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Abstract. This paper describes first steps towards the formal specification and
verification of Distributed Artificial Intelligence (DAI) systems, through the use
of temporal belief logics. The paper first describes Concurrent METATEM, a pro-
gramming language for DAI, and then develops a logic that may be used to reason
about Concurrent METATEM systems. The utility of this logic for specifying and
verifying Concurrent METATEM systems is demonstrated through a number of
examples. The paper concludes with a brief discussion of the wider implications
of the work, and in particular on the use of similar logics for reasoning about
DAI systems in general.

1 Introduction

In the past decade, the discipline of DAI has moved from being a somewhat obscure
relation of mainstream AI to being a major research area in its own right. DAI tech-
niques have been applied to domains as diverse as archaeology and economics, as well
as more mundane problems such as distributed sensing and manufacturing control [7].
Many testbeds for building and experimenting with DAI systems have been repor-
ted [2, 19, 21, 10, 26, 9, 24, 12]. And yet almost no research has considered the im-
portant problems of specifying and verifying DAI systems. In short, the purpose of this
paper is to address these issues: we present preliminary results on specifying and veri-
fying systems implemented using Concurrent METATEM, a novel new programming
language for DAI [14, 13, 16]. A Concurrent METATEM system contains a number of
concurrently executing objects, which are able to communicate via message passing;
each object executes a temporal logic specification representing its desired behaviour.
In this paper, we describe Concurrent METATEM in more detail, and then develop a
temporal belief logic that can be used to reason about Concurrent METATEM systems.
We show how this logic may be used to specify and verify the properties of Concur-
rent METATEM systems. Additionally, the paper discusses the wider issues involved in
reasoning about DAI systems.

The remainder of the paper is structured as follows. In the following section, we
outline the background to, and motivation for, our work. In §2, we describe Concurrent
METATEM in more detail. In §3, we develop a Temporal Belief Logic (TBL), which is
used, in §4, to axiomatize the properties of Concurrent METATEM systems. Examples



of the use of the logic for specifying and verifying Concurrent METATEM systems are
presented in §5. Some comments and conclusions are presented in §6; in particular, we
discuss the implications of our work for reasoning about DAI systems in general.

1.1 Background and Motivation

Distributed AI is a subfield of AI whose loose focus is the study of cooperative activ-
ity in systems composed of multiple intelligent computational objects (or agents, as
they are often called). Over the past decade, many frameworks for building and exper-
imenting with DAI systems have been reported. Probably the best-known is MACE, a
LISP-based fully instrumented testbed for building DAI systems at a range of sizes and
complexity [19]. Other testbeds include Georgeff and Lanksy’s procedural reasoning
system [21], [20] (aspects of which have been formalised [25]), and the MCS/IPEM
platform described by Doran at al., (in which each agent has virtual access to a soph-
isticated non-linear planner) [10]. More recently, Shoham has described AGENT0, an
interpreted programming language for DAI which represents a first step towards the
ideal of an ‘agent-oriented programming’ paradigm [26]. Several actor-style languages
for DAI have been developed [2]: Bouron et al. describe MAGES, a system based
on the ACTALK actor language [9]; Ferber and Carle describe MERING IV, a reflex-
ive concurrent object language [12]; Maruichi et al. describe an ‘autonomous agent’
model (similar in some respects to the computational model underlying Concurrent
METATEM), in which autonomous, continually executing actor-like objects communic-
ate through asynchronous message passing [24].

One aspect of DAI missing from all the above accounts is the notion of objects/agents
as reactive systems, in the following sense: a reactive system is one which cannot ad-
equately be described in terms of ‘initial’ and ‘final’ states. Any non-terminating sys-
tem is therefore a reactive system. The purpose of a reactive system is to maintain
an interaction with an environment [22]. Any concurrent system is a reactive system,
since the objects/agents in a concurrent system must maintain an interaction with other
objects/agents: DAI systems are therefore reactive. (The term ‘reactive system’ has re-
cently been used in AI to describe systems that respond rapidly to the world, without
reasoning explicitly about it: we do not use the term in this sense; we use it only in the
sense we have just described.)

How is one to reason about reactive systems? Temporal logic has long been con-
sidered a viable tool for this purpose (see, for example, [11] for a good introduction
to the extensive literature in this area). This is because temporal logic allows one to
describe the ongoing behaviour of a system, which cannot be easily expressed in other
formalisms (such as those based on pre- and post-conditions). We take it as axiomatic
that the notion of a reactive system is a valuable one for DAI, and that temporal logic is
appropriate for reasoning about DAI systems (these issues are examined in more detail
in [16]).

