
An Automata Theoretic Approach
to Multiagent Planning

Michael Wooldridge

Department of Computer Science
University of Liverpool

Liverpool L69 7ZF, U.K.
mjw@csc.liv.ac.uk

Abstract

We present a novel approach to multiagent planning, and describe some pre-
liminary results obtained with an implementation of this approach. The approach
is novel in three respects. First, it is based onautomata theoretic model check-
ing, a highly efficient technique that was originally developedfor the automatic
verification of finite state concurrent systems. Second, it allows for goals for
agents or groups of agents to be expressed using the languageof Linear Tem-
poral Logic (LTL), a succinct and expressive language for expressing not just
properties of states, but of (potentially infinite) sequences of states. Third, the
approach allows for plans to be developed in the context of environments that
may contain multiple processes, which may independently manipulate the envi-
ronment. These processes may be defined either implicitly (as non-deterministic
processes that may execute actions), or explicitly, by giving the program that the
execute. Following a short overview of the theory underpinning the approach, we
describe its implementation in theatmp system, which is based upon theSPIN

LTL model checker. We then give some results obtained in a seriesof experiments
usingatmp.

1 Introduction

We present theAutomata-Theoretic Multiagent Planningsystem (atmp). Theatmp
system is capable of taking a representation of a planning domain that contains mul-
tiple communicating agents, a specification of the capabilities of one or more agents,
and a goal expressed in the language of Linear Temporal Logic(LTL). The system will
then be guaranteed to generate a sound plan that will achievethis goal, if such a plan
exists and computational resources permit.

Theatmp system is novel in both its capabilities and its implementation. First,
the system is based onautomata-theoretic model checking, a technique originally de-
veloped for the automatic verification of finite state systems [3]. In fact, atmp is
implemented uponAT& T’s SPIN model checker forLTL , which provides a powerful,
highly optimized model checking engine that employs a number of techniques for ef-
ficiently managing large state spaces [10]. Secondly, the approach allows for goals
for agents or groups of agents to be expressed using the language of Linear Temporal

1

Logic, a highly expressive language for expressing complexproperties of (potentially
infinite) sequences of states. Finally,atmp allows for plans to be developed in the
context of environments that may contain multiple processes, which may dynamically
operate on the environment. These processes may be defined implicitly (by defining
the actions that they can perform), or explicitly (by givingthe program that the agent
executes).

The inspiration for theatmp system was theplanning asCTL-based model check-
ing paradigm of Giunchiglia, Traverso and colleagues [8]. Our approach differs from
theirs in a number of respects — we discuss the relationship to this work at the end of
the paper.

The remainder of this paper is structured as follows. We begin in the following sec-
tion by introducing the underlying theory of automata theoretic model checking, and
how this technique can be used to implement a multiagent planning system. We then
describe theatmp system, sketch out its organisation and capabilities, and present
some experimental results obtained with the system. We conclude with a brief discus-
sion of related work and issues for future research.

2 The Theory

In this section, we give a brief overview of the theory that underpins our approach,
and in particular, we illustrate how theSPIN model checker can be used as the basis
of a multiagent planning system. Readers familiar with model checking andSPIN may
wish to skip directly to the section on planning withSPIN.

Model Checking: Model checkingwas developed as a technique for verifying that
finite state systems satisfy temporal logic specifications [3]. The name arises from
the fact that verification can be viewed as a process of checking that the system is
a model that validates the specification. The idea is that given a systemS, which
we wish to verify satisfies some specificationϕ expressed in a logical languageL,
the possible computations ofS can be understood as a directed graph, in which the
nodes of the graph correspond to possible states of the system, and arcs in the graph
correspond to state transitions. Such directed graphs are essentiallyKripke structures
— the models used to give a semantics to temporal logics. Crudely, the model checking
verification process can then be understood as follows. Given a systemS, which we
wish to verify satisfies some propertyϕ, expressed in temporal logic, generate the
Kripke structureMS corresponding toS, and then check whetherMS |=L ϕ, i.e.,
whetherϕ is valid in the Kripke structureMS . If the answer is “yes”, then the system
satisfies the specification; otherwise it does not.

