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Abstract. Autonomousagentsoperatingin complex dynamicen-
vironmentsneedthe ability to integraterobust plan executionwith
higherlevel reasoningThis paperdescribesvork to combinelow
level navigationtechniquegiravn from mobile roboticswith delib-
erationtechniquesdravn from intelligent agents.In particular we
discusghe combinationof a navigation systembasecdbon fuzzy logic
with a deliberatorbasedon the belief/desire/intentior§sb1) model.
We discusssomeof the subtletiesinvolved in this integration,and
illustrateit with anexample.

1 INTRODUCTION

Milou the robotworksin a food factory He hasto regularly go and
fetchtwo food samplegpotatocrisps)from two productionlinesin
two differentrooms,A andB, andtake themto an electronictester
in the quality controllab. Milou mustnow planhis next delivery. He
decidesto getthe samplefrom A first, sinceroom A is closerthan
B. While goingthere,however, he findsthe main doorto thatroom
closed.Milou knows that thereis anotherdoor that he could use,
but he considersthe desirability of doing so. The alternatve route
to A is hardfor Milou, sinceit goesthroughalong narraw corridor
which is usuallyclutteredwith boxes.Besidesdoorsusuallydo not
stayclosedfor long. Hence Milou decideso goto B first,andcome
backto A lateron. He goesto roomB, picksup thepotatocrispsand
returns.Thedoorto A is still closed andthistime Milou hasno other
choicethantakingthe difficult route.He doesso, obtainsthedesired
crisps,andfinally goesto thelab andcompletedis task.

Performingtheabove taskrequireshe ability to navigaterobustly
in real-world, unsimplifiedervironments Milou mustbeableto reli-
ablyfind hisway, keeptrackof his own position,avoid ary obstacles
in the clutteredcorridor, andso on. However, this taskalsorequires
somehigherlevel capabilities ik e reasoningaboutalternatve ways
to performa given task, and reconsideringavailable optionsin the
face of new events. The developmentof intelligent mobile robots
andtheir deploymentin real-world environmentswill critically de-
pendon our ability to integratethesetwo aspect®of theautonomous
navigationproblem.

Todays researcton mobile roboticshasproduceda large number
of techniquedor robust navigationin realenvironmentsin the pres-
enceof uncertainty for example[1, 5, 11]. Thesetechniquegypi-
cally focus on the navigation problem,and do not involve abstract
reasoningprocessesf the type encounteredn the above scenario.
On the otherhand,researchn intelligent ageng hasresultedin a
numberof powerful theoriesfor reasoningaboutactionsandplans.
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Indeed muchof theresearctactvity from theintelligentagentcom-
munity in the mid-to-late 1980swas focussedaroundthe problem
of designingagentshat could achieve an effective balancebetween
delibemation (the processof decidingwhat to do) and means-ends
reasoningthe procesof decidinghow to doit) [3].

Oneparticularlysuccessfuhpproachthatemepgedatthistime was
the belief-desire-intentior{BDI) paradigm[3, 7, 13]. The develop-
mentof the BDI paradigmwasto a greatextentdriven by Bratmans
theoryof (human)practicalreasoning?2], in whichintentionsplay a
centralrole. Putcrudely sinceanagentcannotdeliberatandefinitely
aboutwhat coursesof actionto pursue theideais it shouldeventu-
ally commit to achieving certainstatesof affairs, and then devote
resources$o achiezing them.Thesechoserstatesof affairsareinten-
tions, and onceadoptedthey play a centralrole in future practical
reasoning2, 4].

A majorissuein the designof agentshatarebaseduponmodels
of intentionis thatof whento reconsideiintentions An agentcannot
simply maintainanintention,onceadoptedwithout ever stoppingto
reconsideiit. From time-to-time,it will be necessaryo check,(for
example),whetherthe intentionhasbeenachiered, or whetherit is
believedto benolongerachievable[4]. In suchsituationsijt is neces-
saryfor anagentto deliberateoverits intentions and,if necessaryo
changedocusby droppingexistingintentionsandadoptingnew ones.

