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Abstract. Many multiagent settings require a collection of agents
to partition themselves into coalitions. In such cases, the agents may
have conflicting preferences over the possible coalition structures
that may form. We investigate a noncooperative bargaining game to
allow the agents to resolve such conflicts and partition themselves
into non-overlapping coalitions. The game has a finite horizon and
is played over discrete time periods. The bargaining agenda is de-
fined exogenously. An important element of the game is a parame-
ter 0 ≤ δ ≤ 1 that represents the probability that bargaining ends
in a given round. Thus, δ is a measure of the degree of democracy
(ranging from democracy for δ = 0, through increasing levels of
authoritarianism as δ approaches 1, to dictatorship for δ = 1). For
this game, we focus on the question of how a player’s position on the
agenda affects his power. We also analyse the relation between the
distribution of the power of individual players, the level of democ-
racy, and the welfare efficiency of the game. Surprisingly, we find
that purely democratic games are welfare inefficient due to an un-
even distribution of power among the individual players. Interest-
ingly, introducing a degree of authoritarianism into the game makes
the distribution of power more equitable and maximizes welfare.

1 Introduction
In this paper, we focus on the problem of how a group of agents can
partition themselves into a coalition structure. Specifically, we are
interested in the the following scenario. There is a set N of agents
who want to decide how to partition themselves into non-overlapping
coalitions. There are externalities in that each agent has preferences
not just over coalitions but over the possible coalition structures, i.e.,
the partitions of N . Conflicts arise because the agents’ preferences
are not identical. We aim to study how such conflicts can be resolved
through a process of noncooperative bargaining. We assume that util-
ity is not transferable, i.e, payoffs assigned to one agent cannot be
assigned to another agent.

In order to model externalities and non-transferable utilities, we
introduce coalition structure games (CSGs) that encompass many
important classes of coalitional games including hedonic games [4]
and NTU (non-transferable utility) games in partition function form
[13]. Using a CSG as the underlying game, we investigate the fol-
lowing noncooperative bargaining protocol.

Our multilateral bargaining protocol has a finite horizon and is
built on Rubinstein’s alternating offers protocol [15] for bilateral bar-
gaining. It runs in a series of rounds and the agents take turns to
propose an offer, i.e., a coalition structure. The order in which the
agents are called to make offers, i.e., the bargaining agenda, is de-
fined exogenously. An important element of our game is the parame-
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ter 0 ≤ δ ≤ 1, which represents the probability that bargaining ends
in a given round. Thus, δ is a means to control the subset of agents
that can make proposals during the bargaining and can be interpreted
as a measure of democracy within the game. For δ = 1, only one
agent gets the chance to propose—we call these dictatorship games
in that a single agent is able to influence the outcome. For δ = 0, all
the agents get a chance to propose—we call these democratic games
in that every agent is able to control the outcome. In between, i.e.,
for 0 < δ < 1, we have games that are neither purely dictatorship
nor purely democratic but with a degree of authoritarianism.

For exogenous agendas, it is well known that the outcome of a bar-
gaining depends on the agenda [3]. Given this, an individual agent
will want to know what agenda position is best for him. On the other
hand, from the system’s perspective, it is necessary to know what
agenda will maximize social welfare. To these ends, our first ob-
jective is to analyze how an agent’s position on the agenda influ-
ences his bargaining power (i.e., his ability to secure a favourable
outcome). As an extreme example, for δ = 1, the dictator always
secures his most preferred coalition structure while all other agents
are completely powerless. However, for any δ < 1, all agents in the
agenda possess some degree of power, perhaps, however, not allo-
cated evenly. Thus, our second objective is to analyse the relationship
between the distribution of power, the level of democracy (embodied
in δ), and the efficiency of the game (i.e., how far the bargained struc-
ture is from the socially optimal structure).

This paper provides the first quantitative analysis of power and
efficiency in the context of noncooperative bargaining for coalition
structure formation. To date, the only such analysis of a mechanism
for bargaining coalition structure that we are aware of was done by
Bloch and Rottier [3] for simple coalitional games, where coalitions
can only have binary values. Many multi-agent systems, however,
cannot be modeled as simple games. Thus, we consider bargaining
in the context of coalition structure games.