Model checking has received considerable attention of late. There are two main
reasons for this. The first is that model checking is straightforward to implement (un-
like alternative verification procedures, such as deductive verification [12, 13]). The
second is that, for some temporal logics, model checking algorithms are computa-
tionally tractable. In particular, for the branching temporal logic CTL [5], there is an
O(|ϕ| · |MS |) model checking algorithm, where|ϕ| is the size of the formula to be
checked, and|MS | is the size of the model against which it is to be checked [3, p.38].
For linear temporal logic, the model checking problem is ostensibly more complex (it
is PSPACEcomplete [3, p.41]): the bestLTL model checking algorithm to date has time

2

complexityO(2|ϕ| · |MS |), i.e., exponential in the size of the specification, but linear
in the size of the model [3, p.48]. However, the main problem for both branching and
linear temporal logic model checking is not the time complexity of the model checking
process, but the fact that the size of the modelMS that encodes the computations of
S grows exponentially (or worse) with the size ofS. Much effort has been devoted to
overcoming thisstate space explosionproblem [3, p.1].

LTL Model Checking: The predominant approach toLTL model checking is based
on the close relationship betweenLTL formulae and Büchi automata — a type of finite
automata on infinite words [15]. Suppose we want to verify that finite state systemS
satisfiesLTL formulaϕ. The first step is to modelS as a Büchi automatonAS ; the
languageL(AS) recognised byAS will represent the set of possible computations of
S. Given anLTL formulaϕ, it is possible to construct a Büchi automatonAϕ such that
L(Aϕ) is exactly the set of models ofϕ. It should then be clear thatS satisfiesϕ iff

L(AS) ⊆ L(Aϕ) (1)

i.e., if the set of possible computations ofS are a subset of the computations that satisfy
ϕ. Since Büchi automata are closed under complementation, we can rewrite (1) as

L(AS) ∩ L(A¬ϕ) = ∅ (2)

i.e., if the intersection of the set of computations ofS and the set of computations
disallowedby ϕ is empty. As Büchi automata are closed under intersection,we can
further rewrite (2) as

L(AS ∩ A¬ϕ) = ∅ (3)

So, checking thatS satisfiesϕ involves first generatingAS andA¬ϕ, then checking
whetherL(AS ∩A¬ϕ) = ∅. The state explosion problem can be alleviated in au-
tomata theoretic model checking by the use of two additionaltechniques. First, the
automatonAS , representing the system to be modelled, need only be generated on-
the-fly: states are only generated as they are needed, and so only in the worst case must
the entire automatonAS be generated. Second, the set of possible transitions inAS

can be reduced by only consideringrepresentativesfrom equivalence classes of com-
putations [3, pp.141–170]: if a number of operations commute, (in the sense that they
generate the same result whatever order they are executed),then it is only necessary
to consider a single representative ordering of the operations, rather than all possible
orderings. (For historical reasons, this technique is known aspartial order reduction.)

The SPIN LTL Model Checker: TheSPIN system, upon which our multiagent plan-
ning approach has been implemented, takes as input a description of a system con-
taining n concurrent processes,S = P1 ‖ · · · ‖ Pn. SPIN then generates the Büchi
automataA1, . . . ,An corresponding to these processes, and then generates the sys-
tem automatonAS from A1, . . . ,An; to be precise,AS is actually generated on the
fly, using partial order reduction as described above. The system processesPi are
encoded in the input using thePROMELA language, a guarded command language
somewhat resemblingC, which includes communication based on Hoare’sCSP for-
malism [9]. As well as taking as input these processes,SPIN takes anLTL formula, and

3

// variable declarations
vars{

// the size of the world
#define SIZE ...