Clearly, anagents intentionreconsideratiomolicy will affectits
performanceandtheoptimalpolicy for agivenagentwill beheavily
dependentiponits ervironment.Therehasbeena certainamountof
work on this problemin the areaof intelligent agentsfrom both a
formal[17] andanexperimental9, 16] perspectie. However, most
of this work hasconcentratean agentsin ervironmentswhich are
rathersimplewhencomparedo the ervironmentMilou operatesn.
Indeed;to our knawledge therehasbeenno work which attemptsto
investigatantentionreconsideratioim ervironmentswhich areboth
complex anddynamic.

Our researchaims to addressthis deficit, identifying suitable
mechanismandstratgiesfor intentionreconsideratiomvhich work
well whencombinedwith thekind of low-level controlmechanisms
requiredoy agentsvhich operaten complex dynamicenvironments.
This paperdescribesone approachwhich combinesa robust navi-
gation systembasedon fuzzy logic [14, 15] anda BDI systemfor
handlingintentions Beforepresentinghe combinationhowever, we
discusghe problemof intentionreconsiderationvith respecto the
formalmodeldevelopedin [17].

2 THE FORMAL MODEL

Following [17], our agentshave two maindatastructuresabeliefset
andanintentionset An agents beliefsrepreseninformationthatthe
agenthasaboutits environment.Let B bethesetof all beliefs.For the
mostpart, the contentsof B will notbe of concernto us here.How-



ever, it is often usefulto supposehat B containsformulaeof some
logic, sothat,for example,it is possibleo determinevhethertwo be-
liefs aremutually consistenbr not. An agents actionsat ary given
momentare guidedby its intention set and its intentionsmay be
thoughtof asstatesof affairs thatthe agenthascommittedto bring-
ing about.Thesemay be structuredn someway—for instancein a
hierarchywith high level intentionsdefinedas a setof lower level
intentions—andnay be ordered Formally, let | bethe setof all in-
tentions.Again, we are not concernecherewith the contentsof .
As with beliefs,however, it is often usefulto assumehatintentions
areexpressedn somesortof logicallanguageAn agentslocal state
will thenbea pair (b, i), whereb C B is a setof beliefs,andi C |
is asetof intentions.Let L = p(B) X p(l) bethe setof all internal
statesof theagentWe usel (with annotationst’, 1, . . .) to standfor
membersof L. If | = (b, i), thenwe denotethe belief component
of | by by, andthe intentioncomponenby i;. For the formal model
we assuma fixed setof intentionswhich have beengeneratedrom
somesetof desiredn theusualway [3].

Agentsdo not operatein isolation: they are situatedin erviron-
ments we canthink of anagents ervironmentasbeing everything
externalto the agent.We assumethat the environmentexternal to
theagentmaybein ary of asetE = {ge,¢,...} of statesFor nov
we assumehatanagentknows whatstatethe environmentis in, ac-
knowledgingthat,in futurework, we will have to take accounbf the
factthatary agentonly haspartial knovledge of the ervironment.
Togetheranagentandits environmentmale up asystemTheglobal
stateof a systematary time is thusa pair containingthe stateof the
agentandthe stateof the ervironment.Formally, letG = E x L be
thesetof all suchglobalstatesWe useg (with annotationsg, d', . . .)
to standfor memberof G.

Ouragentshave four mainfunctionalcomponentsywhichtogether
generateheir behaiour: a next-statefunction a meta-level control
function a delibemtion function and an action function The next
statefunction canbethoughtof asa beliefrevisionfunction Onthe
basisof the agents currentstateandthe stateof the ervironment, it
determines new setof beliefsfor theagentwhichwill includeary
new informationthatthe agenthasperceved. An agents next-state
function thus realiseswhatever perceptionthe agentis capableof.
Formally, a next-statefunctionis amappingV : E x p(B) — p(B).

