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Abstract. There is currently much interest in the problem of mea-
suring the centrality of nodes in networks/graphs; such measures
have a range of applications, from social network analysis, to chem-
istry and biology. In this paper we propose the first measure of node
centrality that takes into account the community structure of the un-
derlying network. Our measure builds upon the recent literature on
game-theoretic centralities, where solution concepts from coopera-
tive game theory are used to reason about importance of nodes in the
network. To allow for flexible modelling of community structures,
we propose a generalization of the Owen value—a well-known so-
lution concept from cooperative game theory to study games with a
priori-given unions of players. As a result we obtain the first measure
of centrality that accounts for both the value of an individual node’s
relationships within the network and the quality of the community
this node belongs to.

1 INTRODUCTION
Real-world networks frequently have highly complex structures.
They can often be characterised by properties such as heavy-tailed
degree distributions, clustering, the small-world property, etc. An-
other important characteristics that many real-life networks have in
common is their community structure [15, 21]. Communities are usu-
ally composed of nodes that are more densely connected internally
than with other nodes in the network. For instance, the teachers from
a particular secondary school may form a community within the so-
cial network of all teachers in the city. Similarly, trade links among
the European Union countries are usually more intense than their
links with the rest of the world. In addition, certain communities may
be considered to be stronger than others. Secondary schools may vary
in reputation, and some trade blocks may be more important to the
global economy than others.

The importance of a community is usually increased when a new,
powerful individual joins it. Conversely, membership in a strong
community may boost the importance of an otherwise weak indi-
vidual. Quantifying this latter effect is the primary goal of this paper.
In other words, we are concerned with the problem of analysing the
importance (the centrality) of individual nodes given the underlying
community structure of the network.

Centrality analysis is an important research issue in various do-
mains, including social networks, biology and computer science [14,
10]. Four widely-known centrality measures are degree, closeness,
betweenness and eigenvector centralities [14, 7]. On top of these
well-known standard measures, many other — often more sophisti-
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cated — approaches have been considered in the literature. Recently,
various methods for the analysis of cooperative games have been ad-
vocated as measures of centrality [16, 10]. The key idea behind this
approach is to consider groups (or coalitions) of nodes instead of only
considering individual nodes. By doing so this approach accounts for
potential synergies between groups of nodes that become visible only
if the value of nodes are analysed jointly [18]. Next, given all poten-
tial groups of nodes, game-theoretic solution concepts can be used to
reason about players (i.e., nodes) in such a coalitional game.

One interesting advantage of game-theoretic centralities is their
flexibility. In particular, there are very many ways in which a
coalitional game can be defined over any given network. Further-
more, there are many well-studied and readily-available solution
concepts—such as the Shapley value [25] and the Banzhaf in-
dex [6]—with which to analyse the network from different angles.
In this paper, we use the flexibility offered by the game-theoretic ap-
proach to construct the first centrality measure in the literature that
is able to account for complex community structures in networks.
To this end, we model the community structure as the a priori given
coalition structure of a cooperative game. By doing so, we are able
to build a centrality metric by generalizing the Owen value [23]—a
well-known solution concept for cooperative games in which players
are partitioned into pre-defined groups.

In our approach, the computation of a node’s power is a two-step
process. First, we compute the importance of the community (if any)
that this node belongs to. Next, we compute the power of the given
node within this community. Our generalization of the Owen value,
which we call coalitional semivalues, is a much broader solution con-
cept. In fact, coalitional semivalues encompass the Owen value as
well as all other solution concepts in the literature that were devel-
oped for games with an a priori defined coalition structure of play-
ers: the Owen-Banzhaf value [24], the symmetric coalitional Banzhaf
value, and p-binomial semivalues [8].

