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Abstract. In this paper, we combine deontic logic with Alternating-
time Temporal Logic (ATL) into a framework that makes it possible to
model and reason about obligations and abilities of agents. The way both
frameworks are combined is technically straightforward: we add deontic
accessibility relations to ATL models (concurrent game structures), and
deontic operators to the language of ATL (an additional operator UP
is proposed for “unconditionally permitted” properties, similar to the
“all I know” operator from epistemic logic). Our presentation is rather
informal: we focus on examples of how obligations (interpreted as re-
quirements) can be confronted with ways of satisfying them by actors of
the game. Though some formal results are presented, the paper should
not be regarded as a definite statement on how logics of obligation and
strategic ability must be combined; instead, it is intended for stimulat-
ing discussion about such kinds of reasoning, and the models that can
underpin it.
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1 Introduction

In recent years, there has been increasing interest from within the computer sci-
ence, logic, and game theory communities with respect to what might be called
cooperation logics : logics that make it possible to explicitly represent and reason
about the strategic abilities of coalitions of agents (human or computational) in
game-like multi-agent scenarios. Perhaps the best-known example of such a logic
is the Alternating-time Temporal Logic of Alur, Henzinger, and Kupferman [1].
In this paper, we propose a concept of “deontic ATL”. As deontic logic focuses
on obligatory behaviors of systems and agents, and Alternating-time Temporal
Logic enables reasoning about abilities of agents and teams, we believe it inter-
esting and potentially useful to combine these formal tools in order to confront
system requirements (i.e., obligations) with possible ways of satisfying them
by actors of the game (i.e., abilities). This paper is not intended as a definite
statement on how logics of obligation and strategic ability should be combined.
Rather, we intend it to stimulate discussion about such kinds of reasoning, and
the models that can underlie it.

We begin by presenting the main concepts from both frameworks. Then, in
section 2, their combination is defined and discussed. Three different approaches



to modeling obligations in a temporal context are discussed: global requirements
on states of the system (i.e., that deem some states “correct” and some “incor-
rect”), local requirements on states (“correctness” may depend on the current
state), and temporal obligations, which refer to paths rather than states. We
investigate (in an informal way) the perspectives offered by each of these ap-
proaches, and present several interesting properties of agents and systems that
can be expressed within their scope. Some preliminary formal results are given
in Section 3.

1.1 Deontic Logic: The Logic of Obligations

Deontic logic is a modal logic of obligations [16], expressed with operator Oϕ (“it
is obligatory that ϕ”). Models for deontic logic were originally defined as Kripke
structures with deontic accessibility relation(s) [21]. A state q′ such that qRq′ is
called a “perfect alternative” of state q (we can also say that q′ is acceptable or
correct from the perspective of q). As with the conventional semantics of modal
operators we define,

M, q |= Oϕ iff for all q′ such that qRq′ we have M, q′ |= ϕ.

We believe that this stance still makes sense, especially when we treat deontic
statements as referring to preservation (or violation) of some constraints one
would like to impose on a system or some of its components (such as integrity
constraints in a database). In this sense, deontic modalities may refer to require-
ments (specification requirements, design requirements, security requirements
etc.), and we will interpret Oϕ as “ϕ is required” throughout the rest of the
paper. This approach allows to put all physically possible states of the system
in the scope of the model, and to distinguish the states that are “correct” with
respect to some criteria, thus enabling reasoning about possible faults and fault
tolerance of the system [22]. However, we will argue that ATL plus deontic logic
allows to express obligations about what coalitions should or should not achieve
– without specifying how they do achieve it (or refrain from it). We consider this
issue in detail in Section 2.5.

Let us illustrate our main ideas with the following example. There are two
trains: a and b; each can be inside a tunnel (propositions a-in and b-in, respec-
tively) or outside of it. The specification requires that the trains should not be
allowed to be in the tunnel at the same time, because they will crash (so the
tunnel can be seen as a kind of critical section): F(a-in ∧ b-in) or, equivalently,
O¬(a-in ∧ b-in). A model for the whole system is displayed in Figure 1A.

Locality and Individuality of Obligations. Note that the set of perfect
alternatives is the same for each state q in the example from Figure 1A. Thus,
the semantic representation can in fact be much simpler: it is sufficient to mark
the states that violate the requirements with a special “violation” atom V [2,
15, 14]. Then the accessibility relation R can be defined as: qRq′ iff q′ 2 V .
Using a more elaborate accessibility relation machinery makes it possible, in
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Fig. 1. (A) Critical section example: the trains and the tunnel. Dotted lines display the
deontic accessibility relation. (B) The trains revisited: temporal and strategic structure

general, to model requirements that are local with respect to the current state.
Local obligations can provide a means for specifying requirements that evolve
in time. Also, they can be used to specify exception handling in situations when
full recovery of the system is impossible (cf. Section 2.3).

Another dimension of classifying obligations is their individuality. The acces-
sibility relation can define the requirements for the whole system, or there can be
many relations, specifying different requirements for each process or agent [14].

Combining Deontic Perspective with Other Modalities. The combi-
nation of deontic logic with temporal and dynamic logics has been investi-
gated at length in the literature [15, 20, 7, 18]. In addition, deontic epistemic
logics [5, 14] and BOID (“beliefs-obligations-intentions-desires”) logics [6] have
also been studied. Finally, in [19], deontic and strategic perspectives were com-
bined through applying social laws to ATL.

