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Abstract. Automated negotiation techniques have received consid-
erable attention over the past decade, and much progress has been
made in developing negotiation protocols and strategies for use by
software agents. However, comparatively little effort has been de-
voted to understanding the computational complexity of such proto-
cols and strategies. Building on the work of Rosenschein, Zlotkin,
and Sandholm, we consider the complexity of negotiation in a par-
ticular class of task-oriented domains. Specifically, we consider sce-
narios in which agents negotiate to achieve a more favourable redis-
tribution of tasks amongst themselves, where the tasks involve visit-
ing nodes in a graph. Focussing on a particular representation of the
domain (as a spanning tree), we establish a number of complexity re-
sults pertaining to the complexity of negotiation in this scenario, with
our main result to the effect that the problem of deciding whether
a given deal could be reached by a chain of rational proposals is
tractable.

1 Introduction

Automated negotiation has been the subject of considerable research
over the past two decades [2, 4, 1]. One of the most important contri-
butions to this research literature was the seminal work of Rosen-
schein and Zlotkin, who classified negotiation domains according
to whether they weretask oriented, worth oriented, or state ori-
ented[2]. In a task oriented domain, each agent is allocated a set
of tasks to perform, where each task set has some well-defined cost.
Agents in a task oriented domain can mutually benefit from nego-
tiation berearranging the allocation of tasks amongst themselves,
thereby reducing the overall cost of each agent’s allocation. Perhaps
the paradigm example of a task oriented domain is the “postman”
scenario, which is defined by a weighted graph. An individual task
in the postman scenario corresponds to visiting a node in the graph
(to “deliver a letter”), and thus an agent’s task allocation is a set of
nodes in the graph; the cost of performing an allocation of tasks is
then the cost of the minimal cost tour of the graph that includes all
nodes in the allocation. Negotiation can be mutually beneficial be-
cause agents can reallocate tasks so that they are required to visit
nodes in the same region of the graph, thereby reducing the cost of
the minimal cost tour that includes the nodes in their allocation.

Although task oriented domains have influenced subsequent re-
search enormously, a number of issues have prevented their wider
implementation and take-up. Chief among these is that the protocols
and strategies for negotiation in task oriented domains have a high
computational complexity. For example, Rosenschein and Zlotkin
point out that implementing the basic “Zeuthen strategy” in task ori-
ented domains requiresO(2n) computations of the task cost func-
tion [2, p.49]. But a closer analysis shows that the situation may be
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much worse than this in many cases: simply computing the cost of a
set of tasks in the delivery domain, for example, implies solving an
NP-hard optimisation problem (the synthesis of a minimal cost tour).
As a consequence, it is of great importance to gain a proper under-
standing of (i) the precise computational complexity of negotiation
in task oriented domains, and (ii) the cases in which such negotiation
is tractable.

In short, the present paper contributes to this understanding. Fo-
cussing on a particular representation of the domain (as a spanning
tree), we establish a number of complexity results pertaining to the
complexity of negotiation in the “postman” scenario, with our main
result to the effect that the problem of deciding whether a given deal
could be reached by a chain of rational proposals is tractable.

2 Preliminary Definitions

We letV = {v1, v2, . . . , vn} denote a set ofn cities (these are the
nodes in the graph that agents must visit), and letM = [bi,j ] be
ann × n (symmetric) matrix of rationals withbi,j being the cost of
linking vi andvj ; we assumebi,i = 0 andbi,j = bj,i but do not
insist on the triangle inequalitybi,j ≤ bi,k + bj,k. Thusbi,j is the
cost of moving from cityi to city j.

For S = {s1, . . . , sp} ⊆ V , MS is thep × p submatrix ofM
induced by including only those rows and columns indexed by el-
ements ofS. A spanning treeof S is formed by any set of edges
ES ⊂ {{i, j} : i, j ∈ S} such that|ES | = |S| − 1, and for any pair
v, w of cities inS there is a path formed from edges inES linking
v andw. Theweightof any spanning treeT (S, E) of S is the sum
of the individual edge weightsbvi,vj with {vi, vj} ∈ E, with this
weight denotedw(T ). Thecostof S is

u(S) = min {w(T (S, E)) : T (S, E) is a spanning tree ofS}.

