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Abstract. I begin by arguing that the notion of economic equilib-
rium is an important analytical tool with which to understand the
behaviour of today’s networked computer systems. This is because
the behaviours that such systems exhibit are in part a function of the
preferences and desires of system participants; this gives such sys-
tems the flavour of an economic system. In economics, an equilib-
rium is a steady-state situation, which obtains because no participant
has any rational incentive to deviate from it. Equilibrium concepts
are arguably the most important and widely used analytical weapons
in the game theory arsenal. The concept of Nash equilibrium in par-
ticular has found a huge range of applications, in areas as diverse
and seemingly unrelated as evolutionary biology and moral philos-
ophy. However, there remain fundamental problems associated with
Nash equilibria and their application, which must be considered if
we want to apply them to the analysis of computer systems. First,
there may be multiple Nash equilibria, in which case, how should we
choose between them? Second, some equilibria may be undesirable,
in which case, how can we avoid them? In this essay, I will introduce
work that we have done addressing these problems from a computa-
tional/AI perspective. Assuming no prior knowledge of game theory
or economic solution concepts, I will discuss various ways in which
we can try to engineer a scenario so that desirable equilibria result,
or else engineer out undesirable equilibria.

1 Introduction
My primary aims in this paper are twofold:

1. First, I want to argue that the notion of economic equilibrium is an
important concept through which to understand today’s networked
computer systems. In particular, I argue that economic/game theo-
retic equilibrium concepts are of potential value for understanding
systems such as the Internet.

2. Second, I want to describe (in outline only) some work that we
have done on managing the equilibria of systems. In particular, I
will describe how we can perturb the behaviour of rational agents
so that they will select equilibria that satisfy certain logically-
specified properties. The mechanism we consider, through which
such manipulation can be achieved, is taxation.

In economics, an equilibrium is nothing more than a steady-state sit-
uation, which obtains and persists because no participant has any ra-
tional incentive to deviate from it. Equilibrium concepts are the most
important and widely used analytical weapons in the game theory ar-
senal [15]. The concept of Nash equilibrium in particular has found
a huge range of applications, in areas as diverse and seemingly un-
related as evolutionary biology and moral philosophy. The first main
argument of this paper is that the standard analytical tools developed
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within computer science over the past four decades will be inade-
quate and inappropriate for understanding the kinds of behaviours
that might be exhibited by complex distributed systems such as the
Internet. This is because the overall behaviour of such systems can-
not be understood without reference to the fact that the components
of the system are not altruistic or even benevolent: the agents on the
Internet will typically act in their own interests, as far as they see
them. It is commonly accepted in economics and game theory that
the notion of equilibrium is appropriate for analysing systems con-
taining multiple self-interested actors; I will argue that the notion of
equilibrium is also of value to understanding systems such as the In-
ternet. I will mainly focus on the notion of Nash equilibrium, which
is the best-known and most important equilibrium concept in game
theory.

I will then highlight some issues that arise if we want to apply the
concept of Nash equilibrium to understanding distributed systems:

• First, there may be multiple Nash equilibria, in which case, how
should one of them be chosen? How can we decide which will
actually result?

• Second, some equilibria of the system may be inefficient or other-
wise undesirable – in which case, what can we do to avoid these
equilibria? What interventions are available to steer the system to-
wards more desirable equilibria?

Following this discussion, I will introduce some work that we have
done addressing these problems from a computational/AI perspec-
tive. Assuming no prior knowledge of game theory or economic so-
lution concepts, I will discuss how we can try to engineer a scenario
so that desirable equilibria result, or else engineer out undesirable
equilibria. I will focus on the idea of imposing taxation schemes on
systems, so that the preferences of rational agents are perturbed in
such a way that the components of the system will choose a desir-
able outcome in equilibrium.

2 Setting the Scene
It is a well-established scientific tradition that any invited paper worth
its salt should attempt to pass off a number of hoary cliches as if
they were profound and original insights. I have no wish to offend
tradition, so let me get my cliches in early:

1. The future of computing will be one of ubiquitous, seamlessly
interconnected computing devices.

2. These devices will be increasingly sophisticated and mobile.

3. We will continue to delegate ever more tasks to these devices
as part of our everyday lives.

4. The development of techniques for modelling, programming,
and analysing such systems represents one of the key chal-
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lenges for computer science in the early part of the 21st cen-
tury.

