated goal deletion. In general, the
lack of relevant plans for an event indicates that the perceived event is not significant for
the agent in question, so they are simply ignored. An alternative approach for handling
the lack of relevant plans is described in [2], where it is assumed that in some cases,
explicitly specified by the programmer, the agent will want to ask other agents how to

5 The failed plan is left in the intention, for example, so that programmers could check which
plan failed (e.g., by means ofJasoninternal actions).

handle such events. The mechanism for plan exchange between AgentSpeak agents pre-
sented in [2] allows the programmer to specify which triggering events should generate
attempts to retrieve external plans, which plans an agent agrees to share with others,
what to do once the plan has been used for handling that particular event instance, and
so on.

In the next section, besides the plan failure handling mechanism, we also make use
of a particular standard internal action. Standard internal actions, unlike user-defined
internal actions, are those available with theJasondistribution; they are denoted by
an action name starting with symbol ‘. ’. Some of these pre-defined internal actions
manipulate the structure used in giving semantics to the AgentSpeak interpreter. For
that reason, they need to be precisely defined. As the focus here is on the use of patterns
for defining declarative goals, we will give only informal semantics to the internal action
we refer to in the next section.

The particular internal action used in this paper is.dropGoal(g,true) . Any
intention that has the goalg in the triggering event of any of its plans will be changed
as follows. The plan with triggering event+! g is removed and the plan below that
in the stack of plans forming that intention carries on being executed at the point af-
ter goalg appeared. Goalg, as it appears in the.dropGoal internal action is used
to further instantiate the plan where the goal that was terminated early appears. With
.dropGoal(g,false) , the plan for+! g is also removed, but an event for the dele-
tion of the goal whose plan body requiredg is generated: this informally means that
there is no way of achievingg so the plan requiringg to be achieved must fail. That
is, .dropGoal(g,true) is used when the agent realises the goal has already been
achieved so whatever plan was being executed to achieve that goal does not need to be
executed any longer. On the other hand,.dropGoal(g,false) is used when the
agent realises that the goal has become impossible to achieve, hence the need to fail the
plan that requiredg being achieved as one of its subgoals.

It is perhaps easier to understand how these actions work with reference to Figure 2.
The figure shows the consequence of each of these internal actions being executed (the
plan where the internal action appeared is not shown; it is likely to be within another
intention). Note that the state of the intention affected by the execution of one of these
internal actions, as shown in the figure, is not the immediate resulting state (at the end
of the reasoning cycle where the internal action was executed) but the most significant
next state of the changed intention.

4 Declarative Goal Patterns

Although goals form a central component of the AgentSpeak conceptual framework,
it is important to note that the language itself does not provide any explicit constructs
for handling goals with complex temporal structure. For example, a system designer
and programmer will often think in terms of goals such as “maintainP until Q be-
comes true”, or “preventP from becoming true”. Creating AgentSpeak code to realise
such complex goals has, to date, been largely anad hocprocess, dependent upon the
experience of the programmer. Our aim in this section is firstly to define a number of
declarative goal structures, and secondly to show how these can be realised in terms

ct+!g2(t):

<− !g1(t);
ct+!g0(t):

 !g4(t);

<− !g2(t);

+!g1(t): ct

<− ... ;
 !g3(t);

...

(a) Initial In-
tention

ct+!g4(t):

<− !g4(t);

<− ... ;

 !g5(t);

ct+!g0(t):

...

(b) After
.dropGoal(g1(t),true)

<− !g1(t);
ct+!g0(t):

<− ... ;
ct

 !g0(t);

−!g0(t):

 !g4(t);

...

(c) After
.dropGoal(g1(t),false)

Fig. 2. Standard Internal Actions for Dropping Goals.

of patternsof AgentSpeak plans — that is, complex combinations of plan structures
which are often useful in actual scenarios. As we shall see, such patterns can be used
to implement, in a systematic way, not only complex types of declarative goals, but
also the types of commitments they represent, as discussed for example by Cohen and
Levesque [8].

As an initial motivational example for declarative goals, consider a robot agent with
the goal of being at some location (represented by the predicatel(X, Y)) and the
following plan to achieve this goal:

+!l(X,Y): bc(B) & B > 0.2 ← go(X,Y).

where the predicatebc/1 stands for “battery charge”, andgo identifies an action that
the robot is able to perform in the environment.

