An Automata Theoretic Approach
to Multiagent Planning

Michael Wooldridge

Department of Computer Science
University of Liverpool
Liverpool L69 7ZF, U.K.

m w@sc. liv.ac. uk

Abstract

We present a novel approach to multiagent planning, andittessome pre-
liminary results obtained with an implementation of thipegach. The approach
is novel in three respects. First, it is basedamtomata theoretic model check-
ing, a highly efficient technique that was originally developedthe automatic
verification of finite state concurrent systems. Secondllaétva for goals for
agents or groups of agents to be expressed using the langbiagreear Tem-
poral Logic {TL), a succinct and expressive language for expressing nbt jus
properties of states, but of (potentially infinite) sequesof states. Third, the
approach allows for plans to be developed in the context vir@mments that
may contain multiple processes, which may independentlyipudate the envi-
ronment. These processes may be defined either implicilpd¢a-deterministic
processes that may execute actions), or explicitly, byngitihe program that the
execute. Following a short overview of the theory underiigthe approach, we
describe its implementation in ttet np system, which is based upon teeiN
LTL model checker. We then give some results obtained in a sé@periments
usingat np.

1 Introduction

We present théutomata-Theoretic Multiagent Plannirgystem &t np). Theat np
system is capable of taking a representation of a plannimgagdothat contains mul-
tiple communicating agents, a specification of the capasliof one or more agents,
and a goal expressed in the language of Linear Temporal I(ogi¢. The system will
then be guaranteed to generate a sound plan that will actiesvgoal, if such a plan
exists and computational resources permit.

Theat np system is novel in both its capabilities and its implemeaotat First,
the system is based @utomata-theoretic model checkjrgtechnique originally de-
veloped for the automatic verification of finite state systdid]. In fact, at np is
implemented upomT& T's SPIN model checker foLTL, which provides a powerful,
highly optimized model checking engine that employs a nurobéechniques for ef-
ficiently managing large state spaces [10]. Secondly, tipeoagh allows for goals
for agents or groups of agents to be expressed using thedgagi Linear Temporal

Logic, a highly expressive language for expressing compteperties of (potentially
infinite) sequences of states. Finallt mp allows for plans to be developed in the
context of environments that may contain multiple procgsaéich may dynamically
operate on the environment. These processes may be defipbdtign(by defining
the actions that they can perform), or explicitly (by givithge program that the agent
executes).

The inspiration for thet np system was thplanning ascTL-based model check-
ing paradigm of Giunchiglia, Traverso and colleagues [8]. Qapraach differs from
theirs in a number of respects — we discuss the relationsitipig work at the end of
the paper.

The remainder of this paper is structured as follows. Werbiegthe following sec-
tion by introducing the underlying theory of automata tleicrmodel checking, and
how this technique can be used to implement a multiagenhpigrsystem. We then
describe theat np system, sketch out its organisation and capabilities, ardent
some experimental results obtained with the system. Welwdaavith a brief discus-
sion of related work and issues for future research.

2 The Theory

In this section, we give a brief overview of the theory that@mins our approach,
and in particular, we illustrate how tr&PIN model checker can be used as the basis
of a multiagent planning system. Readers familiar with nhadecking andspiN may
wish to skip directly to the section on planning wgRIN.

Model Checking: Model checkingvas developed as a technique for verifying that
finite state systems satisfy temporal logic specificatid@]s [The name arises from
the fact that verification can be viewed as a process of chgdkiat the system is
a model that validates the specification. The idea is thatrg systensS, which
we wish to verify satisfies some specificatignexpressed in a logical language
the possible computations ¢f can be understood as a directed graph, in which the
nodes of the graph correspond to possible states of thensyated arcs in the graph
correspond to state transitions. Such directed graphssaemtallyKripke structures
— the models used to give a semantics to temporal logics. Brutie model checking
verification process can then be understood as follows. rGaveystemS, which we
wish to verify satisfies some property, expressed in temporal logic, generate the
Kripke structureMs corresponding taS, and then check whethdls = o, i.e.,
whethery is valid in the Kripke structurdls. If the answer is “yes”, then the system
satisfies the specification; otherwise it does not.

