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Abstract. Traditionalapproachestodistributedproblemsolvinghave
treatedthe problemas oneof distributedsearch.In this paper, we
proposeanalternative, logic-basedview of distributedproblemsolv-
ing, wherebyagentscooperatively solveproblemsby exchangingin-
formation in order to derive the solution to a problemusing logi-
cal deduction.In particular, we give a knowledge theoretic modelof
distributedproblemsolving,andshow how variousproblemsolving
strategiescanberepresentedwithin thisscheme.

1 Introduction

Distributedproblemsolvingis perhapstheparadigmexampleof ac-
tivity in multi-agentsystems[1]. It occurswhen a group of logi-
cally decentralisedagentscooperateto solve problemsthataretyp-
ically beyond the capabilitiesof any individual agent.Historically,
distributedproblemsolvinghasbeenviewedandmodelledasakind
of distributedsearch, wherebya collectionof agentscollaboratively
traversethesearchspaceof aproblemin orderto find asolution[10].
This modelobviously mirrorsthe long-studiedandwell-understood
view of problemsolvingassearchfrom mainstreamArtificial Intel-
ligence(AI) [8].

In short,thepurposeof thispaperis to put forwardanalternative,
logic-basedview of distributedproblemsolving[6]. In thisview, dis-
tributedproblemsolving is treatedasa multi-agentdeductionprob-
lem. This viewpoint, while comparatively novel in multi-agentsys-
tems research,neverthelessechoesand builds upon the long and
highlysuccessfultraditionof problemsolvingthroughtheoremprov-
ing from mainstreamAI [9].

The basic idea of the approachis both simple and intuitive. A
problemto besolvedis phrasedasaquestionof logicalconsequence:
doesconclusionψ follow from premisesϕ1 ��������� ϕn? In our model,
thepremisesaredistributedamongacollectionof agents. Eachagent
is equippedwith somedeductivecapabilityandtheability to commu-
nicate.Problemsolvingproceedsby agentsapplyingtheir deductive
capabilityto the part of the problemthey have beenallocated,and
sharingresultswith otheragentsby broadcastingthem.The infor-
mationthat is sharedin this way canthenbe usedby recipientsto
derive furtherconclusions,andsoon.Eventually, we hope,anagent
will havesufficient informationto derivetheconclusion.In thetradi-
tional (centralised)view of theoremproving, thekey questionto be
answeredis whatruleto applynext (andhencewhichlemmato prove
next). In themulti-agentdeductionview, they key questionbecomes
which message to sendnext.

Theparticularemphasisof this paperis on a knowledge theoretic
accountof multi-agentproblemsolving [4]. Thuswe begin in sec-
tion 2 by defininga temporal epistemiclogic thatallowsusto model
boththeinformationcarriedbyagents(i.e.,theirpartof theproblem),
andhow this informationevolvesover time,asproblemsolvingpro-
ceeds.Thenotionof amulti-agentsystemis definedin section3, and
in particular, this sectionshows how the temporalepistemiclogic
developedin section2 canbe usedto representthe history of such
a system.Section4 introducesthenotionof a problem,anddefines
what it meansfor a multi-agentsystemto solve a problem.Some
basicresultsrelatingto problemsandmulti-agentsystemsareestab-
lishedin thissection,andsomepracticalmulti-agentproblemsolving
strategiesarediscussed.In particular, weshow how aform of deduc-
tion closelyrelatedto classicalresolutioncanbe realisedusingthe
framework presentedin this paper. Finally, section5 presentssome
conclusionsanddiscussesrelatedresearch.

2 Logical Preliminaries

We begin by assuminga setAg � � 1 ��������� n� of agents, or morepre-
cisely, agent identifiers. We usei to standfor membersof Ag. Next,
weassumeafinite vocabularyΦ � � p � q � r ������� � of primitiveproposi-
tions. Thesearetheatomiccomponentsof thelanguageswewill use
to expressproblems.

