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Abstract. Traditionalapproacheto distributedproblemsolvinghave
treatedthe problemas one of distributed search.In this paper we
proposeanalternatve, logic-basediiew of distributedproblemsolv-
ing, wherebyagentsooperatiely solve problemsby exchangingn-
formationin orderto derie the solutionto a problemusing logi-
caldeductionln particular we give a knowledg theoketic modelof
distributedproblemsolving,andshov how variousproblemsolving
stratgiescanberepresentewithin this scheme.

1 Introduction

Distributedproblemsolvingis perhapghe paradigmexampleof ac-
tivity in multi-agentsystemg[1]. It occurswhen a group of logi-
cally decentraliseégentscooperatdo solve problemsthat aretyp-
ically beyond the capabilitiesof ary individual agent.Historically,
distributedproblemsolvinghasbeenviewed andmodelledasakind
of distributedsearh, wherebya collectionof agentscollaboratvely
traversethesearchspaceof a problemin orderto find asolution[10].
This modelobviously mirrorsthe long-studiedandwell-understood
view of problemsolvingassearchfrom mainstreanmArtificial Intel-
ligence(Al) [8].

In short,the purposeof this paperis to put forwardanalternatve,
logic-basedview of distributedproblemsolving[6]. In thisview, dis-
tributedproblemsolving s treatedasa multi-agentdeductionprob-
lem. This viewpoint, while comparatrely novel in multi-agentsys-
temsresearchneverthelessechoesand builds upon the long and
highly successfuiraditionof problemsolvingthroughtheorenyprov-
ing from mainstreanAl [9].

The basicidea of the approachis both simple and intuitive. A

problemto besolvedis phrasedsaquestiorof logicalconsequence:

doesconclusiony follow from premisesdy,...,$n? In our model,
thepremisesredistributedamonga collectionof agents Eachagent
is equippedvith somedeductve capabilityandtheability to commu-
nicate.Problemsolving proceeddy agentsapplyingtheir deductve
capabilityto the part of the problemthey have beenallocated,and
sharingresultswith otheragentsby broadcastinghem. The infor-
mationthatis sharedn this way canthenbe usedby recipientsto
derive furtherconclusionsandsoon. Eventually we hope,anagent
will have suficientinformationto derive theconclusionIn thetradi-
tional (centralisedyiew of theoremproving, the key questionto be
answereds whatruleto applynext (andhencewhichlemmato prove
next). In themulti-agentdeductionview, they key questionbecomes
which messge to sendnext.
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The particularemphasi®f this paperis on a knowledg theoetic
accountof multi-agentproblemsolving [4]. Thuswe begin in sec-
tion 2 by definingatempoal epistemidogic thatallows usto model
boththeinformationcarriedby agentgi.e.,theirpartof theproblem),
andhow this informationevolvesovertime, asproblemsolving pro-
ceedsThenotionof amulti-agentsystems definedn section3, and
in particular this sectionshavs haw the temporalepistemiclogic
developedin section2 canbe usedto representhe history of such
a system.Section4 introduceshe notion of a problem,anddefines
what it meansfor a multi-agentsystemto solve a problem.Some
basicresultsrelatingto problemsandmulti-agentsystemsareestab-
lishedin thissectionandsomepracticaimulti-agenfroblemsolving
stratgjiesarediscussedn particular we shav how aform of deduc-
tion closelyrelatedto classicalresolutioncanbe realisedusingthe
framework presentedn this paper Finally, section5 presentsome
conclusionainddiscusseselatedresearch.

2 Logical Preliminaries

We begin by assuminga setAg= {1,...,n} of agents or morepre-
cisely agentidentifies. We usei to standfor memberf Ag. Next,
we assuma finite vocalulary @ = {p,q,r, ...} of primitive proposi-
tions Thesearetheatomiccomponentsf thelanguagesve will use
to expressproblems.