At times, using an AgentSpeak plan as a procedure, can be a quite useful program-
ming tool. Thus, in a way, it is important that the AgentSpeak interpreter does not en-
force any declarative semantics to its only (syntactically defined) goal construct. How-
ever, in the plan above,l(X, Y) is clearly meant as a declarative goal; that is, the
programmer expects the robot to believel(X, Y) (by perceiving the environment) if
the plan executes to completion. If it fails because, say, the environment is dynamic, the
goal cannot be considered achieved and, normally, should be attempted again.

This type of situation is commonplace in multi-agent system, and this is why it is
important to be able to define declarative goals in agent-oriented programming. How-
ever, this can be done without the need to change the language and/or its semantics. As
similarly pointed out by van Riemsdijket al. [19], we can easily transform the above
procedural goal into a declarative goal by adding a correspondingtest goalat the end
of the plan’s body, as follows:

+!l(X,Y): bc(B) & B > 0.2 ← go(X,Y); ?l(X,Y) .

This plan only succeeds if the goal is actually (believed to be) achieved; if the given
(procedural) plan executes to completion (i.e., without failing) but the goal happens not
to be achieved, the test goal at the end will fail. In this way, we have taken a simple
proceduralgoal and transformed it into adeclarativegoal – the goal to achieve some
state of affairs.

This solution forms a plan pattern, which can be applied to solve other similar prob-
lems which, as we mention above, are commonplace in agent programming. Thus, our
approach to include declarative goals in AgentSpeak programming is inspired by the
successful adoption of design patterns in object oriented design [13]. To represent such
patterns for AgentSpeak, we shall make use of skeleton programs with meta variables.
For example, the general form of an AgentSpeak plan for a simple declarative goal, as
the one used in the robot’s location goal above, is as follows:

+! g: c ← p; ? g.

Here,g is a meta variable that represents the declarative goal,c is a meta variable that
represents the context expression stating in which circumstances the plan is applicable,
andp represents the procedural part of the plan body (i.e., a course of action to achieve
g). Note that, with the introduction of the final test goal, this plan to achieveg finishes
successfully only if the agent believesg after the execution of plan bodyp.

To simplify the use of the patterns, we also define pattern rules which rewrite a set
of AgentSpeak plans into a new AgentSpeak program according to a given pattern.6 The
following pattern rule, calledDG (Declarative Goal), is used to transform procedural
goals into declarative goals. The pattern rule name is followed by the parameters which
need to be provided by the programmer, besides the actual code (i.e., a set of plans) on
which the pattern will be applied.

+! g: c1 ← p1.
+! g: c2 ← p2.
. . .
+! g: cn ← pn.

DGg (n ≥ 1)
+! g: g ← true.
+! g: c1 ← p1; ? g.
+! g: c2 ← p2; ? g.
. . .
+! g: cn ← pn; ? g.
+g: true ← .dropGoal(g, true).

Essentially, this rule adds?g at the end of each plan in the given set of plans which has
+! g as trigger event, and creates two extra plans (the first and the last plans above). The

6 Note that some of the patterns presented in this paper require the atomic execution of certain
plans, but we avoid including this in the patterns for clarity of presentation; this feature is
available inJasonthrough a simple plan annotation.

first plan checks whether the goalg has already been achieved — in such case, there is
nothing else to do. That last plan is triggered when the agent perceives thatg has been
achieved while it is executing any of the courses of actionpi (1 ≤ i ≤ n) which aim
at achievingg; in this circumstance, the plan being executed in order to achieveg can
be immediately terminated. The internal action.dropGoal(g, true) terminates
such plan with success (as explained in Section 3).

In this pattern, when one of the plans to achieveg fails, the agent gives up achieving
the goal altogether. However it could be the case that for such goal, the agent should try
another plan to achieve it, as in the “backtracking” plan selection mechanism available
in platforms such asJACK [21, 14] and 3APL [10, 9]. In those mechanisms, usually
only when all available plans have been tried in turn and failed is the goal abandoned
with failure, or left to be attempted again later on. The following rule, calledBDG
(Backtracking Declarative Goal), defines this pattern based on a set of conventional
AgentSpeak plansP transformed by theDG pattern (each plan inP is of the form
+! g: c ← p):

P
BDGg

DGg(P)
-! g: true ← ! g.