Concurrent METATEM is a programming language for DAI in which the notion
of reactivity is central. A Concurrent METATEM system contains a number of concur-
rently executing objects (a.k.a. agents), which are able to communicate through message
passing. Each object executes a temporal logic specification of its desired behaviour.
The move from specification to implementation in Concurrent METATEM is therefore



a small one (since the specification and implementation languages have much in com-
mon). However, ‘standard’ temporal logic cannot simply be used to describe Concurrent
METATEM systems (although see [13] for a semantics of Concurrent METATEM based
on dense temporal logic [5]). This is because each object in a Concurrent METATEM
system is a symbolic AI system in its own right: it contains a set of explicitly represen-
ted (temporal logic) formulae which it manipulates in order to decide what to do. Thus,
to reason about the behaviour of Concurrent METATEM systems, we require some de-
scription of the formulae that each agent is manipulating at each moment in time. One
way of doing this would be to use a first-order temporal meta-language (as in [4]).
However, meta-languages are notationally cumbersome, and can be confusing. What
we propose instead is to use a multi-modal language, which contain both temporal con-
nectives and an indexed set of modal belief operators, one for each object. These belief
operators will be used to describe the formulae that each agent manipulates (see [23]
for a detailed exposition on the use of belief logics without a temporal component for
describing AI systems).

We have now set the scene for the remainder of the paper. In the next section, we
describe Concurrent METATEM in more detail. We then develop a temporal belief logic,
and show how it can be used to reason about Concurrent METATEM systems.

2 Concurrent METATEM

In this section we introduce Concurrent METATEM, and present a short example to
illustrate its use; in §2.3 we describe the temporal logic that is used for Concurrent
METATEM program rules. Although first-order temporal logic is used to represent an
object’s behaviour in METATEM [15], we will, for the sake of simplicity, restrict our
examples to the propositional case.

2.1 Objects and Object Execution

A Concurrent METATEM system contains a number of concurrently executing objects,
which are able to communicate through asynchronous broadcast message passing. Each
object directly executes a temporal logic specification, given to it as a set of ‘rules’. In
this section, we describe objects and their execution in more detail. Each object has two
main components:

– an interface, which defines how the object may interact with its environment (i.e.,
other objects);

– a computational engine, which defines how the object may act.

An object interface consists of three components:

– a unique object identifier (or just object id), which names the object;
– a set of symbols defining what messages will be accepted by the object — these

are called environment propositions;
– a set of symbols defining messages that the object may send — these are called

component propositions.



For example, the interface definition of a ‘stack’ object might be [13]:

stack(pop, push)[popped, stackƒull]

Here, stack is the object id that names the object,
�
pop, push � are the environment pro-

positions, and
�
popped, stackƒull � are the component propositions. Whenever a mes-

sage headed by the symbol pop is broadcast, the stack object will accept the message;
we describe what this means below. If a message is broadcast which is not declared in
the stack object’s interface, then stack ignores it. Similarly, the only messages which can
be sent by the stack object are headed by the symbols popped and stackƒull. (All other
propositions used within the object are internal propositions, which have no external
correspondence.)

The computational engine of an object is based on the METATEM paradigm of ex-
ecutable temporal logics. The idea which informs this approach is that of directly ex-
ecuting a declarative object specification, where this specification is given as a set of
program rules, which are temporal logic formulae of the form:

antecedent about past ⇒ consequent about future.

The past-time antecedent is a temporal logic formula referring strictly to the past,
whereas the future time consequent is a temporal logic formula referring either to the
present or future. The intuitive interpretation of such a rule is ‘on the basis of the past,
do the future’, which gives rise to the name of the paradigm: declarative past and im-
perative future [17]. The actual execution of an object is, superficially at least, very
simple to understand. Each object obeys a cycle of trying to match the past time ante-
cedents of its rules against a history, and executing the consequents of those rules that
‘fire’1.

To make the above discussion more concrete, we will now informally introduce a
propositional temporal logic, called Propositional METATEM Logic (PML), in which
the individual METATEM rules will be given. (A complete definition of PML is given
in §2.3.)