1.2 Strategic Ability: Alternating-time Temporal Logic

Alternating-time Temporal Logic (ATL) [1] extends the computation tree logic
(CTL) with a class of cooperation modalities of the form 〈〈A〉〉, where A is a set
of agents. The intuitive interpretation of 〈〈A〉〉Φ is: “The group of agents A have

a collective strategy to enforce Φ no matter what the other agents in the system

do”. The recursive definition of ATL formulas is:

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | 〈〈A〉〉Xϕ | 〈〈A〉〉Gϕ | 〈〈A〉〉ϕ1 Uϕ2

The “sometime” operator F can be defined as: 〈〈A〉〉Fϕ ≡ 〈〈A〉〉>Uϕ.



Models and Semantics of ATL. Concurrent game structures are transition
systems that are based on the collective actions of all agents involved. For-
mally, a concurrent game structure is a tuple M = 〈Σ,Q,Π, π,Act, d, δ〉, where:
Σ = {a1, ..., ak} is a (finite) set of all agents, Q is a non-empty set of states, Π
is a set of (atomic) propositions, and π : Q→ 2Π is a valuation of propositions;
Act is a set of actions (or choices), and d : Q × Σ → 2Act is a function that
returns the decisions available to player a at state q. Finally, a complete tuple of
decisions 〈α1, ..., αk〉 ⊆ dq(a1)× . . .×dq(ak) from all the agents in state q implies
a deterministic transition according to the transition function δ(q, α1, ..., αk).3

A strategy for agent a is a mapping fa : Q+ → Act, which assigns a choice
fa(q0, ..., qn) ∈ da(qn) to every non-empty finite sequence of states q0, ..., qn.
Thus, the function specifies a’s decisions for every possible (finite) history of
system transitions. A collective strategy for a set of agents A ⊆ Σ is just a tuple
of strategies (one for each agent in A): FA = 〈fa〉a∈A. Now, out(q, FA) denotes
the set of outcomes of FA from q, i.e., the set of all (infinite) computations
starting from q, in which group A has been using FA. Let Λ[i] denote the ith
position in computation Λ. The semantics of ATL formulas follows through the
clauses:

M, q � 〈〈A〉〉Xϕ iff there exists a collective strategy FA such that for all
Λ ∈ out(q, FA) we have M,Λ[1] � ϕ;

M, q � 〈〈A〉〉Gϕ iff there exists a collective strategy FA such that for all
Λ ∈ out(q, FA) we have M,Λ[i] � ϕ for every i ≥ 0;

M, q � 〈〈A〉〉ϕUψ iff there exists a collective strategy FA such that for all
Λ ∈ out(q, FA) there is i ≥ 0 such that M,Λ[i] � ψ and for
all j such that 0 ≤ j < i we have M,Λ[j] � ϕ.

Let us consider the tunnel example from a temporal (and strategic) perspec-
tive; a concurrent game structure for the trains and the tunnel is shown in Fig-
ure 1B. Using ATL, we have that 〈〈Σ〉〉F (a-in∧ b-in), so the system is physically
able to display undesirable behavior. On the other hand, 〈〈a〉〉G¬(a-in∧b-in), i.e.,
train a can protect the system from violating the requirements. In this paper,
we propose to extend ATL with deontic operator O in order to investigate the
interplay between agents’ abilities and requirements they should meet.

The Full Logic of ATL*. ATL* generalizes ATL in the same way as CTL*
generalizes CTL: we release the syntactic requirement that every occurrence of
a temporal operator must be preceded by exactly one occurrence of a coopera-
tion modality. ATL* consists of state formulas ϕ and path formulas ψ, defined
recursively below:

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | 〈〈A〉〉ψ
ψ := ϕ | ¬ψ | ψ1 ∨ ψ2 | Xψ | ψ1 Uψ2

3 The definition we use here differs slightly from the original one [1], because we use
symbolic labels for agents and their choices (and we do not assume finiteness of Q

and Act). For an extensive discussion of various ATL semantics, refer to [9].



Temporal operators F andG can be defined as: Fψ ≡ >Uψ andGψ ≡ ¬F¬ψ.
ATL* has strictly more expressive power than ATL, but it is also more compu-
tationally costly. Therefore ATL is more important for practical purposes. For
semantics and extensive discussion, we refer the reader to [1].

1.3 STIT Logic: The Logic of Causal Agency

It is also worth mentioning at this point a related body of work, initiated largely
through the work of Belnap and Perloff, on “stit” logic – the logic of seeing to it
that [4, 3]. Such logics contain an agentive modality, which attempts to capture
the idea of an agent causing some state of affairs. This modality, typically written
[i stit φ], is read as “agent i sees to it that φ”. The semantics of stit modalities are
typically given as [i stit φ] iff i makes a choice c, and φ is a necessary consequence
of choice c (i.e., φ holds in all futures that could arise through i making choice
c). A distinction is sometimes made between the “generic” stit modality and the
deliberate stit modality (“dstit”); the idea is that i deliberately sees to it that φ
if [i stit φ] and there is at least one future in which φ does not hold (the intuition
being that i is then making a deliberate choice for φ, as φ would not necessarily
hold if i did not make choice c). Such logics are a natural counterpart to deontic
logics, as it clearly makes sense to reason about the obligations that an agent
has in the context of the choices it makes and the consequences of these choices.
Similarly, if we interpret choices as programs (cf. the strategies of ATL), then
stit logics are also related to dynamic logic [12]; the main differences are that
programs, which are first class entities in the object language of dynamic logic,
are not present in the object language of stit logics (and of course, strategies are
not present in the object language of ATL). Moreover, stit logics assert that an
agent makes a particular choice, whereas we have no direct way of expressing
this in ATL (or, for that matter, in dynamic logic). So, while stit logics embody
somewhat similar concerns to ATL (and dynamic logic), the basic constructs are
fundamentally different, providing (yet another) way of interpreting the dynamic
choice structures that are common to these languages.