The next componenin our agentarchitectures meta-lerel con-
trol. The idea hereis that at ary given instant,an agenthastwo
choicesavailableto it. It caneitherdelibemte (thatis, it canexpend
computationaresourceslecidingwhetherto changeits focus), or
elseit canact (thatis, it canexpendresourcesattemptingto actu-
ally achieve its currentintentions).Note that we assumethe only
way an agentcanmodify its intentionsis throughexplicit delibera-
tion. To representhechoicesavailableto anagentwe will assume
setC = {d, a}, whered denotedleliberationanda denotesaction.
The purposeof an agents meta-level contmol functionit to choose
betweerdeliberationandaction.If it choosego deliberatethenthe
agentsubsequentlyleliberatesif its choosedo act, thenthe agent
subsequentlgcts.Formally, we canrepresensuchstrategjiesasfunc-
tionsM : L — C.

Thedelibeation procesf anagentis representetby a function
that,on the basisof anagentsinternalstate determines new setof
intentions.Formally, we canrepresenthis deliberatve processvia
afunctionD : L — p(l). If anagentdecidesto act, ratherthan
deliberatethenit is actingto achieve its intentions.To do so, it must
decidewhich actionto perform. The actionselectioncomponenbf
an agentis essentiallya function that, on the basisof the agents
currentstate returnsanaction,whichrepresentthatwhichtheagent

haschoserto perform.Let Ac = {a, o/, ...} bethesetof actions.
Formally, anactionselectiorfunctionis amappingA : L — Ac.

Finally, we define an agentto be a 5-tuple (M, D, A4, N, lo),
whereM is a meta-lerel controlfunction, D is a deliberationfunc-
tion, A is anactionselectiorfunction, A is anext-statefunction,and
lo € Lisaninitial state

3 MILOU IN THEORY

Our intentionin introducingthis formal modelis to shedlight upon
the problemsone faceswhen attemptingto integrate a high-level
agentarchitecturdik e the BDI modelwith theconcreterequirements
of amobilerobot. ConsiderMilou onceagain.In the abstracterms
usedby the BDI modelwe canconsidemilou to have a setof possi-
ble intentions:

take the short route to A
take the long route to A
gotoB

ic test crisps ia
it fetchcrisps iy
it tastecrisps b
ii  go tothelab

Theseintentionsarehierachicallystructurecandorderedwith ic be-
ing composedf is followed by i;, andis beingcomposedf i, or
i alongwith i, andfollowedby i;. The lowestlevel of theseinten-
tions have correspondingactionsdenotedby aia, v , an, . Milou
alsohasa setof possiblebeliefs:

ba  short route to Ais viable by door to Bis open
by longroute to Ais viable br go to Afirst

Milou startswith theinitial state:
lo = ({ba, bar, b, b}, {ic})

so he hasthe intentionto carry out his usualtaskof testingcrisps,
andbelievesall is well with the world. Having no possibleaction,
Milou’s meta-level control function M indicateshe shoulddeliber
ate,andhe generates new setof intentions{ic, it, ia}—to achieve
theintentionof testingthe crispshemustfirst fetchthemandthefirst
stepin thisfetchingis to goto A by the shortroute.At this point M
decidesto act, calls the action selectionfunction .4, and.4 selects
actionaa. As aresult,Milou startsto go to A. Midway throughthis
action,Milou realiseshis actionhasfailed becausehe doorto A is
closed—thais, hereviseshis beliefsto get{—ba, bx, by, mbx }, and
M thendecidego deliberate This deliberationgenerates new set
of intentions{ic, it, in}. M thenchoosedo act, A selectsay, and
Milou startsto executeay,. Whenthis actionis complete thereis,
onceagain,no actionto execute,andthe meta-level controlleronce
moredecidedgo deliberate.