// initial location of agent
int a1x = ...;
int a1y = ...;

// initial location of target
int targetX = ...;
int targetY = ...;

// predicate used in the goal formula
#define c1 ((a1x == targetX) && (a1y == targetY))

}

// the actions available to the agent
action a1MoveNorth

pre { a1y < SIZE }
post{ a1y = a1y + 1 }

action a1MoveSouth
pre { a1y > 0 }
post{ a1y = a1y - 1 }

action a1MoveEast
pre { a1x < SIZE }
post{ a1x = a1x + 1 }

action a1MoveWest
pre { a1x > 1 }
post{ a1x = a1x - 1 }

// definition of the agent via its capabilities
agent a1 a1MoveNorth, a1MoveEast,

a1MoveSouth, a1MoveWest

// LTL formula defining the goal
goal{ <>c1 }

Figure 1: Theatmp implementation of the static pursuit problem (Experiment 01a).

from it generates a Büchi automatonA¬ϕ, as decribed above; it then checks whether
L(AS ∩A¬ϕ) = ∅, and if not, produces a witness to this effect, in the form of arun.

SPIN is particularly appropriate for the verification of multi-process communicat-

4

(a)

1

10

100

1000

0 50 100 150 200 250 300 350 400

tim
e

to
 s

ol
ut

io
n

(s
ec

on
ds

/lo
gs

ca
le

)

world size

Experiment 01a (static pursuit, 1 agent)

’expt01a-data.txt’

(b)

1

10

100

1000

5 10 15 20 25 30 35 40 45 50

tim
e

to
 s

ol
ut

io
n

(s
ec

on
ds

/lo
gs

ca
le

)

world size

Experiment 01b (static pursuit, 2 agents)

’expt01b-data.txt’

Figure 2: Experiment 1: The pursuit problem with static target, with one agent (a), and
two agents (b).

ing systems, asPROMELA provides high-level communication constructs to support
the description of such systems. As a consequence,SPIN has been widely used in the

5

verification of protocols [10].

Planning with SPIN: We are now in a position to describe the theory that underpins
our approach. First, note that, by default, verifying thatS satisfiesLTL specificationϕ
involves showing that (with a slight abuse of notation):

∀c ∈ comp(S) we havec |= ϕ (4)

wherecomp(S) denotes the set of computations ofS. Now, for reasons discussed in
the preceding section, theSPIN model checker is in fact optimized to check whether,
given anLTL formulaϕ and systemS:

∃c ∈ comp(S) such thatc |= ¬ϕ (5)

If the answer to (5) is no, then (4) is true. If the answer is no,thenSPIN will actually
produce a witness to this, in the form of a computation ofS that fails to satisfyϕ.

Now, consider a multiagent planning domainS and a goalϕ, expressed as anLTL

formula. Showing that there is a plan that satisfiesϕ in S amounts to showing that
there is a computationc of S such thatc |= ϕ. But this implies that we can make
use of (5) to useSPIN to solve such problems, by simply plugging in the negation of
the goalϕ. This is the basic idea that informsatmp: we will now describe the actual
implementation ofatmp.

3 The ATMP System

Theatmp system allows plans to be developed for any number of agents (computa-
tional resources permitting). InATMP, we specify the agents for which we wish to
develop plans by defining their capabilities, in terms of theactions that they can per-
form. Actions are defined using aSTRIPS-style pre-/post-condition notation [6]. The
environment in which a plan is to be developed is specified by defining a number of
agents that may modify the environment. These agents may be defined eitherimplic-
itly (by defining the actions that these agents may perform) orexplicitly (by giving
PROMELA code that constitutes their program). Note that explicitlydefined environ-
mental agents may make full use ofPROMELA’s facilities, and in particular they may
communicate with one-another — this makes it possible to define extremely sophisti-
cated environments.