Our most important results, from both theoretical analysis and
simulations, can be summarised as follows:

• Assuming purely democratic games (δ = 0), the first mover has
the lowest power and power increases monotonically with the po-
sition on the agenda. Surprisingly, the maximum is reached not for
the last mover, n , but for the two last movers, n − 1 and n .

• An even more surprising result is that an agent’s average power
(average taken over all possible player preference combinations)
increases with the number of agents in the game. It is always prof-
itable for incumbents to invite more agents to the game as long as
the newcomers will be given the very first positions on the agenda.

• For δ ≈ 0, power monotonically increases from the first to the
last player on the agenda. As δ increases, the difference between
the first and last mover’s powers decreases and power becomes
more balanced. With further increase in δ, power monotonically
decreases from the first to the last player. In other words, as the
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degree of authoritarianism increases (i.e., as δ approaches 1), there
is a shift in power from the last movers toward the first movers.

• The above result is related to a notable finding that concerns effi-
ciency. While it is widely accepted in economics and political sci-
ence [17] that democracy is, in principle, efficient, this is not so in
our model. Surprisingly, it is authoritarianism that maximizes ex-
pected system welfare. We show that the reason behind this result
is to be found in the distribution of power. Democracy becomes
inefficient if power is unevenly distributed, and some level of au-
thoritarianism is needed to balance power and maximize welfare.

2 The Model
We begin by defining CSGs and the bargaining game (BG).

Coalition Structure Game (CSG) A coalition structure π is an ex-
haustive partition of the set of players N = {1, . . . ,n} into disjoint
coalitions; let Π(N ) denote the set of coalition structures over N and
|Π(N )| = Bell(n) = e−1 ∑∞

k=0 k
n(k !)−1 the number of possible

coalition structures.

Definition 1 A CSG is a tuple G = ⟨N ,≻1, . . . ,≻n⟩ where N =
{1, . . . ,n} is the set of players, and ≻i ⊆ Π(N ) × Π(N ) is a
complete, non reflexive, and transitive preference relation for player
i ∈ N , with the interpretation that if π1 ≻i π2, then player i prefers
coalition structure π1 more than the structure π2.

A player’s preference for a coalition structure is given by a unique
integer rank. A player’s most preferred structure is the one with rank
1, then with rank 2, and so on. Different players will have different
ranks (preference orderings) for the possible structures. Let ri(π)
denote player i ’s rank for a structure π.

2.1 The Bargaining Game
For a CSG, we explore the following non-cooperative bargaining
game for forming a coalition structure. This is a finite-horizon game
in which the players take turns in proposing offers where an offer is
a coalition structure. The sequence in which the players are called to
make offers is called the bargaining agenda. The bargaining agenda
ρ is a permutation of the first n integers.

The game can run for at most n time periods. Bargaining starts in
the first time period and proceeds as described in Algorithm 1. To
begin, all the players in N are in the set IN . The set OUT is initially
empty (Line 1 in Algorithm 1). At t = 1, mover 1 offers a coalition
structure π ∈ Π(in). After an offer is proposed, the game will end
with probability δ. With probability (1 − δ), it will continue to the
next round when mover 2 will propose an offer.

In general, whether or not the game will end at a time t is deter-
mined by a ‘RandomEvent’ (Line 4 in Algorithm 1). If the event does
not occur, the game continues at Line 7. In the for loop of Line 7, the
players ρt+1, . . . , ρn receive the offer. These players can accept or
reject the current offer. If all these players accept, then the game ends
and the structure π ∪ {{i} : i ∈ out} is the outcome of the game.
But if at least one of these players rejects, then the proposing player is
moved from the set IN to the set OUT , time is incremented and we
go to Line 2. Then, the next player on the agenda, i.e., ρt+1 proposes
an offer. This process repeats until all the subsequent players (i.e.,
ρt+1, . . . , ρn ) accept a proposal, or the time t = n is reached. If we
reach t = n , the game ends and the structure π ∪ {{i} : i ∈ OUT}
is implemented.

Definition 2 A BG is a 4-tuple G = ⟨N ,≻1, . . . ,≻n , δ, ρ⟩.