Unfortunately, game-theoretic centrality measures are often com-
putationally complex. In particular, the Shapley value is embedded
in the definition of the Owen value, and is known to be NP-hard for
many representations of games [9]. This negative result also extends
to various coalitional games defined over networks [4, 5] and game-
theoretic centralities in particular [19, 26]. Although, in general, the
new centrality introduced in this paper is #P-complete (and hence
NP-hard), we are able to give a polynomial algorithm to compute it
for problem instances where the value of any group of nodes is deter-
mined by their degree centrality [14]. We verify the practical aspects
of our algorithm on a large citation network that contains more than
2 million nodes and links. Our experiments compare three different
degree centralities: group degree centrality [12], the Shapley value-
based degree centrality [18], and our new centrality. We show that,
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unlike others, our new centrality produces a ranking in which the
power of the top nodes significantly differs, depending on the power
of the communities that these nodes belong to.

2 PRELIMINARIES
A cooperative game in characteristic function form (hereafter just
“game”) consists of a set of players N = {1, 2, . . . , n} and a char-
acteristic function4 ν : 2N → R. The characteristic function assigns
to each coalition C ⊆ N of players a real value (or payoff) indicat-
ing its performance. We assume that ν(∅) = 0. A coalition structure,
denoted by CS, is a partition of N into disjoint coalitions. Formally,
N =

⋃
Ci∈CS Ci and ∀Ci, Cj ∈ CS if i ̸= j we have Ci ∩ Cj = ∅.

One of the fundamental problems in cooperative game theory is
how to evaluate the importance or contribution of players in the coali-
tional game. Semivalues represent an important class of solutions to
this problem [11]. To define semivalues, let us denote by MC(C, v)
the marginal contribution of the player i to the coalition C, i.e.,

MC(C, i) = ν(C ∪ {i})− ν(C).

Let β : {0, 1, . . . , |N | − 1} → [0, 1] be a discrete probability dis-
tribution. Intuitively, β(k) will be the probability that a coalition of
size k is drawn from the set of all possible coalitions. Given the func-
tion β, the semivalue φv(ν) of a player i in the cooperative game ν
is:

φi(ν) =
∑

0≤k<|N|

β(k)ECk [MC(Ck, i)], (1)

where Ck is the random variable that corresponds to a coalition being
drawn with uniform probability from the set of all coalitions of size
k in the set of players N \ {i}. ECk [·] is the expected value operator
for Ck.

A prominent semivalue was proposed by Shapley [25]. The Shap-
ley value is proven to be the unique payoff division scheme of the
grand coalition satisfying four, often desirable, properties: Efficiency,
Symmetry, Null player and Additivity [25]. Another prominent ex-
ample of a semivalue with applications in measuring the power of
players in cooperative games is the Banzhaf index of power [6]. This
latter semivalue satisfies Symmetry, Null player and Additivity but
not Efficiency. The Shapley value and the Banzhaf index are defined
by their respective β-functions βShapley and βBanzhaf :

βShapley(i) =
1
|N | and βBanzhaf (i) =

(|N|−1
i

)

2|N|−1
.

A network is defined as a graph G = (V,E), where V is a set
of nodes and E is a set of edges containing unordered pairs (v, u)
of nodes v, u ∈ V . We define the set of neighbours of a node v by
N(v) = {u : (u, v) ∈ E} and for any set of nodes, S ⊆ V , we
define N(S) =

⋃
v∈S N(v) \ S, respectively. The degree of a node

v is simply the number if its neighbours deg(v) = |N(v)|.
Nodes within the network G can form communities CG ⊆ V .

The community structure, denoted by CSG, is an exhaustive partition
of V into disjoint communities. Formally, V =

⋃
CG∈CSG

CG and
∀C′

G, C
′′
G ∈ CSG we have C′

G ∩ C′′
G = ∅. These properties also

satisfy the requirements for coalition structures. In other words, if we
view the network as a population of interconnected agents playing
a coalition game, then the community structure within the network
can be straightforwardly interpreted as the a priori given coalition

4 A cooperative game is a pair (N, ν), but we will usually refer to it simply
as ν.

structure of agents. More formally, let us define a cooperative game
played on graph G = (V,E) by the pair (V, νG), where νG : 2V →
R is a characteristic function that assigns to each community CG ⊆
V a real value indicating its importance, with νG(∅) = 0. Since
communities in this model are coalitions and community structures
are coalition structures, we unify the notation and refer to them by C
and CS, respectively.

