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Abstract. Autonomousagentsoperatingin complex dynamicen-
vironmentsneedthe ability to integraterobust plan executionwith
higher level reasoning.This paperdescribeswork to combinelow
level navigation techniquesdrawn from mobile roboticswith delib-
erationtechniquesdrawn from intelligent agents.In particular, we
discussthecombinationof anavigationsystembasedon fuzzy logic
with a deliberatorbasedon the belief/desire/intention(BDI) model.
We discusssomeof the subtletiesinvolved in this integration,and
illustrateit with anexample.

1 INTR ODUCTION

Milou therobotworks in a food factory. He hasto regularly go and
fetch two food samples(potatocrisps)from two productionlines in
two differentrooms,A andB, andtake themto anelectronictester
in thequalitycontrol lab. Milou mustnow planhis next delivery. He
decidesto get the samplefrom A first, sinceroom A is closerthan
B. While going there,however, hefinds themaindoor to that room
closed.Milou knows that thereis anotherdoor that he could use,
but he considersthe desirabilityof doing so. The alternative route
to A is hardfor Milou, sinceit goesthrougha long narrow corridor
which is usuallyclutteredwith boxes.Besides,doorsusuallydo not
stayclosedfor long.Hence,Milou decidesto go to B first, andcome
backto A lateron.Hegoesto roomB, picksup thepotatocrispsand
returns.Thedoorto A is still closed,andthistimeMilou hasnoother
choicethantakingthedifficult route.Hedoesso,obtainsthedesired
crisps,andfinally goesto thelabandcompleteshis task.

Performingtheabove taskrequirestheability to navigaterobustly
in real-world, unsimplifiedenvironments.Milou mustbeableto reli-
ablyfind hisway, keeptrackof hisown position,avoid any obstacles
in theclutteredcorridor, andsoon.However, this taskalsorequires
somehigherlevel capabilities,like reasoningaboutalternative ways
to performa given task,andreconsideringavailableoptionsin the
faceof new events.The developmentof intelligent mobile robots
andtheir deployment in real-world environmentswill critically de-
pendon our ability to integratethesetwo aspectsof theautonomous
navigationproblem.

Today’s researchonmobileroboticshasproduceda largenumber
of techniquesfor robustnavigationin realenvironmentsin thepres-
enceof uncertainty, for example[1, 5, 11]. Thesetechniquestypi-
cally focuson the navigation problem,anddo not involve abstract
reasoningprocessesof the type encounteredin the above scenario.
On the otherhand,researchin intelligent agency hasresultedin a
numberof powerful theoriesfor reasoningaboutactionsandplans.
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Indeed,muchof theresearchactivity from theintelligentagentcom-
munity in the mid-to-late1980swas focussedaroundthe problem
of designingagentsthatcouldachieve aneffective balancebetween
deliberation (the processof decidingwhat to do) and means-ends
reasoning(theprocessof decidinghow to do it) [3].

Oneparticularlysuccessfulapproachthatemergedatthistimewas
the belief-desire-intention(BDI) paradigm[3, 7, 13]. The develop-
mentof theBDI paradigmwasto a greatextentdrivenby Bratman’s
theoryof (human)practicalreasoning[2], in which intentionsplaya
centralrole.Putcrudely, sinceanagentcannotdeliberateindefinitely
aboutwhatcoursesof actionto pursue,the ideais it shouldeventu-
ally commit to achieving certainstatesof affairs, and then devote
resourcesto achieving them.Thesechosenstatesof affairsareinten-
tions,andonceadopted,they play a centralrole in future practical
reasoning[2, 4].

A major issuein thedesignof agentsthatarebaseduponmodels
of intentionis thatof whento reconsiderintentions.An agentcannot
simplymaintainanintention,onceadopted,withouteverstoppingto
reconsiderit. From time-to-time,it will be necessaryto check,(for
example),whetherthe intentionhasbeenachieved,or whetherit is
believedto benolongerachievable[4]. In suchsituations,it is neces-
saryfor anagentto deliberateover its intentions,and,if necessary, to
changefocusby droppingexisting intentionsandadoptingnew ones.