A stateis definedto bea (possiblyempty)subsetof Φ. The idea
is thata stateexplicitly identifiesthepropositionsthataretruein it.
Stateswill thusdo serviceaspropositionalvaluations,of the kind
thatareusedin normalmodallogics.They will allow usto do with-
outsuchvaluationsin ourframework.Forexample,if s � � p � q� , then
weknow thattheonly primitivepropositionstruein s arep andq. If
s��� /0, thenevery primitive propositionin s� is false.This approach
is, of course,strictly lesspowerful thanthatof usingvaluationfunc-
tions, sinceit implies that any two statesareequalif agreeon the
valuationof primitive propositions(i.e., they containthe sameele-
ments).However, this is not a problemfor our work. Let S � ℘	 Φ 

bethesetof all states.Weuses (with annotations:s� � s1 ������� ) to stand
for membersof S.

In orderto expressthepropertiesof states,weintroduceaclassical
propositionallogic � 0. This logic containstheclassicalconnectives
“ � ” (and),“  ” (or), “ � ” (not),“ � ” (implies),and“ � ” (if, andonly
if), aswell aslogicalconstantsfor truth(“ true”) andfalsity(“ false”).
Wedefinesyntaxandsemanticsfor disjunctionandnegation,andas-
sumetheremainingconnectivesandconstantsareintroducedasab-
breviationsin thestandardway. Formally, thesyntaxof � 0 is defined
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by thefollowing grammar:

� � 0-fmla� :: � any elementof Φ � true �� � � 0-fmla��� � � 0-fmla�� � � 0-fmla�
Let wff 	�� 0 
 bethesetof (well-formed)formulaeof � 0. Theseman-
tics of � 0 aredefinedvia the � 0 satisfactionrelation“ � ��� 0”, which
holds betweenstatesand membersof wff 	�� 0 
 . The rules defining
this relationareasfollows:

s � ��� 0 p if f p � s (wherep � Φ)
s � � � 0 true
s � ��� 0 � ϕ if f nots � ��� 0 ϕ
s � ��� 0 ϕ  ψ if f s � ��� 0 ϕ or s � ��� 0 ψ

Next, weintroduceknowledgesets, whichin our formalismwill play
the role usually taken by accessibilityrelationsin knowledgethe-
ory [4]. The idea,asin knowledgetheory, is to characterisethe in-
formationcarriedby anagent— its knowledge— asa setof states.
Eachstaterepresentsone way the world could be, given what the
agentknows. However, ratherthanexplicitly introducinga relation
overstatesto characteriseanagent’sknowledge,wewill insteadsim-
ply representit asa setof states.Althoughthis techniqueis in prin-
ciple lessexpressive that thetraditionalaccessibilityrelation,it will
not affect our formalism or our results.We let KS � ℘	 S
 be the
set of all knowledgesets,and useκ (with annotations:κ � � κ1 ������� )
to standfor membersof KS. If ϕ � wff 	�� 0 
 , thenwe write κϕ for
the knowledgesetthat containsjust thosestatesthat satisfyϕ, i.e.,
κϕ � � s � s � ��� 0 ϕ � .

Ourdefinitionof knowledge is essentiallyidenticalto thatof knowl-
edgetheory:an agenti � Ag with knowledgeset κi knows ϕ if ϕ
is satisfiedby all statesin κi . For the purposesof this paper, we
will only be concernedwith knowledgethat is expressedin � 0: we
will notbeconcernedwith nestedknowledge(i.e.,knowledgeabout
knowledge).This will be consideredodd by readersfamiliar with
normalmodal (S5) epistemiclogic [4], but nestedknowledgeit is
not requiredfor expressingour problems.We definea binarymeta-
languagepredicateknows� wff 	�� 0 
�� KS to captureour definition
of knowledge:

knows	 ϕ � κ 
 if f  s � κ � wehaves � ��� 0 ϕ �
To expressthe propertiesof knowledgesets,we introducea multi-
agentepistemiclogic, � 1, which containsan indexed set of unary
modalconnectivesKi , onefor eachagenti � Ag. A formulaKiϕ is
to beread“agenti knows ϕ”. In addition, � 1 containsa distributed
knowledge modality, D. A formula Dϕ is to be read“there is dis-
tributedknowledgeof ϕ”. The intuitive semanticsof this operator
arethat if Dϕ thenϕ couldbededucedby “pooling” theknowledge
of all otheragents.See,e.g,[4] for adiscussionof distributedknowl-
edge.Syntactically, � 1 is definedby thefollowing grammar:

� � 1-fmla� :: � Ki
� � 0-fmla�!� D � � 0-fmla���"� � � 1-fmla�!�� � 1-fmla�# � � 1-fmla�

Note that Ki andD modalitiescanonly be appliedto � 0 formulae,
andalsonotethatprimitivepropositions— elementsof Φ — arenot
formulaeof � 1. Let wff 	�� 1 
 bethesetof (well-formed)formulaeof� 1. Thesemanticsof � 1 aredefinedvia the � 1 satisfactionrelation
“ � ��� 1”, which holdsbetweentuplesof the form 	 κ1 ��������� κn 
 , where
κi � KS is a knowledgeset for agenti � Ag, and formulaeof � 1.
Therulesdefiningthis relationareasfollows (we omit therulesfor
negationanddisjunction,asthesearetrivial):

	 κ1 ��������� κn 
$�� � 1 Kiϕ if f knows	 ϕ � κi 
	 κ1 ��������� κn 
$���� 1 Dϕ if f knows	 ϕ � κ1 %'&�&�&�% κn 

Wereferto tuplesof theform 	 κ1 ��������� κn 
 as � 1 models,for obvious
reasons.

Finally, in this paper, we areconcernedwith evolving sequences
of knowledgesets.To representthe propertiesof suchsequences,
we introducea temporallogic � 2, which extends � 1 andis in fact
definedasa supersetof it. � 2 containstwo fairly conventionaltem-
poralmodalities[3]: “ ( ” (for “next”), and“ ) ” (for “until”), from
whichtheremainingstandardconnectivesof lineardiscretetemporal
logic maybederived.The“ ( ” connectivemeans“at thenext time”.
Thus ( ϕ will besatisfiedat sometime point if ϕ is satisfiedat the
next timepoint.The“ ) ” connectivemeans“until”. Thusϕ ) ψ will
be satisfiedat sometime if ψ is satisfiedat that time or sometime
in the future,andϕ is satisfiedat all timesuntil the time that ψ is
satisfied.Thesyntaxof � 2 is definedby thefollowing grammar:

� � 2-fmla� :: � � � 1-fmla��� ( � � 2-fmla�!�� � 2-fmla�*) � � 2-fmla�!�� � � 2-fmla��� � � 2-fmla�� � � 2-fmla�
Thesemanticsof � 2 aredefinedwith respectto temporal epistemic
models. Formally, atemporalepistemicmodelm is simplyafunction

m : IN + KS � &�&�& � KS, -/. 0
n times

which determinesan � 1 model m	 u
 for every time point u � IN.
Thesemanticsof � 2 aregivenvia the � 2 satisfactionrelation“ � ��� 2”,
which holds betweenpairs of the form 	 m� u
 (wherem is an � 2-
modelandu � IN is a temporalindex into m), and � 2 formulae.Once
again,weonly give thesemanticrulesfor non-trivial connectives:

	 m� u
!� ��� 2 ϕ if f m	 u
�� ��� 1 ϕ (whereϕ � wff 	�� 1 
 )	 m� u
!� � � 2 ( ϕ if f 	 m� u 1 1
�� � � 2 ϕ	 m� u
!� ��� 2 ϕ ) ψ if f 2 v � IN s.t. 	 v 3 u
 and 	 m� v
!� ��� 2 ψ �
and  w � IN � if 	 u 4 w 5 v


then 	 m� w
�� ��� 2 ϕ

The remainingconnectivesof linear discretetemporallogic areas-
sumedto introducedasabbreviationsasfollows:
6

ϕ � true ) ϕ ϕ �7� 6 � ϕ ϕ 8 ψ � ϕ ) ψ  ϕ �
Wenow informally considerthemeaningof thederivedconnectives.
First, “

6
” means“either now, or at sometime in the future”. Thus6

ϕ will besatisfiedatsometimeif eitherϕ is satisfiedatthattime,or
somelater time.The“ ” connective means“now, andat all future
times”. Thus ϕ will be satisfiedat sometime if ϕ is satisfiedat
that time andat all later times.Thebinary “ 8 ” connective means
“unless”. Thus ϕ 8 ψ will be satisfiedat sometime if either ϕ is
satisfieduntil ψ is satisfied,or elseϕ is alwayssatisfied.