2 Deontic ATL

In this section, we extend ATL with deontic operators. We follow the definition
with an informal discussion on how the resulting logic (and its models) can help
to investigate the interplay between agents’ abilities and requirements that the
system (or individual agents) should meet.

2.1 Syntax and Semantics

The combination of deontic logic and ATL proposed here is technically straight-
forward: the new language consists of both deontic and strategic formulas, and
models include the temporal transition function and deontic accessibility rela-
tion as two independent layers. Thus, the recursive definition of DATL formulas
is:



ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | OAϕ | UPAϕ | 〈〈A〉〉Xϕ | 〈〈A〉〉Gϕ | 〈〈A〉〉ϕ1 Uϕ2

where A ⊆ Σ is a set of agents. Models for Deontic ATL can be called deontic
game structures, and defined as tuples M = 〈Σ,Q,Π, π,Act, d, δ,R〉, where:

– Σ is a (finite) set of all agents, and Q is a non-empty set of states,
– Π is a set of (atomic) propositions, and π : Q→ 2Π is their valuation;
– Act is a set of actions, and d : Q×Σ → 2Act is a function that returns the

decisions available to player a at state q;
– a complete tuple of decisions 〈α1, ..., αk〉 ⊆ dq(a1)× ...× dq(ak) from all the

agents in state q implies a deterministic transition according to the transition
function δ(q, α1, ..., αk);

– finally, R : 2Σ → 2Q×Q is a mapping that returns a deontic accessibility
relation RA for every group of agents A.

The semantic rules for p,¬ϕ, ϕ∨ψ, 〈〈A〉〉Xϕ, 〈〈A〉〉Gϕ, 〈〈A〉〉ϕUψ are inherited
from the semantics of ATL (cf. Section 1.2), and the truth of OAϕ is defined
below. We also propose a new deontic operator: UPϕ, meaning that “ϕ is un-
conditionally permitted”, i.e., whenever ϕ holds, we are on the correct side of
the picture (which closely resembles the “only knowing”/“all I know” operator
from epistemic logic [13]).

M, q |= OAϕ iff for every q′ such that qRAq
′ we have M, q′ |= ϕ;

M, q |= UPAϕ iff for every q′ such that M, q′ |= ϕ we have qRAq
′.

This new operator – among other things – will help to characterize the exact
set of “correct” states, especially in the case of local requirements, where the
property of a state being “correct” depends on the current state of the system.

In principle, it should be possible that the requirements on a group of agents
(or processes) are independent from the requirements for the individual members
of the group (or its subgroups). Thus, we will not assume any specific relationship
between relations RA and RA′ , even if A′ ⊆ A. We propose only that a system
can be identified with the complete group of its processes, and therefore the
requirements on a system as a whole can be defined as: Oϕ ≡ OΣϕ. In a similar
way: UPϕ ≡ UPΣϕ.

2.2 Dealing with Global Requirements

Let us first consider the simplest case, i.e., when the distinction between “good”
and “bad” states is global and does not depend on the current state. Deontic
game structures can in this case be reduced to concurrent game structures with
“violation” atom V that holds in the states that violate requirements. Then:

M, q |= Oϕ iff for all q′ such that q′ 2 V we have M, q′ |= ϕ.

As we have both requirements and abilities in one framework, we can look at the
former and then ask about the latter. Consider the trains and tunnel example



from Figure 1B, augmented with the requirements from Figure 1A (let us also
assume that these requirements apply to all the agents and their groups, i.e.,
RA = RA′ for all A,A′ ⊆ Σ; we will continue to assume so throughout the rest of
the paper, unless explicitly stated). As already proposed, the trains are required
not to be in the tunnel at the same moment, because it would result in a crash:
O(¬(a-in ∧ b-in)). Thus, it is natural to ask whether some agent or team can
prevent the trains from crashing: 〈〈A〉〉G¬(a-in ∧ b-in)? Indeed, it turns out that
both trains have this ability: 〈〈a〉〉G¬(a-in∧b-in)∧〈〈b〉〉G¬(a-in∧b-in). On the other
hand, if the goal of a train implies that it passes the tunnel, the train is unable to
“safeguard” the system requirements any more: ¬〈〈a〉〉¬(a-in∧b-in)U(a-in∧¬b-in).