A stateis definedto be a (possiblyempty)subsebf ®. Theidea
is thata stateexplicitly identifiesthe propositionghataretruein it.
Stateswill thusdo serviceas propositionalvaluations,of the kind
thatareusedin normalmodallogics. They will allow usto dowith-
outsuchvaluationsn ourframework. For example jif s= {p,q}, then
we know thatthe only primitive propositiongruein sarep andg. If
s = 0, thenevery primitive propositionin s is false.This approach
is, of course strictly lesspowerful thanthatof usingvaluationfunc-
tions, sinceit implies thatary two statesare equalif agreeon the
valuationof primitive propositions(i.e., they containthe sameele-
ments).However, this is not a problemfor our work. Let S= [ (®)
bethesetof all statesWe uses (with annotationss, sy, ...) to stand
for memberof S

In orderto expresghepropertie®f statesyeintroduceaclassical
propositionalogic L. Thislogic containsthe classicalconnecties
“A” (and),“V” (or),“=" (not),“=" (implies),and“«" (if, andonly
if), aswell aslogical constantgor truth (“true’) andfalsity (“false”).
We definesyntaxandsemanticgor disjunctionandnegation,andas-
sumethe remainingconnectresandconstantareintroducedasab-
breviationsin thestandardvay. Formally, thesyntaxof £ is defined



by thefollowing grammar:
(Lo-fmla) = ary elemenbf @ |true|
—(Lo-fmla) | (Lo-fmla) v (Lo-fmla)

Let wff (Lo) bethe setof (well-formed)formulaeof £y. Theseman-
tics of Ly aredefinedvia the Ly satishctionrelation* =", which

holds betweenstatesand membersof wff (Lg). The rules defining

thisrelationareasfollows:

S En P iffpes (wherepe ®)
S =g true

s EFr 0 iff nots=,, ¢

S Fr, ¢VY iffsEdorsELW

Next, weintroduceknowledg sets whichin ourformalismwill play
the role usually taken by accessibilityrelationsin knowledgethe-
ory [4]. Theidea,asin knowledgetheory is to characteris¢hein-
formationcarriedby anagent— its knowledge— asa setof states.
Eachstaterepresent®ne way the world could be, given what the
agentknows. However, ratherthanexplicitly introducinga relation
overstatego characterisanagents knowvledge wewill insteadsim-
ply represenit asa setof statesAlthoughthis techniqueis in prin-
ciple lessexpressie thatthe traditionalaccessibilityrelation, it will
not affect our formalismor our results.We let KS= (S) be the
setof all knowledge sets,and usek (with annotationsx’,Kz,...)
to standfor membersof KS. If ¢ € wif (Lg), thenwe write k¢ for
the knowledgesetthat containsjust thosestatesthat satisfy ¢, i.e.,
Ko ={s| Sk, 0}.

Ourdefinitionof knowledg is essentiallydenticalto thatof knowl-
edgetheory: an agenti € Ag with knowledgesetk; knows ¢ if ¢
is satisfiedby all statesin k;. For the purposesof this paper we
will only be concernedvith knowvledgethatis expressedn Lgy: we
will notbeconcernedvith nestecknowledge(i.e., knowvledgeabout
knowledge). This will be consideredbdd by readersfamiliar with
normal modal (S5) epistemiclogic [4], but nestedknowledgeit is
not requiredfor expressingour problemsWe definea binary meta-
languagepredicateknowsC wif (Lg) x KS to captureour definition
of knawledge:

knowgd, k) iff Vse€ k, wehaves =, ¢.

To expressthe propertiesof knowvledgesets,we introducea multi-
agentepistemiclogic, £, which containsan indexed set of unary
modalconnectiresK;, onefor eachagenti € Ag. A formulaK;¢ is
to beread“agenti knows ¢”. In addition, £, containsa distributed
knowledg modality D. A formulaD¢ is to be read“there is dis-
tributed knowvledgeof ¢”. The intuitive semanticof this operator
arethatif D¢ then¢ couldbededucedy “pooling” the knowvledge
of all otheragentsSee e.g,[4] for adiscussiorof distributedknowl-
edge.Syntactically £, is definedby thefollowing grammar:

(L1-fmla) = Ki{Lo-fmla) | D(Lo-fmla) | —(Ls-fmla) |
(Ly-fmla) v (L1-fmla)

Note that K; andD modalitiescanonly be appliedto £y formulae,
andalsonotethatprimitive propositions— elementof ® — arenot
formulaeof £;. Let wff (£;) bethesetof (well-formed)formulaeof
L1. Thesemantic®of £1 aredefinedvia the £ satishctionrelation
“I=r,", which holdsbetweertuplesof the form (k1,...,kn), where
Ki € KS is a knowledgesetfor agenti € Ag, and formulaeof ;.
Therulesdefiningthis relationareasfollows (we omit the rulesfor
negationanddisjunction,asthesearetrivial):
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iff knowsd, ki)
iff knowgd, k1N NKn)

(K1,-..,Kn)
(K1,---,Kn)

Eo Ko
|:L1 D¢

Wereferto tuplesof theform (ky, ..., Kn) as£; modelsfor obvious
reasons.