The last plan of the pattern catches a failure event, caused when a plan fromP fails, and
then tries to achieve that same goalg again. Notice that it is possible that the same plan
is selected and fails again, causing a loop if the plan contexts have not been carefully
programmed. Thus the programmer would need to specify the plan contexts in such a
way that a plan is only applicable if it has a chance of succeeding regardless of it having
been tried already (recently).

Instead of worrying about defining contexts in such more general way, in some
cases it may be useful for the programmer to apply the following pattern, calledEBDG
(Exclusive BDG), which ensures that none of the given plans will be attempted twice
before the goal is achieved:

+! g: c1 ← b1.
+! g: c2 ← b2.
. . .
+! g: cn ← bn.

EBDGg

+! g: g ← true.
+! g: not p1(g) & c1 ← +p1(g); b1.
+! g: not p2(g) & c2 ← +p2(g); b2.
. . .
+! g: not p n(g) & cn ← +pn(g); bn.
-! g: true ← ! g.
+g: true ← -p1(g); -p2(g);dropGoal(g, true).

In this pattern, each plan, when selected for execution, initially adds a beliefpi(g) ; the
goalg is used as an argument top so as to avoid interference among applications of the

pattern for different goals. The belief is used as part of the plan contexts (note the use
of not p i in the contexts of the plans in the pattern above) to state the plan should not
be applicable in a second attempt (of that same plan within a single adoption of goalg
for that agent).

In the pattern above, despite the various alternative plans, the agent can still end
up dropping the intention with the goalg unachieved, if all those plans become non-
applicable. Conversely, in ablind commitment goalthe agent can drop the goal only
when it is achieved. This type of commitment toward the achievement of a declarative
goal can thus be understood asfanatical commitment[18]. TheBCGg,F pattern below
defines this type of commitment:

P
BCGg,F

F(P)
+! g: true ← ! g.

This pattern is based on another pattern rule (represented by the variableF); F is often
BDG, although the programmer can chose another pattern (e.g.,EBDG if a plan should
not be attempted twice). Finally, the last plan keeps the agent pursuing the goal even
in case there is no applicable plan. It is assumed that the selection of plans is based on
the order that the plans appear in the program and all events have equal chance of being
chosen as the event to be handled in a reasoning cycle.

For most applications,BCG-style fanatical commitment is too strong. For example,
if a robot has the goal to be at some location, it is reasonable that it can drop this goal
in case its battery charge is getting very low; in other words, the agent has realised that
it has become impossible to achieve the goal, so it is useless to keep attempting it. This
is very similar to the idea of a persistent goal in the work of Cohen and Levesque: a
persistent goal is a goal that is maintained as long as it is believed not achieved, but still
believed possible [8]. In [22] and [7], the “impossibility” condition is called a “drop
condition”. The drop conditionf (e.g., “low battery charge”) is used in the Single-
Minded Commitment (SMC) pattern to allow the agent to drop a goal if it becomes
impossible:

P
SMCg,f

BCGg,BDG(P)
+f : true ← .dropGoal(g, false).

This pattern extends theBCG pattern adding the drop condition represented by the
literal f in the last plan. If the agent comes to believef , it can drop goalg, signalling
failure (refer to the semantics of the internal action.dropGoal in section 3). This
effectively means that the plan in the intention whereg appeared, which depended on
g to carry on execution, must itself fail (asg is now impossible to achieve). However,
there might be an alternative for that other plan which does not depend ong, so that
plan’s failure handling may take care of such situation.

As we have a failure drop condition for a goal, we can also have a successful drop
condition, e.g., because the motivation to achieve the goal has ceased to exist. Suppose

a robot has the goal of going to the fridge because its owner has asked it to fetch a beer
from there; then, if the robot realises that its owner does not want a beer anymore, it
should drop the goal [8]. The belief “my owner wants a beer” is themotivationm for
the goal. The following pattern, called Relativised Commitment Goal (RCG) defines a
goal that is relative to a motivation condition: the goal can be dropped with success if
the agent looses the motivation for it.

P
RCGg,m

BCGg,BDG(P)
- m: true ← .dropGoal(g, true).

Note that, in the particular combination ofRCG and BCG above, if the attempt to
achieveg ever terminates, it will always terminate with success, since the goal will be
dropped only if either the agent believes it has been achieved achieved (byBCG) or m
is removed from belief base.