Clearly, anagent’s intentionreconsiderationpolicy will affect its
performance,andtheoptimalpolicy for agivenagentwill beheavily
dependentuponits environment.Therehasbeena certainamountof
work on this problemin the areaof intelligent agents,from both a
formal [17] andanexperimental[9, 16] perspective. However, most
of this work hasconcentratedon agentsin environmentswhich are
rathersimplewhencomparedto theenvironmentMilou operatesin.
Indeed,to our knowledge,therehasbeennowork whichattemptsto
investigateintentionreconsiderationin environmentswhichareboth
complex anddynamic.

Our researchaims to addressthis deficit, identifying suitable
mechanismsandstrategiesfor intentionreconsiderationwhich work
well whencombinedwith thekind of low-level controlmechanisms
requiredby agentswhichoperatein complex dynamicenvironments.
This paperdescribesoneapproachwhich combinesa robust navi-
gationsystembasedon fuzzy logic [14, 15] anda BDI systemfor
handlingintentions.Beforepresentingthecombination,however, we
discusstheproblemof intentionreconsiderationwith respectto the
formal modeldevelopedin [17].

2 THE FORMAL MODEL

Following [17], ouragentshavetwo maindatastructures:abeliefset
andanintentionset. An agent’sbeliefsrepresentinformationthatthe
agenthasaboutitsenvironment.Let Bbethesetof all beliefs.For the
mostpart,thecontentsof B will not beof concernto ushere.How-



ever, it is often usefulto supposethatB containsformulaeof some
logic,sothat,for example,it is possibleto determinewhethertwo be-
liefs aremutuallyconsistentor not. An agent’s actionsat any given
momentare guidedby its intention set, and its intentionsmay be
thoughtof asstatesof affairs that theagenthascommittedto bring-
ing about.Thesemaybe structuredin someway—for instancein a
hierarchywith high level intentionsdefinedasa setof lower level
intentions—andmaybeordered.Formally, let I be thesetof all in-
tentions.Again, we arenot concernedherewith the contentsof I .
As with beliefs,however, it is oftenusefulto assumethat intentions
areexpressedin somesortof logical language.An agent’s local state
will thenbea pair

�
b � i � , whereb � B is a setof beliefs,and i � I

is a setof intentions.Let L �
	 � B���	 � I � bethesetof all internal
statesof theagent.Weusel (with annotations:l ��� l � ������� ) to standfor
membersof L. If l � � b � i � , thenwe denotethe belief component
of l by bl , andthe intentioncomponentby i l . For the formal model
we assumea fixedsetof intentionswhich have beengeneratedfrom
somesetof desiresin theusualway [3].

Agentsdo not operatein isolation: they are situatedin environ-
ments; we canthink of an agent’s environmentasbeingeverything
external to the agent.We assumethat the environmentexternal to
theagentmaybe in any of a setE ��� e� e� ������� � of states.For now
we assumethatanagentknows whatstatetheenvironmentis in, ac-
knowledgingthat,in futurework, wewill have to takeaccountof the
fact that any agentonly haspartial knowledgeof the environment.
Together, anagentandits environmentmakeupasystem. Theglobal
stateof a systemat any time is thusa pair containingthestateof the
agentandthestateof theenvironment.Formally, let G � E � L be
thesetof all suchglobalstates.Weuseg (with annotations:g � g��������� )
to standfor membersof G.

Ouragentshavefour mainfunctionalcomponents,whichtogether
generatetheir behaviour: a next-statefunction, a meta-level control
function, a deliberation function, andan action function. The next
statefunctioncanbethoughtof asa beliefrevision function. On the
basisof theagent’s currentstateandthestateof theenvironment,it
determinesa new setof beliefsfor theagent,which will includeany
new informationthat theagenthasperceived.An agent’s next-state
function thus realiseswhatever perception the agentis capableof.
Formally, anext-statefunctionis amapping��� E ��	 � B����	 � B� .