Actions inatmp are defined using aSTRIPS-style pre-/post-condition formalism.
Here is an example of anatmp action definition:

action north
pre { y < SIZE }
post { y = y + 1 }

This action represents an agent moving North in a two-dimensional grid world: the
pre-condition is that they location of the agent is not currently at the Northern-most
grid edge, while the post-condition is that they location is incremented by one. Note
that in this example,y is a global variable in the environment. Such variables are
defined in avars section of theatmp system.

6

(a)

1

10

100

1000

0 20 40 60 80 100 120 140 160 180

tim
e

to
 s

ol
ut

io
n

(s
ec

on
ds

/lo
gs

ca
le

)

world size

Experiment 02a (1 agent pursuit, infinite goal)

’expt02a-data.txt’

(b)

1

10

100

1000

10000

5 10 15 20 25 30

tim
e

to
 s

ol
ut

io
n

(s
ec

on
ds

/lo
gs

ca
le

)

world size

Experiment 02b (2 agent pursuit, infinite goal)

’expt02b-data.txt’

Figure 3: Experiment 2: The pursuit problem with an infinite goal, with one agent (a),
and two agents (b).

An implicit agent definition involves naming an agent and theactions that it can
perform, where these actions are defined using the above notation. For example, this

7

definition says that agent nameda1 may perform actionsnorth, east, and so on:

agent a1 north, east, south, west

Goals inatmp are expressed as formulae ofLTL [12, 13]. The language ofLTL extends
that of classical logic with a number of temporal modal connectives. Those of interest
to us are: “ ” (henceforth), “♦” (at some time in the future), and “U ” (until). Thus
a formula ϕ expresses the fact thatϕ is true now and forever more;♦ϕ means that
ϕ is eventually true; andϕU ψ means that eventuallyψ is true, and until then,ϕ is
true. Temporal connectives can be combined to succinctly express complex properties
of state sequences. For example,♦ϕ means thatϕ happens infinitely often in the
future, while♦ ϕmeans that eventually,ϕ becomes true and remains true thereafter.
Here is an exampleatmp goal definition, which expresses the fact that the goal is that
eventually agenta1 gets to a target location (X, Y) and stays there:

goal { <>[] ((x == X) && (y == Y)) }

The propositions that appear in goal specifications must be defined over the global
environment variables, as declared in thevars section of the system definition, by
making use ofPROMELA constructs [9, 10].

To summarize, anatmp system definition contains: a variable declaration section,
in which the global variables defining the properties of the environment are defined;
a number of pre-/post-condition action definitions; a number of implicit agent defi-
nitions, in which agents are defined by listing the actions that they may perform; a
number of explicit agent definitions, in which agents are defined by explicitly giving
thePROMELA code that they execute; and finally, a goal specification, expressed as an
LTL formula.

Given a system specification, as described above,atmp works as follows. Vari-
able declarations and explicit agent definitions are translated directly intoPROMELA

variables and processes respectively. Goals are negated and translated into theLTL

form required by theSPIN system. Implicit agent definitions are handled as follows.
Suppose we have an agentAg, which can perform actionsα1, . . . , αn, where each ac-
tion αi has pre-conditionpre(αi) and post-conditionpost(αi). We translateAg into a
non-deterministic process (in fact, a Büchi automaton) with the following properties.
For each actionαi , we create a guarded state transition in the process. The guard for
the transition ispre(αi). A transition is enabled if its guard is true: at any given time,
there may be a number of transitions enabled. In any given computation of such a
system, only one enabled transition will be selected for execution. If a particular en-
abled transition associated with actionαi is selected, then the post conditionpost(αi)
associated with the transition is made true: this can in general be done byexecutingthe
post condition. (One technical aside: when translating actions to transitions, we force
PROMELA to consider them as beingatomic; that is, between an action being selected
and the post-condition being made true, no other process canintervene.)