Satisfiabilityandvalidity for our threelogics aredefinedin the
usualway. Wewrite � ���

k
ϕ to indicatethatthe � k formulaϕ is valid

in � k. � 0 is simply classicalpropositionallogic, andassuchwill in-
heritall thepropertiesof this logic.However, � 1 doesnotbehaveex-
actlylikeanS5epistemiclogic [4]. In particular, sincenestedmodal-
itiesarenotpermittedin � 1, axioms4 and5 arenot valid in � 1, and
sinceprimitivepropositionsarenot � 1 formulae,axiomT is notvalid
in � 1. However, wedohavetheusualK axiomandnecessitationrule
for Ki modalities:
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� ��� 1 Ki 	 ϕ � ψ 
9�:	�	 Kiϕ 
9�:	 Kiψ 
�

If � ���

0 ϕ then � ��� 1 Kiϕ

In addition,theD modalityhasthefollowing properties[4]:

� ��� 1 D 	 ϕ � ψ 
9�;	�	 Dϕ 
9�;	 Dψ 
�
� ��� 1 Kiϕ � Dϕ
If � ��� 0 ϕ then � ��� 1 Dϕ

Wewill notpauseto examinethepropertiesof thetemporallanguage� 2, sincethis hasbeenstudiedexhaustively elsewhere(see[3] for
references).

Finally, we will assumethat thenotionof logical consequenceis
definedin thestandardwayfor eachof our logics.Wewrite Γ � ��� k

ϕ
to indicatethat the � k formulaϕ is an � k logical consequenceof Γ,
whereΓ � wff 	�� k 
 .
3 Multi-Agent Systems

The basic idea is to have a collection of programs— agents—
which interactwith one anotherby broadcastingmessages,where
thesemessagesareformulaeof � 0. Whenanagentsendsa message
ϕ, the intuitive semanticsis that it is assertingthe truth of ϕ. In so
doing,theagentis giving otheragentsin thesystemsomeinforma-
tion, which they canuseto updatetheir own knowledgeset.We re-
fer to a systemthat decideswhich messageto sendbaseduponthe
agent’s internalstateasan agent program. Abstractly, we view an
agentprogramasa functionpg : KS + wff 	�� 0 
 . Thus,on thebasis
of anagent’s knowledgeset,anagentprogramdeterminesa formula
of � 0, which will be the messagethat the agentsends.Let PG be
thesetof all suchprograms.A multi-agentsystemis a tupleof pairs,	�	 pg1 � κ0

1 
 ��������� 	 pgn � κ0
n 
�
 , wherepgi � PG is the programfor agent

i � Ag, andκ0
i � KS is an initial knowledge setfor agenti. Let Σ be

thesetof all suchmulti-agentsystems.We useσ (with annotations:
σ1 � σ � ������� ) to standfor membersof Σ.

We notedabove thatuponreceiving a message,anagentusesthe
messageto updateits knowledgeset.We modelthis updateprocess
via apragmaticinterpretationfunction:

prag : KS � wff 	�� 0 
<+ KS

wherethis functionis definedasfollows:

prag 	 κ � ϕ 
=� κ > � s � s � κ ands � ��� 0 � ϕ � �
Thusif anagentreceivesamessageϕ, it will removefrom its knowl-
edgesetall statesthatarenotconsistentwith ϕ. Thefollowing lemma
capturesoneof themostimportantpropertyof prag.

Lemma 1 If 	 ������� κi ������� 
 is an � 1 modelthen

	 ������� prag 	 κi � ϕ 
 ������� 
!� ��� 1 Kiϕ

for all ϕ � wff 	�� 0 
 .
Proof: Supposenot.Then 2 s � prag 	 κ � ϕ 
 suchthats � ��� 0 � ϕ. But
by construction,s cannotbepresentin prag 	 κ � ϕ 
 .

We will saya programpgi is sincere if it never generatesa mes-
sagethatis notknown in thecorrespondingknowledgeset.Formally,
a programpgi is sincereif pgi 	 κ 
9� ϕ impliesknows	 ϕ � κ 
 . We will
sayasystemσ is sincereif every programin σ is sincere.