Of course we can combine the last two patterns above to create a goal which can be
dropped if it has been achieved, has become impossible to achieve, or the motivation
to achieve it no longer exists (representing an open-minded commitment). The Open-
Minded Commitment pattern (OMC) defines this type of goal:

P
OMCg,f,m

BCGg,BDG(P)
+f : true ← .dropGoal(g, false).
- m: true ← .dropGoal(g, true).

For example, a drop condition could be “no beer at location (X,Y)” (denoted below
by ¬ b(X,Y)), and the motivation condition could be “my owner wants a beer” (de-
noted below bywb). Consider the initial plan below with representing the single known
course of action to achieve goall(X,Y) :

+!l(X,Y): bc(B) & B > 0.2 ← go(X,Y).

When the patternOMC l(X,Y),¬b(X,Y),wb is applied to the plan above, we get the fol-
lowing program:

+!l(X,Y): l(X,Y) ← true.
+!l(X,Y): bc(B) & B > 0.2 ← go(X,Y); ?l(X,Y).
+!l(X,Y): true ← !l(X,Y).
-!l(X,Y): true ← !l(X,Y).
+¬b(X,Y): true ← .dropGoal(l(X,Y), false).
-wb: true ← .dropGoal(l(X,Y), true).

Another important type of goal in agent-based systems aremaintenance goals: the
agent needs to ensure that the state of the world will always be such thatg holds. When-
ever the agent realises thatg is no longer in its belief base (i.e., believed to be true), it
attempts to bring aboutg again by having the respective declarative (achievement) goal.
The pattern rule that defines a Maintenance Goal (MG) is as follows:

P
MGg,F

g.
- g: true ← ! g.
F(P)

The first line of the pattern states that, initially (when the agent starts running) it will
assume thatg is true. (As soon as the interpreter obtains perception of the environment
for the first time, the agent might already realise that such assumption was wrong.) The
first plan is triggered wheng is removed from the belief base, e.g. becauseg has not
been perceived in the environment in a given reasoning cycle, and thus the maintenance
goalg is no longer achieved. This plan then creates a declarative goal to achieveg. The
type of commitment to achievingg if it happens not to be true is defined byF, which
would normally beBCG given that the goal should not be dropped in any circumstances
unless it is has been achieved again. (Realistically, plans for the agent to attempt pro-
actively to prevent this from even happening would also be required, but the pattern is
useful to make sure the agent will act appropriately in case things go wrong.)

Another useful pattern is a Sequenced Goal Adoption (SGA). This pattern should
be used when various instances of a goal should not be adopted concurrently (e.g., a
robot that needs to clean two different places). To solve this problem, theSGA pattern
adopts the first occurrence of the goal and records the remaining occurrences as pending
goals by adding them as special beliefs. As one such goal occurrence is achieved, if any
other occurrence is pending, it gets activated.

SGAt,c,g

t: not fl() & c ← !fg(g).
t: fl() & c ← +fl(g).
+!fg(g): true ← +fl(g); ! g; -fl(g).
-!fg(g): true ← -fl(g).
-fl(): fl(g) ← !fg(g).

In this pattern,t is the trigger leading to the adoption of a goalg; c is the context for
the goal adoption;fl(g) is the flag to control whether the goalg is already active; and
fg(g) is a procedural goal that guarantees thatfl will be added to the belief base to
record the fact that some occurrence of the goal has already been adopted, then adopts
the goal! g, as well as it guarantees thatfl will be eventually removed whether! g
succeeds or not. The first plan is selected wheng is not being pursued; it simply calls
the fg goal. The second plan is used if some other instance of that goal has already
been adopted. All it does is to remember that this goalg was not immediately adopted
by addingfl(g) to the belief base. The last plan makes sure that whenever a goal
adoption instance is finished (denoted by the removal of afl belief), if there are any
pending goal instances to be adopted, they will be activated through thefg call.

5 Using Patterns inJason

Jasonis an interpreter for an extended version of AgentSpeak(L) and is availableOpen
Sourceunder GNU LGPL athttp://jason.sourceforge.net [4]. It imple-

ments the operational semantics of AgentSpeak(L) as given in [6]. It also implements
the plan failure mechanism and the pre-defined internal action7 used in the patterns
described in Section 4. Since these features are enough for programming declarative
goals,Jasonalready supports them. However, it would be clearly not acceptable if the
programmer had to apply the patterns by hand.