When the translation process is complete,atmp runs SPIN over the system, to-
gether with the (negated) goal. If there exists some computation of the system that
satisfies the goal, thenSPIN reports this sequence of actions as a witness. This se-
quence of actions is in fact a (multiagent) plan. IfSPIN reports a sequence of actions

8

α1, . . . , αn, then from construction of the translated system, we can be assured that this
plan, if executed from the initial state, will achieve the goal. In fact, by construction,
the planning process is both sound and complete: it guarantees to find a plan if such
a plan exists (modulo the availability of sufficient computational resources), and if a
plan is announced, then this plan is guaranteed to be correct.

One issue that arises with this approach is that ofschedulingdifferent agents. By
default, SPIN will simply report any sequence of actions that accomplishes the goal.
Such a sequence may not constitute a “reasonable” plan, as itneed not contain the
actions of one or more agents in the system. We have addressedthis issue by allowing
the user to enforce “round robin” scheduling in the system, where agents are forced to
take it in turns to execute actions. Another issue is thatSPIN will report the first plan
that it finds that satisfies the goal, which may not be the shortest plan to accomplish
the goal.SPIN can be forced to find the shortest solution by first finding any solution,
and then iteratively reducing the maximum search depth; however, for the purposes of
this paper, we were not concerned with this problem. We were rather concerned with
simply findingsoundplans.

4 Experimental Results

We now present some experimental results obtained with theatmp system on a num-
ber of problems.

4.1 Experiment 1: The Pursuit Problem

The first set of experiments we carried out were on thestatic pursuit problem(called
the hunter-prey problem in [2]). In this problem, we have a number of agents inhabiting
a grid world of dimensionsn×n. Initially, the agents are located at randomly allocated
grid locations. At some other randomly allocated grid location is a target. The agents
are each able to move around the grid in directionsN, S, E, andW; in this first version
of the pursuit problem, the target is static. The agents are not allowed to move outside
the grid world. Naturally enough, the goal is for the agents to converge on the target.
Within this general setup, we carried out two experiments, as follows.

Experiment 1a

In experiment 1a, we had just one agent in the system. Theatmp implementation
of this system is presented in Figure 1. For this experiment,we systematically varied
the size of the world. For each size of grid world, we ran 50 trials. The trials were
generated on a desktopPC running RedHatLINUX 7.3, with a 1.3 GHzAMD Athlon
processor and 512MB ofRAM; we usedSPIN version 3.4.16. For each trial, we kept
track of the amount of time taken to find a plan, to the nearest second (the experiments
were automated in aC program, and timing was done viaGNU implementation of the
standardUNIX C time(...) system call). For completeness, we note the setting of
the various search parameters that may be set withinSPIN: the-m parameter, which
is used to set the maximum search depth inSPIN’s double depth-first search algorithm
was set to10 × S, whereS is the size of the world; this is in effect tellingSPIN to
stop searching for unnecessarily long plans. The-a flag was passed to thePAN search

9

program generated bySPIN, which forces it to look for acceptance cycles (we elaborate
on this issue below). Finally, theREACH symbolic variable was set when compiling
PAN, ensuring that a full search was undertaken.

The results for experiment 1a are shown in Figure 2(a), whichplots the size of the
world against the average time taken foratmp to find a plan (the average is taken over
the 50 trials, where in each trial the target and agent are randomly located). Note that
they axis is plotted on a log scale, as is the case for all graphs in this paper.

The main observation that can be made is that the time taken tofind a solution
appears to grow exponentially with the size of the search space. Notice that the total
time to find a solution includes the time taken to create a Büchi automaton from the
goalLTL formula; in this experiment, (and in fact for all experiments we ran), the time
taken to generate this automaton is included in the total time to solution on they axis,
and was strongly dominated by the search time, except for very small values of world
size.

Experiment 1b

The basic structure of Experiment 1b is as Experiment 1a, butthis time we had two
agents. The goal was to have both agents converge on the target simultaneously. The
LTL formula defining the goal was thus<>c1, where this time the predicatec1 was
defined as

#define c1 \
(((a1x == targetX) && (a1y == targetY)) && \
((a2x == targetX) && (a2y == targetY)))

where, as might be expected,a2x anda2y define thex andy coordinates of agent 2.
The basic results are as Experiment 1a: the time taken to find asolution is ex-

ponential in the size of the world, as might be expected. However, the presence of
multiple agents means that the exponent seems to be larger: whereas for a world size
of 25 in the single agent case a solution was found in about onesecond of real time, it
took about 10 seconds on average for the two agent case of Experiment 1b.