Many trends in contemporary computing are a reflection of these
self-evident truths. Examples include the semantic web [3], ubiq-
uitous computing [12], autonomic computing [14], cloud comput-
ing, and my own research field, multi-agent systems [19]. It is by
now generally accepted that classical computational models (such as
the Turing machine), and the associated theory that goes with these
models, is not really appropriate for modelling and understanding
such systems. Much of the energy and effort of the computing re-
search community over the past three decades has been directed to
developing alternative models, programming languages, and theo-
ries, through which we can better develop and understand such sys-
tems; notable examples of such work include process algebras such
as Milner’s π calculus [13].

Now, I am going to claim that the notion of economic equilib-
rium is an appropriate concept through which we can understand
and analyse an important class of such systems. To understand my
argument, let us first recall a well-known paradigm for program de-
velopment, based around the notion of program correctness. This
paradigm has underpinned much computer science research since
the 1960s. Roughly speaking, the story of program correctness is
usually told as follows. We start with a specifier, who constructs a
specification for a program. In simple terms, this specification de-
scribes what the program should do. We then build a program, and
we check it against its specification. The program is judged to be
correct if its satisfies (meets, fulfils) its specification; otherwise it is
incorrect. Typically we write P |= ϕ to mean that program P sat-
isfies the specification ϕ. A little more formally, the idea is usually
that the formal specification ϕ defines a set [[ϕ]] of behaviours – the
behaviours of the program that are deemed to be acceptable. A pro-
gram P is also associated with a set [[P ]] of behaviours; these are the
possible runs, or computations of the program. Then the program P
is said to be correct with respect to the specification ϕ if [[P ]] ⊆ [[ϕ]].
This is pretty much the story as told in the temporal verification of
computer programs [10, 11], and the associated technology of model
checking [5]: model checking, for example, is essentially concerned
with the problem of checking whether [[P ]] ⊆ [[ϕ]], where ϕ is ex-
pressed as a temporal logic formula.

Now let us step back from this story a little. Notice that in this
very well-known story, it is assumed that there is somebody – the
specifier – who is in what we might call a privileged position. That
is, the specifier defines the specification, and thus has complete au-
thority to say what is “correct” behaviour and what is “incorrect” be-
haviour for the system under question. Only programs P that satisfy
the specification ϕ are deemed to be acceptable. (Of course, whether
the specification is drawn up by a committee or by an individual is
not really relevant; the point is that there is a single standard of be-
haviour, defined by ϕ, and anything in contradiction with this judged
to be an error.)

Now consider this paradigm applied to systems such as the In-
ternet. Does it make sense? In one sense, certainly. For example,
standards bodies such as the World-Wide Web Consortium (W3C)
and the Internet Engineering Task Force (IETF) define the proto-
cols underpinning the Internet, and we can of course check whether
these protocols are being correctly implemented, in the sense that
the correct packet types are being sent in the correct order, and that
responses of the correct type are being given at the appropriate junc-
ture. But such an analysis, important though it may be, is really miss-
ing a very big part of the story that is relevant to understanding how

the Internet behaves. The point is that the classical view of correct-
ness assumes a single standpoint of correctness. But with systems
like the Internet, nobody is in such a privileged position. With my
tongue firmly in cheek for a moment, consider that the W3C and
IETF in all likelihood deplore the fact that teenagers use the Internet
to illegally download music and videos; they are surely horrified by
the fact that terrorists use the Internet to communicate and coordi-
nate their attacks; and they may be deeply disapproving of the ocean
of pornography that washes across the Internet every day; but these
concerns are nothing to do with the Internet being correct or other-
wise. Asking “Is the Internet correct” does not make sense. Indeed,
the question is a category error, in the same way that asking “is 9
o’clock green” is a category error. The question is meaningless. To
apply the concept of correctness, there must be a privileged position,
from which a unique standard of correctness ϕ may be prescribed.
And in systems like the Internet, there is and can be no such privi-
leged position.