We note that in definingu(S) a minimum spanning tree is not permit-
ted to contain locations other than those specified inS. There do in
fact exist cost matrices giving rise to setsS, S′ such thatS ⊆ S′ and
u(S′) < u(S). The scenario we are concerned with is encapsulated
in the following definition.

Definition 1 LetA = {A1, A2, . . . , An} be a set of (at least two)
agents. Anallocationto A is a partition P = 〈P1, P2, . . . , Pn〉 of
V .

We now state a basic result with respect to these structures.

Definition 2 TheMST Allocation Problem(MSTAP) takes as an in-
stance a triple of the form〈V, [bi,j ], k〉 whereV = {v1, . . . , vn} is
a set of locations,[bi,j ] a n × n cost matrix andk a positive inte-
ger (k ≥ 2). The output given such an instance is a partition ofV as
P = 〈P1; P2; . . . , Pk〉 for whichσ(P ) =

∑k
i=1 u(Pi) is minimised.



Theorem 1 Given 〈V, [bi,j ], k]〉, MSTAP can be solved in
O(nβM log n) steps, whereβM is the maximum number of
bits used to encode any value inM .

Starting from some initial allocation –P0 – individual agents ne-
gotiate in an attempt to improve the utility of their holding, i.e.re-
ducethe cost of forming a spanning tree of their assigned locations.
A number of interpretations have been proposed in order to define
what constitutes a ‘sensible’ transfer of resource from both an in-
dividual agent’s viewpoint and from the perspective of the overall
allocation. Thus in negotiating a change from an allocationPi to Qi

(with Pi, Qi ⊆ V andPi 6= Qi) there are three possible outcomes
for the agentAi: u(Pi) < u(Qi), i.e. Ai values the allocationPi

as superior toQi since the cost of spanningPi is less than that of
spanningQi; u(Pi) = u(Qi), i.e.Ai is indifferent betweenPi and
Qi; andu(Pi) > u(Qi), i.e.Ai is better off after the exchange. In a
setting where agents are seen as self-interested, in order for an agent
to accept an exchange with the first outcome, the notion of apay-off
function is used, i.e. in order to accept the new allocation,Ai receives
some payment sufficient to compensate for the resulting loss in util-
ity. Of course such compensation must be made by other agents in
the system who in providing it do not wish to pay in excess of any
gain in resource. In defining notions of ‘pay-off’ the interpretation is
that in any transaction each agentAi makes a payment,πi: if πi < 0
thenAi is given−πi in return for accepting a contract; ifπi > 0
thenAi contributesπi to the amount to be distributed among those
agents whose pay-off is negative. Formally, such a notion of ‘sensible
transfer’ is captured by the concept ofindividual rationality.

Definition 3 Let A be as in Definition 1. Adeal is a pair 〈P, Q〉
where P = 〈P1, . . . , Pn〉 and Q = 〈Q1, . . . , Qn〉 are distinct
partitions ofV . The effect of implementing the deal〈P, Q〉 is that
the allocation of cities specified byP is replaced with that speci-
fied byQ. A deal〈P, Q〉 is said to beindividually rational(IR) if∑

i≤n u(Qi) <
∑

i≤n u(Pi).
Let t ≥ 1. A t-contract is a pair〈P, Q〉 whereP = 〈P1, . . . , Pn〉
and Q = 〈Q1, . . . , Qn〉 are distinct partitions ofV , such that for
somei, j ≤ n, Qi = Pi ∪X, Qj = Pj −X, |X| ≤ t andPk = Qk

for all k /∈ {1, 2}, andu(Qi)+u(Qj) < (Pi)+u(Pj). A sequence
of deals〈〈Q0, Q1〉, . . . , 〈Qm−1, Qm〉〉 is called at-contract pathif
each pair〈Qi−1, Qi〉 is a t-contract.

3 Tree Structures

It appears to be very difficult to prove strong complexity results for
arbitrary cost matrices, so we define a subclass of such matrices.