Semivalues evaluate the contribution of a player to a coalition
game. The key idea behind the game-theoretic network centrality (in
our case semivalue-based centrality), is to use these solution con-
cepts to evaluate the contribution of a node to the network, given the
coalitional game (V, νG). Formally:

Definition 1 The semivalue-based network centrality is a triple
(G, νG,φ), where the value of each node v ∈ V is given by φv(νG).

3 COALITIONAL SEMIVALUES & A NEW
CENTRALITY MEASURE

Coalitional games can be analysed from both the ex ante and ex post
perspectives. In the ex ante perspective, it is not known which coali-
tion will actually form. The semivalues defined in formula (1) are ex
ante since they consider the sum of the marginal contributions of a
player to all possible coalitions without any additional assumptions.

Another approach is to consider a coalitional game from the ex
post perspective. In this case it is already known which coalitions
form by the end of the game. In other words, it is known how the
agents have partitioned themselves into a coalition structure. This
ex post perspective is especially appealing for our model where net-
works are or can be divided into communities.

In the remainder of this section we will propose an answer to the
following question: how should we evaluate the importance of indi-
vidual nodes within a network so that the relative importance of their
communities is taken into account? To this end, we will consider how
to adapt game-theoretic centralities so that they allow for an a priori
given community structure of the social network.

The most popular extension of the Shapley value to “ex post”-
like situations was proposed by Owen [23]. We will now define it
using terminology appropriate to game-theoretic network centrality.
To this end, let us first introduce the concept of the quotient game
νQ. Given the coalitional game (V, νG) and community structure
CS = {C1, C2, . . . , Cm}, we define a new coalitional game, where
the communities are considered to be individual players:

νQ
G (R) = νG

( ⋃

r∈R

Cr

)
for all R ⊆M,

where the set M = {1, 2, . . . ,m} represents coalitions’ numbers.
Note that

⋃
r∈R Cr is a coalition of communities. We will denote

such coalition by QR.
We are now ready to define the Owen value. Given (V, νG) and

CS = {C1, C2, . . . , Cm}, the share of the grand coalition’s payoff,
νG(V ), given to player i ∈ Cj ∈ CS according to the Owen value
is given by:

OVi(νG,CS)=
∑

R⊆M\{j}

1

|M |
(|M|−1

|R|
)

∑

C⊆Cj\{i}

1

|Cj |
(|Cj |−1

|C|

)MC(QR∪C,i).

The Owen value is the unique division scheme that satisfies
the following five often desirable properties: Efficiency, Symmetry,
Null player, Additivity, and Component Symmetry [23].

Let us examine the above formula more closely. The computation
of the Owen value can be thought of as a two-step process. In the first
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step, communities play the game (M, νQ
G ) between themselves and

receive their Shapley values. In the second step, the values of these
communities are, in turn, divided amongst their members according
to the Shapley value of the members.

In this paper we introduce a generalization of the Owen value,
where more general division schemes—semivalues—are used as op-
posed to the Shapley value. Specifically, we combine formula (1)
with the formula for the Owen value and propose coalitional semi-
values, which we define as follows:

φi(νG,CS)=
∑

0≤k<|M|

β(k)
∑

0≤l<|Cj |

αj(l) ETk,Cl [MC(QTk ∪Cl, i)], (2)

where T k is a random set of size k drawn uniformly from the set
M \ {j}, and Cl a the random set of size l drawn uniformly from
the set Cj \ {i}. The function β : {0, 1, . . . , |M | − 1} → [0, 1]

is a function such that
∑|M|−1

k=0 β(k) = 1. {αj}j∈{1,...,|M|} is a
family of functions such that αj : {0, 1, . . . , |Cj |− 1}→ [0, 1] and
∑|Cj |−1

k=0 αj(k) = 1.
Intuitively, β is a probability distribution used to compute

φj(M, νQ
G ), and αj is the probability distribution used to evaluate

the players inside a coalition φi(Cj , ν). Importantly, as shown in Ta-
ble 1, by adopting various probability distributions, we can obtain
the Owen value [23], as well as all of its modifications proposed
to date in the literature: Owen-Banzhaf value [24], symmetric coali-
tional Banzhaf value [2], and symmetric coalitional p-binomial semi-
values [8].5

Table 1. Values of α and β for the Owen value and its various extensions.

Solution name β(k) αj(l)

Owen value [23] 1
|M|

1
|Cj |

Owen-Banzhaf value [24]
(
|M|−1

k

)

2|M|−1

(|Cj |−1

l

)

2
|Cj |−1

symmetric coalitional
Banzhaf value [2]

(
|M|−1

k

)

2|M|−1
1

|Cj |

symmetric coalitional
p-binomial semivalue [8]

pk(1−p)|M|−1−k

p ∈ [0, 1]
1

|Cj |

Let us now introduce the game-theoretic network centrality mea-
sure based on coalitional semivalues:

Definition 2 The game-theoretic network centrality for the graph G
with community structure CS is a quadruple (G,CS , νG,φ), where
the value of each node v ∈ V is given by φv(νG,CS).

This is the first centrality measure that evaluates nodes by taking into
account the community structure of the network. In the next section,
we will consider various properties of this new measure.

4 PROPERTIES
The aim of this section is to translate the properties of various in-
stances of coalitional semivalues into the properties of the resulting
centrality measure. The first three properties are derived from Null
Player, Additivity and Symmetry, respectively.

Property 1 If a node makes no contribution to any community then
its value is zero: ∀C⊆V \{v}MC(C, v)=0 =⇒ φv(νG,CS)=0.

Property 2 If two group centralities are combined into one νG =
ν′
G + ν′′

G then φv(νG,CS) = φv(ν
′
G,CS) + φv(ν

′′
G,CS).

5 We refrain from the axiomatic characterization of the new solution concept
as being out of the scope of this paper.

Property 3 If two nodes from the same community v, u ∈ Cj

contribute the same value to all possible communities then they
are equally important: ∀C⊆V \{v,u}MC(C, v) = MC(C, u) =⇒
φv(νG,CS)=φu(νG,CS).

The next property involves the Quotient game:

Property 4 The power of a community is the aggregation of the
power of nodes comprising this community. Formally:φj(M, νQ

G ) =∑
v∈Cj

φv(νG,CS).

All the solutions, where the power inside the communities is com-
puted using the Shapley value (due to the Efficiency), have the above
property. In the same spirit, it can required that all the power of the
whole network νG(V ) is distributed among the nodes:
Property 5 The value of the whole network ν(V ) is the aggre-
gation of the power of nodes comprising this network: νG(V ) =∑

v∈V φv(νG,CS).
Our final property is the translation of Component Symmetry. If we
define the marginal contribution of the coalition C to the set of nodes
QT as MC(QT , C) = ν(QT ∪ C)− ν(QT ), we get:

Property 6 If two communities contribute the same value to all
possible groups of communities then their evaluation is the same:
∀T⊆M\{i,j}MC(QT , Ci) = MC(QT , Cj) =⇒ φi(M, νQ

G ) =

φj(M, νQ
G ).

Table 2 summarizes properties of the coalitional semivalues.

Table 2. The properties of coalitional semivalue and its various instances.

Solution name P1 P2 P3 P4 P5 P6

coalitional semivalue [this paper] ! ! ! × × ×
Owen value [23] ! ! ! ! ! !
Owen-Banzhaf value [24] ! ! ! × × ×
symmetric coalitional
Banzhaf value [2] ! ! ! ! × !

symmetric coalitional
p-binomial semivalue [8] ! ! ! ! × !