Algorithm 1 Bargaining Game G

Require: A δ and a given agenda, i.e., an ordering ρ of players
1: OUT ⇐ ∅; IN ⇐ N ; t ⇐ 1;
2: while t ≤ n do
3: Player ρt proposes a coalition structure π made of players in IN .
4: if RandomEvent occurs (with probability δ) then
5: The game ends. Go to Line 14.
6: end if
7: for i = t + 1 to n do
8: if (Player ρi rejects the proposal) then
9: OUT ⇐ OUT ∪ {ρt}; IN ⇐ IN − {ρt}; t ⇐ t + 1

10: Go to Line 2.
11: end if
12: end for
13: end while
14: The game ends and π ∪ {{i} : i ∈ OUT} is implemented.

We will denote a BG as G(n, δ, ρ), G(n, ρ), G(n), G(ρ), or just
G when the other parameters are clear from context. P will denote
the set of all possible preference combinations for the n players. All
other parameters remaining the same, we can obtain different BGs
by varying ≻1, . . . ,≻n . We have |P | = ((Bell(n))!)n (Bell(n) is
the nth Bell number) elements in P , i.e., we can have |P | possible
BGs. G denotes the set of all |P | games.

The Significance of ‘RandomEvent’: ‘RandomEvent’ is used
to model a wide spectrum of BGs. For δ = 1, only mover 1 is given
a chance to propose and then the game ends; no other player has any
say in the outcome of the game. This is a dictatorship game. For
δ = 0, all the players are given a chance to propose. Here, G is an n
time period game. Since every player can exercise control over the
outcome of the game, these are democratic games. For 0 < δ < 1,
the number of time periods in G will vary between 1 and n; only the
first few players on the agenda will get a chance to propose but the
rest will not. These are authoritarian games.

3 Equilibrium Strategies for G

For a BG G = ⟨N ,≻1, . . . ,≻n , δ, ρ⟩, we will show how to obtain
equilibrium strategies. Let π∗t (G) denote the equilibrium offer for
time 1 ≤ t ≤ n . But when G is evident from context, we will simply
denote this offer as π∗t . Let eri(πt) denote player i ’s expected rank
from an offer πt made at time t < n . Here, eri(πt) is defined as:

eri(πt) =

⎧
⎪⎨

⎪⎩

ri(πt) if rρk (πt) ≤ rρk (π
∗
t+1)

for k > t

δri(πt) + (1− δ)ri(π
∗
t+1) otherwise

For t = n , there is only one possible offer: {{i} : i ∈ N }. Thus,
in the last round, for each i ∈ N , eri({{i} : i ∈ N }) = ri({{i} :
i ∈ N }). We are now ready to formalize the equilibrium strategies.
In the following text, INt (OUTt ) will denote the set of players in
IN (OUT ) at time t .

Theorem 1 For a G , the following strategies form a subgame per-
fect Nash equilibrium. At t = n , mover n will propose the structure
π∗n = {{i} : i ∈ N } and all other players will accept. At t < n , ρt
will propose the structure π∗t = π̄t ∪ {{i} : i ∈ OUTt} where

π̄t ∈ arg min
π∈Π(INt )

erρt (π) s.t erρi (π) ≤ erρi (π
∗
t+1) for i > t .
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Each player ρi (i > t) will accept an offer πt made at time t if
erρi (πt) ≤ erρi (π

∗
t+1), and reject otherwise.

Proof 1 We use backward induction. Consider the last round t = n
when there will be only one player (i.e., ρn ) in INn and the first n−1
players will be in OUTn . The only possible offer ρn could propose
is π∗n = {{i} : i ∈ N }. This would be accepted by all other players
and outcome would comprise n singleton coalitions.

For each previous round t < n , ρt will propose a structure that
minimizes his expected rank subject to giving each subsequent player
ρi (i > t) an expected rank of at least erρi (π

∗
t+1). Since the players

in OUTt are singleton coalitions, the equilibrium offer π∗t will be:

π∗t = π̄t ∪ {{i} : i ∈ OUTt}, where

π̄t ∈ arg min
π∈Π(INt )

erρt (π) s.t erρi (π) ≤ erρi (π
∗
t+1) for i > t .