Thereasonfor steppingthroughthe examplelik e this is to high-
light threeparticularissueghatneedto besolvedin orderto usesDI
systemswhichwork atpreciselythiskind of level of detail,with mo-
bile robots.First, thereis the issueof moving from intentionsto ac-
tions.Althoughourdescriptions alittle abstractassuminghatthere
is a singleactionto achieve eachintention, it is closeto the reality
of implementedBDI systemsFor instance PrRS [6] works out how
to achieve intentionsby pulling pre-compiledplansfrom a plan li-
brary Mobile robotswill requirerathermoresophisticategblanners,
in particularplannerswhich can plan robustly underthe consider
ableuncertaintythatrealworld mobilerobotsaresubjecto. Second,
thereis thewholeissueof whento deliberateasagainstwhento act.
Experimentalork on the problem[9, 16] hasconcentratean the
relationshipbetweerthe speedf changeof anervironmentandthe



frequeng of redeliberationOur situationis more subtle—because
considerableffort canbe expendedn trying to achiese anintention
that is no longer achieveable(like trying to passthrougha closed
door, outsidewhich Milou will circle forever), it is necessaryo be
ableto detectthe failure of a plan during execution.Third, thereis
the needto handleuncertaintyin Milou’s view of the world. While
theformalmodelassumeboolearbeliefs—eitheMilou believesthe
doorto Ais openor hebelievesit is closed—theeality is morecom-
plex. All Milou will haveis adegreeof belief,basedn sensoinput,
thatthe dooris openor closed.As discusseelsevhere,for example
[1, 5, 11], handlingthis uncertaintyrequiressophisticatednodels.
To solve theseproblemswe turnedto the useof Safiotti’ s “Thinking
Cap’[14,15].

4 FROM THEORY TO PRACTICE

The‘Thinking Cap’ (Tc)® is a systemfor autonomousobotnaviga-
tion basedn fuzzy logic which hasbeenimplementedindvalidated
onseveralmobile platforms[14, 15]. Themainingredientof theTc
are:

e alibrary of fuzzybehavious for indoor navigation, like obstacle
avoidancewall following, anddoor crossing;

e a contt-dependenblendingmechanisnthat combinesthe rec-
ommendationfrom differentbehaioursinto atradeof control;

e asetof perceptualroutines including sonarbasedeatureextrac-
tion, anddetectionof closeddoorsandblocked corridors;

e anapproximatemapof the ervironment togethemwith a position-
ing mechanisnbasecbn naturallandmarks;

e anavigationplannerthatgenerateabehaiour combinatiorstrat-
egy, calleda B-plan,thatachiezesthe givennavigationgoal;and

e amonitorthatreinvokesthe plannerwheneer the currentB-plan
is nolongeradequatdor achieving the currentgoal.

For the purposef this paper we regardthe Tc asa blackbox that
provides a robust navigation service,and that acceptsgoalsof the
form ‘(goto X)'. Thereare however two characteristicof TC that
areimportanthere.

First,navigationgoalsin Tc arefuzzy:in ‘(goto X)', ‘X' isafuzzy
locationin the robot’s map.(More precisely a goal is formally de-
finedin the Tc framework asafuzzy setof trajectories.)rhis means
thatagoalin TC canbemoreor lesssatisfied asmeasuredy a de-
greeof satisfactionarealnumberin theintenal [0, 1]. Typically, this
degreedepend®nthedistancebetweertherobotandthedesiredo-
cation,but morecomplex goalsmay have morecomplex degreesof
satisaction.