5 COMPUTATIONAL ANALYSIS
For many succinctly represented coalitional games, computing the
Shapley value is NP-hard (in fact, it is often #P-complete [9, 19]).
Naive algorithms to compute the Shapley value (exhaustively com-
puting the average marginal contribution over all orderings of play-
ers) have exponential running time. Given this, there are two possible
research directions. Firstly, efficient approximate algorithms can be
developed. Secondly, classes of centralities, that have real-life ap-
plications and can be computed in polynomial time, can be defined.
In this paper, we take the latter approach and propose a polynomial
time algorithm for computing coalitional semivalue-based central-
ities, where the characteristic function—the value of any group of
nodes—is based on their degree. Thus, our method is build upon de-
gree centrality — an important method of evaluating nodes in social
networks analysis [14, 12, 18].

5.1 Weighted degree centralities
In this subsection we define a class of cooperative games such that
a node’s value is based on its degree. The weighted group degree
centrality of a community C in graph G is defined as follows:

νD
G (C) =

∑

v∈N(C)

f(v), (3)
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where N(C) is the set of neighbours of C, and f is a parameter that
is a polynomially computable function.

Definition 3 A game-theoretic network degree centrality for the
graph G with the community structure CS is a quadruple
(G,CS , νD

G (C),φ), where the value of each node v ∈ V is given
by φv(ν

D
G ,CS).

In the next section we will look more closely at the marginal con-
tributions of nodes in order to effectively compute their expected
value. This, in turn, will let us compute coalitional semivalues based
on weighted group degree centrality in polynomial time.

5.2 The marginal contribution analysis
In this subsection we lay the groundwork for the efficient algorithm
that will compute coalitional semivalues for weighted group degree
centrality in polynomial time. To this end, we will use equation (2).
For a given node, v ∈ Cj ∈ CS , the focus will be on computing
the expected value of its marginal contribution: ETk,Cl [MC(QTk ∪
Cl, v)].

We must consider the value of the expected marginal contribution
of a node v to the set QTk ∪ Cl, where T k is a random set of size
k, and Cl is a random set of size l. Both sets are drawn uniformly
from the sets M \ {j} and Cj \ {v}, respectively. We will construct
the effective algorithm in two steps. First, we will decide under what
conditions v makes a contribution to the set QTk ∪ Cl. Second, we
will use a combinatorial argument to compute this contribution for
each of the cases distinguished in the first step.

Before we start, we need to introduce the following notation: for
the node v ∈ Cj ∈ CS we define the set of adjacent communi-
ties as NCS (v) = {Ci ∈ CS \ Cj | Ci ∩ N(v) ̸= ∅}, inter-
community degree as degCS (v) = |NCS (v)|, the set of neighbours
within a community as Nj(v) = N(v) ∩ Cj , and intra-community
degree as degj(v) = |Nj(v)|.

Theorem 1 The game-theoretic network degree centrality for graph
G with community structure CS for the node v ∈ V can be computed
in time polynomial in |V |.

Proof: In our proof we will use concepts from probability the-
ory. Thus, we will first define the probability space, which is a triple
(Ω,F , P ), where Ω is a sample space containing sets {QTk ∪ Cl},
T k ⊆ 2|M|−1 is such that |T k| = k and Cl ⊆ 2|Cj |−1 is such that
|Cl| = l. The important observation is that |Ω| =

(|M|−1
k

)(|Cj |−1
l

)
.

In our model, F is the set of elementary events (F = Ω), and
P : F → [0, 1] is a probability distribution function such that for
each event A ∈ F we have P (A) = 1

|Ω| .
There are two types of marginal contribution that a node can make.