Finally, in this paper we are concernedvith evolving sequences
of knowledge sets.To representhe propertiesof suchsequences,
we introducea temporallogic £, which extends£; andis in fact
definedasa supersebf it. L, containstwo fairly conventionaltem-
poralmodalities[3]: “O” (for “next”), and“ U” (for “until”), from
whichtheremainingstandaratonnectiesof lineardiscreteemporal
logic maybederived.The* O” connectie means‘at thenext time”.
Thus O¢ will besatisfiedat sometime pointif ¢ is satisfiedat the
nexttimepoint. The" U” connectie meansuntil”. Thus¢ U Y will
be satisfiedat sometime if | is satisfiedat thattime or sometime
in the future, and ¢ is satisfiedat all timesuntil the time that { is
satisfied The syntaxof £, is definedby thefollowing grammar:

(L1-fmla) | O(Lp-fmla) |
(Lo-fmla) U (Lp-fmld) |
—(Lp-fmla) | (Lo-fmla) v (Lp-fmla)

(Lp-fmla) =

The semanticof L, aredefinedwith respecto tempoal epistemic
modelsFormally, atemporakepistemianodelmis simplyafunction

m:IN —- KSx--.- xKS
————

ntimes

which determinesan £; modelm(u) for every time pointu € IN.

Thesemantic®f £, aregivenviathe L, satishctionrelation” =",

which holds betweenpairs of the form (m,u) (wheremis an £,-
modelandu € IN is atemporaindex into m), and £, formulae.Once
again,we only give the semantiaulesfor non-triial connecties:

(ma U) ':Dz ¢
(mu) =z, O
(Mu) ¢ UY

iffm(u) =, ¢ (wherep € wif (L))
iff (mu+1) =, ¢
iff Ive IN s.t.(v>u) and(m,v) =, 4,
andvwe N, if (u<w<v)

then(mw) =, ¢

The remainingconnecties of linear discretetemporallogic areas-
sumedo introducedasabbreiationsasfollows:

Ot =trueup o =-O-0

We now informally considetthe meaningof thederived connecties.
First, “<>” means‘either now, or at sometime in the future”. Thus
{o will besatisfiecatsometimeif eitherd is satisfiedatthattime, or
somelatertime. The“ [ ]” connectie means‘now, andat all future
times”. Thus [J¢ will be satisfiedat sometime if ¢ is satisfiedat
thattime andat all latertimes. The binary“ %" connectie means
“unless”. Thus ¢ Wy will be satisfiedat sometime if either¢ is
satisfieduntil Y is satisfied or else¢ is alwayssatisfied.

Satisfiability and validity for our threelogics are definedin the
usualway. We write =, ¢ to indicatethatthe £, formula¢ is valid
in Ly. Lo is simply classicapropositionalogic, andassuchwill in-
heritall the propertieof thislogic. However, £, doesnotbehae ex-
actlylikeanS5epistemidogic [4]. In particular sincenestednodal-
ities arenot permittedin £, axioms4 and5 arenotvalid in £;, and
sinceprimitive propositionsarenot £, formulaeaxiomT is notvalid
in £1. However, we do havetheusualK axiomandnecessitationule
for Ki modalities:

dWe=0Upv e
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Fo Ki(d = d) = ((Kip) = (Kiw))
If ':LO 4) then ':Ll K|¢

In addition,the D modalityhasthefollowing propertied4]:

Fr D(¢ =) = ((D9) = (D))
Er, Ki¢ = Do
If =1, ¢ then =1, Do

Wewill notpauseo examinethepropertieof thetemporalanguage
L, sincethis hasbeenstudiedexhaustvely elsavhere(see[3] for
references).

Finally, we will assumehatthe notion of logical consequencis
definedin thestandardvay for eachof ourlogics.Wewrite I =/, ¢
to indicatethatthe £, formula¢ is an £, logical consequencef I,
wherell C wif (Ly).