Model checking has received considerable attention of [&tere are two main
reasons for this. The first is that model checking is strédgiviard to implement (un-
like alternative verification procedures, such as dedecterification [12, 13]). The
second is that, for some temporal logics, model checkingrdlgns are computa-
tionally tractable. In particular, for the branching temgddogic cTL [5], there is an
O(|¢| - |[Ms|) model checking algorithm, where| is the size of the formula to be
checked, andMs| is the size of the model against which it is to be checked [B3]p.
Forlinear temporal logic, the model checking problem is ostensiblyerammplex (it
is PSPACEcomplete [3, p.41]): the bestL model checking algorithm to date has time

complexity O(2#! - [Ms|), i.e., exponential in the size of the specification, butdine
in the size of the model [3, p.48]. However, the main problembioth branching and
linear temporal logic model checking is not the time comityeaf the model checking
process, but the fact that the size of the mddglthat encodes the computations of
S grows exponentially (or worse) with the size®f Much effort has been devoted to
overcoming thistate space explosigiroblem [3, p.1].

LTL Model Checking: The predominant approach toL model checking is based
on the close relationship betweer. formulae and Buchi automata — a type of finite
automata on infinite words [15]. Suppose we want to verify fimte state systen$
satisfiesLTL formula . The first step is to mode$ as a Biichi automatods; the
languagel(As) recognised byds will represent the set of possible computations of
S. Given anLTL formulay, it is possible to construct a Blichi automatdn such that
L(A,) is exactly the set of models ¢f. It should then be clear th&t satisfiesp iff

L(As) € L(A) 1)

i.e., if the set of possible computations®éare a subset of the computations that satisfy
. Since Bichi automata are closed under complementatiercaw rewrite (1) as

L(As) N L(A-,) =0 2)

i.e., if the intersection of the set of computations&®fnd the set of computations
disallowedby ¢ is empty. As Bichi automata are closed under intersecti@encan
further rewrite (2) as

L(AsNA,) =0 3)

So, checking thaf satisfiesy involves first generatingls and.A-,, then checking
whether£(As N A-,) = (. The state explosion problem can be alleviated in au-
tomata theoretic model checking by the use of two additiveehniques. First, the
automatonAgs, representing the system to be modelled, need only be gedena-
the-fly states are only generated as they are needed, and so dmdpnimotst case must
the entire automatomls be generated. Second, the set of possible transitiontsin
can be reduced by only considerirgpresentativefrom equivalence classes of com-
putations [3, pp.141-170]: if a number of operations conan(ih the sense that they
generate the same result whatever order they are exectlted)it is only necessary
to consider a single representative ordering of the omersitirather than all possible
orderings. (For historical reasons, this technique is knagpartial order reduction)

The SPIN LTL Model Checker: The spiN system, upon which our multiagent plan-
ning approach has been implemented, takes as input a descrgh a system con-
taining n concurrent processes, = P; || --- || Pn. SPIN then generates the Buchi
automataAdy, . .., A, corresponding to these processes, and then generatessthe sy
tem automatonds from A4, ..., Ay; to be preciseAs is actually generated on the
fly, using partial order reduction as described above. Tisteny processeB; are
encoded in the input using thEROMELA language, a guarded command language
somewhat resembling, which includes communication based on Hoas for-
malism [9]. As well as taking as input these processesy takes an-TL formula, and

/! variabl e decl arati ons
var s{

// the size of the world
#def i ne S| ZE ..

/[l initial |ocation of agent
i nt alx C
i nt aly B

/1 initial |location of target
i nt target X Cs
i nt targetY = ...,

/1 predicate used in the goal fornmula

#def i ne cl ((alx == targetX) && (aly == targetY))
}

/1 the actions available to the agent

action alMoveNort h

pre { aly < SIZE }
post { aly = aly + 1 }

action alMoveSout h
pre { aly >0 }
post { aly = aly - 1 }

action alMoveEast
pre { alx < SIZE }
post{ alx = alx + 1 }

acti on alMoveWest
pre { alx >1}
post{ alx = alx - 1 }

/1 definition of the agent via its capabilities
agent al alMoveNorth, alMveEast,
alMoveSout h, alMbveWest