For the first, let us consider the marginal contribution of a single ver-
tex v to the random set QTk ∪Cl. When v joins a coalition C, it can
contribute to its value with the help of any vertex u ∈ N(v) if and
only if u is not in C and u is not already directly connected to C. Let
us introduce the Bernoulli random variable B[1]

v,u,k,l, which will in-
dicate whether the vertex v makes a contribution through vertex u to
the random set QTk ∪Cl. Equation (3) tells us that this contribution
will be f(u). Thus, we have:

E[f(u)B[1]
v,u,k,l] = f(u)P [(N(u) ∪ {u}) ∩ (QTk ∪ Cl) = ∅],

where P [·] denotes probability, and E[·] denotes expected value.

The second type of contribution takes place when vertex v joins a
coalition C and takes away the value f(v). Such a contribution hap-
pens when vertex v is directly connected to the coalition C. In partic-
ular, weighted group degree centrality νD

G assumes that the value of
a set of vertices depends only on nodes directly connected to this set,
ignoring nodes already inside it. Therefore, when the node v becomes
a member of C and it is not any more directly connected with it, the
value of C is reduced by f(v). Let us introduce the Bernoulli random
variable B[2]

v,u,k,l, which will indicate whether vertex v makes a con-
tribution through itself to the random set QTk ∪ Cl. More formally,
we have:

E[−f(v)B[2]
v,k,l] = −f(v)P [v ∈ N(QTk ∪ Cl)].

Now, we will move on to the second step of the proof and use a com-
binatorial argument to compute P [1] = P [(N(u) ∪ {u}) ∩ (QTk ∪
Cl) = ∅] and P [2] = P [v ∈ N(QTk ∪ Cl)].

Recall that there are exactly
(|M|−1

k

)(|Cj |−1
l

)
sets QTk ∪Cl. This

is the size of the sample space. With this in mind, the probability P [1]

for u ∈ N(v), if u, v ∈ Cj can be computed as follows:

P [1.1] =

(|M|−1−degCS (u)
k

)(|Cj |−1−degj(u)
l

)
(|M|−1

k

)(|Cj |−1
l

) ,

otherwise if v ∈ Cj and u ∈ Ci and i ̸= j we have:

P [1.2] =

(|M|−1−degCS (u)
k

)(|Cj |−degj(u)
l

)
(|M|−1

k

)(|Cj |−1
l

)

Finally, for v ∈ Cj and u ∈ N(v) we obtain:

E[f(u)B[1]
v,u,k,l]=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if u ∈ Cj

and
(
degCS (u)>|M |−1

or degj(u) > |Cj |− 1
)

f(u)P [1.1] if u ∈ Cj

0 if u /∈ Cj

and
(
degCS (u)>|M |−1

or degj(u) > |Cj |
)

f(u)P [1.2] if u /∈ Cj

(4)

In order to compute P [2] we consider a complementary event
P [2] = (1 − P [N(v) ∩ (QTk ∪ Cl)) = ∅]) and using the same
combinatorial argument as for computing P [1.1], for v ∈ Cj we get:

P [2] = 1−
(|M|−1−degCS (v)

k

)(|Cj |−1−degj(v)
l

)
(|M|−1

k

)(|Cj |−1
l

) ,

and consequently we obtain:

E[f(v)B[2]
v,k,l]=

⎧
⎨

⎩

−f(v) if
(
degCS (u)>|M |−1

or degj(u) > |Cj |− 1
)

−f(v)P [2] otherwise.
(5)

The final formula combines equations (4) and (5) :

E[MC(QTk ∪ Cl, v)]=
∑

u∈N(v)

(
E[f(u)B[1]

v,u,k,l]
)
+ E[f(v)B[2]

v,k,l]

=
∑

u∈N(v)∩Cj

f(u)
((|M|−1−degCS (u)

k

)(|Cj |−1−degj(u)
l

)
(|M|−1

k

)(|Cj |−1
l

)
)

+
∑

u∈N(v)\Cj

f(u)
((|M|−1−degCS (u)

k

)(|Cj |−degj(u)
l

)
(|M|−1

k

)(|Cj |−1
l

)
)