The next componentin our agentarchitectureis meta-level con-
trol. The idea here is that at any given instant,an agenthas two
choicesavailableto it. It caneitherdeliberate (that is, it canexpend
computationalresourcesdecidingwhetherto changeits focus),or
elseit canact (that is, it canexpendresourcesattemptingto actu-
ally achieve its current intentions).Note that we assumethe only
way anagentcanmodify its intentionsis throughexplicit delibera-
tion. To representthechoicesavailableto anagent,wewill assumea
setC ��� d � a� , whered denotesdeliberation,anda denotesaction.
The purposeof an agent’s meta-level control function it to choose
betweendeliberationandaction.If it choosesto deliberate,thenthe
agentsubsequentlydeliberates;if its choosesto act, thenthe agent
subsequentlyacts.Formally, wecanrepresentsuchstrategiesasfunc-
tions � � L � C.

Thedeliberation processof anagentis representedby a function
that,on thebasisof anagent’s internalstate,determinesa new setof
intentions.Formally, we canrepresentthis deliberative processvia
a function !�� L �"	 � I � . If an agentdecidesto act, ratherthan
deliberate,thenit is actingto achieve its intentions.To doso,it must
decidewhich actionto perform.Theactionselectioncomponentof
an agentis essentiallya function that, on the basisof the agent’s
currentstate,returnsanaction,whichrepresentsthatwhichtheagent

haschosento perform.Let Ac �#��$%�&$'�(������� � be thesetof actions.
Formally, anactionselectionfunctionis a mapping)�� L � Ac.

Finally, we define an agent to be a 5-tuple
� �*�+!��&),�(�-� l ./� ,

where � is a meta-level control function, ! is a deliberationfunc-
tion, ) is anactionselectionfunction,� is anext-statefunction,and
l .10 L is an initial state.

3 MILOU IN THEORY

Our intentionin introducingthis formal modelis to shedlight upon
the problemsone faceswhen attemptingto integratea high-level
agentarchitecturelike theBDI modelwith theconcreterequirements
of a mobile robot.ConsiderMilou onceagain.In theabstractterms
usedby theBDI modelwecanconsiderMilou to have asetof possi-
ble intentions:

ic 2&3�4+2'5�6&784:9;4 ia 2=<?>@3A2&B;3C4:B;DE6:2F6&DHGI2&3C2&D A
i f JK3�2&5LBM5�6&784:9;4 ia N 2=<?>@3A2&B;3COPDEQ;R16&DEGI2&3C2&D A
i t 2=<?4+2&3%5�6&784:9;4 ib REDS2&D B
i l REDT2&DU2&B;3VOW<?X

Theseintentionsarehierachicallystructuredandordered,with ic be-
ing composedof i f followed by i t, and i f beingcomposedof ia or
iaN alongwith ib andfollowedby i l. The lowestlevel of theseinten-
tions have correspondingactionsdenotedby $ a �:$ aN �:$ b �:$ l . Milou
alsohasa setof possiblebeliefs:

ba 4:B;D?6:2'6&DHGY2&3V2&D A 784'Z[7W<?X;O83 bb \ D]DE6F2&D B 784'DE9^3�Q
baN O8DHQ;RS6&DHGY2&3V2&D A 784�ZY7P<?X;O83 bf RHD�2&D A _ 6&4+2

Milou startswith theinitial state:

l . � � � ba � ba N � bb � bf �]��� ic �E�
so he hasthe intentionto carry out his usualtaskof testingcrisps,
andbelievesall is well with the world. Having no possibleaction,
Milou’s meta-level control function � indicatesheshoulddeliber-
ate,andhe generatesa new setof intentions � ic � i f � ia � —to achieve
theintentionof testingthecrispshemustfirst fetchthemandthefirst
stepin this fetchingis to go to A by theshortroute.At this point �
decidesto act, calls the actionselectionfunction ) , and ) selects
action $ a. As a result,Milou startsto go to A. Midway throughthis
action,Milou realisesthis actionhasfailedbecausethedoor to A is
closed—thatis, hereviseshis beliefsto get �E` ba � ba N � bb �=` bf � , and
� thendecidesto deliberate.This deliberationgeneratesa new set
of intentions � ic � i f � ib � . � then choosesto act, ) selects$ b, and
Milou startsto execute $ b. When this action is complete,thereis,
onceagain,no actionto execute,andthemeta-level controlleronce
moredecidesto deliberate.