Definition 4 (The Tree Structure restriction) A tree structureis a
tuple〈V, E, cost〉 such thatV is a finite set,E is a set of edges ofV
such that(V, E) is an undirected tree andcost : V ×V → Q≥0 is a
function such thatcost(v, w) > 0 if and only ifv 6= w, cost(u, v)+
cost(v, w) ≥ cost(u, w) for all u, v, w ∈ V and if E′ is a set
of edges ofV such that(V, E′) is a tree then

∑
z∈E cost(z) ≤∑

z∈E′ cost(z) holds; that is,(V, E) is a minimal-cost spanning tree
with respect toV and the functioncost. Given a tree structure tu-
ple T = 〈V, E, cost〉, andW ⊆ V , we defineexpenseT (W ) =∑

z∈F cost(z), whereF is any set of edges ofW such that(W, F )
is a tree and the sum

∑
z∈F cost(z) is minimal for all such edge

sets.
Let T = 〈V, E, cost〉 be a tree structure. ThenT is said to besen-
sible if the following holds; ifv, w, w′ ∈ V and the reduced path in
the tree(V, E) from v to w′ passes throughw, thencost(v, w) ≤

cost(v, w′). Also T is said to bemaximal if for all v, w,∈ V ,
cost(v, w) is the sum of the costs of all the edges in the path through
(V, E) joining v to w.

Clearly, maximal tree structures are sensible. The justification for this
terminology is that ifT is maximal, then for allv, w ∈ V , cost(v, w)
has the maximal value compatible with the triangle inequality which
the functioncost must satisfy. We now state some results of max-
imal tree structures: Theorems 2 and 3 are the main results of this
section, establishing that, for maximal trees, it is decidable whether
any allocation is achievable by an IR contract path (Theorem 2), and
that, in addition, it is always possible to construct optimal allocations
that cannot be reached by any IRC(t) contract path (Theorem 3).

Theorem 2 Let T = 〈V, E, cost〉 be a maximal tree structure. If
Q = 〈S1; S2〉 is any allocation and1 ≤ t < min{|S1|, |S2|}, then
it is decidable in polynomial time in〈T, Q, t〉 whether there is at-
contract path fromPinit = 〈V ; ∅〉 to Q,

Theorem 3 For anyk ≥ 2, for any fixedt ≥ 1, the following holds.

a) There are instances,〈V, [bi,j ], k〉 of MSTAP such that withPinit =
〈V ; ∅; . . . ; ∅〉 the initial allocation andPopt any optimal al-
location, there exists at + 1-contract path realising the deal
〈Pinit, Popt〉, but there doesnot exist anyt-contract path to re-
alise the deal〈Pinit, Popt〉.

b) There is a maximal tree structureT = 〈V, E, cost〉 such that with
Pinit = 〈V ; ∅; . . . ; ∅〉 the initial allocation andPopt anyopti-
mal allocation, there doesnot exist anyt-contract path to realise
the deal〈Pinit, Popt〉.

4 The Main Theorems

Theorem 4 Let T = 〈V, E, cost〉 be a sensible tree structure and
let 〈V0 = V, ∅〉, 〈V1, V − V1〉, . . . , 〈Vn, V − Vn〉 be a1-contract
path. Then each setVi+1 has one fewer elements thanVi.

Theorem 5 Let T = 〈V, E, cost〉 be a sensible tree structure and
let 〈V0 = V, ∅〉, 〈V1, V − V1〉, . . . , 〈Vn, V − Vn〉 be a1-contract
path. Let〈U0 = V, ∅〉, 〈U1, V −U1〉, . . . , 〈Um, V −Um〉 be another
1-contract path withU1 = V1. SupposeUm ⊇ Vn. Then this second
sequence can be continued monotonically using1-contracts until it
reaches〈Vn, V − Vv〉.

Theorem 6 Let T = 〈V, E, cost〉 be a sensible tree structure and
let 〈V ′, V −V ′〉 be any (not necessarily minimal-cost) allocation. It
is decidable in polynomial time whether〈V ′, V − V ′〉 is reachable
from 〈V, ∅〉 by a1-contract path.
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