Each player ρi (i > t) will accept an offer πt made at t if erρi (πt) ≤
erρi (π

∗
t+1), and reject otherwise.

Example 1 illustrates the application of Theorem 1.

(a) (b)
Structure ρ1 ρ2 ρ3 ρ1 ρ2 ρ3
{1, 2, 3} 1 2 1 1 3 2
{1, 2}{3} 4 4 4 2 2 1
{1, 3}{2} 3 3 3 3 1 3
{1}{2, 3} 5 1 5 4 4 4
{1}{2}{3} 2 5 2 5 5 5

Table 1. The players’ rankings for all possible coalition structures.

Example 1 For a 3-player game, the preferences are as given in Ta-
ble 1(a). Let δ = 0. For the last time period, the equilibrium structure
will be {1}{2}{3} which is least preferred by mover 2, and ranked
2 by movers 1 and 3. For t = 2, the equilibrium structure will be
{1}{2, 3} which is most preferred by ρ2. Thus, at t = 1, ρ2 will
not agree to any other structure. The equilibrium for t = 1 will
be {1}{2, 3}. Here, ρ2 secures his most preferred outcome. Next,
consider the preferences in Table 1(b). For t = n , the equilibrium
structure will be {1}{2}{3} which is least preferred by each of the
three players. For t = 2, the structure will be {1}{2, 3} which is
ranked 4 by each player. Thus, at t = 1, ρ1 will propose his most
preferred structure {1, 2, 3}, and ρ2 and ρ3 will accept because they
both prefer it more than {1}{2, 3}. Here, ρ1 is able to secure his
most preferred outcome.

Let δ = 0.2. First, consider the preferences in Table 1(a). For
t = n , the structure will be {1}{2}{3} which is least preferred by
ρ2, and ranked 2 by ρ1 and ρ3. For t = 2, ρ2’s equilibrium offer
is the structure {1}{2, 3} since his expected rank from it is 0.2 ×
1 + 0.8 × 5 = 4.2 while that from {1}{2}{3} is 5. For t = 1,
ρ1’s equilibrium offer is his most preferred structure {1, 2, 3} as this
gives him the least expected rank of 0.2× 1 + 0.8× 5 = 4.2. Thus,
if the random event occurs at t = 1, the resulting outcome will be
{1, 2, 3}. Otherwise, ρ2 will reject ρ1’s offer and propose {1}{2, 3}.
If the random event occurs at t = 2, the resulting outcome will be
{1}{2, 3}. Otherwise, ρ3 will reject ρ2’s offer and the game will end
at t = 3 with {1}{2, 3} as the outcome.

Next, for δ = 0.2, consider the preferences in Table 1(b). For
t = n , the structure will be {1}{2}{3} which is least preferred
by all the players. For t = 2, ρ2’s equilibrium offer {1}{2, 3} will
be accepted by movers 2 and 3. For t = 1, mover 1’s offer will be

{1, 2, 3}. Whether the random event occurs or not, the game will end
at t = 1 with {1, 2, 3} as the outcome.

Proposition 1 If δ = 0 or δ = 1, a game G will result in an imme-
diate agreement, i.e., at t = 1. But for 0 < δ < 1, an agreement can
occur at any time 1 ≤ t ≤ n .

Proof 2 If δ = 0, with certainty, we have n time periods. Here,
mover 1’s equilibrium offer will be accepted by all the subsequent
players. If δ = 1, with certainty, only the first mover makes an offer
and the game ends at t = 1. Next, consider the 3-player game with
preferences given Table 1(a). We already demonstrated in Example 1
that an agreement can occur at t = 1, t = 2, or t = 3.

4 Power and Efficiency
We measure a player’s power by considering his ability to secure a
preferable equilibrium structure averaged over all possible combina-
tions of players’ preferences:

Definition 3 Player ρi ’s power index over the set of games in G is:4

Pρi (G) = 1−
(
(E(ρi)− 1)/(Bell(n)− 1)

)
;

where E(ρi) denotes ρi ’s average expected rank in the equilibrium
for the games in G and defined as follows:

E(ρi) =
1

(Bell(n)!)n

∑

G∈G

erρi (π
∗
1(G)).