PML is essentially classical propositional logic augmented by a set of modal con-
nectives for referring to the temporal ordering of actions. PML is based on a model
of time that is linear (i.e., each moment in time has a unique successor), bounded in
the past (i.e., there was a moment that was the ‘beginning of time’), and infinite in
the future (i.e., there are an infinite number of moments in the future). The temporal
connectives of PML can be divided into two categories, as follows.

1. Strict past time connectives: ‘ � ’ (weak last), ‘ �������� ’ (strong last), ‘♦’ (was), ‘ ’
(heretofore), ‘ � ’ (since) and ‘ 	 ’ (zince, or weak since).

2. Present and future time connectives: ‘
�

’ (next), ‘ 
 ’ (sometime), ‘ ’ (always),
‘ � ’ (until) and ‘ � ’ (unless).

1 There are obvious similarities between the execution cycle of an object and production systems
— but there are also significant differences. The reader is cautioned against taking the analogy
too seriously.



The connectives
� �������� , � ,♦, ,

�
, 
 , � are unary; the rest are binary. In addition

to these temporal connectives, PML contains the usual classical logic connectives.
The meaning of the temporal connectives is quite straightforward, with formulae

being interpreted at a particular moment in time. Let φ and ψ be formulae of PML. Then�
φ is true (satisfied), at the current moment in time if φ is true at the next moment

in time; 
 φ is true now if φ is true now or at some future moment in time; φ is
true now if φ is true now and at all future moments; φ � ψ is true now if ψ is true at
some future moment, and φ is true until then — � is a binary connective similar to
� , allowing for the possibility that the second argument never becomes true.

The past-time connectives are similar: �������� and � are true now if their arguments
were true at the previous moment in time — the difference between them is that, since
the model of time underlying the logic is bounded in the past, the beginning of time
is a special case: �������� φ will always be false when interpreted at the beginning of time,
whereas � φ will always be true at the beginning of time; ♦φ will be true now if φ
was true at some previous moment in time; φ will be true now if φ was true at all
previous moments in time; φ � ψ will be true now if ψ was true at some previous
moment in time, and φ has been true since then; 	 is the same, but allowing for the
possibility that the second argument was never true. Finally, a temporal operator that
takes no arguments can be defined which is true only at the first moment in time: this
useful operator is called ‘start’.

Any formula of PML which refers strictly to the past is called a history formula; any
formula referring to the present or future is called a commitment formula; any formula
of the form

history formula ⇒ commitment formula

is called a rule; an object specification is a set of such rules.
A more precise definition of object execution will now be given. Objects continually

execute the following cycle:

1. Update the history of the object by receiving messages from other objects and
adding them to their history. (This process is described in more detail below.)

2. Check which rules fire, by comparing past-time antecedents of each rule against
the current history to see which are satisfied.

3. Jointly execute the fired rules together with any commitments carried over from
previous cycles. This is done by first collecting consequents of newly fired rules
and old commitments, which become commitments. It may not be possible to satisfy
all the commitments on the current cycle, in which case unsatisfied commitments
are carried over to the next cycle. An object will then have to choose between a
number of execution possibilities.

4. Goto (1).

Clearly, step (3) is the heart of the execution process. Making a bad choice at this step
may mean that the object specification cannot subsequently be satisfied (see [3, 15]).

A natural question to ask is: how do objects do things? How do they send messages
and perform actions? When a proposition in an object becomes true, it is compared
against that object’s interface (see above); if it is one of the object’s component propos-
itions, then that proposition is broadcast as a message to all other objects. On receipt



of a message, each object attempts to match the proposition against the environment
propositions in their interface. If there is a match then they add the proposition to their
history, prefixed by a ‘ �������� ’ operator, indicating that the message has just been received.

The reader should note that although the use of only broadcast message-passing may
seem restrictive, standard point-to-point message-passing can easily be simulated by
adding an extra ‘destination’ argument to each message; the use of broadcast message-
passing as the communication mechanism gives the language the ability to define more
adaptable and flexible systems. We will not develop this argument further; the interested
reader is urged to either consult our earlier work on Concurrent METATEM [13, 16], or
relevant work showing the utility of broadcast and multicast mechanisms [8, 6, 24].