− f(v)
(
1−

(|M|−1−degCS (v)
k

)(|Cj |−1−degj(v)
l

)
(|M|−1

k

)(|Cj |−1
l

)
)
. (6)
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The above formula can be used to compute ETk,Cl [MC(QTk ∪
Cl, v)] in polynomial time. Therefore, the game-theoretic network
degree centrality for graph G with community structure CS can be
computed in polynomial time using equation (2), which ends our
proof. "

5.3 Algorithm
Algorithm 1 directly implements expression (2). The expected value
operator is computed using the final result of Theorem 1: equation
(6). It computes the game-theoretic network degree centrality for a
given graph G with community structure CS . For the sake of clarity,
we assume in our algorithm that for a < b we have

(
a
b

)
= 0, and for

any a we have a
0 = 0.

Algorithm 1: The coalitional semivalue
Input: Graph G = (V,E), node v ∈ V , coalition structure CS ,

functions β and family of functions {α}
Data: for each vertex u ∈ V and the community v ∈ Cj :
degCS (u) - the inter-community degree
degj(u) - the intra-community degree
Output: φv coalitional semivalue-based degree centrality

1 φv ← 0;
2 for k ← 0 to |M |− 1 do
3 for l← 0 to |Cj |− 1 do
4 MCk,l ← 0;
5 foreach u ∈ N(v) ∩ Cj do

6 MCk,l←MCk,l+
f(u)(|M|−1−degCS (u)

k )(|Cj |−1−degj(u)

l )
(|M|−1

k )(|Cj |−1

l )
7 foreach u ∈ N(v) \ Cj do

8 MCk,l←MCk,l+
f(u)(|M|−1−degCS (u)

k )(|Cj |−degj(u)

l )
(|M|−1

k )(|Cj |−1

l )
;

9 MCk,l← MCk,l − f(v);

10 MCk,l← MCk,l+
f(v)(|M|−1−degCS (v)

k )(|Cj |−1−degj(v)

l )
(|M|−1

k )(|Cj |−1

l )
;

11 φv ← φv + β(k)αj(l)MCk,l;

This algorithm requires some precomputations. For each node u ∈
V we need to calculate degCS (v) and degj(v). We can store these
values using O(|V |) space. Provided that it is possible to check the
community of a given node in constant time, we can perform these
precomputations in O(|V | + |E|) time. In the worst case, the main
algorithm works in O(|V |3) time.

Our next observation is that for trivial coalition structures (such
as CS = {A}, or CS = {{a1}, {a2}, . . . , {an}}) our algorithm
computes any weighted degree-based semivalue in O(|V |2) time.
Finally, we would like to note that this algorithm is easily adapted
to directed networks. To this end, depending on the new definition of
weighted group degree, we need to replace all instances of degCS (u)
and degj(u) with their counterparts for directed networks: in or out
degree.

6 SIMULATIONS
The main aim of this experiment is to compare three rankings created
by three different methods: (i) one that uses weighted degree central-
ity and evaluates each node v by the number of neighbours it has (we
denote it by νD

G ({v})); (ii) one with the Shapley value-based degree
centrality (denoted SVv); and, (iii) one with the Owen value-based
degree centrality (denoted OVv), which evaluates nodes in the con-
text of the communities they belong to and their respective power.
Thus, the first two methods do not account for the existence of the
community structure while the third one does.

6 8 5

10 11

· · ·

1 9

Figure 1. The relative power of communities for the first top nodes from
the νDG ({v}) ranking. The power of the communities of nodes 5, 6 and 8 is
significantly smaller than the power of communities of the other top nodes.