There is no privileged standpoint of correctness on the Internet be-
cause the millions (and soon, billions) of players in the Internet are
not acting on behalf a single individual or organisation. Nor are they
benevolent or selflessly altruistic entities. They use the Internet to
further their own ends: they are self interested, and they will, if nec-
essary, act strategically in order to obtain the best outcome for them-
selves in any given situation. Thus trying to understand a system like
the Internet in terms of the packet-level protocols exchanges that take
place is irrelevant if we want to understand its higher-level dynam-
ics. The systems involved can and should be understood not just as a
network of computer processors exchanging data streams according
to certain protocols, but as computational economic systems. If we
ignore self-interest, strategic, and economic considerations when we
conceptualise and design such a system, then we will be ignoring and
missing issues that are fundamental in order to understand the likely
behaviours of the system.

To take a specific example, consider eBay, the online auction
house. When users create an auction on eBay, they must specify
a deadline for bidding in the auction. This deadline, coupled with
the strategic concerns of bidders, leads to behaviour known as snip-
ing [16]. Roughly, sniping is where bidders try to wait for the last
possible moment to submit bids. Sniping is strategic behaviour, used
by participants to try to get the best outcome for themselves. It is
perhaps the best-known behaviour that is witnessed on eBay. Now,
in one sense, it is perfectly coherent to try to model and analyse the
protocols and system structure of eBay using existing techniques for
the analysis of distributed systems; but this analysis will not pre-
dict or explain sniping, for the simple reason that such analyses do
not take self-interest or strategic considerations into consideration.
Thus, to understand the likely trajectories of a system such as eBay,
we have to take into account its nature as a computational economy,
populated by self-interested agents acting strategically. If we do not
take into account preferences/goals and strategic behaviour, then we
largely miss the point of a system like eBay; and in the case of eBay,
we won’t be able to predict or understand its most characteristic be-
haviour – sniping.

So, if we cannot apply the concept of correctness systems like the
Internet, what can we use instead? I argue that we can usefully apply
the concept of equilibrium. In its everyday sense, the term equilib-
rium simply means a steady state situation, in which opposing forces
are balanced in such a way as to maintain the steady state. In eco-
nomics, the forces in question are the preferences or desires of those
participating in the scenario. An economic equilibrium is a steady
state condition that obtains because no participant is rationally mo-
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tivated to deviate from it. So, my argument is that instead of asking
“does the system satisfy my specification”, we need to ask “what are
the equilibria of the system, and what properties do these equilib-
ria have?” Such an analysis has, I believe, a better chance of being
able to predict and understand properties such as sniping on eBay
than other more conventional analytical concepts (such as analyses
based around the notion of correctness), simply because it takes into
account the fact that the participants are self-interested.

Game theory uses a number of models to try to capture scenarios
containing multiple self-interested agents, and considers a range of
equilibrium concepts [15]. My aim here is not to present a detailed
study of these models, but to hint at their key components, and to in-
dicate how they relate to computational systems such as the Internet.

In game theory, a “game” is a model of a situation in which self-
interested agents interact. Typically, a game specifies:

• The participants in the system (the “players” of the game).
• The beliefs that the participants have, about the other players of

the game and the state of the world.
• The possible choices/actions/strategies available to each of the

agents in the system.
• The effect that each combination of choices has.
• The preferences that each agent in the system has over each pos-

sible outcome.

A key concern in game theory is to try to understand what the out-
comes of a game can or should be, under the assumption that the
players within it act rationally. To this end, a number of solution con-
cepts have been proposed, of which Nash equilibrium is perhaps the
best-known. A Nash equilibrium is a collection of choices such that
no player can benefit by unilaterally deviating from this combination
of choices. Nash equilibria seem like reasonable candidates for the
outcome of a game because to move away from a Nash equilibrium
would result in some player being worse off, which clearly seems to
be irrational.

At a high level, it seems fairly straightforward to understand com-
puter systems in terms of these concepts: the players map to non-
deterministic programs (i.e., programs that have choices, e.g., about
what message to send next), and actions/strategies map to the choices
available to programs. The preferences can be assumed to be the pref-
erences of the individual on whose behalf the program is acting. In
eBay terms, the agents will be the seller and the various bidders. The
seller prefers a high price; buyers prefer a low price.