2.2 A Simple Concurrent METATEM System

To illustrate Concurrent METATEM in more detail, we present in Fig. 1 an example
system (outlined originally in [3] and extended in [13])2. The system contains three
objects: rp, rc1 and rc2. The object rp is a ‘resource producer’: it can ‘give’ to only one
object at a time (rule 3), and will commit to eventually give to any object that ‘ask’s’
(rules 1 and 2). Object rp will only accept messages ask1 and ask2, and can only send
give1 and give2 messages.

rp(ask1,ask2)[give1, give2] :
1. ������� ask1 ⇒ 
 give1;
2. ������� ask2 ⇒ 
 give2;
3. start ⇒ ¬(give1 ∧ give2).

rc1(give1)[ask1] :
1. start ⇒ ask1;
2. ������� ask1 ⇒ ask1.

rc2(ask1,give2)[ask2] :
1. ������� (ask1 ∧ ¬ask2) ⇒ ask2.

Fig. 1. A Simple Concurrent METATEM System

The object rc1 will send an ask1 message on every cycle: this is because start is
satisfied at the beginning of time, thus firing rule 1, while �������� ask1 will then be true on
the next cycle, thus firing rule 2, and so on. Thus rc1 asks for the message on every

2 Note that in the interests of readability, this program has been ‘pretty printed’ using the sym-
bolic form of temporal connectives, rather than the plain-text form that the implementation
actually requires; additionally, rule numbers have been introduced to facilitate easy reference
— these are not part of the language!



cycle, using an ask1 message. Object rc1 will only accept a give1 message, and can
only send an ask1 message.

The object rc2 will send an ask2 message on every cycle where, on its previous
cycle, it did not send an ask2 message, but rc1 sent an ask1 message. Object rc2 will
only accept messages ask1 and give2, and can only send an ask2 message.

To conclude, the system in Fig. 1 has the following properties:

1. Objects rc1 and rc2 will ask rp for the resource infinitely often;
2. Every time rp is ‘asked’, it must eventually ‘give’ to the corresponding asker.

From which we can informally deduce that:

3. Object rp will give the resource to both objects infinitely often.

In §5, we will show formally that the system does indeed have this behaviour.

2.3 A Propositional Temporal Logic (PML)

We now give a complete definition of the propositional temporal logic used for program
rules (PML); for a fuller account of propositional temporal logic see, for example, [11].

Syntax

Definition 1 The language of PML contains the following symbols:

1. a countable set, Prop, of proposition symbols;
2. the symbol true;
3. the unary propositional connective ‘¬’ and binary propositional connective ‘∨’;
4. the unary temporal connectives

� �������� ,
� � ;

5. the binary temporal connectives
� � , ��� ;

6. the punctuation symbols
�
), ( � .

All the remaining propositional and temporal connectives are introduced as abbrevi-
ations (see below). The syntax of PML is defined as follows.

Definition 2 Well-formed formulae of PML, WFF(PML), are defined by the following
rules.

1. All proposition symbols are PML formulae;
2. If φ is a PML formula then so are ¬φ,

�
φ and �������� φ;

3. If φ and ψ are PML formulae then so are φ ∨ ψ , φ � ψ , and φ � ψ ;
4. If φ is a PML formula, then (φ) is a PML formula.



�
M, u � |= true�
M, u � |= p iff πp(u, p) = T�
M, u � |= ¬φ iff

�
M, u � ⁄|= φ�

M, u � |= φ ∨ ψ iff
�
M, u � |= φ or

�
M, u � |= ψ�

M, u � |=
�

φ iff
�
M, u + 1 � |= φ�

M, u � |= ������� φ iff u > 0 and
�
M, u − 1 � |= φ�

M, u � |= φ � ψ iff ∃v ∈ IN ⋅ (u ≤ v) and
�
M, v � |= ψ

and ∀w ∈ � u, … , v − 1 � ⋅
�
M, w � |= φ�

M, u � |= φ � ψ iff ∃v ∈ IN ⋅ (v < u) and
�
M, v � |= ψ

and ∀w ∈ � v + 1, … , u − 1 � ⋅
�
M, w � |= φ

Fig. 2. Semantics of PML

Semantics The semantics of well-formed formulae of PML is given in the obvious
way, with formulae being interpreted in a model, at a particular moment in time.

Definition 3 A model, M, for PML is a structure � σ , πp � where

– σ is the ordered set of states s0, s1, s2, … representing ‘moments’ in time, and
– πp : IN × Prop →

�
T, F � is a function assigning T or F to each atomic proposition

at each moment in time.