Given the pragmaticinterpretationfunction prag, we candefine
the operationof a multi-agentsystem.The ideais that every agent

i is initially given a knowledgesetκ0
i . It thengeneratesa message

pgi 	 κ0
i 
 to send;all otheragentsdo likewise.At the next time step

(i.e., time 1), every agentreceivesall messagesthat weresentto it
at the previous time step(time 0). The conjunctionof thesemes-
sagesis used,togetherwith the agent’s knowledgeset,to generate
a new knowledgeset,andtheprocessof selectinga messagebegins
again.Thismodelof executionallowsusto establishamappingfrom
multi-agentsystemsto � 2 models.If σ �?	�	 pg1 � κ0

1 
 ��������� 	 pgn � κ0
n 
�
 ,

is a multi-agentsystem,thenthemodelmσ of � 2 thatrepresentsthe
executionof σ is definedasfollows:

1. mσ 	 0
9�@	 κ0
1
��������� κ0

n 
 and
2.  u � IN suchthat u A 0, if mσ 	 u B 1
��C	 κu D 1

1
��������� κu D 1

n 
 then
mσ 	 u
E�F	 prag 	 κu D 1

1
� χu D 1 
 ��������� prag 	 κu D 1

n � χu D 1 
�
 , whereχu D 1 �
pg1 	 κu D 1

1 
�� &�&�& � pgn 	 κu D 1
n 
 .

Thustheformulaχu D 1 in thesecondpartof thisdefinitionis simply
the conjunctionof all messagessentat time stepu B 1. Note that
every agent’s knowledgesetwill monotonicallyshrink asexecution
of the systemproceeds:an agent’s knowledgesetat time u 1 1 is
a subsetof its knowledgesetat time u. Fromthis observation, it is
straightforward to show that the following schemais valid for � 2
modelscorrespondingto systems.

� � Kiϕ � Kiϕ � (1)

It is similarly easyto show thatthefollowing schemais valid for � 2
modelscorrespondingto systems.

� � Dϕ � Dϕ � (2)

Thusdistributedknowledgeis non-diminishing.

4 Problems

In this section,we formally defineproblems,andshow how multi-
agentsystemscanbe usedto solve them.Recallthat problemsthat
are expressedin termsof logical consequence.We have premises
ϕ1 ��������� ϕn, andwewishto know whethersomeconclusionψ follows
from thesepremises.Formally, aproblemis apair 	 � ϕ1 ��������� ϕn � � ψ 
 ,
where

�
ϕ1 ��������� ϕn ��� wff 	�� 0 
 andψ � wff 	�� 0 
 . Theaimof theprob-

lemis to determinewhetheror not
�
ϕ1 ��������� ϕn �G� ��� 0 ψ, i.e.,whether

ψ is an � 0 logical consequenceof
�
ϕ1 ��������� ϕn � . If it is indeedthe

casethat
�
ϕ1 ��������� ϕn �H� ��� 0 ψ, thenwe saythe problemhasa posi-

tiveoutcome,otherwiseit hasa negative outcome.Our maingoalin
this paperis to investigatemulti-agentsystemsthat solve problems
of this type.

Intuitively, we saya systemimplementsa problemif thereis an
agentfor every premiseof the problem,andeachagentis initially
equippedwith no lessinformationthanits correspondingpartof the
problem,andno more informationthanthesolutionof theproblem.
Formally, a systemσ implementsa problem 	 � ϕ1 ��������� ϕn � � ψ 
 if f
mσ 	 0
=�I	 κ0

1
��������� κ0

n 
 impliesthat(i) κ0
i � κϕi , and(ii) knows	 χ � κ0

i 

implies

�
ϕ1 ��������� ϕn �J� ��� 0 χ. Thefirst conditioncapturesthe ideaof

anagentknowing at leastasmuchasits partof theproblem;thesec-
ondconditioncapturestheideathatanagentcanknow nomorethan
the whole problem.We can easily establishthe following lemma,
which relatesproblemsto the knowledgestatesof agentswithin a
system.

Lemma 2 If σ implements	 � ϕ1 ��������� ϕn � � ψ 
 then: (i) 	 mσ � 0
K� ��� 2

Kiχ where
�
ϕi �L� ��� 0 χ, and(ii) 	 mσ � 0
!� ��� 2 Dψ.
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Proof: Part (i) follows from thedefinitionof implementinga prob-
lem, the definition of knowledge,andstraightforward propertiesof
logicalconsequence;part(ii) followsfrom(i) using,e.g.,axiom(RD2)
of [4, p94].