The reasonfor steppingthroughtheexamplelike this is to high-
light threeparticularissuesthatneedto besolvedin orderto useBDI

systems,whichwork atpreciselythiskind of level of detail,with mo-
bile robots.First, thereis the issueof moving from intentionsto ac-
tions.Althoughourdescriptionis alittle abstract,assumingthatthere
is a singleactionto achieve eachintention,it is closeto the reality
of implementedBDI systems.For instance,PRS [6] works out how
to achieve intentionsby pulling pre-compiledplansfrom a plan li-
brary. Mobile robotswill requirerathermoresophisticatedplanners,
in particularplannerswhich can plan robustly underthe consider-
ableuncertaintythatrealworld mobilerobotsaresubjectto. Second,
thereis thewholeissueof whento deliberateasagainstwhento act.
Experimentalwork on the problem[9, 16] hasconcentratedon the
relationshipbetweenthespeedof changeof anenvironmentandthe



frequency of redeliberation.Our situationis moresubtle—because
considerableeffort canbeexpendedin trying to achieve anintention
that is no longer achieveable(like trying to passthrougha closed
door, outsidewhich Milou will circle forever), it is necessaryto be
ableto detectthe failure of a plan during execution.Third, thereis
theneedto handleuncertaintyin Milou’s view of theworld. While
theformalmodelassumesbooleanbeliefs—eitherMilou believesthe
doorto A is openor hebelievesit is closed—thereality is morecom-
plex. All Milou will have is adegreeof belief,basedonsensorinput,
thatthedooris openor closed.As discussedelsewhere,for example
[1, 5, 11], handlingthis uncertaintyrequiressophisticatedmodels.
To solve theseproblemsweturnedto theuseof Saffiotti’ s ‘Thinking
Cap’ [14, 15].

4 FROM THEORY TO PRACTICE

The‘Thinking Cap’ (TC)3 is a systemfor autonomousrobotnaviga-
tion basedonfuzzy logic whichhasbeenimplementedandvalidated
onseveralmobileplatforms[14,15]. Themainingredientsof theTC

are:

a a library of fuzzybehaviours for indoornavigation, like obstacle
avoidance,wall following, anddoorcrossing;a a context-dependentblendingmechanismthat combinesthe rec-
ommendationsfrom differentbehavioursinto a tradeoff control;a a setof perceptualroutines, includingsonar-basedfeatureextrac-
tion, anddetectionof closeddoorsandblockedcorridors;a anapproximatemapof theenvironment,togetherwith a position-
ing mechanismbasedonnaturallandmarks;a anavigationplannerthatgeneratesabehaviour combinationstrat-
egy, calleda B-plan,thatachievesthegivennavigationgoal;anda a monitor thatreinvokestheplannerwhenever thecurrentB-plan
is no longeradequatefor achieving thecurrentgoal.

For thepurposesof this paper, we regardthe TC asa blackbox that
provides a robust navigation service,and that acceptsgoalsof the
form ‘ (goto X)’. Therearehowever two characteristicsof TC that
areimportanthere.

First,navigationgoalsin TC arefuzzy: in ‘ (goto X)’, ‘X’ is afuzzy
locationin the robot’s map.(More precisely, a goal is formally de-
finedin theTC framework asa fuzzy setof trajectories.)This means
thata goal in TC canbemoreor lesssatisfied,asmeasuredby a de-
greeof satisfaction, arealnumberin theinterval b c[��d�e . Typically, this
degreedependsonthedistancebetweentherobotandthedesiredlo-
cation,but morecomplex goalsmayhave morecomplex degreesof
satisfaction.