Once we can formulate a system as a game in this way, we can start
to ask, for example, what its equilibria are, and whether they are de-
sirable. I am of course glossing over a whole raft of issues that need
to be addressed to make such an analysis work; and I expect these is-
sues to drive much research over the next few years. But here I want
to draw attention to just one issue: In general, a system can have un-
desirable equilibria. For example, the system can have “inefficient”
equilibria, where the rational outcome that results could be improved
for everybody (this is the case in the famous Prisoner’s Dilemma [2]).
In this case, what interventions are available that can help to steer the
system towards more desirable equilibria? In our work, we have ex-
plored several possibilities. For example, one can use communication
to alter the beliefs of system participants [8]. By altering their beliefs
(the basis on which they choose their actions), we can perturb the
system towards more desirable outcomes than would otherwise be
chosen. Another possibility is to declare “laws” – that is, to define
sets of rules or standards or behaviour that agents are expected to
adhere to. In multi-agent systems research, this is the domain of so-
cial laws [17]. A common problem with social laws (in human and

artificial societies) is that of compliance: why should a rational agent
comply with a set of rules when it is not in their interests? One pos-
sibility is to try to construct social laws such that compliance is in
the interest of all concerned [1]. In general, of course, this will not
always be possible. Much of the remainder of this paper is taken up
with another possibility: the idea of overlaying systems with taxation
schemes, so that the actions of agents are taxed in various ways de-
pending on the choices they make. If we design the taxation scheme
appropriately, we can perturb the preferences of the participants away
from undesirable equilibria, towards more desirable ones. The next
section presents this work in more detail, and also serves as an exem-
plar of the general kind of framework in which we can study these
problems [7].

3 Incentivising Desirable Equilibria

In this section, I will move away from the abstract discussion pre-
sented above, and give a concrete example of work that we have done
that was driven by the considerations presented above. The work ad-
dresses the problem of how to deal with “bad equilibria” – equilibria
that are judged to be undesirable for some reason, often because they
are inefficient. The work uses the model of Boolean games.

Boolean games are a natural, expressive, and compact class of
games, based on propositional logic; and they have a natural com-
putational interpretation. Boolean games were introduced in [9], and
their computational and logical properties have subsequently been
studied by several researchers [4, 6]. In such a game, each agent i
is assumed to have a goal, represented as a propositional formula γi
over some set of variables Φ. In addition, each agent i is allocated
some subset Φi of the variables Φ, with the idea being that the vari-
ables Φi are under the unique control of agent i . The choices, or
strategies, available to i correspond to all the possible allocations of
truth or falsity to the variables Φi . An agent will try to choose an al-
location so as to satisfy its goal γi . Strategic concerns arise because
whether i ’s goal is in fact satisfied will depend on the choices made
by others.

We introduce the idea of imposing taxation schemes on Boolean
games, so that a player’s possible choices are taxed in different ways.
Taxation schemes are designed by an agent external to the game
known as the principal. The ability to impose taxation schemes en-
ables the principal to perturb the preferences of the players in cer-
tain ways: all other things being equal, an agent will prefer to make a
choice that minimises taxes. As discussed above, the principal is as-
sumed to be introducing a taxation scheme so as to incentivise agents
to achieve a certain desirable outcome; or to incentivise agents to rule
out certain undesirable outcomes. We represent the outcome that the
principal desires to achieve via a propositional formula Υ: thus, the
idea is that the principal will impose a taxation scheme so that agents
are rationally incentivised to make individual choices so as to col-
lectively satisfy Υ. However, a fundamentally important assumption
in what follows is that taxes do not give us absolute control over an
agent’s preferences. In our setting specifically, it is assumed that no
matter what the level of taxes, an agent would still prefer to have
its goal achieved than not. This imposes a fundamental limit on the
extent to which an agent’s preferences can be perturbed by taxation.

We begin in the following section by introducing the model of
Boolean games that we use throughout the remainder of the paper.
We then introduce taxation schemes and the incentive design problem
– the problem of designing taxation schemes that will influence the
behaviour of agents within a game so that they will act so as to satisfy
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a certain logically-specified objective Υ in equilibrium.