As usual, we use the relation ‘ |=’ to give the truth value of a formula in a model M, at
a particular moment in time u. This relation is defined for formulae of PML in Fig. 2.
Note that these rules only define the semantics of the basic propositional and temporal
connectives; the remainder are introduced as abbreviations (we omit the propositional
connectives, as these are standard):

� φ def
= ¬ �������� ¬φ

start
def
= � false


 φ def
= true � φ

φ def
= ¬ 
 ¬φ

φ � ψ def
= φ ∨ φ � ψ

♦φ def
= true � φ

φ def
= ¬♦¬φ

φ 	 ψ def
= φ ∨ φ � ψ

Proof Theory The proof theory of PML has been examined exhaustively elsewhere
(see, for example, [18, 27, 1]). Here, we identify some axioms and inference rules that
are later used in our proofs.

�
(φ ⇒ ψ ) ⇒ ( φ ⇒ ψ ) (1)�
(φ ⇒ ψ ) ⇒ ( 
 φ ⇒ 
 ψ ) (2)� �
(φ ⇒ ψ ) ⇒ (

�
φ ⇒

�
ψ ) (3)



� 
�
 φ ⇔ 
 φ (4)�
(start ⇒ φ) ⇒ φ (5)�

(φ ⇒
�

φ) ⇒ (φ ⇒ φ) (6)�
φ ⇒ φ (7)�

(
� �������� φ ⇒ ψ ) ⇔ (φ ⇒ ψ ) (8)�

( ���������� φ ⇒ ψ ) ⇒ (φ ⇒ ψ ) (9)

From
�

φ infer
�

φ (10)

From
�

φ infer
� 
 φ (11)

From
�

φ infer
� �

φ (12)

3 A Temporal Belief Logic

This section introduces a Temporal Belief Logic (TBL), that can be used to reason
about Concurrent METATEM systems. Like PML, it is a linear discrete temporal logic,
with bounded past and infinite future. TBL is similar to the logic LB that Konolige
developed for his deduction model of belief [23]; it was derived from Wooldridge’s
work on reasoning about multi-agent systems [28, 29].

Syntax Syntactically, TBL can be thought of as PML augmented by an indexed set of
unary modal operators [i], (applied to formulae of PML), and closed under the propos-
itional and temporal connectives of PML. The ‘i’ in [i] is an object id. A TBL formula
of the form [i]φ should be read “φ is in i’s current state.” Thus if φ is a history formula,
this would say that φ was in i’s history; if φ was a rule, this would say that φ was one
of i’s rules, and if φ were a commitment, it would say that i was committed to φ.

Definition 4 The language of TBL contains all the symbols of PML, and in addition
the square brackets

�
], [ � and a countable set obj of object ids.

Definition 5 Well-formed formulae of TBL are defined by the following rules:

1. TBL contains all formulae of PML;
2. If φ is a formula of PML and i ∈ obj then [i]φ is a formula of TBL;
3. TBL is closed under the propositional and temporal connectives of PML.

Semantics One obtains a model for TBL by taking a PML model and adding a function
mapping each object id and each moment in time to a set of PML formulae representing
the object’s state at that moment in time.

Definition 6 A model � for TBL is a structure � σ , πp, � � where

� : obj × IN → powerset WFF(PML)

and σ and πp are as in PML.



The formula [i]φ will be satisfied if φ is in i’s state at the appropriate time. This gives
the following additional semantic rule, for formulae of the form [i]φ.

��� , u � |= [i]φ iff φ ∈ � (i, u)

Other formulae are interpreted using the same rules as before.

3.1 Proof Theory

TBL inherits all the axioms and inference rules of PML. Further, since there is no direct
interaction between the temporal connectives and the ‘[i]’ operators in the basic TBL
system, then the only extra axiom that we add is the following.

�
[i](P ⇒ F) ⇒ (([i]P) ⇒ ([i]F)) (13)

This characterises the fact that the ‘⇒’ operator in Concurrent METATEM follows the
same logical rules as standard implication.

4 Axiomatizing Concurrent METATEM

In this section, we use TBL to axiomatize the properties of Concurrent METATEM sys-
tems. This involves extending the basic TBL proof system outlined above to account for
the particular properties of the Concurrent METATEM systems that we intend to verify
properties of.