3 Multi-Agent Systems

The basicideais to have a collection of programs— agents—
which interactwith one anotherby broadcastingnessagesyhere
thesemessageareformulaeof £o. Whenanagentsendsamessage
¢, the intuitive semanticds thatit is assertinghe truth of ¢. In so
doing, the agentis giving otheragentsin the systemsomeinforma-
tion, which they canuseto updatetheir own knowledgeset.We re-
fer to a systemthat decideswhich messageo sendbaseduponthe
agents internal stateas an agent program Abstractly we view an
agentprogramasa function pg : KS — wff (Lg). Thus,on the basis
of anagents knowledgeset,anagentprogramdetermines formula
of Ly, which will be the messagéhat the agentsends.Let PG be
thesetof all suchprogramsA multi-agentsystemnis atuple of pairs,
((pgl,Ktl’),...,(pgq,Kg)), wherepg € PG is the programfor agent
i € Ag, andK? € KSis aninitial knowledg setfor agenti. Let Z be
the setof all suchmulti-agentsystemsWe useo (with annotations:
01,0’,...) to standfor memberof Z.

We notedabove thatuponreceving a messageanagentusesthe
messagéeo updateits knowvledgeset.We modelthis updateprocess
via a pragmaticinterpretationfunction

prag : KSx wff (Lg) — KS

wherethis functionis definedasfollows:

prag(k,0) =k\ {s|sekandsk=, ¢}

Thusif anagentrecevesamessage, it will remove from its knowl-
edgesetall stateghatarenotconsistentvith ¢. Thefollowinglemma
captureneof themostimportantpropertyof prag.

Lemmal If (...,Kj,...) isan L3 modelthen

(---,prag(ki, ), ..) Fr, Kid

for all ¢ € wif (Lo).
Proof: Supposeot. Thends e prag(k,¢$) suchthats =, ~¢. But
by constructions cannotbe presenin prag(k, ¢). 1

We will saya programpg is sincee if it never generates mes-
sagethatis notknawn in thecorrespondingnowledgeset.Formally,
aprogrampg is sincereif pg (k) = ¢ impliesknowsgd, k). We will
sayasystemo is sincerdf every programin o is sincere.

Given the pragmaticinterpretationfunction prag, we candefine
the operationof a multi-agentsystem.The ideais that every agent
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i is initially givena knONIedgesetKiO. It thengenerates message
pg(K?) to send;all otheragentsdo likewise. At the next time step
(i.e.,time 1), every agentrecevesall messagethat were sentto it
at the previous time step (time 0). The conjunctionof thesemes-
sagess used,togetherwith the agents knowledgeset,to generate
anew knowledgeset,andthe procesf selectinga messagbegins
again.Thismodelof executionallows usto establisra mappingfrom
multi-agentsystemso £, models.If o = ((pgl,Kcl’), vy (PO, K9)),
is amulti-agentsystemthenthe modelmgy of £, thatrepresentshe
executionof o is definedasfollows:

1. mg(0) = (k9,...,k8) and

2. Yu e IN suchthatu > 0, if mg(u—1) = (k{=%,...,kH4"1) then
Mg (U) = (prag(ky ", Xu-1), -, Prag(Ki !, Xu-1)), wherexy 1 =
PGL(KY ™) A+ APGh(KRY).

Thustheformulax,_1 in thesecondpartof this definitionis simply
the conjunctionof all messagesentat time stepu — 1. Note that
every agents knowledgesetwill monotonicallyshrink asexecution
of the systemproceedsan agents knowledgesetat time u+1 is
a subsewf its knovledgesetat time u. Fromthis obseration, it is
straightforvard to shaw that the following schemais valid for £,
modelscorrespondingo systems.

EKi¢p = UK. (1)

It is similarly easyto shaw thatthe following schemas valid for £,
modelscorrespondingo systems.

=D = (DY )

Thusdistributedknowledgeis non-diminishing.

4 Problems

In this section,we formally defineproblems,and shav hov multi-
agentsystemscanbe usedto solve them.Recallthat problemsthat
are expressedn termsof logical consequencélNe have premises
¢1,.-.,0n, andwewishto know whethersomeconclusionp follows
from thesepremisesFormally, aproblemis apair ({¢1,...,dn}, V),
where{d1,...,¢n} Cwif (Lg) andy € wif (Lo). Theaimof theprob-
lemis to determinewhetheror not{¢1,...,¢n} =, ¥, i.e.,whether
W is an Ly logical consequencef {¢1,...,0n}. If it is indeedthe
casethat {¢1,...,¢n} =/, Y, thenwe saythe problemhasa posi-
tive outcome ptherwiseit hasa negative outcome Our maingoalin
this paperis to investigatemulti-agentsystemghat solve problems
of thistype.