Propositional Logic: Let B = {",⊥} be the set of Boolean
truth values, with “"” being truth and “⊥” being falsity. Let
Φ = {p, q , . . .} be a (finite, fixed, non-empty) vocabulary of
Boolean variables, and let L denote the set of (well-formed) formu-
lae of propositional logic over Φ, constructed using the conventional
Boolean operators (“∧”, “∨”, “→”, “↔”, and “¬”), as well as the
truth constants “"” and “⊥”. We assume a conventional semantic
consequence relation “|=” for propositional logic. A valuation is a
total function v : Φ → B, assigning truth or falsity to every Boolean
variable. We write v |= ϕ to mean that ϕ is true under, or satisfied
by, valuation v . Let V denote the set of all valuations over Φ. We
write |= ϕ to mean that ϕ is a tautology. We denote the fact that
ϕ,ψ ∈ L are logically equivalent by ϕ ⇔ ψ; thus ϕ ⇔ ψ means
that |= ϕ ↔ ψ.

Agents, Goals, and Controlled Variables: The games we consider
are populated by a set Ag = {1, . . . ,n} of agents – the players of
the game. Think of these as the components of a distributed system.
Each agent is assumed to have a goal, characterised by an L-formula:
we write γi to denote the goal of agent i ∈ Ag . Each agent i ∈ Ag
controls a (possibly empty) subset Φi of the overall set of Boolean
variables (cf. [18]). By “control”, we mean that i has the unique abil-
ity within the game to set the value (either " or ⊥) of each variable
p ∈ Φi . We will require that Φ1, . . . ,Φn forms a partition of Φ, i.e.,
every variable is controlled by some agent and no variable is con-
trolled by more than one agent (Φi ∩ Φj = ∅ for i ,= j ). Where
i ∈ Ag , a choice for agent i is defined by a function vi : Φi → B,
i.e., an allocation of truth or falsity to all the variables under i ’s con-
trol. Let Vi denote the set of choices for agent i . The intuitive in-
terpretation we give to Vi is that it defines the actions or strategies
available to agent i ; the choices available to the agent. Thus, we can
think of an agent i as a non-deterministic program, which can assign
values to its variables Φi as it chooses.

An outcome, (v1, . . . , vn) ∈ V1 × · · · × Vn , is a collection of
choices, one for each agent. Clearly, every outcome uniquely defines
a valuation, and we will often think of outcomes as valuations, for
example writing (v1, . . . , vn) |= ϕ to mean that the valuation defined
by the outcome (v1, . . . , vn) satisfies formula ϕ ∈ L.

Costs: Intuitively, the actions available to agents correspond to set-
ting variables true or false. We assume that these actions have costs,
defined by a cost function c : Φ × B → R≥, so that c(p, b) is the
marginal cost of assigning the value b ∈ B to variable p ∈ Φ.

This notion of a cost function represents an obvious generalisation
of previous presentations of Boolean games: costs were not consid-
ered in the original presentation of Boolean games [9, 4], and while
costs were introduced in [6], it was assumed that only the action of
setting a variable to " would incur a cost. In fact, as we discuss in
the parent paper, costs are, in a technical sense, not required in our
framework; we can capture the key strategic issues at stake without
them. This is because we can “simulate” marginal costs with taxes.
However, it is natural from the point of view of modelling to have
costs for actions, and to think about costs as being imposed from
within the game, and taxes, (defined below), as being imposed from
without.

Boolean Games: Collecting these components together, a Boolean
game, G , is a (2n + 3)-tuple:

G = 〈Ag ,Φ, c, γ1, . . . , γn ,Φ1, . . . ,Φn〉,

where Ag = {1, . . . ,n} is a set of agents, Φ = {p, q , . . .} is a

finite set of Boolean variables, c : Φ × B → R≥ is a cost function,
γi ∈ L is the goal of agent i ∈ Ag , and Φ1, . . . ,Φn is a partition
of Φ over Ag , with the intended interpretation that Φi is the set of
Boolean variables under the unique control of i ∈ Ag .

When playing a Boolean game, the primary aim of an agent i will
be to choose an assignment of values for the variables Φi under its
control so as to satisfy its goal γi . The difficulty is that γi may contain
variables controlled by other agents j ,= i , who will also be trying to
choose values for their variables Φj so as to get their goals satisfied;
and their goals in turn may be dependent on the variables Φi . Note
that if an agent has multiple ways of gettings its goal achieved, then it
will prefer to choose one that minimises costs; and if an agent cannot
get its goal achieved, then it simply chooses to minimise costs. These
considerations are what give Boolean games their strategic character.
For the moment, we will postpone the formal definition of the utility
functions and preferences associated with our games.