In many cases, it may be interesting to consider questions like: does an agent
have a strategy to always/eventually fulfill the requirements? Or, more generally:
does the agent have a strategy to achieve his goal in the way that does not violate
the requirements (or so that he can recover from the violation of requirements
eventually)? We try to list several relevant properties of systems and agents
below:

1. the system is stable (with respect to modelM and state q) ifM, q |= 〈〈∅〉〉G¬V ,
i.e., no agent (process) can make it crash;

2. the system is semi-stable (with respect to model M and state q) if it will
inevitably recover from any future situation: M, q |= 〈〈∅〉〉G〈〈∅〉〉F¬V ;

3. agents A form a (collective) guardian in model M at state q if they can
protect the system from any violation of the requirements:M, q |= 〈〈A〉〉G¬V ;

4. A can repair the system in model M at state q if M, q |= 〈〈A〉〉F¬V ;
5. A is a (collective) repairman in model M at state q if A can always repair

the system: M, q |= 〈〈∅〉〉G〈〈A〉〉F¬V ;
6. finally, another (perhaps the most interesting) property is agents’ ability to

eventually achieve their goal (ϕ) without violating the requirements. We say
that agents A can properly enforce ϕ in M, q if M, q |= 〈〈A〉〉(¬V )U(¬V ∧ϕ).

We will illustrate the properties with the following example. The world is
in danger, and only the Prime Minister (p) can save it through giving a speech
at the United Nations session and revealing the dangerous plot that threatens
the world’s future. However, there is a killer (k) somewhere around who tries to
murder him before he presents his speech. The Prime Minister can be hidden
in a bunker (proposition pbunk), moving through the city (pcity), presenting
the speech (pspeaks ≡ saved), or. . . well. . . dead after being murdered (pdead).
Fortunately, the Minister is assisted by James Bond (b) who can search the
killer out and destroy him (we are very sorry – we would prefer Bond to arrest
the killer rather than do away with him, but Bond hardly works this way. . . ).
The deontic game structure for this problem is shown in Figure 2. The Prime
Minister’s actions have self-explanatory labels (enter, exit, speak and nop for
“no operation” or “do nothing”). James Bond can defend the Minister (action
defend), look for the killer (search) or stay idle (nop); the killer can either
shoot at the Minister (shoot) or wait (nop). The Minister is completely safe in
the bunker (he remains alive regardless of other agents’ choices). He is more
vulnerable in the city (can be killed unless Bond is defending him at the very
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Fig. 2. James Bond saves the world. The arrows show possible transitions of the system;
some of the labels are omitted to improve readability. The states that violate the
requirements are marked grey.

moment), and highly vulnerable while speaking at the UN (the killer can shoot
him to death even if Bond is defending him). James Bond can search out and
destroy the killer in a while (at any moment). It is required that the world is
saveable (O〈〈Σ〉〉F saved) and this is the only requirement (UP〈〈Σ〉〉F saved). Note
also that the world can be saved if, and only if, the Prime Minister is alive
(〈〈Σ〉〉F saved ≡ ¬pdead), and the two states that violate this requirement are
marked accordingly (V ≡ pdead).

The system is neither stable nor semi-stable (the Minister can go to the
UN building and get killed, after which the system has no way of recovering).
Likewise, no agent can repair the system in states q7, q8, and hence there is no re-
pairman. The Prime Minister is a guardian as long as he is in the bunker, because
he can stay in the bunker forever: pbunk → 〈〈p〉〉G¬pdead. However, if he does so,
he cannot save the world: ¬〈〈p〉〉(¬pdead)U(¬pdead ∧ saved). On the other hand,
he can cooperate with Bond to properly save the world as long as he is initially
out of the UN building: (pbunk ∨ pcity) → 〈〈p, b〉〉(¬pdead)U(¬pdead ∧ saved) –
he can get to the bunker, defended by Bond, and then wait there until Bond
finds the killer; then he can go out to present his speech. Incidentally, there is
one more guardian in the system – namely, the killer: (¬pdead) → 〈〈k〉〉G¬pdead,
and also (¬pdead) → 〈〈p, k〉〉(¬pdead)U(¬pdead ∧ saved), so the Minister can
alternatively pay the killer instead of employing Bond.
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Fig. 3. “James Bond saves the world” revisited: local requirements. Dotted lines define
the deontic accessibility relation. Solid lines show possible transitions of the system.

2.3 Local Requirements with Deontic ATL

A more sophisticated deontic-accessibility relation may be convenient for mod-
eling dynamics of obligations, for instance when the actors of the game can
negotiate the requirements (e.g., deadlines for a conference submission). Alter-
natively, “localized” requirements can give a way of specifying exception handling
in situations when a full recovery is impossible.

Consider the modified “James Bond” example from Figure 3. The Prime
Minister is alive initially, and it is required that he should be protected from
being shot: q3 |= ¬pdead and q3 |= O¬pdead. On the other hand, nobody except
the killer can prevent the murder: q3 |= 〈〈k〉〉G¬pdead ∧ ¬〈〈p, b〉〉G¬pdead; more-
over, when the president is dead, there is no way for him to become alive again
(pdead → 〈〈∅〉〉Gpdead). Now, when the Minister is shot, a new requirement is
implemented, namely it is required that either the Minister is resurrected or the
killer is eliminated: q7 |= O(¬pdead∨ kdead). Fortunately, Bond can bring about
the latter: q7 |= 〈〈b〉〉Fkdead. Note that q8 is unacceptable when the Minister is
alive (q3), but it becomes the only option when he has already been shot (q7).
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Similar properties of agents and systems to the ones from the previous section
can be specified:

1. the system is stable inM, q if, givenM, q |= Op∧UPp, we haveM, q |= 〈〈∅〉〉Gp;
2. the system is semi-stable in M, q if, given that M, q |= Op ∧ UPp, we have

M, q |= 〈〈∅〉〉G(p → 〈〈∅〉〉Fp);
3. A form a guardian inM, q if, givenM, q |= Op∧UPp, we haveM, q |= 〈〈A〉〉Gp;
4. A can repair the system in M, q if, given that M, q |= Op ∧ UPp, we have