To simplify the programming of sophisticated goals by the use of patterns, we ex-
tend the language interpreted byJasonto include pre-processing directives. The syntax
for pattern directives is:

directive ::=
"{" "begin" <pattern-name>"("<parameters>")" "}"

<agent-speak-program>
"{" "end" "}"

Source
Code

Pre-processor
Patterns

AgentSpeak
Code

AgentSpeak Interpreter

Fig. 3.JasonPre-Processing and Patterns.

We have implemented a pre-
processor forJason which also handles
patterns as illustrated in Figure 3. Each
pattern is implemented in a Java class
that receives an AgentSpeak program
and returns another program, trans-
formed as defined by the respective
pattern. This implementation allows us,
and even users, to make new patterns
available in a straightforward manner.
One simply has to create a new Java
class for the new pattern and register this
class with the pre-processor8.

In the remainder of this section,
we will illustrate how theJason pre-
processing directives for the use of pat-
terns can be used to program a clean-
ing robot for the scenario described in [7]
(where the robot was implemented using
Jadex [15, 16]). The first goal of the robot
is to maintain its battery charged: this is

clearly a maintenance goal (MG). The agent should pursue this goal when its battery
level goes below 20% and should remain pursuing it until the battery is completely
charged. In the program below, based on the perception of the battery level, the belief
battery charged , which indicates that the goal is satisfied, is either removed or
added to the belief base, signalling whether the corresponding achievement goal must
be activated or not.

7 The internal action used here is not yet available in the latest public release ofJason, but will
be available in the next release.

8 Note that this too will only be available in the next release ofJason

+battery level(B): B < 0.2 ← -battery charged.
+battery level(B): B = 1.0 ← +battery charged.

{ begin mg("battery charged", bcg("battery charged")) }
+!battery charged : not l(power supply)

go(power supply).
+!battery charged: l(power supply) ← plug in.

{ end }
The first plan of the pattern for thebattery charged goal moves the agent

to the place where there is a power supply, if it is not already there (according to its
l(power supply) belief). Otherwise, the second plan will plug the robot to the
power supply. Theplug in action will charge the battery and thus change the robot’s
state that is perceived back throughbattery level(B) percepts (which generate
+battery level(B) events).

The second goal the robot might adopt is to patrol the museum at night. This goal is
therefore activated when the agent perceives sunset (represented by the event+night).
Whenever activated, the goal can be dropped only if the agent perceives dawn (repre-
sented by the event-night). The following program definespatrol as this kind of
goal using aRCG pattern withnight as the motivation:

+night: true ← !patrol.

{ begin rcg("patrol", "night") }
+!patrol: battery charged ← wander.

{ end }
The agent will never have the beliefpatrol in its belief base, since no plan or
perception of the environment will add this particular belief. The goal is, in some
sense, deliberately unachievable, while RCG maintains the agent committed to the goal
nevertheless. However, it is considered as achieved (finished with success) when the
motivation condition is removed from the belief base. Note that the context for the
!patrol plan is that the battery is charged, therefore while the maintenance goal
battery charged is active, the robot does not wander, but it resumes wandering
as soon the battery becomes charged again. We are thus using this belief to create an
interferencebetween goals (i.e., charging the battery precludes patrolling).

The last goal the robot might adopt is to clean the museum during the day whenever
it perceives waste around. Since the robot can perceive various different pieces of waste
around, it would accordingly generate several concurrent instances of this goal. How-
ever these goals are mutually exclusive: they cannot be achieved simultaneously; trying
to go in two different directions must be avoided, and expressing this at the declarative
level avoids too much work on implementing application-specific intention selection
functions (in the context of AgentSpeak). It is indeed another kind of interference be-
tween different goals. TheSGA pattern is used in the program below to ensure that
only oneclean goal instance is being pursued at a moment in time. The event that
triggers this goal is+waste(X,Y) (some waste being perceived at location X,Y), and
the context isnot night :

{ begin sga("+waste(X,Y)", "not night", "clean(X,Y)") }
{ end }

{ begin omc("clean(X,Y)", "night", "waste(X,Y)") }
+!clean(X,Y): l(X,Y) ← pick; go(bin); drop.
+!clean(X,Y): not l(X,Y) ← go(X,Y).