The first axiom we add describes the conditions under which an object will send
a message: if a proposition becomes ‘true’ inside an object, and the proposition sym-
bol appears in the object’s component propositions, then the proposition is broadcast.
(Note the use of ordinary PML propositions to describe messages.) So if P is one of i’s
component propositions, then the following axiom holds.

�
([i]P) ⇒ 
 P (14)

The second axiom deals with how objects receive messages: if a message is broadcast,
and the proposition symbol of that message appears in an object’s environment propos-
ition list, then that message is accepted by the object, which subsequently ‘believes’
that the proposition was true. So if P is one of i’s environment propositions, then the
following axiom holds. �

P ⇒ 
 [i] �������� P (15)

The third axiom states that objects maintain accurate histories.

�
([i]φ) ⇒ [i]

� �������� φ (16)

To simplify the proofs, we will assume that all objects in a Concurrent METATEM system
execute synchronously, i.e., the ‘execution steps’ of each object match. This simplific-
ation allows us to add the following synchronisation axioms. (Note that, without this



simplification, each object would be executing under a distinct local clock, and so prov-
ing properties of such a system becomes much more difficult, though possible [13].)

�
(
�

[i]φ ⇒ ψ ) ⇔ ([i]
�

φ ⇒ ψ ) (17)�
( �������� [i]φ ⇒ ψ ) ⇔ ([i] �������� φ ⇒ ψ ) (18)

Now, for every rule, R, in an object, i, we add the following axiom showing that once
the object has started executing, the rule is always applicable.

�
[i]start ⇒ [i]R (19)

Finally, to simplify the proofs still further, we will assume that all objects commence
execution at the same moment, denoted by the global ‘start’ operator. Thus, for every
object, i, we add the following axiom.

�
start ⇒ [i]start (20)

5 Examples

In this section, we show how TBL can be used to reason about Concurrent METATEM
systems. We begin by proving some properties of the system presented earlier. In the
proofs that follow, we will use the notation

�
S � � φ to represent the statement ‘system

S satisfies property φ’. Also, as the majority of the proof steps involve applications of
the Modus Ponens inference rule, we will omit reference to the particular rule used at
each step. As we refer to the axioms and theorems used, the rule used will be clear at
each step.

5.1 Resource Controller

Let the system given in Fig. 1 be called S1. This system contains three objects: a re-
source producer (rp), and two resource consumers (rc1 and rc2). The first property we
prove is that the object rc1, once it has commenced execution, satisfies the commitment
ask1 on every cyle.

Lemma 1.
�
S1 � � start ⇒ [rc1]ask1.

Proof See Fig. 3.

Using this result, it is not difficult to establish that the message ask1 is then sent
infinitely often.

Lemma 2.
�
S1 � � 
 ask1.

Proof This, and all remaining proofs, are omitted due to space restrictions.

Similarly, we can show that any object that is listening for ask1 messages, in particular
rp, will receive them infinitely often.



1. [rc1]start ⇒ [rc1](start ⇒ ask1) (rule 1 in rc1)

2. start ⇒ [rc1](start ⇒ ask1) (axiom 19, 1)

3. [rc1](start ⇒ ask1) (axiom 5, 2)

4. [rc1](start ⇒ ask1) (axiom 7, 3)

5. [rc1]start ⇒ [rc1]ask1 (axiom 13, 4)

6. start ⇒ [rc1]ask1 (axiom 19, 5)

7. [rc1]start ⇒ [rc1]( ������� ask1 ⇒ ask1) (rule 2 in rc1)

8. start ⇒ [rc1]( ������� ask1 ⇒ ask1) (axiom 19, 7)

9. [rc1]( ������� ask1 ⇒ ask1) (axiom 5, 8)

10. [rc1]( ������� ask1 ⇒ ask1) (axiom 7, 9)

11. [rc1] ������� ask1 ⇒ [rc1]ask1 (axiom 13, 10)

12.
�

([rc1] ������� ask1 ⇒ [rc1]ask1) (inf. rule 12, 11)

13.
�

[rc1] ������� ask1 ⇒
�

[rc1]ask1 (axiom 3, 12)

14.
� ������� [rc1]ask1 ⇒

�
[rc1]ask1 (axiom 18, 13)

15. [rc1]ask1 ⇒
�

[rc1]ask1 (axiom 8, 14)

16. ([rc1]ask1 ⇒
�

[rc1]ask1) (inf. rule 10, 15)

17. [rc1]ask1 ⇒ [rc1]ask1 (axiom 6, 16)

18. start ⇒ [rc1]ask1 (6, 17)

Fig. 3. Proof of Lemma 1

Lemma 3.
�
S1 � � start ⇒ 
 [rp] �������� ask1.