[/ LTL formula defining the goa
goal { <>cl }

Figure 1: Theat np implementation of the static pursuit problem (Experimela)0

from it generates a Buchi automatoh.,, as decribed above, it then checks whether
L(As N A-,) =0, and if not, produces a witness to this effect, in the form nira
SPIN is particularly appropriate for the verification of multiggess communicat-

Experiment 0la (static pursuit, 1 agent)

1000 T T T T T T T
‘exptOla-data.txt’
)
<
3
& 100]
o
@
=]
c
o
(8]
Q
@2
c
2
E
o
0
=] 10 | i
[}
=
1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400
(a) world size
Experiment 01b (static pursuit, 2 agents)
1000 T T T T T T T T
)
<
3
& 100 | B
o
)
=]
c
o
(8]
Q
92
c
2
=
o
0
=] 10 | i
[}
=
1 L 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 50
(b) world size

Figure 2: Experiment 1: The pursuit problem with static éargvith one agent (a), and
two agents (b).

ing systems, a®ROMELA provides high-level communication constructs to support
the description of such systems. As a consequesr| has been widely used in the

verification of protocols [10].

Planning with SPIN: We are now in a position to describe the theory that underpins
our approach. First, note that, by default, verifying tBatatisfies TL specificationp
involves showing that (with a slight abuse of notation):

Ve € comfdS) we havec = ¢ 4

wherecomyS) denotes the set of computations&f Now, for reasons discussed in
the preceding section, ttePIN model checker is in fact optimized to check whether,
given anLTL formulay and systens:

dc € comfS) such that = —p (5)

If the answer to (5) is no, then (4) is true. If the answer isthenspPIN will actually
produce a witness to this, in the form of a computatio dhat fails to satisfyp.

Now, consider a multiagent planning doma&rand a goalp, expressed as amL
formula. Showing that there is a plan that satisfiesn S amounts to showing that
there is a computation of S such thatc = ¢. But this implies that we can make
use of (5) to usesPIN to solve such problems, by simply plugging in the negation of
the goalp. This is the basic idea that infornag np: we will now describe the actual
implementation o&at np.

3 The ATMP System

Theat np system allows plans to be developed for any number of ageataguta-
tional resources permitting). IaTMP, we specify the agents for which we wish to
develop plans by defining their capabilities, in terms ofdl8ons that they can per-
form. Actions are defined usingsrriIPSstyle pre-/post-condition notation [6]. The
environment in which a plan is to be developed is specifiedddfinohg a number of
agents that may modify the environment. These agents magfireed eitheimplic-
itly (by defining the actions that these agents may perfornexplicitly (by giving
PROMELA code that constitutes their program). Note that explidigfined environ-
mental agents may make full userROMELA's facilities, and in particular they may
communicate with one-another — this makes it possible tondefktremely sophisti-
cated environments.

Actions inat np are defined using aTrRIPSstyle pre-/post-condition formalism.
Here is an example of aa np action definition:

action north
pre {y<SIZE }
post { y =y +1 }

This action represents an agent moving North in a two-dimeas grid world: the
pre-condition is that thg location of the agent is not currently at the Northern-most
grid edge, while the post-condition is that théocation is incremented by one. Note
that in this exampley is a global variable in the environment. Such variables are
defined in avar s section of theat np system.

Experiment 02a (1 agent pursuit, infinite goal)

1000 T T T T T T T
‘expt02a-data.txt’
)
<
3
& 100 | B
o
@
=]
c
o
(8]
Q
@2
c
o
=
o
0
=] 10 | i
[}
£
1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180
(a) world size
Experiment 02b (2 agent pursuit, infinite goal)
10000 ¢ T T T T
3 ‘expt02b-data.txt’
@ 1000 | E
<
(&)
%]
[=2}
o
)
=]
c
o
(8]
8 100} E
c 3
o
=
o
0
<]
[}
S
= 10 3 -
1 1 1 1 1
5 10 15 20 25 30
(b) world size

Figure 3: Experiment 2: The pursuit problem with an infinieag with one agent (a),
and two agents (b).