{ end }
+battery charged: true ← .suspend(clean(X,Y)).
-battery charged: true ← .resume(clean(X,Y)).

In the program above, an open-minded commitment pattern (OMC) is used to cre-
ate theclean(X,Y) goal with night as the failure condition (at sunset, the goal
should be abandoned with failure) andwaste(X,Y) as the motivation (if the agent
came to believe that there is no longer waste at that location, the goal could be dropped
with success). The last two plans are used to suspend and resume the goal when the
battery charge goal is active. Of course we could addbattery charge in the
context of the plans (as we did in thepatrol goal); however, using the.suspend
internal action is more efficient because the goal becomes actually suspended (until
resumed with the respective.resume internal action) rather than being continuously
attempted without any applicable plans.

6 Conclusions

In this paper we have shown that sophisticated types of goals discussed in the agents
literature can be implemented in the AgentSpeak language with only the extensions
(and extensibility mechanisms) available inJason. In fact, this is done by combining
AgentSpeak plans, forming certain patterns, for each type of goal and commitment to-
wards goals that agents may have. Therefore, our approach is to take advantage of the
simplicity of the AgentSpeak language, using only its well-known support for proce-
dural goals plus the idea of “plan patterns” to support the use of declarative goals with
complex temporal structures in AgentSpeak programming.

Besides the use of internal actions such as.dropGoal (that are available inJason
for general use, independently of this proposal for declarative goals), our proposal does
not require either: (i) syntactical or semantical changes in the language (as done, for
example, in [22, 7]); nor (ii) the definition of a goal base (cf. [19]) which is also usual
in other approaches. Van Riemsdijket at. [20] also pointed out that declarative goals
can be built based on the procedural goals available in 3APL, by simply checking if
the corresponding belief is true at the end of the plan execution. What they proposed
in that paper corresponds to ourBDG pattern. In this work, we further define various
other types of declarative goals, represented them aspatternsof AgentSpeak programs,
and presented an implementation inJason(using a pre-processor) that facilitates this
approach for declarative goals. Another advantage of our approach is that, as complex
types of goals are mapped to plain AgentSpeak using patterns, programmers can change
the patterns to fit their own requirements, or indeed create new patterns easily.

In future work we intend to formalise our approach based on the existing operational
semantics and to verify some properties of the programs generated by the patterns,
including a comparison with approaches that use a goal base to have declarative goals.
An example of an issues that might be of particular interest in such comparison is how
the use of plan patters will affect other aspects of agent-based development such as
debugging. In the future, we also plan to support conjunctive goals such asp∧ q (where
bothp andq should be satisfied at the same time, as done in [19]), possibly through the
use of plan patterns as well. Furthermore, we plan to investigate other patterns that may
useful in the practical development of large-scale multi-agent systems.

Acknowledgements

Many thanks to A.C. Rocha Costa for discussions on maintenance goals in AgentSpeak.
Anonymous reviewers for this paper have made detailed comments which helped im-
prove the paper. Rafael Bordini gratefully acknowledges the support of The Nuffield
Foundation (grant number NAL/01065/G).

References

1. D. Ancona and V. Mascardi. Coo-BDI: Extending the BDI model with cooperativity. In
J. Leite, A. Omicini, L. Sterling, and P. Torroni, editors,Declarative Agent Languages and
Technologies, Proc. of the First Int. Workshop (DALT-03), held with AAMAS-03, 15 July,
2003, Melbourne, Australia, number 2990 in LNAI, pages 109–134, Berlin, 2004. Springer-
Verlag.

2. D. Ancona, V. Mascardi, J. F. Ḧubner, and R. H. Bordini. Coo-AgentSpeak: Cooperation
in AgentSpeak through plan exchange. In N. R. Jennings, C. Sierra, L. Sonenberg, and
M. Tambe, editors,Proc. of the Third Int. Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS-2004), New York, NY, 19–23 July, pages 698–705, New York, NY,
2004. ACM Press.

3. R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors.Multi-Agent Pro-
gramming: Languages, Platforms, and Applications. Number 15 in Multiagent Systems,
Artificial Societies, and Simulated Organizations. Springer, 2005.

4. R. H. Bordini, J. F. Ḧubner, et al.Jason: A Java-based AgentSpeak interpreter used with
saci for multi-agent distribution over the net, manual, release version 0.7 edition, Aug. 2005.
http://jason.sourceforge.net/ .