Example 2 For N = {1, 2, 3}, we have |Π(N )| = 5 and the num-
ber of all preference orderings is (5!)3 = 1, 728, 000. The players’
powers are: P1(G) = 0.61, P2(G) = P3(G) = 0.71 (see Figure 1).

A dictator can secure his most preferred structure irrespective of the
preferences of the other players, i.e., Pdictator (G) = 1. But a power-
less player has to accept any structure proposed by others, regardless
of his preferences, i.e., Ppowerless(G) = 1/2. This is because, his
average rank, where average is taken over the equilibria for all possi-
ble combinations of player preferences, will have exactly the middle
rank between 1 and Bell(n). Thus, for δ = 1, mover 1 is the dictator
while the others are powerless.

We note that our method of measuring a player’s power is related
to the social choice literature, where one of the research problems
is to measure the distance between individual preference orderings
and a given social preference ordering [9, 11]. To this end, various
distance functions were developed [6, 10, 16]. For instance, if we
maximize the Kemeny distance function [10] then we choose the
social preference ordering that has the highest number of pairwise
agreements with individual preference orderings.5 In our case, the
equilibrium coalition structure is a unique alternative and not a pref-
erence ordering over all alternatives. Given a particular combination
of preferences, we measure how a given player perceives the qual-
ity of the outcome by the rank of the equilibrium coalition struc-
ture in the preference ordering of this player. In other words, we
count the number of inconsistencies (or pairwise disagreements) be-
tween the equilibrium coalition structure (that is chosen, i.e. ranked
first, by the protocol) and all other alternatives in the preference or-
dering of the player. For instance, if players’ preference ordering is

4 See Section 2.1 for a definition of G.
5 Intuitively, if two preference orderings rank one alternative over the other

then we say that there is pairwise agreement between both orderings.
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Figure 1. The power in games of different size (δ = 0).

π1 ≻ π2 ≻ π3 ≻ π4 ≻ π5 and the equilibrium coalition structure
is π4 then we assume that this outcome has the following inconsis-
tencies with the player’s preferences: π4 ≻ π1 instead of π1 ≻ π4,
π4 ≻ π2 instead of π2 ≻ π4 and π4 ≻ π3 instead of π3 ≻ π4. Nat-
urally, our method of measuring power, similarly to Kemeny [10],
Slater [16] or Dodgson [6] distance functions, have various draw-
backs. For instance, they all assume that pairwise (dis)agreements
between any two alternatives are counted equally, irrespective of how
“far” they are in preference orderings [8].

For measuring the quality of an outcome from the systems’ per-
spective, we use social welfare. The welfare of a structure is the sum
of the individual players’ ranks for it. The lower the sum, the higher
the welfare. A globally optimal structure πSW maximizes welfare.

Definition 4 A structure is welfare maximizing if it minimizes the
sum of the players’ ranks, i.e., πSW = argminπ∈Π(N )

∑n
1 ri(π).

A bargained structure may not the be the same as πSW . In order
to measure how far a bargained structure is from πSW , we define
efficiency ratio.

Definition 5 For a give n and δ, the efficiency ratio, E(G), is the ra-
tio of the sum of the players’ ranks for the globally optimal structure
and the sum of ranks for the bargained structure, i.e., we have:

E(G) =
( n∑

i=1

ri(πSW )

)
/

( n∑

i=1

eri(π
∗
1(G))

)

Since the sum of ranks for a bargained structure can never be lower
than that for the globally optimal structure, we have E(G) ≤ 1 for
any n and δ. Below, we analyse the power and efficiency of our game
starting with the description of the simulation setup.

4.1 Simulation setup
The model was implemented in C++ utilizing the message passing
interface (MPI). The computations were run on a cluster in which
all computers were equipped with a 4-core AMD Opteron processor
(2.0GhZ - 2.3Ghz) and 16 or 32 GB of RAM. At the height of the
computations, 72 cores were utilized. Due to the nature of the model,
we achieved a very efficient parallelization with an almost ideal lin-
ear speed-up. For n = 3, it was possible to calculate the whole state
space of preferences (that is, 5!3 possible combinations for all 3 play-
ers, see Example 2). However, already for 4 players, the number of all
possible combinations of preferences equals (15!)4 = 2.9 × 1048.