M, q |= 〈〈A〉〉Fp;
5. group A is a repairman in M, q if, given that M, q |= Op ∧ UPp, we have

M, q |= 〈〈∅〉〉G〈〈A〉〉Fp;
6a. A can properly enforce ϕ in M, q if, given that M, q |= OAp∧UPAp, we have

M, q |= 〈〈A〉〉pU(p ∧ ϕ). Note that this requirement is individualized now;
6b. A can properly (incrementally) enforce ϕ in M, q if, given that

M, q |= OAp ∧ UPAp, we have M, q |= p ∧ ϕ, or M, q |= p and A have a col-
lective strategy FA such that for every λ ∈ out(q, FA) they can properly
(incrementally) enforce ϕ in M,λ[1].

4 In a way, we are making the deontic accessibility relation “serial” in a very special
sense, i.e., every state has at least one reachable perfect alternative now.



The definitions show that many interesting properties, combining deontic and
strategic aspects of systems, can be defined using semantic notions. However, at
present, we do not see how they can be specified entirely in the object language.

2.4 Temporal Requirements

Many requirements have a temporal flavor, and the full language of ATL∗ allows
to express properties of temporal paths as well. Hence, it makes sense to look at
DATL∗, where one specifies deontic temporal properties in terms of correct com-
putations (rather than single states). In its simplest version, we obtain DTATL

by only allowing requirements over temporal (path) subformulas that can occur
within formulas of ATL:

ϕ := p | ¬ϕ | ϕ1 ∧ ϕ2 | 〈〈A〉〉ψ | OAψ | UPAψ

with the path subformulas ψ defined recursively as

ψ := Xϕ | Gϕ | ϕ1 Uϕ2 (where ϕ ∈ DTATL).

Properties that can be expressed in this framework are, for instance, that
OF 〈〈Γ 〉〉Gϕ (it is required that sometime in the future, coalition Γ gets the oppor-
tunity to guarantee ϕ forever) and OF (〈〈Γ 〉〉Fϕ∧ 〈〈Γ 〉〉F¬ϕ) (it is a requirement
that eventually coalition Γ can determine ϕ). The latter can be strengthened to

OG(〈〈Γ 〉〉Fϕ ∧ 〈〈Γ 〉〉F¬ϕ)

saying that it is an obligation of the system that there must always be op-
portunities for Γ to toggle ϕ as it wants. Note that the definition of DTATL

straightforwardly allows to express stability properties like

OTψ → 〈〈Γ 〉〉Tψ

saying that Γ can bring about the temporal requirement Tψ.
Semantically, rather than being a relation between states, relation RA is now

one between states and computations (sequences of states). Thus, for any com-
putation λ, qRAλ means that λ is an ideal computation, given q. The semantics
of temporal obligations and unconditional permissions can be defined as:

M, q |= OAXϕ iff for every λ such that qRAλ, we have M,λ[1] |= ϕ;
M, q |= OAGϕ iff for each λ such that qRAλ, we haveM,λ[i] |= ϕ for all i ≥ 0;
M, q |= OAϕUψ iff for every λ such that qRAλ, there is i ≥ 0 such that

M,λ[i] |= ψ and for all 0 ≤ j < i we have M,λ[j] |= ϕ.

M, q |= UPAXϕ iff for every λ such that M,λ[1] |= ϕ, we have qRAλ;
M, q |= UPAGϕ iff for every λ such that M,λ[i] |= ϕ for all i ≥ 0, we have

qRAλ;
M, q |= UPAϕUψ iff for every λ, such that M,λ[i] |= ψ for some i ≥ 0 and

M,λ[j] |= ϕ for all 0 ≤ j < i, we have qRAλ.



One of the most appealing temporal constraints is that of a deadline: some
property ϕ should be achieved within a number (say n) of steps. This could be
just expressed by OXnϕ:5 only these courses of action are acceptable, in which
the deadline is met. Note that the DATL obligation O(〈〈Γ 〉〉X)nϕ expresses a
different property: these are Γ who must be able to meet the deadline.

Fairness-like properties are also a very natural area to reason about deontic
constraints. Suppose we have a resource p that can only be used by one agent at
the time (and as long as a is using it, pa is true). The constraint that every agent
should always be able to use the resource is expressed by

∧
a∈Σ OG〈〈a〉〉Gpa – or,

if this is an obligation of a particular scheduler s, we could write Os rather than
O. Finally, let [[Γ ]]Φ be the shorthand for ¬〈〈Γ 〉〉¬Φ (coalition Γ cannot prevent
ϕ from being the case). Then, formula OG(〈〈Γ 〉〉Fϕ → [[Γ ]]G(ϕ → 〈〈Γ ′〉〉F¬ϕ))
says that only these courses of action are acceptable in which, might coalition Γ
ever have a way to enforce ϕ, then it must “pass the token” to Γ ′ and give the
other agents the ability to reverse this again.

Note also that DTATL formulas UPψ express a kind of “the end justifies
means” properties. For instance, UPFkdead means that every course of action,
which yields the killer dead, is acceptable.