Intuitively, we say a systemimplementsa problemif thereis an
agentfor every premiseof the problem,and eachagentis initially
equippedwith no lessinformationthanits correspondingartof the
problem,andno more informationthanthe solutionof the problem.
Formally, a systemo implementsa problem ({§1,...,0n}, ) iff
ms(0) = (KY,...,kY) impliesthat (i) kO C k¢, and(ii) knowsy, k°)
implies {¢1,...,dn} =, X. Thefirst conditioncaptureghe ideaof
anagentknowing atleastasmuchasits partof theproblem;thesec-
ondconditioncapturegheideathatanagentcanknow no morethan
the whole problem.We can easily establishthe following lemma,
which relatesproblemsto the knovledge statesof agentswithin a
system.

Lemma?2 If o implement{{¢1,...,¢n},P) then: (i) (Mm,0) =1,
Kix whee {¢i} = r, X, and(i)) (Ms,0) =r, DY.
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Proof: Part (i) follows from the definition of implementinga prob-
lem, the definition of knawledge,and straightforvard propertiesof
logicalconsequencegart(ii) followsfrom (i) using,e.g.,axiom(RD2)
of [4, p94]. 1

A systenis saidto solveaproblemif eventually someagenthassuf-
ficientinformationto deducetheconclusionof the problem.In other
words,asysteno solves({¢1,...,¢n}, V) if theimplicit, distributed
knowledgeof Y thatthe systemstartswith eventuallybecomesx-
plicit knowledge,possesselly somememberof Ag. How canit be-
comeexplicit knonvledgeWVell, we know the knowledgeis thereto
startwith: it just hasto be shaed appropriatelyby agentssending
eachother messages-ormally, systema is said to solvea prob-
lem({$1,...,dn}, ¥) iff it implementst and,morewver (mg,0) =/,
OKiw for somei € Ag.

Soundnesandcompletenesisave naturalexpressionsn ourframe-
work. Formally, we saythata systemo whichimplementsa problem

({¢1,...,0n}, W) is soundif
(%’ 0) ':Lz OKIqJ

andcompletdf

implies  d1A-Adn =, U

d1AAdnEr, W (Mg, 0) =, OKiW

We canmale thefollowing generabbsenrationsaboutsincerity

implies

Theorem 1 If a systenis sincek, then: (i) it is sound,and (ii) the
followingformulaschemais truein themodelof thatsystem:=D¢ =
[]-Dé.

Proof: For (i), aneasyinductionon time pointsu € IN shaws that
if (mg,uU) =1, Kid, thend mustbe a logical consequencef the
premisesThe basecasefollows from the definition of a systemim-
plementinga problem.Thenassumehatif (mg,u) =/, Ki¢, then
¢ is alogical consequencef the problempremisesFor theinduc-
tive step,we needto shav that (mg,u+ 1) =, Ki¢ implies¢ is a
logical consequencef the premiseslf (mg,u+ 1) =/, Ki¢, then
either (mg, u) =, Ki, in which caseby the inductive assumption
we aredone,or elsei knows ¢ asaresultof oneor moremessages
it receved. But in this case,sinceao is sincere,it mustbe that the
messagewere sentby agentswho knew their content,andso from
theinductive assumptionwe aredone.Part(ii) is straightforvard. I

An olvious questionis whetheror not thereis a generalsoundand
completestratey for solving problemsin our framewvork. Thatis,
canwe defineagenerabhgentprogrampg, suchthatif usedby every
agent,it will beguaranteedo solve a problemiff the problemhasa
solution.As we now demonstratesucha generalcompleteprogram
doesexist. To constructthis programpg, we proceedas follows.
First, we notethatthereexists an enumeratiorseq = Xo,X1,X2;-- -
of Ly formula, sothatevery memberof wif (Lo) appearsn this se-
quenceaventually[2, p55]. Then,givenaknowledgesetk we define
anotheisequencseg =X}, X5, . - by remaing from seq everyfor-
mulay suchthatnot knowgxy, k). Thendefinethe formulay* by
X*=X1AX5A- -+, andletpg (k) = x*. Intuitively, pg (k) will encode
everythingthatl kncws. We caneasilyprove thefollowing theorem.