An implicit agent definition involves naming an agent and d@icgons that it can
perform, where these actions are defined using the aboveamt&or example, this

definition says that agent namad may perform actionsort h, east, and so on:
agent al north, east, south, west

Goalsinat np are expressed as formulaelot. [12, 13]. The language affiL extends
that of classical logic with a number of temporal modal caniwes. Those of interest
to us are: 1" (henceforth), <" (at some time in the future), and4” (until). Thus

a formula]y expresses the fact thatis true now and forever more; means that

@ is eventually true; angbU{) means that eventually is true, and until theny is
true. Temporal connectives can be combined to succincpiyess complex properties
of state sequences. For example> means that happens infinitely often in the
future, while> [means that eventually; becomes true and remains true thereafter.
Here is an examplat np goal definition, which expresses the fact that the goal is tha
eventually agerd1 gets to a target locatiorX(Y) and stays there:

goal { <>[] ((x == X) & (y ==Y)) }

The propositions that appear in goal specifications mustdi@et over the global
environment variables, as declared in ther s section of the system definition, by
making use oPROMELA constructs [9, 10].

To summarize, aat np system definition contains: a variable declaration section
in which the global variables defining the properties of thei®nment are defined,;

a number of pre-/post-condition action definitions; a numdfeimplicit agent defi-
nitions, in which agents are defined by listing the actiorat they may perform; a
number of explicit agent definitions, in which agents arergfiby explicitly giving
the PROMELA code that they execute; and finally, a goal specification;esged as an
LTL formula.

Given a system specification, as described abavep works as follows. Vari-
able declarations and explicit agent definitions are tedadl directly intoPROMELA
variables and processes respectively. Goals are negatettamslated into theTL
form required by thespiN system. Implicit agent definitions are handled as follows.
Suppose we have an agexd, which can perform actionsy, . . . , an, where each ac-
tion o; has pre-conditiopre(«;) and post-conditiompos{«;). We translateAginto a
non-deterministic process (in fact, a Blichi automatorthwhe following properties.
For each actiomy;, we create a guarded state transition in the process. Thd fnra
the transition ire(a;). A transition is enabled if its guard is true: at any givendjm
there may be a number of transitions enabled. In any giverpatation of such a
system, only one enabled transition will be selected focetien. If a particular en-
abled transition associated with actianis selected, then the post conditipost«;)
associated with the transition is made true: this can inige¢ibe done byxecutinghe
post condition. (One technical aside: when translatingastto transitions, we force
PROMELA to consider them as beirggomig that is, between an action being selected
and the post-condition being made true, no other processtamene.)

When the translation process is compleaénp runs spiN over the system, to-
gether with the (negated) goal. If there exists some contipataf the system that
satisfies the goal, thesPIN reports this sequence of actions as a witness. This se-
qguence of actions is in fact a (multiagent) plansHiN reports a sequence of actions

aq, ..., an, then from construction of the translated system, we cas$grad that this
plan, if executed from the initial state, will achieve theagdn fact, by construction,
the planning process is both sound and complete: it guasieefind a plan if such
a plan exists (modulo the availability of sufficient compiaal resources), and if a
plan is announced, then this plan is guaranteed to be correct

One issue that arises with this approach is thatobledulingdifferent agents. By
default, sPIN will simply report any sequence of actions that accomplishes the goal.
Such a sequence may not constitute a “reasonable” plan,need not contain the
actions of one or more agents in the system. We have addrésséssue by allowing
the user to enforce “round robin” scheduling in the systelmeng agents are forced to
take it in turns to execute actions. Another issue is simat will report the first plan
that it finds that satisfies the goal, which may not be the skbglan to accomplish
the goal.sPIN can be forced to find the shortest solution by first finding arytgon,
and then iteratively reducing the maximum search depthgehew for the purposes of
this paper, we were not concerned with this problem. We wetteer concerned with
simply findingsoundplans.

4 Experimental Results

We now present some experimental results obtained withtimg system on a num-
ber of problems.