2.5 Deontic ATL and Social Laws

We mentioned the two main streams in deontic logic, having either states of
affairs or actions as their object of constraints. In Deontic ATL, one can express
deontic requirements about who is responsible to achieve something, without
specifying how it should be achieved. The requirement O¬〈〈{a, b}〉〉F safe-open,
for example, states that it should be impossible for a and b to bring about the
disclosure of a safe in a bank. However, with c being a third employee, we might
have O(¬〈〈{a, b}〉〉F safe-open ∧ 〈〈{a, b, c}〉〉Gsafe-open): as a team of three, they
must be able to do so! We can also express delegation, as in Oa〈〈b〉〉Gϕ: authority
a has the obligation that b can always bring about ϕ.

A recent paper [19] also addresses the issue of prescribed behavior in the
context of ATL: behavioral constraints (specific model updates) are defined for
ATL models, so that some objective can be satisfied in the updated model. The
emphasis in [19] is on how the effectiveness, feasibility and synthesis problems
in the area of social laws [18] can be posed as ATL model checking problems.
One of the main questions addressed is: given a concurrent game structure M
and a social law with objective ϕ (which we can loosely translate as Oϕ), can we
modify the original structure M into M ′, such that M ′ satisfies 〈〈∅〉〉Gϕ? In other
words, we ask whether the overall system can be altered in such a way that it
cannot but satisfy the requirements. [19] does not address the question whether
certain coalitions are able to “act according to the law”; the law is imposed on
the system as a whole. Thus, the approach of that paper is prescriptive, while
our approach in this paper is rather descriptive. Moreover, [19] lacks explicit
deontic notions in the object level.

5 OXnϕ is not a DTATL formula, but the logic can be easily extended to include it.



An example of a requirement that cannot be imposed on the system as a
whole (taken from [19]) is p∧〈〈A〉〉X¬p: property p is obligatory, but at the same
time, A should be able to achieve ¬p. This kind of constraints could be used to
model “a-typical” situations, (such as: “it is obligatory that the emergency exit
is not used, although at the same time people in the building should always
be able to use it”). Putting such an overall constraint upon a system S means
that S should both guarantee p and the possibility of deviating from it, which
is impossible. It seems that our Deontic ATL covers a more local notion of
obligation, in which O(p ∧ 〈〈A〉〉X¬p) can well be covered in a non-trivial way.

On the other hand, our “stability” requirements are rather weak: to demand
that every obligation Oϕ is implementable by a coalition does not yet guarantee
that the system does behave well. Rather, we might be looking for something
in between the universal guarantee and a coalitional efficiency with respect to
constraint ϕ. And it is one of the features of Deontic ATL – that one can express
many various stability requirements, making explicit who is responsible for what.

3 Axioms, Model Checking and Similar Stories

Let ATL and DL be the languages for ATL and deontic logic, respectively, and
let AT L and DL be their respective semantic structures. Then – if we do not
have any mixing axioms relating the coalitional and the deontic operators – we
obtain a logic DATL = ATL ⊕ DL which can be called an independent combi-
nation of the modal logics in question [8]. [8] gives also an algorithm for model
checking such a logic, given two model checkers for each separate logics. The
communication overhead for combining the two model checkers would be in the
order of m+

∑
A∈℘(σ) mj + n · l, where m is the number of coalitional transi-

tions in the model, mA is the cardinality of the deontic access of coalition A, n
is the number of states and l the complexity of the formula, leaving the model
checking complexity of ATL ⊕ DATL linear in the size of the model and the for-
mula [8]. However, two technical remarks are in order here. First, the formal
results from [8] refer to combining temporal logics, while neither ATL nor DL

is a temporal logic in the strictest sense. Moreover, the algorithm they propose
for model checking of an independent combination of logics assumes that the
models are finite (while there is no such assumption in our case). Nevertheless,
polynomial model checking of DATL is of course possible, and we show how it
can be done in Section 3.2, through a reduction of the problem to ATL model
checking.

3.1 Imposing Requirements through Axioms

Following a main stream in deontic logic, we can take every deontic modality to
be KD – the only deontic property (apart from the K-axiom and necessitation
for OΓ ) being the D-axiom ¬OΓ⊥. An axiomatization of ATL has been recently
shown in [11]. If we do not need any mixing axioms, then the axiomatization of
DATL can simply consist of the axioms for ATL, plus those of DL.



Concerning the global requirements, note that endowing AT L with a viola-
tion atom V is semantically very easy. Evaluating whether Oϕ is true at state
q suggests incorporating a universal modality (cf. [10]) although some remarks
are in place here. First of all, it seems more appropriate to use this definition of
global requirements in generated models only, i.e., those models that are gener-
ated from some initial state q0, by the transitions that the grand coalition Σ can
make. Otherwise, the obligations might be unnecesarily weakened by consider-
ing violations or their absence in unreachable states. As an example, suppose we
have a system that has two modes: starting from q1, the constraint is that it is a
violation to drive on the left hand side of the road `, and when the system orig-
inates from q2, one should adhere to driving on the right hand side (r). Seen as
a global requirement, we would have O(`∨ r), which is of course too weak; what
we want is O` (for the system rooted in q1), or Or (when starting in q2). Thus,
a sound definition of obligations in a system with root q0 is, that M, q |= Oϕ iff
M, q0 |= 〈〈∅〉〉G(¬V → ϕ).