Secondthe ‘adequay’ of the currentB-planwhich is monitored
by the TC is in facta degreeof adequacyagainmeasuredby a num-
berin [0, 1]. Thisdegreeof adequag is theresultof thecomposition
of threeterms:

1. adegreeof ‘goodness’ thattakesinto accounthe prior informa-
tion available aboutthe ervironment;for example,a B-plan that
includespassingthrougha long andnarrav corridor hasa small
degreeof goodness;

2. adegreeof ‘competence’thatdynamicallyconsiderghetruth of
the preconditionof the B-planin the currentsituation;for exam-
ple, if a doorthat hasto be crosseds found closedthis degree
dropsto O0; and

3. adgyreeof ‘conflict’, thatmeasureshe conflict betweenthe be-
haviourswhich arecurrentlyexecutingin parallel.
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Figurel. Integrationbetweera DI deliberatorandthe Thinking Cap.

Now the BDI modelandthe Thinking Caprepresentwo endsof the
spectrumasfar asthe mentalabilities of an autonomousobot are
concernedThe TC canconstruciplansto achieve asinglehigh level
intention (like ‘go to the lab’), but hasno graspof the sequencef
high level intentionsnecessaryo carry outtherobot’s overall goals.
In contrastthe BDI model(at leastin sofar aswe have analysedt
with respecto intentionreconsiderationis only concernedvith high
level intentionsandwhetheror notthey shouldbereconsideredsits
beliefsaboutthe world themseleschangeThesemay be combined
asshavn in Figurel.

The BDI deliberatorprovides the deliberationfunction D in the
formal model,generatinchigh-level intentionsof the type (goto X)
andsendingthemto the Tc. (In future versions,intentionsmay in-
cludemanipulatioror obsenationactiities.) TheTc implementghe
actionselectionfunction .4, receving theseintentionsandconsider
ing themasgoals.For eachgoal,it generates B-plan—eactcorre-
spondgo anactionin the formal model—andstartsexecution.The
two componentsun asconcurrenfrocessesyith control cyclesof
2sand100msrespectiely.

TheTc alsomonitorsthis execution,andswitcheso anew B-plan
if thecurrentoneturnsoutto beinadequateDuring executiontheTc
recomputeghe currentdegreesof satishction and adequag every
control cycle. Thesedegreesare sentback to the BDI deliberator
Fromthe point of view of the deliberatoythe degreeof satishction
measuresionv muchthe currentintentionhasbeenachieved, andthe
degreeof adequag measuresiov muchthis intentionis considered
achievable.Thisinformationis thuspartof theinputto D. In contrast
to thestandardspDl model,however, thisinformationis not given by
binaryvalues,but by continuousmeasuresnadepossibleby theuse
of fuzzy settheoryin the TC. It is theseindicatorsof the stateof
theworld vis & vis the currentintentionwhich helpthe deliberatorto
determinewhenit is appropriatdo reconsideits intentions.

Consideringthe formal model describedabore, we shouldnote
that, at the moment,the belief setB is partitionedbetweenthe BDI
interpreterandthe TC. In particular beliefsthat are affectedby the
dynamicnatureof theworld—in this caseb,, by andb,—arestored
in theTc andupdatechsaresultof sensoreadingsThesebeliefsare
usedto determinghedegreesf satishctionandadequag. Themore
staticknowledgeis keptin the BDI deliberatorandupdatedaccord-
ing to the degreesof satishctionandadequag It is thesemeasures
which, in practice,causeMilou to changefrom believing br to —bx
whenhefindsthat—h, is true. Thesemeasuresherefore helpto re-
late the sensorderived beliefsb,, by andby, which arestoredin the
TC to the intentiondeterminingbelief by which is storedin the BDI
system.

Thedeliberatoralsouseghesevaluesin two otherimportantways.
First, to decidewhenit is time to deliberate.Two of the possible
causeghatleadthedeliberatorto reconsideits intentionsare: (i) an
increasan the value of satishction;and (ii) a dropin the value of
adequag. Second,t usesthe values in the deliberationitself asa
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Figure3. Milou hastheintention(goto A), but this turnsoutto bedifficult
to achiere, andadoptsthe new intention(goto B).

meansf comparingheavailableoptions.If this deliberatiorresults
in anew intentionbeingadoptedit is passedo the TC. As we shall
seebelawn, consideringdegreesinsteadof binary valuesallows the
deliberatorto make moreinformeddecisions.