4.1 Experiment 1. The Pursuit Problem

The first set of experiments we carried out were ondfiagic pursuit problen{called
the hunter-prey problem in [2]). In this problem, we have mbar of agents inhabiting

a grid world of dimensiona x n. Initially, the agents are located at randomly allocated
grid locations. At some other randomly allocated grid lawais a target. The agents
are each able to move around the grid in directins, E, andW; in this first version

of the pursuit problem, the target is static. The agents arallowed to move outside
the grid world. Naturally enough, the goal is for the agentsdnverge on the target.
Within this general setup, we carried out two experimerggpHows.

Experiment 1a

In experiment 1a, we had just one agent in the system. akhmgp implementation
of this system is presented in Figure 1. For this experimeatsystematically varied
the size of the world. For each size of grid world, we ran 58ldri The trials were
generated on a deskt®T running RedHat.iINux 7.3, with a 1.3 GHAMD Athlon
processor and 512MB @&fAM; we usedsPIN version 3.4.16. For each trial, we kept
track of the amount of time taken to find a plan, to the neamssirsd (the experiments
were automated in @ program, and timing was done viaU implementation of the
standarduNix c ti me(...) system call). For completeness, we note the setting of
the various search parameters that may be set within: the - mparameter, which
is used to set the maximum search deptemm's double depth-first search algorithm
was set tol0 x S whereSis the size of the world; this is in effect tellingPIN to
stop searching for unnecessarily long plans. Tadlag was passed to tlaN search

program generated 8PIN, which forces it to look for acceptance cycles (we elaborate
on this issue below). Finally, theREACH symbolic variable was set when compiling
PAN, ensuring that a full search was undertaken.

The results for experiment 1a are shown in Figure 2(a), wplots the size of the
world against the average time taken &mp to find a plan (the average is taken over
the 50 trials, where in each trial the target and agent amdoraty located). Note that
they axis is plotted on a log scale, as is the case for all graphssrpaper.

The main observation that can be made is that the time takénda solution
appears to grow exponentially with the size of the searchespBlotice that the total
time to find a solution includes the time taken to create ahBaatomaton from the
goalLTL formula; in this experiment, (and in fact for all experimemte ran), the time
taken to generate this automaton is included in the totad tmrsolution on theg axis,
and was strongly dominated by the search time, except fgrsraall values of world
size.

Experiment 1b

The basic structure of Experiment 1b is as Experiment lathisitime we had two
agents. The goal was to have both agents converge on thé sargataneously. The
LTL formula defining the goal was thus>c 1, where this time the predicatel was
defined as

#define c1 \
(((alx == targetX) && (aly == targetyY)) &&\
((a2x == targetX) && (a2y == targetY)))

where, as might be expectealx anda2y define thex andy coordinates of agent 2.

The basic results are as Experiment la: the time taken to fsmudion is ex-
ponential in the size of the world, as might be expected. HWewedhe presence of
multiple agents means that the exponent seems to be larjereas for a world size
of 25 in the single agent case a solution was found in abousecend of real time, it
took about 10 seconds on average for the two agent case ofiEgoe 1b.

4.2 Experiment 2: An Infinite Goal

The basic setup for Experiment 2 is as Experiment 1: we hasmtagnhabiting a grid
world, around which they can move i, S, E, andW directions. This time, however,
there ar@wotargets placed randomly in the world, and we want our agewisibboth
infinitely often In other words, our goal is not simply of the form “achieveststate
of affairs”. We want a plan that contains an infinite loop; wanito generate eyclic
plan. To understand how such a plan may be generated, it éss@y to understand
a little more of the automata theoretic foundations of teraplogic. We noted earlier
that for anyLTL formulap, there is a Buchi automaton — anregular automaton —
that accepts just the (infinite) computations that are nwodgp. In fact, if a formula
 is satisfiable, then there is anregular expression

e=a-(5)

10

such that all the words that may be generated feoane models ofp (wherea and
0 are finite words and is the infinite repetition operator). In other words,LifL
formulay is satisfiable — has any models — then these models must taKerth of
a finite sequence of events)lowed by a cycle, or loap(As an aside, it is known that
the length ofv is O(2/#1), where|¢| is the size of the formula [14, p.743BPIN caters
for this state of affairs by looking for what are knownaaxeptance cyclesvhich may
be understood simply as infinite loops.

Experiment 2a

For Experiment 2a, we had a single agent, but two targetsioraly located in the
world. We had two predicatesl andc?2, defining when an agent reached these tar-
gets, as follows.