Theorem 2 Asystenin which everyagentuseghisprogramis sound
andcomplete

Proof: Soundnesg$ollows from the fact that the programdefined
in this way is sincere(seeTheorem1l). For completenesspbsere
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that at time 0, every agentwill sendout everythingit knows, in-
cluding its part of the problem,andso by Lemmal, we will have
(Mg,1) =7, Kid1 A+ Adp. Sincel=r; d1 A Adp = Y, we will
alsoha/e(mc 1) =L, Ki ¢1/\ “Abdn= Y, andso(mg, 1) =/, .qJ
andhence(mg,0) =, OKiy

Of course this exampleis somevhat unrealistic,in that no actual
programcould ever enumerateseq. So while this theoremtells is
howv agentsmight be constructedn principle to solve problems,it
doesnot offer us muchhelp for building themin practice For this
reasonwe nowv considemore practical,implementableagentpro-
gramsand problemsolving stratgies. An agentprogrampg must
male a decisionaboutthe mostappropriatemessagé¢o sendbased
only uponi’s knowledgeset.How is a programto do this? To see
whatsortof stratgiesmightwork, we will considerefutationprob-
lems which astheir namesuggestsarea classof problemsin which
theaimis to shav someformulais unsatisfiableFormally, suppose
d1A--- Adnisan Lo formulathatwe wishto testfor unsatisfiability
Thenwe know it will beunsatisfiabléff =, d1A---Adn = false.
Hencewe cantestthe formulaby unsatisfiabilityby gettinga multi-
agentsysteno to attempto solve theproblem({¢1,...,¢n},false).
If (ms,0) =y, {Kifalsefor somei € Ag, thendq A--- A dn mustbe
unsatisfiableThe eventualknowledgeof false by someagentcorre-
sponddo thedervation of theemptyclausein resolution[7, p130].

Call ary problemof the form ({¢1,...,¢n},false) a refutation
problem A normal form refutation problemis onein which each
premisap; is adisjunctionof literals(recallthataliteral is aprimitive
propositionor thenegationof a primitive proposition) Finally, anor
mal form refutationproblemis a Horn problemif eachpremisecon-
tainsatmostonepositive literal. An exampleHornproblem(from [6])
is:

({ p ,=pVaV-r,—pVv-qV-r,—pVr} false)
¢ 0 0 ¢ W
1 2 3 4

How canwe devise a multi-agentsystemthatwill be guaranteedo
solve sucha problem?0nepossibility (basedn Fishers concurrent
theoremproving approach6]) for Horn problemsis to give every
agentaprogrampg definedasfollows:

P if pe @, knowgp, k)
Pa (k) = { true otherwise.

©)

We will assumesa sideconditionthatagentsever sendmessages
that have alreadybeensent.Notice that this programis sincere.In
addition,it hasan £, characterisation:

pg (ki) = piff (...,Ki,...) =z, Kip

In this respect,our programssomavhat resemblethe knowledg-
basedprogramsof [4]. We commentfurther on this relationshipin
sectionb. Despiteits obvioussimplicity, we canestablisithefollow-
ing result.

Theorem 3 A systenin which everyagentuseghisprogramis sound
andcompletefor Horn problems.

Proof: (Outline.)Withoutlossof generality we will consideronly

non-trivial Horn problems Soundnes$ollows from thefactthatthe

programis sincere For completenessirst obsere thatif someHorn

clausespy, ..., ¢, areunsatisfiablethenoneof themmustbe a pos-

itive literal [7, pp59-60],andin addition,theremustbe a resolution
DAG for theseclauseq7, p130]. Our proofis by inductionon the