Now, since we know that ask1 is one of rp’s environment propositions, then we can
show that once both rp and rc1 have started, the resource will be given to rc1 infinitely
often.

Lemma 4.
�
S1 � � start ⇒ 
 give1.

Similar properties can be shown for rc2. Note, however, that we require knowledge
about rc1’s behaviour in order to reason about rc2’s behaviour.

Lemma 5.
�
S1 � � start ⇒ 
 [rp] �������� ask2.

Given this, we can derive the following result.

Lemma 6.
�
S1 � � start ⇒ 
 give2.

Finally, we can show the desired behaviour of the system; compare this to result (3)
that we informally deduced in §2.2.

Theorem 7.
�
S1 � � start ⇒ ( 
 give1 ∧ 
 give2).



5.2 Distributed Problem Solving

We now consider a distributed problem solving system. Here, a single object, called
executive, broadcasts a problem to a group of problem solvers. Some of these problem
solvers can solve the particular problem completely, and some will reply with a solution.

executive(solution1)[problem1,solved1] :
1. start ⇒ 
 problem1;
2. ������� solution1 ⇒ solved1.

solvera(problem2)[solution2] :
1. ������� problem2 ⇒ solution2.

solverb(problem1)[solution2] :
1. ������� problem1 ⇒ 
 solution1.

solverc(problem1)[solution1] :
1. ������� problem1 ⇒ 
 solution1.

Fig. 4. A Distributed Problem Solving System

solverd(problem1,solution1.2)[solution1] :
1. ( ������� solution1.2 ∧ ♦problem1) ⇒ 
 solution1.

solvere(problem1)[solution1.2] :
1. ������� problem1 ⇒ 
 solution1.2.

Fig. 5. Additional Problem Solving Agents

We define such a Concurrent METATEM system in Fig. 4. Here, solvera can solve
a different problem from the one executive poses, while solverb can solve the desired
problem, but doesn’t announce the fact (as solution1 is not a component proposition for
solverb); solverc can solve the problem posed by executive, and will eventually reply
with the solution.

If we call this system S2, then we can prove the following.

Theorem 8.
�
S2 � � start ⇒ 
 solved1.

We now remove solverc and replace it by two objects who together can solve problem1,
but can not manage this individually. These objects, called solverd and solvere are
defined in Fig. 5.



Thus, when solverd receives the problem it cannot do anything until it has heard
from solvere. When solvere receives the problem, it broadcasts the fact that it can some
of the problem (i.e., it broadcasts solution1.2). When solverd sees this, it knows it can
solve the other part of the problem and broadcasts the whole solution.

Thus, given these new objects we can prove the following (the system is now called
S3).

Theorem 9.
�
S3 � � start ⇒ 
 solved1.

6 Concluding Remarks

In this paper, we have described Concurrent METATEM, a programming language for
DAI, and developed a Temporal Belief Logic for reasoning about Concurrent META-
TEM systems. In effect, we used the logic to develop a crude semantics for the language;
this approach did not leave us with a complete proof system for Concurrent METATEM,
(since we made the assumption of synchronous action). However, it has the advant-
age of simplicity when compared to other methods for defining the semantics of the
language (such as those based on dense temporal logic [13], or first-order temporal
meta-languages [4]).

More generally, logics similar to that developed herein can be used to reason about
a wise class of DAI systems: those in which agents/objects have a classic ‘symbolic AI’
architecture. Such systems typically employ explicit symbolic representations, which
are manipulated in order to plan and execute actions. A belief logic such as that de-
scribed in this paper seems appropriate for describing these representations (see also
[23]). A temporal component to the logic seems to be suitable for describing reactive
systems, of which DAI systems are an example. In other work, we have developed a
family of temporal belief logics, augmented by modalities for describing the actions
and messages of individual agents, and demonstrated how these logics can be used to
specify a wide range of cooperative structures [28, 29].

In future work we will concentrate on refining the axiomatisation of Concurrent
METATEM, and on developing (semi-)mechanical proof procedures for logics such as
TBL, based upon either multi-modal tableaux or multi-modal resolution.
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