#define cl ((alx == targetXl) && (aly == targetYl))
#define c2 ((alx == target X2) && (aly == targetY2))

The goal may be understood as follows: we want a cyclic plam shat, if the
agent follows it, then there will always be some point in thiufe at which it will be
at target 1, and some later point at which it will be at targeln2emporal logic, this
goal is:

[1O(er A Q)
which inat np notation is:
goal{ []<>(cl && <>c2) }

The results for Experiment 2a are shown in Figure 3(a). Agaesee exponential, as
expected; but the results do not differ greatly from Expenitrila.
Experiment 2b

For Experiment 2b, we had the same basic setup as 2a, butwatagdents that were

required to visit both targets infinitely often, alterngtibetween them; thus while

agenti was at target, agentj (wherej # i) was required to be at target 2; and so on
The predicates used in defining the goal were as follows.

#define cl ((alx == targetXl) && (aly == targetYl))
#define c2 ((alx == target X2) && (aly == targetY2))
#define c3 ((a2x == target X1) && (a2y == targetYl))
#define c4 ((a2x == target X2) && (a2y == targetY2))
In conventional temporal logic notation, the goal was alo¥ad:

C10((cp Acy) AO(c2 Acs))

which inat np format becomes:

11

goal{ []<>((cl && c4) && <>(c2 && c3)) }

The results for this experiment are given in Figure 3(b). Jl@re see a much more
dramatic increase in the time to solution than in Experinfdnt For a world size of

30, the time to solution is on average nearly 2000 secondsprapared to about 50
seconds in Experiment 1b.

4.3 Experiment 3: A Moving Target

For Experiment 3, we used the same basic setup again, butrii@sve had anov-
ing target in other words, the environment the agents had to inhabg dyaamic
The target was thus itself encoded as an agent, given as &oiteagent definition
in PROMELA: see Figure 4 for the definition. (The lexenfds and%4 are used to
delimit the agent definitionNEXT is anat np macro definition that is used in explicit
agent definitions to facilitate round robin scheduling.)afyg the goal was simply to
converge on the target.

Our results for this experiment are given in Figure 5 (we oaly this experiment
with one agent). In the case of a single agent pursuing tigettathe results are com-
parable to Experiment 2a (the pursuit problem with an irgigibal).

5 Related Work

Although there is much work in the literature on multiagelainming, we are not aware
of any that directly usesrL model checking; see [4] for an overview of work on mul-
tiagent planning. Our approach was inspired by the work ahGhiglia, Traverso, and
colleagues, who have used symbalit. model checking for single agent planning [8].
The basic idea in this approach was that a classical plardongainD could be en-
coded as a Kripke structuMp, and the goal as a state formwaf cTL; the behaviour
of actions in the domain is captured in the transitiondgf. To determine whether
there exists a plan to achieye simply check whether theTL formulaE<{>, (on some
path, ¢ eventually holds) is true iMp: if it does, then the witness to this will be a
path throughMp encoding the actions that must be performed to achievehe work
of several other authors is worth mentioning: Bacchus arftbidaa have looked at the
synthesis of “rule— action” pairs from temporal logic specifications [1], andéalso
investigated the synchronisation of multiagent plansgisgmporal logic [11]. How-
ever, these approaches are not based on model checkindly,Fieher's METATEM
paradigm is based on the direct execution of temporal lagimila, although the ex-
ecution algorithms are based on checking the satisfialofitiie input formula, rather
than on model checking [7].

6 Conclusions

We have described a novel approach to multiagent plannimjregported some results
with an implementation of this approach — thenp system. Inat np, multiagent
planning is treated as a problem of Linear Temporal Logic ehatiecking, as im-
plemented in thespiN system. Our results thus far are encouraging; the fact that w

12

#def i ne EAST 0
#defi ne WEST 1
int direction = WEST,;
agent target %
do
;. (direction == EAST) && (targetX == SIZE - 1) ->
atomc {
printf("target changing direction to WEST");
di recti on = WEST;
NEXT;
}
(direction == WEST) && (targetX == 1) ->
atom c {
printf("target changing direction to EAST");
di recti on = EAST,;
NEXT;
}
(direction == WEST) && (targetX > 1) ->
atom c {
printf("target noves WEST");
targetX = targetX - 1,
NEXT;
}
(direction == EAST) && (targetX < SIZE - 1) ->
atom c {
printf("target noves EAST");
target X = target X + 1,
NEXT;
}
od
%