Second, we note in passing that by using the global requirement definition
of obligation, the O modality obtained in this way is a KD45 modality, which
means that we inherit the properties Oϕ→ OOϕ and ¬Oϕ → O¬Oϕ, as was also
observed in [14]. But also, we get mixing axioms in this case: every deontic sub-
formula can be brought to the outmost level, as illustrated by the valid scheme
〈〈Γ 〉〉FOϕ ↔ Oϕ (recall that we have M, q |= Oϕ iff M, q0 |= Oϕ iff M, q′ |= Oϕ,
for all states q, q′ and root q0). Some of the properties we have mentioned earlier
in this paper can constitute interesting mixing axioms as well. For instance, a
minimal property for requirements might be

OΓϕ→ 〈〈Γ 〉〉Fϕ

saying that every coalition can achieve its obligations. Semantically, we can pin-
point such a property as follows. Let us assume that this is an axiom scheme,
and the model is distinguishing (i.e., every state in the model can be charac-
terized by some DATL formula). Then the scheme corresponds to the semantic
constraint:

∀q∃FΓ ∀λ ∈ out(q, FΓ ) : states(λ) ∩ img(q,RΓ ) 6= ∅

where states(λ) is the set of all states from λ, and img(q, R) = {q′ | qRq′} is the
image of q with respect to relation R. In other words, Γ can enforce that every
possible computation goes through at least one perfect alternative of q.

3.2 Model Checking Requirements and Abilities

In this section, we present a satisfiability preserving interpretation of DATL into
ATL. The interpretation is very close to the one from [9], which in turn was
inspired by [17]. The main idea is to leave the original temporal structure intact,
while extending it with additional transitions to “simulate” deontic accessibility
links. The simulation is achieved through new “deontic” agents: they can be



passive and let the “real” agents decide upon the next transition (action pass),
or enforce a “deontic” transition. More precisely, the “positive deontic agents”
can point out a state that was deontically accessible in the original model (or,
rather, a special “deontic” copy of the original state), while the “negative deontic
agents” can enforce a transition to a state that was not accessible. The first ones
are necessary to translate formulas of shape OAϕ; the latter are used for the
“unconditionally permitted” operator UPA.

As an example, let M be the deontic game structure from Figure 3, and
let us consider formulas OΣsaved, UPΣsaved and 〈〈k, b〉〉Xpdead (note that all
three formulas are true in M, q3). We construct a new concurrent game structure
MATL by adding two deontic agents: rΣ , r̄Σ , plus “deontic” copies of the existing
states: qrΣ

3 , q
rΣ
7 , q

rΣ
8 and qr̄Σ

3 , q
r̄Σ
7 , q

r̄Σ
8 (cf. Figure 4). Agent rΣ is devised to point out

all the perfect alternatives of the actual state. As state q3 has only one perfect
alternative (i.e., q3 itself), rΣ can enforce the next state to be qrΣ

3 , provided that
all other relevant agents remain passive.6 In consequence, OΣsaved translates as:
¬〈〈rΣ , r̄Σ〉〉X(rΣ ∧ saved). In other words, it is not possible that rΣ points out an
alternative of q3 (while r̄Σ obediently passes), in which saved does not hold.

Agent r̄Σ can point out all the imperfect alternatives of the current state (for
q3, these are represented by: q r̄Σ

7 , q
r̄Σ
8 ). Now, UPΣsaved translates as ¬〈〈rΣ , r̄Σ〉〉X

(̄rA ∧ saved): r̄Σ cannot point out an unacceptable state in which saved holds,
hence the property of saved guarantees acceptability. Finally, 〈〈k, b〉〉Xpdead

translates as 〈〈k, b, rΣ , r̄Σ〉〉X(act ∧ pdead): the strategic structure of the model
has remained intact, but we must make sure that both deontic agents are passive,
so that a non-deontic transition (an “action” transition) is executed.

We present the whole translation below in a more formal way. An interested
reader can refer to [9] for a detailed presentation of the method, and proofs of
correctness.

Given a deontic game structure M = 〈Σ,Q,Π, π,Act, d, δ,R〉 for a set of
agents Σ = {a1, ..., ak}, we construct a concurrent game structure
MATL = 〈Σ′, Q′, Π ′, π′, Act′, d′, δ′〉 in the following manner:

– Σ′ = Σ∪Σr ∪Σ r̄, where Σr = {rA | A ⊆ Σ,A 6= ∅} is the set of “positive”,
and Σ r̄ = {r̄A | A ⊆ Σ,A 6= ∅} is the set of “negative” deontic agents;

– Q′ = Q ∪
⋃

A⊆Σ,A6=∅
(QrA ∪ Qr̄A). We assume that Q and all QrA , Qr̄A are

pairwise disjoint. Further we will be using the more general notation Se =
{qe | q ∈ S} for any S ⊆ Q and proposition e;

– Π ′ = Π ∪ {act, ..., rA, ..., r̄A, ...}, and π′(p) = π(p) ∪
⋃

A⊆Σ(π(p)rA ∪ π(p)r̄A )

for every p ∈ Π . Moreover, π′(act) = Q, π′(rA) = QrA , and π′ (̄rA) = Qr̄A ;

– d′q(a) = dq(a) for a ∈ Σ, q ∈ Q: choices of the “real” agents in the original
states do not change,

– d′q(rA) = {pass} ∪ img(q,RA)rA , and d′q(r̄A) = {pass} ∪ (Q \ img(q,RA))r̄A .
Action pass represents a deontic agent’s choice to remain passive and let

6 We can check the last requirement by testing whether the transition leads to a
deontic state of rΣ (proposition rΣ). It can happen only if all other relevant deontic
agents choose action pass.