Second,the ‘adequacy’ of thecurrentB-planwhich is monitored
by theTC is in facta degreeof adequacy, againmeasuredby a num-
berin b cY��dLe . Thisdegreeof adequacy is theresultof thecomposition
of threeterms:

1. a degreeof ‘goodness’,that takesinto accounttheprior informa-
tion availableaboutthe environment;for example,a B-plan that
includespassingthrougha long andnarrow corridor hasa small
degreeof goodness;

2. a degreeof ‘competence’,thatdynamicallyconsidersthetruth of
thepreconditionsof theB-planin thecurrentsituation;for exam-
ple, if a door that hasto be crossedis found closedthis degree
dropsto 0; and

3. a degreeof ‘conflict’, thatmeasuresthe conflict betweenthe be-
haviourswhich arecurrentlyexecutingin parallel.
f
http://www.aass.oru.se/ g asaffio/Software/TC/

Figure 1. Integrationbetweena BDI deliberatorandtheThinking Cap.

Now theBDI modelandtheThinking Caprepresenttwo endsof the
spectrumasfar as the mentalabilities of an autonomousrobot are
concerned.TheTC canconstructplansto achieve a singlehigh level
intention(like ‘go to the lab’), but hasno graspof the sequenceof
high level intentionsnecessaryto carryout therobot’s overall goals.
In contrast,the BDI model(at leastin so far aswe have analysedit
with respectto intentionreconsideration)is only concernedwith high
level intentionsandwhetheror not they shouldbereconsideredasits
beliefsabouttheworld themselveschange.Thesemaybecombined
asshown in Figure1.

The BDI deliberatorprovides the deliberationfunction ! in the
formal model,generatinghigh-level intentionsof the type (goto X)
andsendingthemto the TC. (In future versions,intentionsmay in-
cludemanipulationor observationactivities.)TheTC implementsthe
actionselectionfunction ) , receiving theseintentionsandconsider-
ing themasgoals.For eachgoal,it generatesa B-plan—eachcorre-
spondsto anactionin the formal model—andstartsexecution.The
two componentsrun asconcurrentprocesses,with controlcyclesof
2sand100msrespectively.

TheTC alsomonitorsthisexecution,andswitchesto anew B-plan
if thecurrentoneturnsoutto beinadequate.Duringexecution,theTC

recomputesthe currentdegreesof satisfaction andadequacy every
control cycle. Thesedegreesare sentback to the BDI deliberator.
Fromthepoint of view of thedeliberator, thedegreeof satisfaction
measureshow muchthecurrentintentionhasbeenachieved,andthe
degreeof adequacy measureshow muchthis intentionis considered
achievable.Thisinformationis thuspartof theinputto ! . In contrast
to thestandardBDI model,however, this informationis notgivenby
binaryvalues,but by continuousmeasuresmadepossibleby theuse
of fuzzy set theory in the TC. It is theseindicatorsof the stateof
theworld vis à vis thecurrentintentionwhichhelpthedeliberatorto
determinewhenit is appropriateto reconsiderits intentions.

Consideringthe formal model describedabove, we shouldnote
that,at the moment,the belief setB is partitionedbetweenthe BDI

interpreterandthe TC. In particular, beliefsthat areaffectedby the
dynamicnatureof theworld—in thiscaseba, baN andbb—arestored
in theTC andupdatedasaresultof sensorreadings.Thesebeliefsare
usedto determinethedegreesof satisfactionandadequacy. Themore
staticknowledgeis kept in the BDI deliberatorandupdatedaccord-
ing to thedegreesof satisfactionandadequacy. It is thesemeasures
which, in practice,causeMilou to changefrom believing bf to ` bf

whenhefindsthat ` ba is true.Thesemeasures,therefore,helpto re-
late thesensor-derivedbeliefsba, baN andbb which arestoredin the
TC to the intentiondeterminingbelief bf which is storedin the BDI

system.
Thedeliberatoralsousesthesevaluesin two otherimportantways.