Figure 2. The average efficiency ratios for games of different size (δ = 0).

Consequently, for n ≥ 4, we approximate Pρi using Monte Carlo
sampling. Each iteration is done as follows. In the first step, we sam-
ple random combinations of preference orderings (of all the agents).
Then, given these preferences and the assumed values of ρ and δ, we
solve the game with backward induction and compute the resulting
powers of movers. Next, we update the average and assess the qual-
ity of the approximation by comparing the average power of movers
n − 1 and n .6

For n = 4, at least 2,000,000 random preferences were sampled
using the Knuth shuffle algorithm. For larger n , the number of itera-
tions were increased to ensure convergence. For n = 9, we sampled
4, 000, 000 per case (δ) and the simulation took 24 hours by utilizing
36 cores. The largest n calculated was n = 14 and the program re-
quired approximately 64 GB of RAM and took over 20 minutes for
only a single iteration.

4.2 Democracy (δ = 0)
Power: We can distinguish two types of power. For the preferences
of Table 1(a), mover 2 exercises his power to reject ρ1’s proposal.
On the other hand, mover 1 has the power to propose his best choice
which does not have to necessarily correspond to the first choice of
mover 2 or the subsequent movers. This, indeed happens for Ta-
ble 1(b), where mover 1 proposes {1, 2, 3} and cannot be rejected
since both other players like to cooperate with him, albeit in pairs.

From the definition of the BG, it is easy to observe that, for n ≥ 2,
mover 1 has only the power to propose, while mover n has only the
power to reject. The following holds:

Proposition 2 For n = 2, mover 1’s power is equal to mover 2’s
power.

Sketch of proof: Consider the number of preference orderings
in which both movers can exercise their power. We have only
two structures π1 = {{1, 2}} and π2 = {{1}, {2}} and four
possible preference orderings: (1; 2)1 = (π1 ≻ π2;π1 ≻ π2),
(1; 2)2 = (π2 ≻ π1;π2 ≻ π1), (1; 2)3 = (π1 ≻ π2;π2 ≻ π1),
and (1; 2)4 = (π2 ≻ π1;π1 ≻ π2). Here, we have G =
{G(N , (1; 2)1),G(N , (1; 2)2),G(N , (1; 2)3),G(N , (1; 2)4)}.
There is no conflict for the first two games and for each of these
two games, the outcome is a structure that is most preferred (i.e.,
ranked 1) by both ρ1 and ρ2. For G(N , (1; 2)3), ρ2 has the power to
reject ρ1’s offer in order to bring about his most preferred structure

6 In Proposition 3 we show that these powers should be the same.
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Figure 3. Power and efficiency in G for n = 3.

{{1}, {2}}. Thus, the outcome of this game will be {{1}, {2}}
which is ranked 1 by ρ2 and 2 by ρ1. Here, ρ1 is powerless. The
opposite happens for G(N , (1; 2)4). Now, ρ1 will offer his most
preferred structure {{1}, {2}} and ρ2 cannot gain anything by re-
jecting ρ1’s offer. In other words, ρ2 has the power to propose. Thus,
the outcome will be {{1, 2}} which is ranked 1 by ρ1 and 2 by ρ2.
Therefore, E(ρ1) = E(ρ2) = 5/4 and Pρ1(G) = Pρ2(G) = 3/4. !

Proposition 3 For n ≥ 2, the last two players ρn−1 and ρn have
equal power, i.e., Pρn−1(G) = Pρn (G).

Sketch of proof: Recall that, at time n − 1, both ρn−1 and ρn have
preference orderings over Bell(n) coalition structures but, as per
the rules of bargaining, only two coalition structures are feasible:
π = {{1}, {2}, . . . , {n}} and π′ = {{1}, {2}, . . . , {n − 2}, {n −
1,n}}. Since we consider all possible combinations of preference
orderings, the number of times π ≻ π′ for ρn−1 will be the same as
the number of times π ≻ π′ for ρn . Thus, Pρn−1(G) = Pρn (G). !

The fact that the ρn−1 and ρn have equal power is convenient
when computing power in bigger games. Figure 1 presents the results
for n = 2, 3, . . . , 9, from which we observe the following:

(a) For all n ≥ 2, the power of movers n and n − 1 is identical
(Proposition 3).