Example 1 Consider a simple example, to illustrate the general
setup of Boolean games and the problem we consider in this paper.
Suppose we have a game with two players, Ag = {1, 2}. There are
just three variables in the game: p, q and r , i.e., Φ = {p, q , r}.
Player 1 controls p (so Φ1 = {p}), while player 2 controls q and r
(i.e., Φ2 = {q , r}). All costs are 0. Now, suppose the goal formulae
γi for our players are defined as follows:

γ1 = q
γ2 = q ∨ r

Notice that player 1 is completely dependent on player 2 for the
achievement of his goal, in the sense that, for player 1 to have his
goal achieved, player 2 must set q = ". However, player 2 is not
dependent on player 1: he is in the fortunate position of being able
to achieve his goal entirely through his own actions, irrespective of
what others do. He can either set q = " or r = ", and his goal will
be achieved. What will the players do? Well, in this case, the game
can be seen as having a happy outcome: player 2 can set q = ",
and both agents will get their goal satisfied at no cost. Although we
have not yet formally defined the notion, we can informally see that
this outcome forms an equilibrium, in the sense that neither player
has any incentive to do anything else.

Now let us change the game a little. Suppose the cost for player 2
of setting q = " is 10, while the cost of setting q = ⊥ is 0, and that
all other costs in the game are 0. Here, although player 2 can choose
an action that satisfies the goal of player 1, he will not rationally
choose it, because it is more expensive. Player 2 would prefer to set
r = " than to set q = ", because this way he would get his goal
achieved at no cost. However, by doing so, player 1 is left without his
goal being satisfied, and with no way to satisfy his goal. Now, it could
be argued that the outcome here is socially undesirable, because it
would be possible for both players to get their goal achieved. Our
idea in the present paper is to provide incentives for player 2 so that
he will choose the more socially desirable outcome in which both
players get their goal satisfied. The incentives we study are in the
form of taxes: we tax player 2’s actions so that setting q = " is
cheaper than setting r = ", and so the socially desirable outcome
results. This might seem tough on player 2, but notice that he still gets
his goal achieved. And in fact, as we will see below, there are limits to
the kind of behaviour we can incentivise by taxes. In a formal sense,
to be defined below, there is nothing we can do that would induce
player 2 to set both q and r to ⊥, since this would result in his goal
being unsatisfied.

Taxation Schemes: A taxation scheme defines additional (imposed)
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costs on actions, over and above those given by the marginal cost
function c. While the cost function c is fixed and immutable for any
given Boolean game, the principal is assumed to be at liberty to levy
taxes as they see fit. Agents will seek to minimise their overall costs,
and so by assigning different levels of taxation to different actions,
the principal can incentivise agents away from performing some ac-
tions and towards performing others; if the principal designs the tax-
ation scheme correctly, then agents are incentivised to choose valua-
tions (v1, . . . , vn) so as to satisfy Υ (i.e., so that (v1, . . . , vn) |= Υ).

We model a taxation scheme as a function τ : Φ × B → R≥,
where the intended interpretation is that τ(p, b) is the tax that would
be levied on the agent controlling p if the value b was assigned to
the Boolean variable p. The total tax paid by an agent i in choosing
a valuation vi ∈ Vi will be

∑
p∈Φi

τ(p, vi(p)).
We let τ0 denote the taxation scheme that applies no taxes to any

choice, i.e., ∀x ∈ Φ and b ∈ B, τ0(x , b) = 0. Let T (G) denote
the set of taxation schemes over G . We make one technical assump-
tion in what follows, relating to the space requirements for taxation
schemes in T (G). Unless otherwise stated explicitly, we will assume
that we are restricting our attention to taxation schemes whose val-
ues can be represented with a space requirement that is bounded by a
polynomial in the size of the game. This seems a reasonable require-
ment: realistically, taxation schemes requiring space exponential in
the size of the game at hand could not be manipulated. It is impor-
tant to note that this requirement relates to the space requirements
for taxes, and not to the size of taxes themselves: for a polynomial
function f : N → N, the value 2f (n) can be represented using only a
polynomial number of bits (i.e., f (n) bits).