First, to decidewhen it is time to deliberate.Two of the possible
causesthatleadthedeliberatorto reconsiderits intentionsare:(i) an
increasein the valueof satisfaction;and(ii) a drop in the valueof
adequacy. Second,it usesthe values in the deliberationitself asa
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Figure 2. Two intentiontreesfor ourexampletask.
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Figure3. Milou hastheintention(goto A), but this turnsout to bedifficult
to achieve, andadoptsthenew intention(goto B).

meansof comparingtheavailableoptions.If thisdeliberationresults
in a new intentionbeingadopted,it is passedto the TC. As we shall
seebelow, consideringdegreesinsteadof binary valuesallows the
deliberatorto make moreinformeddecisions.

5 EXPERIMENT AL RESULTS

By wayof validationof ourapproach,wereportanexperimentwhere
weexecutethepotatocrispscenarioin a simulatedenvironment.We
have usedtheNomadicsimulator, which includessimulationof the
sonarsensorsandsomemoderatesensorandpositioningnoise.This
experimentis meantto illustrate the conceptsandmechanismsin-
volved in our integratedapproachto robot deliberationandnaviga-
tion in areasonablyrealisticenvironment(althoughit cannottakethe
placeof realexperimentson a live robot)4. Thesuccessive phasesof
thesimulatedrun areshown in Figures3, 4, and5. Figure6 shows
thevaluesof adequacy andof satisfactionof thecurrentlyexecuting
intentionat eachmomentof therun.

Initially, theBDI deliberatorconsidersthenew taskanddecidesa
strategy, representedby the intentiontreeshown in Figure2 (left).
The detailsof how this is donearenot relevant here(the dotsindi-
cateother intentions,like picking up the crisps,which we ignore);
it sufficesto notethatthe intentionshave a temporalorder, which is
thatof a left to right depth-firsttraversalof thetree.Thedeliberator
thenpassesthefirst intention(goto A) to TC, whichgeneratesasuit-
ableB-planfor it. In thiscasetherearetwo possibleB-plans,onefor
eachpossibledoor leadingto A, andthe TC selectstheonewith the
highestdegreeof (expected)goodness.Sincethe TC knows about
the low degreeof traversabilityof the lower corridor,5 the selected
B-plan is theonethatgoesthroughthemain door of A, the oneon
its left wall. Milou startsexecutingthis B-plan from the lower left
corner, asindicatedby (1) in Figure3.

WhenMilou arrivesat thisdoor(2), thesonarsdetectthatthedoor
is closed.Sinceoneof theassumptionsin theB-planis thatthedoor
h

Wearecurrentlyin theprocessof implementingour integratedsystemona
Nomad200.i
Currently, this informationis storedin themap;in thefuture,therobotmay
acquirethis knowledgeduringexploration.

B

A

Lab

Figure 4. Milou hastheintention(goto A) oncemore.

B

A

Lab

Figure 5. Both previousintentionsarefulfilled, andMilou adoptsthe
intention(goto Lab).

mustbeopen,thedegreeof adequacy of thisplandropsto 0 (Figure6
at about20s). The TC noticestheproblem,generatesa new B-plan
thatgoesthroughtheseconddoor, andstartsexecutingit. However,
thisB-planhasa low degreeof goodnessbecauseit includespassing
throughthe clutteredcorridor. This causesa drop of the adequacy
level to a low valueof 0.2.The BDI deliberatornoticesthis andre-
considersits options.Sincethecurrentintentionturnsout to bediffi-
cult (but not impossible)to achieve,andthereis analternativewayto
performthetask(Figure2 right), thedeliberatordecidesto switchto
thisalternativeandto reversetheorderof visiting thetwo production
lines.Hence,it sendsthenew intention(goto B) to theTC (Figure6
at30s).TheTC generatesanew B-planfor thisintentionandswapsit
in. PoorMilou thenstopshis journey to thelower corridor(point (3)
in Figure3), turnsaround,headsto roomB, andeventuallyreaches
thecollectionpoint in front of conveyer belt B.