5. R. H. Bordini, J. F. Ḧubner, and R. Vieira.Jasonand the Golden Fleece of agent-oriented
programming. In Bordini et al. [3], chapter 1.

6. R. H. Bordini andÁ. F. Moreira. Proving BDI properties of agent-oriented programming
languages: The asymmetry thesis principles in AgentSpeak(L).Annals of Mathematics and
Artificial Intelligence, 42(1–3):197–226, Sept. 2004. Special Issue on Computational Logic
in Multi-Agent Systems.

7. L. Braubach, A. Pokahr, W. Lamersdorf, and D. Moldt. Goal representation for BDI agent
systems. In R. H. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni, editors,Second
Int. Workshop on Programming Multiagent Systems: Languages and Tools (ProMAS 2004),
pages 9–20, 2004.

8. P. R. Cohen and H. J. Levesque. Intention is choice with commitment.Artificial Intelligence,
42(3):213–261, 1990.

9. M. Dastani, B. van Riemsdijk, F. Dignum, and J. Meyer. A programming language for
cognitive agents: Goal directed 3APL. InProc. of the First Workshop on Programming
Multiagent Systems: Languages, frameworks, techniques, and tools (ProMAS03), volume
3067 ofLNAI, pages 111–130, Berlin, 2004. Springer.

10. M. Dastani, M. B. van Riemsdijk, and J.-J. C. Meyer. Programming multi-agent systems in
3APL. In Bordini et al. [3], chapter 2.

11. M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge. A formal specification of dMARS. In
M. P. Singh, A. S. Rao, and M. Wooldridge, editors,Intelligent Agents IV—Proceedings of the
Fourth International Workshop on Agent Theories, Architectures, and Languages (ATAL-97),
Providence, RI, 24–26 July, 1997, number 1365 in LNAI, pages 155–176. Springer-Verlag,
Berlin, 1998.

12. M. d’Inverno and M. Luck. Engineering AgentSpeak(L): A formal computational model.
Journal of Logic and Computation, 8(3):1–27, 1998.

13. E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

14. N. Howden, R. R̈onnquist, A. Hodgson, and A. Lucas. JACK intelligent agentsTM — sum-
mary of an agent infrastructure. InProceedings of Second International Workshop on Infras-
tructure for Agents, MAS, and Scalable MAS, held with the Fifth International Conference
on Autonomous Agents (Agents 2001), 28 May – 1 June, Montreal, Canada, 2001.

15. A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI reasoning engine. In Bordini
et al. [3], chapter 6.

16. A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI reasoning engine. In Bordini
et al. [3], chapter 6, pages 149–174.

17. A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. In
W. Van de Velde and J. Perram, editors,Proc. of the Seventh Workshop on Modelling Au-
tonomous Agents in a Multi-Agent World (MAAMAW’96), 22–25 January, Eindhoven, The
Netherlands, number 1038 in LNAI, pages 42–55, London, 1996. Springer-Verlag.

18. A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture. In
J. Allen, R. Fikes, and E. Sandewall, editors,Proceedings of the 2nd International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR’91), pages 473–484.
Morgan Kaufmann publishers Inc.: San Mateo, CA, USA, 1991.

19. B. van Riemsdijk, M. Dastani, and J.-J. C. Meyer. Semantics of declarative goals in
agent programming. In F. Dignum, V. Dignum, S. Koenig, S. Kraus, M. P. Singh, and
M. Wooldridge, editors,Proceedings of the 4rd International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2005), pages 133–140. ACM, 2005.

20. M. B. van Riemsdijk, M. Dastani, and J.-J. C. Meyer. Subgoal semantics in agent program-
ming. In C. Bento, A. Cardoso, and G. Dias, editors,Proceedings of the 12th Portuguese
Conference on Artificial Intelligence, EPIA 2005, Covilhã, Portugal, December 5-8, 2005,
volume 3808 ofLNCS, pages 548–559, 2005.

21. M. Winikoff. JACKTM intelligent agents: An industrial strength platform. In Bordini et al.
[3], chapter 7, pages 175–193.

22. M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative and procedural goals
in intelligent agent systems. InProceedings of the Eighth International Conference on Prin-
ciples of Knowledge Representation and Reasoning, 2002.