Figure 4. The moving target as an agent (Experiment 3).

were able to get results with more than one agent, for maglgrabmplexLTL goals

suggests that the approach is certainly worth further tigation. There are many
avenues for future research. An example is the ongoing derednt of more com-
plex environments, with larger numbers of agents: on theslm®ur experiments, we
hypothesise that the number of agents/processes in theement is the dominant
factor in determining the time to solution, rather than rhetiee number of bits in the
state vector. It would be interesting to investigate whethis hypothesis is borne out.
Acknowledgements:Thanks to Rafael Bordini for proof reading & sanity checking

References
[1] F. Bacchus and F. Kabanza. Planning for temporally elddrgoals. IiProceed-

ings of the Thirteenth National Conference on Artificialelliigence (AAAI-96)
pages 1215-1222, Portland, OR, 1996.

13

time to solution (seconds/logscale)

Experiment 03a (1 agent pursuit, moving target)
1000 T T T T T

’expt(l)3a-data.tx

100 |

10 |

1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180
world size

Figure 5: Experiment 3: The pursuit problem with a movingér

[2] A. Cimatti and M. Roveri. Conformant planning via symizoinodel checking.

[3]

[4]

[5]

[6]

[7]

[8]

Journal of Al Researchl3:305-338, 2000.

E. M. Clarke, O. Grumberg, and D. A. Pelebllodel Checking The MIT Press:
Cambridge, MA, 2000.

E. H. Durfee. Distributed problem solving and plannintn G. Weil3, editor,
Multiagent Systemgpages 121-164. The MIT Press: Cambridge, MA, 1999.

E. A. Emerson. Temporal and modal logic. In J. van Leeuwestitor, Hand-
book of Theoretical Computer Science Volume B: Formal Modetl Semantics
pages 996-1072. Elsevier Science Publishers B.V.: Anmaterdhe Nether-
lands, 1990.

R. E. Fikes and N. Nilsson. STRIPS: A new approach to thgliegtion of
theorem proving to problem solvindurtificial Intelligence 2:189-208, 1971.

M. Fisher. A survey of Concurrent MrATEM — the language and its applica-
tions. In D. M. Gabbay and H. J. Ohlbach, editofemporal Logic — Proceed-
ings of the First International Conference (LNAI Volume B3Yages 480-505.
Springer-Verlag: Berlin, Germany, July 1994.

F. Giunchiglia and P. Traverso. Planning as model chegkiln S. Biundo and
M. Fox, editors,Recent Advances in Al Planning (LNAI Volume 18G$ges
1-20. Springer-Verlag: Berlin, Germany, 1999.

14

[9] G. Holzmann. Design and Validation of Computer ProtocolsPrentice Hall
International: Hemel Hempstead, England, 1991.

[10] G. Holzmann. The Spin model checkdEEE Transaction on Software Engi-
neering 23(5):279-295, May 1997.

[11] F. Kabanza. Synchronizing multiagent plans using terajlogic specifications.
In Proceedings of the First International Conference on MAlgent Systems
(ICMAS-95) pages 217-224, San Francisco, CA, June 1995.

[12] Z. Manna and A. PnueliThe Temporal Logic of Reactive and Concurrent Sys-
tems Springer-Verlag: Berlin, Germany, 1992.

[13] Z. Manna and A. Pnueli.Temporal Verification of Reactive Systems — Safety
Springer-Verlag: Berlin, Germany, 1995.

[14] A. P. Sistla and E. M. Clarke. The complexity of propmsigl linear temporal
logics. Journal of the ACM32(3):733—-749, 1985.

[15] W. Thomas. Automata on infinite objects. In J. van Leenyveslitor,Handbook of
Theoretical Computer Science Volume B: Formal Models amda®écs pages
133-192. Elsevier Science Publishers B.V.: Amsterdam,Nétberlands, 1990.

15