Theachievementof the intention(goto B) is reflectedin therise
of thesatisfactionlevel (Figure6 at 75s).This is noticedby theBDI

deliberator, which then sendsthe next intention to the TC: in our
case,this is againtheintention(goto A). Sincetheinformationabout
closeddoorsinsidethe TC is transient,the TC againgeneratesa B-
plan for this intentionwhich involvesgoing throughthemain door.
Milou findshisway from roomB, but unfortunatelyhefindsthatthe
dooris still closed(Figure4).

As before,the TC generatesan alternative B-plan going through
the lower corridor andstartsto executeit. This producesa drastic
drop in theadequacy level, which is noticedby the BDI deliberator
(Figure6 at 160s).However, this time thereis no alternative option,
so the deliberatordecidesto keepwith the current intention,even
thoughit is difficult to achieve. Thenavigationfunctionalitiesof the
TC allow Milou to safely, if slowly, get aroundthe obstacles,and
reachthecollectionpoint in front of conveyer belt A.

The first two intentionsare now fulfilled, and the BDI delibera-
tor sendsthe lastone(goto Lab) to the TC. Again, the TC tries the
maindoorfirst. This time we arelucky, sincesomeonehasactually
openedthis door, andMilou eventuallyfindshis way to thelab, thus
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Figure 6. Measuresof adequacy (top)andsatisfaction(bottom)sentby theTC to thedeliberatorduringtherun.Thearrows indicatethedeliberationpoints,
andthenew intentionsgenerated.

completingthemission(Figure5).

6 DISCUSSION

This paperextendstwo lines of work; work on intentionreconsid-
eration,and work on integrating low-level navigation and higher-
level reasoning.It extendsexistingwork onintentionreconsideration
[9, 16,17], by consideringmorecomplex environments,identifying
a whole rangeof issueswhich have not beenso apparentbefore.
Theseincludethe needto build andexecuterobust plans,the abil-
ity to detectthepartial failureof thoseplans,theability to measure
the impossibility of achieving currentintentionsin the presenceof
uncertaininformation,andtheability to useuncertainbeliefsabout
theenvironmentin thedeliberationprocess.Having identifiedthese
issues,we have proposeda solution basedon the integration of a
traditionalBDI systemwith theThinking Capsoftware.

Therearealreadyanumberof proposalswhichuseaBDI approach
to integratelow-level navigationandhigher-level reasoning.For ex-
ample,in [8, 10, 12] PRS-likesystemsareusedto arbitratelow-level
processes.Ourproposaldepartsfrom theseapproachesin thewaywe
partition theresponsibilitiesbetweentheThinking Capandthe BDI

deliberationsystem.We rely on the underlyingnavigation abilities
of theTC to take careof fuzzy behaviour arbitrationandblendingin
asophisticatedway. And we limit theroleof thedeliberationsystem
to take careof higherlevel decisionsaboutwhich overall navigation
goal shouldbe pursuednext. This partition allows us to make bet-
ter useof the respective powersof the TC andof the BDI level. In
particular, by passingperformancemeasuresfrom the lower to the
upperlevel we allow the latter to take moreabstract,yet still fully
informed,decisions.

Therearetwo importantwaysin whichourapproachcanbedevel-
oped.First, the informationpassedby the TC to the BDI level could
be much richer, including, for example,the reasonswhy a B-plan
has(partially) failed, the conditionsthatwould increaseits level of
adequacy, or indicationsaboutthe existenceof alternative B-plans
and their degreesof adequacy. This would help the BDI systemin
its deliberation(for instancein determiningwhetherto drop an in-
tentionor try to achieve it later).Second,thechoiceof thestrategy
usedto decidewhentheBDI shoulddeliberateandwhenit shouldlet
the TC do its job dependson thecharacteristicsof theenvironment,
andit may itself be the resultof another, higher level deliberation.
Includingthis ideain our framework would leadto a ‘towerof meta-
controllers’similar to the onesuggestedin [17]. Suchan approach
would allow therobotto dynamicallyadjustits policy for redeliber-
ationif it findsthat thepolicy is incorrectwith respectto its current
environment.Wearecurrentlyworking onboththesedevelopments.