(b) For all n ≥ 3, the power of movers 1 . . . ,n − 2 increases mono-
tonically, i.e., ∀3≤i≤n−2Pρi (G) < Pρi+1(G).

(c) For all n ≥ 2, the power of the first mover decreases with n , i.e.,
∀n≥2Pρ1(G(n)) < Pρ1(G(n + 1)).

(d) For all n ≥ 4, the power of n − 1 last movers in the game G(n)
increases monotonically w.r.t. the power of n−1 movers in G(n−
1), i.e., ∀1≤i≤n−1Pρn−i (G(n − 1)) < Pρn−i (G(n)).

(e) For all n ≥ 4, the power of an average agent in the game increases

with n , i.e., ∀n≥4

∑n
i=1 Pρi (G)

n <
∑n+1

i=1 Pρi (G)

n+1 .

Observation (e) is especially interesting. Counter-intuitively, the
more the players in the game, the more powerful, on average, they
become. Should the pattern in Figure 1 hold for n ≥ 10, we con-
juncture that, with n going to infinity, the power of the first mover
converges to a number close to 0.5, that is, this mover gradually be-
comes powerless. At the same time, the power of the last two movers
converges to a number close to 1, that is, their power becomes close
to the dictatorship. In addition, since the power of all the remaining
movers (from mover 2 to mover n − 2) increases monotonically, it
can be expected that the average power in the system, with n going
to infinity, converges to ≈ 0.75.

Figure 4. Power and efficiency in G for n = 7 and 0 ≤ δ ≤ 1.

This analysis leads to interesting strategic conclusions: if new
players are to be added to the game, then, from the point of view
of an incumbent player, it is best to add them at the beginning of
the agenda. Furthermore, it is best for the incumbents to enlarge the
game as much as possible.

Let us now study the relationship between power and efficiency.

Efficiency: Figure 2 shows the average efficiency ratios for games
of n = 2, . . . , 9 players. Here, the efficiency ratio decreases with n .
The reasons can be sought in the distribution of power in the game.
As shown in Figure 1, the discrepancies between the power of agents
increase with n . This means that, more and more often, powerful
agents are able to secure favourable outcomes at the expense of pow-
erless agents—a conflict which results in the overall efficiency loss.

Consider the example in Table 1(a). Here, mover 2 is able to secure
his most preferred structure {{1}{2, 3}}, but this structure is ranked
5 by both movers 1 and 3. This yields a welfare of 5 + 1 + 5 = 11.
Should mover 2 have less power than mover 1, the grand coalition
might be the outcome with a resulting welfare of 1 + 2 + 1 = 4.

Next, we consider δ ≥ 0 as a potential method to balance power.

4.3 Authoritarianism (δ > 0)
We analyse the authoritarian games (δ > 0), including its most ex-
treme case—the dictatorship (δ = 1).

Power: Consider the 3-player game for which we computed the exact
power. In Figure 3, we plot the power of all the three movers for
different values of δ. With growing probability of the random event,
mover 1 becomes increasingly powerful while movers 2 and 3 less
powerful. The intuition for this has already transpired in Example 1:
for δ = 0.2 in Table 1(a), mover 1 knows that mover 2 opts for the
very disliked {{1}{2, 3}}, he is going to propose the most preferred
grand coalition with the hope that the random event happens (and
the grand coalition results). Interpreting the random event from the
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power perspective, a higher δ increases mover i ’s (1 ≤ i < n) power
to propose, and decreases mover j ’s (i < j ≤ n) power to reject.

Analysing Figure 3 further, for δ ≈ 0.2, the power of mover 2
surpasses the powers of the other players. Finally, as expected, for
δ = 1, mover 1 becomes the dictator while movers 2 and 3 become
completely powerless. Note that, the power of movers 2 and 3 does
not decrease uniformly. For δ > 0, mover 2 becomes more powerful
than mover 3. This result can be generalized as follows:

Proposition 4 For δ > 0, the power of mover n−1 is always higher
than that of mover n , i.e., Pρn−1 > Pρn−1 .