5 EXPERIMENT AL RESULTS

By way of validationof ourapproachyereportanexperimentwhere
we executethe potatocrispscenaridn a simulatedervironment.We
have usedthe Nomadicsimulator which includessimulationof the
sonarsensorandsomemoderatesensomandpositioningnoise.This
experimentis meantto illustrate the conceptsand mechanismsn-
volved in our integratedapproacto robot deliberationand naviga-
tion in areasonablyealisticervironment(althoughit cannotake the
placeof realexperimentson alive robotf. Thesuccessie phaseof
the simulatedrun areshawvn in Figures3, 4, and5. Figure 6 shavs
thevaluesof adequag andof satishctionof the currentlyexecuting
intentionat eachmomentof therun.

Initially, the BDI deliberatorconsidershe new taskanddecidesa
stratgyy, representedby the intentiontree shavn in Figure 2 (left).
The detailsof how this is doneare not relevant here(the dotsindi-
cateotherintentions,like picking up the crisps,which we ignore);
it sufiicesto notethatthe intentionshave atemporalorder whichis
thatof aleft to right depth-firsttraversalof thetree. The deliberator
thenpasseshefirstintention(goto A) to T¢, which generatea suit-
ableB-planfor it. In this casetherearetwo possibleB-plans,onefor
eachpossibledoorleadingto A, andthe Tc selectghe onewith the
highestdegreeof (expected)goodness.Sincethe Tc knows about
the low degreeof traversability of the lower corridor® the selected
B-planis the onethat goesthroughthe main door of A, the oneon
its left wall. Milou startsexecutingthis B-plan from the lower left
corner asindicatedby (1) in Figure3.

WhenMilou arrivesatthis door(2), thesonardetecthatthedoor
is closed.Sinceoneof theassumptiong the B-planis thatthedoor

4 We arecurrentlyin the procesf implementingour integratedsystemon a
Nomad200.

5 Currently thisinformationis storedin themap;in thefuture, therobotmay
acquirethis knowledgeduring exploration.
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Figure4. Milou hastheintention(goto A) oncemore.
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Figure5. Bothpreviousintentionsarefulfilled, andMilou adoptsthe
intention(goto Lab).

mustbeopen thedegreeof adequay of thisplandropsto O (Figure6
at about20s). The TC noticesthe problem,generates nev B-plan
thatgoesthroughthe seconddoor, andstartsexecutingit. However,
this B-planhasalow degreeof goodnesdecausét includespassing
throughthe clutteredcorridor This causesa drop of the adequag
level to alow valueof 0.2. The BDI deliberatomoticesthis andre-
considersts options.Sincethe currentintentionturnsoutto be diffi-
cult (but notimpossible}o achieve, andthereis analternatve way to
performthetask(Figure2 right), thedeliberatordecidego switchto
thisalternatve andto reversethe orderof visiting thetwo production
lines.Hence it sendghenew intention(goto B) to the Tc (Figure6
at30s). TheTc generateanen B-planfor thisintentionandswapsit
in. PoorMilou thenstopshis journey to thelower corridor (point (3)
in Figure 3), turnsaround,headgo room B, andeventuallyreaches
thecollectionpointin front of conveyer belt B.

The achi&zementof theintention(goto B) is reflectedin therise
of thesatishctionlevel (Figure6 at 75s). Thisis noticedby the BDI
deliberator which then sendsthe next intention to the TC: in our
casethisis againtheintention(goto A). Sincetheinformationabout
closeddoorsinsidethe TC is transientthe TC againgenerates B-
planfor this intentionwhich involves going throughthe main door
Milou findshisway from roomB, but unfortunatelyhefindsthatthe
dooris still closed(Figure4).