Utilities and Preferences: One important assumption we make is
that while taxation schemes can influence the decision making of ra-
tional agents, they cannot, ultimately, change the goals of an agent.
That is, if an agent has a chance to achieve its goal, it will take it,
no matter what the taxation incentives are to do otherwise. To under-
stand this point, and to see formally how incentives work, we need
to formally define the utility functions for agents, and for this we re-
quire some further auxiliary definitions. First, with a slight abuse of
notation, we extend cost and taxation functions to partial valuations
as follows:

ci(vi) =
∑

p∈Φi

c(p, vi(p))

τi(vi) =
∑

p∈Φi

τ(p, vi(p))

Next, let ve
i denote the most expensive possible course of action for

agent i :
ve
i ∈ arg max

vi∈Vi

(ci(vi) + τi(vi)).

Let µi denote the cost to i of its most expensive course of action:

µi = ci(v
e
i ) + τi(v

e
i ).

Given these definitions, we define the utility to agent i of an outcome
(v1, . . . , vn), as follows:

ui(v1, . . . , vn) ={
1 + µi − (ci(vi) + τi(vi)) if (v1, . . . , vn) |= γi
−(ci(vi) + τi(vi)) otherwise.

This definition has the following properties:

• an agent prefers all outcomes that satisfy its goal over all those
that do not satisfy it;

• between two outcomes that satisfy its goal, an agent prefers the
one that minimises total expense (= marginal costs + taxes); and

• between two valuations that do not satisfy its goal, an agent prefers
to minimise total expense.

Solution Concepts: Given this formal definition of utility, we can
define solution concepts in the standard game-theoretic way [15]. In
this paper, we focus on (pure) Nash equilibrium. (Of course, other
solution concepts, such as dominant strategy equilibria, might also
be considered, but for simplicity, in this paper we focus on Nash
equilibria.) We say an outcome (v1, . . . , vi , . . . , vn) is a Nash equi-
librium if for all agents i ∈ Ag , there is no v ′

i ∈ Vi such that
ui(v1, . . . , v

′
i , . . . , vn) > ui(v1, . . . , vi , . . . , vn). Let NE(G, τ) de-

note the set of all Nash equilibria of the game G with taxation
scheme τ .

Incentive Design: We now come to the main problems that we con-
sider in the remainder of the paper. Suppose we have an agent, which
we will call the principal, who is external to a game G . The princi-
pal is at liberty to impose taxation schemes on the game G . It will
not do this for no reason, however: it does it because it wants to
provide incentives for the agents in G to choose certain collective
outcomes. Specifically, the principal wants to incentivise the players
in G to choose rationally a collective outcome that satisfies an ob-
jective, which is represented as a propositional formula Υ over the
variables Φ of G . We refer to this general problem – trying to find
a taxation scheme that will incentivise players to choose rationally a
collective outcome that satisfies a propositional formula Υ – as the
implementation problem.

Let WI(G,Υ) denote the set of taxation schemes over G that
satisfy a propositional objective Υ in at least one Nash equilibrium
outcome:

WI(G,Υ) =
{τ ∈ T (G) | ∃(v1, . . . , vn) ∈ NE(G, τ) s.t. (v1, . . . , vn) |= Υ}.

Given this definition, we can state the first basic decision problem
that we consider in the remainder of the paper:

WEAK IMPLEMENTATION:
Instance: Boolean game G and objective Υ ∈ L.
Question: Is it the case that WI(G,Υ) ,= ∅?

If the answer to the WEAK IMPLEMENTATION problem (G,Υ) is
“yes”, then we say that Υ can be weakly implemented in Nash equi-
librium (or simply: Υ can be weakly implemented in G). Let us see
an example.

Example 2 Define a game G as follows: Ag = {1, 2}, Φ =
{p1, p2}, Φi = {pi}, γ1 = p1, γ2 = ¬p1 ∧ ¬p2, c(p1, b) = 0
for all b ∈ B, while c(p2,") = 1 and c(p2,⊥) = 0. Define an
objective Υ = p1 ∧ p2. Now, without any taxes (i.e., with taxation
scheme τ0), there is a single Nash equilibrium, (v∗

1 , v
∗
2 ), which sat-

isfies p1 ∧ ¬p2. Agent 1 gets its goal achieved, while agent 2 does
not; and moreover (v∗

1 , v
∗
2 ) ,|= Υ. However, if we adjust τ so that

τ(p2,⊥) = 10, then we find a Nash equilibrium outcome (v ′
1, v

′
2)

such that (v ′
1, v

′
2) |= p1 ∧ p2, i.e., (v ′

1, v
′
2) |= Υ. Here, agent 2 is

not able to get its goal achieved, but it can, nevertheless, be incen-
tivised by taxation to make a choice that ensures the achievement of
the objective Υ.