Proof 3 As we saw in the proof of Proposition 3, if mover
n − 1 prefers not to cooperate with mover n , the structure
{{1}{2} . . . {n}} will be proposed and implemented, irrespective
of the preferences of n and whether or not the random event occurs.
While the same holds for mover n against mover n − 1 for δ = 0,
this is no longer the case for δ > 0. Now, whenever mover n−1 likes
cooperation with n while mover n does not, mover n − 1 is going to
propose {{1}{2} . . . {n − 1,n}} with a hope that the random event
happens and this coalition structure becomes implemented. There-
fore, the expected rank of mover n − 1 is higher than the expected
rank of mover n . !
We now analyse how increasing δ influences the distribution of
power among the players in a game of n = 7 players. This distri-
bution is shown in Figure 4. Initially, for small δ (such as 0.1 and
0.2), the first mover has the lowest power among all and the power
grows monotonically as we move down the agenda to subsequent
movers in ρ. However, the differences between the powers of movers
become smaller and smaller. Interestingly, Proposition 4 implies that
mover n − 1 now becomes the most powerful player in the game.
As δ increases, there comes a turning point when the first mover be-
comes most powerful. For instance, at δ = 0.4, the first mover is the
most powerful while mover n is the least powerful. Finally, as in the
game of n = 3 players, when δ = 1, the first mover becomes the
dictator and all the other movers are completely powerless.

Efficiency: We suggested in Section 4.2 that the decreasing effi-
ciency with increasing n can be caused by increasing discrepancy
between the powers of movers. The results in Figure 4 confirm this
conjecture for n = 7. In particular, the upper part of this figure shows
the distribution of power for all seven movers in the game, given dif-
ferent values of δ. The lower part of Figure 4 shows the level of
welfare corresponding to each value of δ. The optimal efficiency is
reached for a δ for which the standard deviation between the powers
of agents in the game is the smallest.

5 Related Work
A lot of the literature on hedonic games has focused on analysing
various stability concepts for coalition structures [4, 1]. This research
shows conditions for the existence of stable structures and studies
their properties. However, the actual procedure of how such stable
structures emerge is usually left out of the analysis. In contrast, this
topic is the focal point of literature on games for coalition structure
formation, to which our paper contributes.

[5] studied the efficiency of equilibrium coalition structures in
the spirit of Ray and Vohra’s [14] equilibrium binding agreements
and von Neumann and Morgenstern’s stable set. [5] shares with our
model the assumption of players’ farsightness. However, the coali-
tion structure formation process in [5] is unstructured, i.e., bargain-
ing is not conducted through a protocol. Also, they deal with a special
class partition function games while we deal with CSGs.

To measure how far a bargained outcome will be from a social op-
timum, Koutsoupias and Papadimitriou [12] defined price of anarchy
and measured it in terms of the ratio of the worst possible Nash equi-
librium and a social optimum. They derived upper and lower bounds
for this ratio for resource sharing in network games.

For coalitional resource games (a form of NTU games), [7] ana-
lyzed a protocol for bargaining cooperation structures. Our protocol
is similar to this in terms of the rules of bargaining. However, in
[7], δ = 0, but in our protocol 0 ≤ δ ≤ 1. [7] show that the negotia-
tion outcome satisfies desirable properties: Pareto optimality, dummy
player, and pseudo-symmetry. In contrast, our focus is on the relation
between agenda, power, and efficiency.

6 Conclusions
We explored a noncooperative game for bargaining a coalition struc-
ture. This is a finite horizon alternating offers game with an exoge-
nous agenda. In each round, the game ends with a certain probability.
We obtained equilibrium for the game, showed how a player’s posi-
tion on the agenda affects his power, and analysed the relationship
between the distribution of the power of individual players, the level
of democracy, and the welfare efficiency of the protocol. We found
that purely democratic games are welfare inefficient. Introducing a
degree of authoritarianism into the protocol makes the distribution of
power more equitable and maximizes welfare.

While our work is primarily theoretical in nature, we believe that
studies on the relationship between agenda and power may shed light
on some real-world phenomena. In particular, the approach devel-
oped in our paper could be useful, for instance, to get some insight
into the distribution of power in structured multilateral negotiations
on oligopolistic markets (such as armaments), where the government
aims to distribute contracts among consortia of companies.
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