A systemis saidto solveaproblemif eventually, someagenthassuf-
ficient informationto deducetheconclusionof theproblem.In other
words,asystemσ solves 	 � ϕ1 ��������� ϕn � � ψ 
 if theimplicit, distributed
knowledgeof ψ that the systemstartswith eventuallybecomesex-
plicit knowledge,possessedby somememberof Ag. How canit be-
comeexplicit knowledge?Well, we know theknowledgeis thereto
startwith: it just hasto be shared appropriately, by agentssending
eachother messages.Formally, systemσ is said to solvea prob-
lem 	 � ϕ1 ��������� ϕn � � ψ 
 if f it implementsit and,moreover 	 mσ � 0
�� ��� 26

Kiψ for somei � Ag.
Soundnessandcompletenesshavenaturalexpressionsin ourframe-

work.Formally, wesaythatasystemσ which implementsaproblem	 � ϕ1 ��������� ϕn � � ψ 
 is soundif

	 mσ � 0
�� ��� 2

6
Kiψ implies ϕ1 � &�&�& � ϕn � ��� 0 ψ

andcompleteif

ϕ1 � &�&�& � ϕn � � � 0 ψ implies 	 mσ � 0
�� � � 2

6
Kiψ �

Wecanmake thefollowing generalobservationsaboutsincerity.

Theorem 1 If a systemis sincere, then: (i) it is sound,and(ii) the
followingformulaschemais truein themodelof thatsystem:� Dϕ �� Dϕ.
Proof: For (i), an easyinductionon time pointsu � IN shows that
if 	 mσ � u
L� � � 2 Kiϕ, then ϕ must be a logical consequenceof the
premises.Thebasecasefollows from thedefinitionof a systemim-
plementinga problem.Thenassumethat if 	 mσ � u
M� ��� 2 Kiϕ, then
ϕ is a logical consequenceof theproblempremises.For the induc-
tive step,we needto show that 	 mσ � u 1 1
K� ��� 2 Kiϕ implies ϕ is a
logical consequenceof the premises.If 	 mσ � u 1 1
M� ��� 2 Kiϕ, then
either 	 mσ � u
N� ��� 2 Kiϕ, in which caseby the inductive assumption
we aredone,or elsei knows ϕ asa resultof oneor moremessages
it received. But in this case,sinceσ is sincere,it mustbe that the
messagesweresentby agentswho knew their content,andso from
theinductive assumption,wearedone.Part (ii) is straightforward.

An obvious questionis whetheror not thereis a generalsoundand
completestrategy for solving problemsin our framework. That is,
canwedefineageneralagentprogrampgi , suchthatif usedby every
agent,it will beguaranteedto solve a problemiff theproblemhasa
solution.As we now demonstrate,sucha generalcompleteprogram
doesexist. To constructthis programpgi , we proceedas follows.
First, we notethat thereexistsanenumerationseq1 � χ0 � χ1 � χ2 �������
of � 0 formula,so thatevery memberof wff 	�� 0 
 appearsin this se-
quenceeventually[2, p55].Then,givenaknowledgesetκ wedefine
anothersequenceseq2 � χ �1 � χ �2 ������� by removing from seq1 everyfor-
mulaχu suchthatnot knows	 χu � κ 
 . Thendefinethe formulaχ O by
χ O � χ �1 � χ �2 � &�&�& , andlet pgi 	 κ 
P� χ O . Intuitively, pgi 	 κ 
 will encode
everythingthat i knows.Wecaneasilyprove thefollowing theorem.

Theorem 2 Asystemin whicheveryagentusesthisprogramissound
andcomplete.
Proof: Soundnessfollows from the fact that the programdefined
in this way is sincere(seeTheorem1). For completeness,observe

that at time 0, every agentwill sendout everything it knows, in-
cluding its part of the problem,andso by Lemma1, we will have	 mσ � 1
Q� ��� 2 Kiϕ1 � &�&�& � ϕn. Since � ��� 0 ϕ1 � &�&�& � ϕn � ψ, we will
alsohave 	 mσ � 1
!� ��� 2 Kiϕ1 � &�&�& � ϕn � ψ, andso 	 mσ � 1
!� ��� 2 Kiψ
andhence	 mσ � 0
!� ��� 2