So, what objectives Υ can be weakly implemented? At first sight,
it might appear that the satisfiability of Υ is a sufficient condition
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for implementability. Consider the following naive approach for con-
structing taxation schemes with the aim of implementing satisfiable
objectives Υ:

Find a valuation v such that v |= Υ (such a valuation will exist
since Υ is satisfiable). Then define a taxation scheme τ such
that τ(p, b) = 0 if b = v(p) and τ(p, b) = k otherwise,
where k is an astronomically large number.

Thus, the idea is simply to make all choices other than selecting an
outcome that satisfies Υ too expensive to be rational. In fact, this
approach does not work, because of an important subtlety of the def-
inition of utility. In designing a taxation scheme, the principal can
perturb an agent’s choices between different valuations, but it cannot
perturb them in such a way that an agent would prefer an outcome
that does not satisfy it’s goal over an outcome that does. We have:

Proposition 1 There exist instances of the WEAK IMPLEMENTA-
TION problem with satisfiable objectives Υ that cannot be weakly
implemented.

What about tautologous objectives, i.e., objectives Υ such that Υ ⇔
"? Again, we might be tempted to assume that tautologies are triv-
ially implementable. This is not in fact the case, however, as it may
be that NE(G, τ) = ∅ for all taxation schemes τ :

Proposition 2 There exist instances of the WEAK IMPLEMENTA-
TION problem with tautologous objectives Υ that cannot be imple-
mented.

Tautologous objectives might appear to be of little interest, but we
argue that this is not the case. Suppose we have a game G such that
NE(G, τ0) = ∅. Then, in its unmodified condition, this game is
unstable: it has no equilibria. Thus, we will refer to the problem of
implementing " (= checking for the existence of a taxation scheme
that would ensure at least one Nash equilibrium outcome), as the
STABILISATION problem. The following example illustrates STA-
BILISATION.

Example 3 Let Ag = {1, 2, 3}, with ϕ = {p, q , r}, Φ1 = {p},
Φ2 = {q}, Φ3 = {r}, γ1 = ", γ2 = (q ∧ ¬p) ∨ (q ↔ r),
γ3 = (r∧¬p)∨¬(q ↔ r), c(p,") = 0, c(p,⊥) = 1, and all other
costs are 0. For any outcome in which p = ⊥, agent 1 would prefer to
set p = ", so no such outcome can be stable. So, consider outcomes
(v1, v2, v3) in which p = ". Here if (v1, v2, v3) |= q ↔ r then
agent 3 would prefer to deviate, while if (v1, v2, v3) ,|= q ↔ r then
agent 2 would prefer to deviate. Now, consider a taxation scheme
with τ(p,") = 10 and τ(p,⊥) = 0 and all other taxes are 0. With
this scheme, the outcome in which all variables are set to ⊥ is a Nash
equilibrium. Hence this taxation scheme stabilises the system.

Returning to the weak implementation problem, we can derive a suf-
ficient condition for weak implementation, as follows.

Proposition 3 For all games G and objectives Υ, if the formula Υ′

is satisfiable:
Υ′ = Υ ∧

∧

i∈Ag

γi

then WI(G,Υ) ,= ∅.

4 Conclusions
I believe that the notion of economic equilibrium has an important
role to play in the analysis of today’s networked computer systems.

In this paper I have tried to explain why I believe this, and to sketch
out some of the issues that arise if we take this idea seriously. The
grand challenge underpinning this work is to develop techniques that
will enable us to analyse, understand, and predict the behaviour of
computer systems when the participants in these systems are self-
interested; and to be able to manage the equilibria of such systems.
The issues raised by this work seem to be highly relevant for com-
puter science, conceptually interesting, and technically deep: surely
an irresistible combination. Acknowledgments: This research was
supported by the European Research Council under Advanced Grant
291528 (“RACE”). I have benefited enormously from discussions
with Rahul Savani. Part of the research reported in this paper was
carried out with jointly with Ulle Endriss, Sarit Kraus, and Jérôme
Lang.
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