As before,the TC generatesn alternatve B-plan going through
the lower corridor and startsto executeit. This producesa drastic
dropin the adequayg level, which is noticedby the BDI deliberator
(Figure6 at 160s). However, this time thereis no alternatve option,
so the deliberatordecidesto keepwith the currentintention, even
thoughit is difficult to achieve. The navigationfunctionalitiesof the
TC allow Milou to safely if slowly, get aroundthe obstaclesand
reachthe collectionpointin front of corveyer belt A.

The first two intentionsare now fulfilled, andthe BDI delibera-
tor sendsthe lastone(goto Lab) to the TC. Again, the TC triesthe
maindoorfirst. This time we arelucky, sincesomeonéhasactually
openedhis door, andMilou eventuallyfinds his way to thelab, thus



Adequacy

50 160 150,

260 250 360

Time
(goto A) (goto B) (goto A) no change (goto Lab)
1-
g 0.8-
§ 0.6-
B o0a4a-
& oa2-
° 50 160 150, ) 260 250 300 350
Time
(goto A) (goto B) (goto A) no change (goto Lab)

Figure6.
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andthenew intentionsgenerated.

completingthe mission(Figure5).

6 DISCUSSION

This paperextendstwo lines of work; work on intentionreconsid-
eration,and work on integrating low-level navigation and higher
level reasoninglt extendsexistingwork onintentionreconsideration
[9, 16,17], by consideringnorecomplex ervironments,dentifying
a whole rangeof issueswhich have not beenso apparentbefore.
Theseinclude the needto build and executerobust plans,the abil-
ity to detectthe partial failure of thoseplans,the ability to measure
the impossibility of achieving currentintentionsin the presenceof
uncertaininformation,andthe ability to useuncertainbeliefsabout
the ervironmentin the deliberationprocessHaving identifiedthese
issues,we have proposeda solution basedon the integration of a
traditionalBDI systemwith the Thinking Capsoftware.

Therearealreadyanumberof proposalsvhichuseaBb1 approach
to integratelow-level navigation andhigherlevel reasoningFor ex-
ample,in [8, 10, 12] prs-like systemsareusedto arbitratelow-level
processeOurproposabepartfrom theseapproachem thewaywe
partitionthe responsibilitieshetweerthe Thinking Capandthe BDI
deliberationsystem.We rely on the underlyingnavigation abilities
of the TC to take careof fuzzy behaiour arbitrationandblendingin
asophisticateavay. And welimit therole of the deliberationsystem
to take careof higherlevel decisionsaboutwhich overall navigation
goal shouldbe pursuednext. This partition allows us to male bet-
ter useof the respectie powversof the TC and of the BDI level. In
particular by passingperformanceneasuregrom the lower to the
upperlevel we allow the latter to take more abstractyet still fully
informed,decisions.

Therearetwo importantwaysin which ourapproactcanbedevel-
oped.First, theinformationpassedy the Tc to the BDI level could
be muchricher, including, for example,the reasonsvhy a B-plan
has(partially) failed, the conditionsthatwould increasets level of
adequay, or indicationsaboutthe existenceof alternatve B-plans
andtheir degreesof adequag. This would help the BDI systemin
its deliberation(for instancein determiningwhetherto drop anin-
tentionor try to achieve it later). Secondthe choiceof the stratgy
usedto decidewhentheBb! shoulddeliberateandwhenit shouldlet
the 7C doits job dependsn the characteristic®f the environment,
andit may itself be the resultof another higherlevel deliberation.
Includingthis ideain our framewvork would leadto a ‘tower of meta-
controllers’similar to the one suggestedn [17]. Suchanapproach
would allow the robotto dynamicallyadjustits policy for redeliber
ationif it findsthatthe policy is incorrectwith respecto its current
ervironment.We arecurrentlyworking on boththesedevelopments.
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