other agents choose the next state. Note that other actions of deontic agents
are simply labeled with the names of deontic states they point to;

– Act′ = Act ∪
⋃

q∈Q,A⊆Σ(d′q(rA) ∪ d′q(r̄A));
– the new transition function for q ∈ Q is defined as follows (we put the choices

from deontic agents in any predefined order):

δ
′(q, αa1

, ..., αak
, ..., αr, ...) =

�� � δ(q, αa1
, ..., αak

) if all αr = pass

αr

if r is the first active (positive
or negative) deontic agent

– the choices and transitions for the new states are exactly the same: d′(qrA , a) =
d′(qr̄A , a) = d′(q, a), and δ′(qrA , αa1

, ..., αrΓ
, ...) = δ′(qr̄A , αa1

, ..., αrΓ
, ...) =

δ′(q, αa1
, ..., αak

, ..., αrΓ
, ...) for every q ∈ Q, a ∈ Σ ′, αa ∈ d′(q, a).

Now, we define a translation of formulas from DATL to ATL corresponding to
the above described interpretation of DATL models into ATL models:

tr(p) = p, for p ∈ Π

tr(¬ϕ) = ¬tr(ϕ)

tr(ϕ ∨ ψ) = tr(ϕ) ∨ tr(ψ)

tr(〈〈A〉〉Xϕ) = 〈〈A ∪Σr ∪Σ r̄〉〉X(act ∧ tr(ϕ))

tr(〈〈A〉〉Gϕ) = tr(ϕ) ∧ 〈〈A ∪Σr ∪Σ r̄〉〉X〈〈A ∪Σr ∪Σ r̄〉〉G(act ∧ tr(ϕ))

tr(〈〈A〉〉ϕUψ) = tr(ψ) ∨ (tr(ϕ) ∧ 〈〈A ∪Σr ∪Σ r̄〉〉X〈〈A ∪Σr ∪Σ r̄〉〉

(act ∧ tr(ϕ))U(act ∧ tr(ψ)))

tr(OAϕ) = ¬〈〈Σr ∪Σ r̄〉〉X(rA ∧ ¬tr(ϕ))

tr(UPAϕ) = ¬〈〈Σr ∪Σ r̄〉〉X (̄rA ∧ tr(ϕ)).

Proposition 1. For every DATL formula ϕ, model M , and a state q ∈ Q, we
have M, q |= ϕ iff MATL, q |= tr(ϕ).

Proposition 2. For every DATL formula ϕ, model M , and “action” state q ∈ Q,
we have MATL, q |= tr(ϕ) iff MATL, qe |= tr(ϕ) for every e ∈ Π ′ \Π.

Corollary 1. For every DATL formula ϕ and model M , ϕ is satisfiable (resp.
valid) in M iff tr(ϕ) is satisfiable (resp. valid) in MATL.

Note that the vocabulary (set of propositions Π) only increases linearly (and
certainly remains finite). Moreover, for a specific DATL formula ϕ, we do not have
to include all the deontic agents rA and r̄A in the model – only those for which
OA or UPA occurs in ϕ. Also, we need deontic states only for these coalitions
A. The number of such coalitions is never greater than the complexity of ϕ.
Let m be the cardinality of the “densest” modal accessibility relation – either
deontic or temporal – in M , and l the complexity of ϕ. Then, the “optimized”
transformation gives us a model with m′ = O(lm) transitions, while the new
formula tr(ϕ) is only linearly more complex than ϕ.7 In consequence, we can use

7 The length of formulas may suffer an exponential blow-up; however, the number of
different subformulas in the formula only increases linearly. This issue is discussed
in more detail in [9].
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Fig. 4. ATL interpretation for the deontic game structure from Figure 3

the ATL model checking algorithm from [1] for an efficient model checking of
DATL formulas – the complexity of such process is O(m′l′) = O(ml2).

Let us consider again the deontic game structure from Figure 3. We construct
a corresponding concurrent game structure, optimized for model checking of the
DATL formula OΣ(¬pdead ∧ 〈〈k〉〉X¬OΣ¬pdead): it is required that the Prime
Minister is alive, but the killer is granted the ability to change this requirement.
The result is shown in Figure 4. The translation of this formula is:

¬〈〈rΣ〉〉X(rΣ ∧ ¬(¬pdead ∧ 〈〈k, rΣ〉〉X(act ∧ ¬¬〈〈rΣ〉〉X(rΣ ∧ ¬¬pdead))))

which holds in states q3 and qrΣ
3 of the concurrent game structure.

4 Conclusions

In this paper, we have brought obligations and abilities of agents together, en-
abling one to reason about what coalitions should achieve, but also to formulate
principles regarding who can maintain or reinstall which ideal states or courses
of action. We think the tractable model checking of DATL properties makes the
approach attractive as a verification language for normative multi-agent systems.

However, as stated repeatedly in the paper, it is at the same time a report
of ideas rather than of a crystallized and final analysis. We have not looked at
an axiomatization of any system with non-trivial mixing axioms, nor have we
yet explored some obvious routes that relate our approach in a technical sense
with the work on social laws or the formal approaches that enrich ATL with an
epistemic flavor, for instance. Nevertheless, we believe we have put to the force
the fact that indeed DATL is a very attractive framework to incorporate abilities
of agents and teams with deontic notions. We hope that the growing community,
interested in norms in the computational context, can provide some feedback to
help making appropriate decisions in the many design choices that we left open.
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