6
Kiψ .

Of course,this exampleis somewhat unrealistic,in that no actual
programcould ever enumerateseq1. So while this theoremtells is
how agentsmight be constructedin principle to solve problems,it
doesnot offer us muchhelp for building them in practice. For this
reason,we now considermorepractical,implementableagentpro-
gramsandproblemsolving strategies.An agentprogrampgi must
make a decisionaboutthe mostappropriatemessageto sendbased
only upon i’s knowledgeset.How is a programto do this?To see
whatsortof strategiesmightwork, wewill considerrefutationprob-
lems, whichastheirnamesuggests,areaclassof problemsin which
theaim is to show someformulais unsatisfiable.Formally, suppose
ϕ1 � &�&�& � ϕn is an � 0 formulathatwewishto testfor unsatisfiability.
Thenwe know it will beunsatisfiableiff � ��� 0 ϕ1 � &�&�& � ϕn � false.
Hencewe cantesttheformulaby unsatisfiabilityby gettingamulti-
agentsystemσ to attemptto solve theproblem 	 � ϕ1 ��������� ϕn � � false 
 .
If 	 mσ � 0
�� ��� 2

6
Kifalse for somei � Ag, thenϕ1 � &�&�& � ϕn mustbe

unsatisfiable.Theeventualknowledgeof false by someagentcorre-
spondsto thederivationof theemptyclausein resolution[7, p130].

Call any problemof the form 	 � ϕ1 ��������� ϕn � � false 
 a refutation
problem. A normal form refutationproblem is one in which each
premiseϕi is adisjunctionof literals(recallthataliteral is aprimitive
propositionor thenegationof aprimitiveproposition).Finally, anor-
mal form refutationproblemis aHorn problemif eachpremisecon-
tainsatmostonepositiveliteral.An exampleHornproblem(from[6])
is:

	 � p,R-/.R0
ϕ1

� � p  q J� r, -/. 0
ϕ2

� � p J� q J� r, -/. 0
ϕ3

� � p  r, -/. 0
ϕ4

� � false, -/. 0
ψ




How canwe devise a multi-agentsystemthatwill beguaranteedto
solvesuchaproblem?Onepossibility, (basedonFisher’sconcurrent
theoremproving approach[6]) for Horn problemsis to give every
agentaprogrampgi definedasfollows:

pgi 	 κ 
9�
S

p if p � Φ, knows	 p � κ 

true otherwise.

(3)

We will assumeasa sideconditionthatagentsnever sendmessages
that have alreadybeensent.Notice that this programis sincere.In
addition,it hasan � 1 characterisation:

pgi 	 κi 
9� p if f 	 ������� κi ������� 
!� ��� 1 Kip

In this respect,our programssomewhat resemblethe knowledge-
basedprogramsof [4]. We commentfurther on this relationshipin
section5. Despiteits obvioussimplicity, wecanestablishthefollow-
ing result.

Theorem 3 Asystemin whicheveryagentusesthisprogramissound
andcompletefor Horn problems.
Proof: (Outline.)Without lossof generality, we will consideronly
non-trivial Horn problems.Soundnessfollows from thefact that the
programis sincere.For completeness,first observe thatif someHorn
clausesϕ1 ��������� ϕn areunsatisfiable,thenoneof themmustbeapos-
itive literal [7, pp59-60],andin addition,theremustbea resolution
DAG for theseclauses[7, p130]. Our proof is by inductionon the
depthof this DAG: we show by inductionthat for all u � IN, if the
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clauseshavearesolutionDAG of depthu, thenasystemimplement-
ing theseclauseswill solve theproblem.Theinductivebaseis where
the DAG is of depth1. Here, the positive literal resolves directly
with anotherclausewhich mustconsistsolelyof thenegationof the
positive literal. It is easyto seethatour systemwill solve theprob-
lem in this case.For the inductive step,we needto show that if the
problemhasa resolutionDAG of depthu 1 1, thenthe systemwill
solve theproblem.Thefirst level in theresolutionDAG will involve
resolving the positive literal (call it p) with a subsetof the other
clauses,χ1 ��������� χk , to derive their resolvents.Let ξ1 ��������� ξl be the
setof clausescontainingtheresolventsobtainedin thisway, together
with theclausesthatwereleft unchanged.Thissetof clauseswill be
unsatisfiable,andmoreoverwill havearesolutionDAG of depthu. In
our framework, similar reasoningto thebasecaseshows thatp will
initially be broadcast.Every agentthenremovesfrom their knowl-
edgesetany statethatdoesnot satisfyp. Thekey to theproof is to
noticethat the systemat time 1 implementsthe problemξ1 ��������� ξl .
Sincethis problemhasa resolutionDAG of depthu, thenby thein-
ductive assumption,it solvesit, andwearedone.