The real-life network used for simulations is a citation network
that consists of 2, 084, 055 publications and 2, 244, 018 citation re-
lationships.6 This dataset is a list of publications with basic attributes
(such as: title, authors, venue, or citations), and it is part of the project
ArnetMiner being under development by Tang et al. [28]. All pub-
lications extracted from this dataset were categorized into 22954
unique communities representing journals, conference proceedings
or single book titles using basic text mining techniques. These com-
munities can be interpreted as scientific groups united under the
same topics of interests. In our experiment we use the directed ver-
sion of our algorithm and assume that f(v) = 1

#numer of articles citing v .
The Shapley value-based centrality (the second method) is com-
puted using the polynomial time algorithm introduced by Micha-
lak et al. [18]. The Owen value-based centrality is computed with
the modification of Algorithm 1, in which thanks to the form of the
α and β (in Owen value these discrete probabilities are uniform) the
complexity was reduced to O(|V |+ |E|).

In what follows we focus on the 11 top nodes from the basic rank-
ing νD

G ({v}). Figure 1 shows the relative power of the communities
to which these nodes belong. Nodes indexed 5, 6 and 8 belong to sig-
nificantly less powerful communities than nodes 1, 2, 3, 4, 7, 9, 10
and 11.

Figure 2 shows how the position of top nodes selected using
νD
G ({v}) changes in the SVv and OVv rankings. While for most

nodes the perturbations are not so intensive, we observe significant
downgrade of the position of nodes 5, 6 and 8 in the OVv rank-
ing. This demonstrates coalitional semivalues-based centrality (in
this case the Owen value-based centrality) is able to recognize that
these three nodes belong to much weaker communities.

Table 3. The values of different coalitional semivalues.

Solution name / Nodes’s degree 17 16 11 10 9

Owen value 3.51 2.68 1.47 1.37 0.70

Owen-Banzhaf value 2.28 1.38 0.47 0.88 0.01

symmetric coalitional
Banzhaf value 3.51 2.68 1.47 1.37 0.70

symmetric coalitional
p-binomial semivalue (p = 1

4 ) 4.38 3.15 1.65 2.38 1.04

The rankings of nodes may differ depending which coalitional
semivalue we choose. To illustrate this fact we evaluated top 5 nodes
with the highest degree centrality from Zachary Karate Club Net-
work [29]. This network consists of 34 nodes divided into two com-
munities. We observe in Table 3 that the ranking created with the
Owen value differs with the one created with Owen-Banzhaf value
at the 3rd and 4th positions.

7 RELATED WORK
Coalitional game-theory and centrality measures were first combined
by Grofman and Owen [17], who introduced a centrality metric based

6 The database used for these experiments is available under the following
link: http://arnetminer.org/citation.
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Figure 2. Three rankings of the top nodes. The OV ranking radically
decreases the positions of the nodes 5, 6 and 8.

on the Banzhaf power index. The next important step in this field was
made by Gomez et al. [16], who axiomatized a centrality measure
based on the Shapley value and graph restricted games [20]. Semi-
values as a measure of the importance of nodes were for the first
time used by Amer and Gimenez [3]. Amer et al. [10] used solution
concepts from generalized coalitional games [22] in order to create
centralities for directed networks. Works on computational analysis
of game-theoretic centrality include [18, 27, 19].

A community structure was introduced by Girvan and New-
man [15]. Much literature has been devoted to defining communi-
ties [21, 1] and developing efficient algorithms for community detec-
tion within networks [15, 13]. However, the issue of how community
structure influences node centrality has not yet been studied.

8 SUMMARY AND FUTURE WORK
The centrality metric proposed in this paper is the first tool that evalu-
ates individual nodes in the context of their communities. This metric
is based on the Owen value—a well-known concept from coalitional
game theory that we generalize by introducing coalitional semival-
ues. Our experiments show that the rankings can significantly dif-
fer if we account for the power of the relevant communities that the
nodes belong to. If the community of a node is weak, it can signif-
icantly weaken the position of the node in the ranking based on the
coalitional semivalue. It also demonstrates that our polynomial time
algorithm is applicable to large data sets.

In our opinion, the most interesting direction for future work is to
develop the coalitional semivalue-based measures that extend other
than degree centralities, especially the betweenness and the closeness
centralities [14].
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