depthof this DAG: we shaw by inductionthatfor all u € N, if the
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clauseshave aresolutionDAG of depthu, thena systemimplement-
ing theseclausewill solvetheproblem.Theinductive bases where
the DAG is of depthl. Here,the positive literal resoles directly
with anotherclausewhich mustconsistsolely of the negationof the
positive literal. It is easyto seethatour systemwill solve the prob-
lem in this case.For the inductive step,we needto shav thatif the
problemhasa resolutionDAG of depthu+ 1, thenthe systemwill
solve the problem.Thefirst level in theresolutionDAG will involve
resolvingthe positive literal (call it p) with a subsetof the other
clausesxs,...,Xk , to derive their resohents.Let 4,...,&, bethe
setof clausesontainingtheresolhentsobtainedn thisway, together
with theclauseghatwereleft unchangedThis setof clausewill be
unsatisfiableandmoreawerwill have aresolutionDAG of depthu. In
our framework, similar reasoningo the basecaseshaws thatp will
initially be broadcastEvery agentthenremovesfrom their knowl-
edgesetary statethatdoesnot satisfyp. Thekey to the proofis to
noticethat the systemat time 1 implementsthe problemgq, ... &,.
Sincethis problemhasa resolutionDAG of depthu, thenby thein-
ductive assumptionit solvesit, andwe aredone. 1

To illustratethis approachye dry-runthe examplegivenabove:
({p,—pVvaVv-r,=pVv-qV-r,—pVr},false).

Initially everyagent € {1,...,4} hasakncwledgesetKi0 asfollows:

Kg {p} {pr}{p.a}, {p.a,r}}

K> {0,{r},{a},{a,r},{p}, {p.a},{p,q,r}}
K§ = {0 {r},{a},{a,r},{p},{p,r},{p,a}}
Ky {0,{r},{a}.{a.r},{p.r},{p,q,r}}

At this point, pgl(K(l)) = p, andsoagentl broadcastg; every other
agentbroadcastsrue. Uponreceiptof thesemessageshe stateof
thesystembecomes:

kI = {{ph{prh{p.a}{p.ar}}

k3 = {{ph{pah{par}}

K% {ph{prh{pa}}
{{p,r},{p,q,r}}

We thenhave pg4(K‘11) =r, andsoagent4 broadcasts while every
otheragentbroadcastsr ue. The stateof the systemis transformed
to:

(I

N
X
|

Ki = {{par}a{paQar}}

K2 = {{pa qar}}
k3 = {{p.r}}
k3 = {{prhipar}}

We now have pgz(K%) = g, andsoagent2 broadcasts; every other
agentbroadcastsr ue. The stateof the systembecomes:

Kt = {{p.ah{par}
Kg = {{paqar}}

Kg =0

kz = {{par}}

Sincek3 = 0, we have (m, 3) =, Kofalse, andtherefutationis com-
plete.Extensiongo non-Hornproblemsarenot problematicFisher
demonstratesuchtechniquesn [5], andthey canbe easilymodified
for our framework.
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5 Conclusionsand Related Wor k

In this paper we have introducedand investigateda view of dis-
tributedproblemsolvingasmulti-agentdeductionWith thisapproach,
anumberof reasoninggentooperatdy exchangingpartialresults
in an attemptto derive a conclusionthat could not initially be de-
ducedby ary individual agent We have seenexploreda knowledge-
theoreticinterpretatiorof this approachandestablishedomebasic
resultghatrelatedistributedproblemsolvingsystemsdo anepistemic
temporallogic.

Thework describedn this paperbuilds upon,andis relatedo that
of mary otherresearchersThe mostobvious debtis to the work of
Fisherandtheauthor wherethebasicframevork of distributedprob-
lem solvingasconcurrentheoremproving wasestablished6]. This
work, (basedn turnuponFishersagent-basetheorenproving tech-
nique[5]), usedthe ConcurrentMETATEM multi-agentlogic-based
programmindanguageo implementa multi-agentplanningsystem.
The work in this paperdiffers from [6] in several respectsit gen-
eralisesit, givesa preciseformal definition of multi-agentproblem
solving,andfinally, usesaknowledge-theoretiapproacho analysing
systems.

Also closely relatedis the work of Halpernet al on the use of
knowledgetheory to analysedistributed systemg4]. Halpernand
colleaguesave studiedmary aspectof knowvledgeanddistributed
knowledge,andin particular have examinedhow variousstatesof
knowledgecanbeachievedin messagpassingystemsHowever, to
thebestof my knowledge nowork hasbeencarriedoutonknowledge-
theoreticapproache$o problemsolving or theoremproving. More
recently attentionin the knownledge theory community hasshifted
to the study of knowledg basedprograms whereagentsmale de-
cisionsaboutwhatto do basedon their knowvledgeaboutthe world.
Ouragentprogramsaresimilarto suchknonvledge-base@rograms.
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