Acknowledgements:This work benefittedfrom discussionswith
Dimiter Driankov andwaspartially supportedby QueenMary and
WestfieldCollege,andtheSwedishKK Foundation.

REFERENCES
[1] R. C. Arkin, Behavior-BasedRobotics, MIT Press,Cambridge,MA,

1998.
[2] M. E. Bratman,Intentions,Plans,andPractical Reason, HarvardUni-

versityPress:Cambridge,MA, 1987.
[3] M. E. Bratman,D. J. Israel,andM. E. Pollack, ‘Plansandresource-

boundedpracticalreasoning’,ComputationalIntelligence, 4, 349–355,
(1988).

[4] P. R.CohenandH. J.Levesque,‘Intention is choicewith commitment’,
Artificial Intelligence, 42, 213–261,(1990).

[5] D. Driankov and A. Saffiotti eds., Fuzzy logic techniques for au-
tonomousvehiclenavigation, Springer, Berlin, Germany, 2000.

[6] M. P. Georgeff andF. F. Ingrand,‘Decision-makingin an embedded
reasoningsystem’,in Proceedingsof theInternationalJoint Conference
onArtificial Intelligence, pp.972–978,Detroit,Michigan,(1989).

[7] M. P. Georgeff andA. L. Lansky, ‘Reactive reasoningandplanning’,in
Proceedingsof theSixthNationalConferenceonArtificial Intelligence,
pp.677–682,Seattle,Washington,(1987).

[8] F. F. Ingrand,R.Chatila,R.Alami, andF. Robert,‘PRS:ahighlevel su-
pervisionandcontrol languagefor autonomousmobilerobots’,in Pro-
ceedingsof theInternationalConferenceon RoboticsandAutomation,
Minneapolis,MN, (1996).

[9] D. Kinny andM. P. Georgeff, ‘Commitmentandeffectivenessof situ-
atedagents’,in Proceedingsof the InternationalJoint Conferenceon
Artificial Intelligence, pp.82–88,Sydney, Australia,(1991).

[10] K. Konolige,K. L. Myers,E. H. Ruspini,andA. Saffiotti, ‘The Saphira
architecture:A designfor autonomy’,Journal of Experimentaland
Theoretical Artificial Intelligence, 9, 215–235,(1997).

[11] D. Kortenkamp,P. Bonasso,andR. Murphyeds.,Artificial Intelligence
andMobile Robots, MIT Press,Cambridge,MA, 1998.

[12] J. Lee,M. J. Huber, E. H. Durfee,andP. G. Kenny, ‘UM-PRS: an im-
plementationof theproceduralreasoningsystemfor multirobotappli-
cations’,in Proceedingsof theAIAA/N ASA Conf.onRobotsin Field,
Factory, ServiceandSpace,(1994).

[13] A. S.RaoandM. Georgeff, ‘Decisionproceduresfor BDI logics’,Jour-
nal of Logic andComputation, 8(3), 293–344,(1998).

[14] A. Saffiotti, K. Konolige,andE. H. Ruspini,‘A multivalued-logicap-
proachto integratingplanningandcontrol’, Artificial Intelligence, 76,
481–526,(1995).

[15] A. Saffiotti, E. H. Ruspini,andK. Konolige,‘Blending reactivity and
goal-directednessin afuzzycontroller’,in Proceedingsof the2ndIEEE
International Conferenceon FuzzySystems, pp. 134–139,SanFran-
cisco,CA, (1993).

[16] M. Schutand M. Wooldridge,‘Intention reconsiderationin complex
environments’, in Proceedingsof International Conference on Au-
tonomousAgents, (2000(to appear)).

[17] M. Wooldridge and S. Parsons,‘Intention reconsiderationreconsid-
ered’,in IntelligentAgentsV, eds.,J.P. Müller, M. P. Singh,andA. Rao,
Springer-Verlag,Berlin, Germany, (1999).