To illustratethisapproach,wedry-runtheexamplegivenabove:

	 � p � � p  q J� r � � p J� q J� r � � p  r � � false 
 �
Initially everyagenti � � 1 ��������� 4� hasaknowledgesetκ0

i asfollows:

κ0
1 � �T�

p� � � p � r � � � p � q� � � p � q � r �U�
κ0

2 � �
/0 � � r � � � q� � � q � r � � � p� � � p � q� � � p � q � r �T�

κ0
3 � �

/0 � � r � � � q� � � q � r � � � p� � � p � r � � � p � q�#�
κ0

4 � �
/0 � � r � � � q� � � q � r � � � p � r � � � p � q � r �U�

At this point, pg1 	 κ0
1 
V� p, andsoagent1 broadcastsp; every other

agentbroadcaststrue. Uponreceiptof thesemessages,the stateof
thesystembecomes:

κ1
1 � �T�

p� � � p � r � � � p � q� � � p � q � r �T�
κ1

2 � �T�
p� � � p � q� � � p � q � r �T�

κ1
3 � �T�

p� � � p � r � � � p � q�U�
κ1

4 � �T�
p � r � � � p � q � r �U�

We thenhave pg4 	 κ1
4 
V� r, andsoagent4 broadcastsr while every

otheragentbroadcaststrue. The stateof the systemis transformed
to:

κ2
1 � �T�

p � r � � � p � q � r �U�
κ2

2 � �T�
p � q � r �U�

κ2
3 � �T�

p � r �T�
κ2

4 � �T�
p � r � � � p � q � r �U�

We now have pg2 	 κ2
2 
=� q, andsoagent2 broadcastsq; every other

agentbroadcaststrue. Thestateof thesystembecomes:

κ3
1 � �U�

p � q� � � p � q � r �T�
κ3

2 � �U�
p � q � r �T�

κ3
3 � /0

κ3
4 � �U�

p � q � r �T�
Sinceκ3

3 � /0, wehave 	 m� 3
W� ��� 3 K2false, andtherefutationis com-
plete.Extensionsto non-Hornproblemsarenot problematic:Fisher
demonstratessuchtechniquesin [5], andthey canbeeasilymodified
for our framework.

5 Conclusions and Related Work

In this paper, we have introducedand investigateda view of dis-
tributedproblemsolvingasmulti-agentdeduction.With thisapproach,
anumberof reasoningagentscooperateby exchangingpartialresults
in an attemptto derive a conclusionthat could not initially be de-
ducedby any individualagent.Wehaveseenexploredaknowledge-
theoreticinterpretationof this approach,andestablishedsomebasic
resultsthatrelatedistributedproblemsolvingsystemsto anepistemic
temporallogic.

Thework describedin thispaperbuildsupon,andis relatedto that
of many otherresearchers.Themostobviousdebtis to thework of
Fisherandtheauthor, wherethebasicframework of distributedprob-
lemsolvingasconcurrenttheoremproving wasestablished[6]. This
work,(basedin turnuponFisher’sagent-basedtheoremproving tech-
nique[5]), usedtheConcurrentMETATEM multi-agentlogic-based
programminglanguageto implementamulti-agentplanningsystem.
The work in this paperdiffers from [6] in several respects:it gen-
eralisesit, givesa preciseformal definition of multi-agentproblem
solving,andfinally, usesaknowledge-theoreticapproachtoanalysing
systems.

Also closely relatedis the work of Halpernet al on the useof
knowledgetheory to analysedistributed systems[4]. Halpernand
colleagueshave studiedmany aspectsof knowledgeanddistributed
knowledge,andin particular, have examinedhow variousstatesof
knowledgecanbeachievedin messagepassingsystems.However, to
thebestof myknowledge,noworkhasbeencarriedoutonknowledge-
theoreticapproachesto problemsolving or theoremproving. More
recently, attentionin the knowledgetheorycommunityhasshifted
to the studyof knowledge basedprograms, whereagentsmake de-
cisionsaboutwhatto do basedon their knowledgeabouttheworld.
Ouragentprogramsaresimilar to suchknowledge-basedprograms.
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