4.2 Experiment 2: An Infinite Goal

The basic setup for Experiment 2 is as Experiment 1: we have agents inhabiting a grid
world, around which they can move inN, S, E, andW directions. This time, however,
there aretwo targets placed randomly in the world, and we want our agent tovisit both
infinitely often. In other words, our goal is not simply of the form “achieve this state
of affairs”. We want a plan that contains an infinite loop; we want to generate acyclic
plan. To understand how such a plan may be generated, it is necessary to understand
a little more of the automata theoretic foundations of temporal logic. We noted earlier
that for anyLTL formulaϕ, there is a Büchi automaton — anω-regular automaton —
that accepts just the (infinite) computations that are models ofϕ. In fact, if a formula
ϕ is satisfiable, then there is anω-regular expression

e = α · (βω)

10

such that all the words that may be generated frome are models ofϕ (whereα and
β are finite words andω is the infinite repetition operator). In other words, ifLTL

formulaϕ is satisfiable — has any models — then these models must take the form of
a finite sequence of events,followed by a cycle, or loop. (As an aside, it is known that
the length ofα is O(2|ϕ|), where|ϕ| is the size of the formula [14, p.743].)SPIN caters
for this state of affairs by looking for what are known asacceptance cycles, which may
be understood simply as infinite loops.

Experiment 2a

For Experiment 2a, we had a single agent, but two targets, randomly located in the
world. We had two predicatesc1 andc2, defining when an agent reached these tar-
gets, as follows.

#define c1 ((a1x == targetX1) && (a1y == targetY1))
#define c2 ((a1x == targetX2) && (a1y == targetY2))

The goal may be understood as follows: we want a cyclic plan such that, if the
agent follows it, then there will always be some point in the future at which it will be
at target 1, and some later point at which it will be at target 2. In temporal logic, this
goal is:

♦(c1 ∧♦c2)

which inatmp notation is:

goal{ []<>(c1 && <>c2) }

The results for Experiment 2a are shown in Figure 3(a). Again, we see exponential, as
expected; but the results do not differ greatly from Experiment 1a.

Experiment 2b

For Experiment 2b, we had the same basic setup as 2a, but with two agents that were
required to visit both targets infinitely often, alternating between them; thus while
agenti was at target1, agentj (wherej 6= i) was required to be at target 2; and so on

The predicates used in defining the goal were as follows.

#define c1 ((a1x == targetX1) && (a1y == targetY1))
#define c2 ((a1x == targetX2) && (a1y == targetY2))
#define c3 ((a2x == targetX1) && (a2y == targetY1))
#define c4 ((a2x == targetX2) && (a2y == targetY2))

In conventional temporal logic notation, the goal was as follows:

♦((c1 ∧ c4) ∧♦(c2 ∧ c3))

which inatmp format becomes:

11

goal{ []<>((c1 && c4) && <>(c2 && c3)) }

The results for this experiment are given in Figure 3(b). Here, we see a much more
dramatic increase in the time to solution than in Experiment1b. For a world size of
30, the time to solution is on average nearly 2000 seconds, ascompared to about 50
seconds in Experiment 1b.

4.3 Experiment 3: A Moving Target

For Experiment 3, we used the same basic setup again, but thistime we had amov-
ing target; in other words, the environment the agents had to inhabit was dynamic.
The target was thus itself encoded as an agent, given as an explicit agent definition
in PROMELA: see Figure 4 for the definition. (The lexemes%{ and%} are used to
delimit the agent definition;NEXT is anatmp macro definition that is used in explicit
agent definitions to facilitate round robin scheduling.) Again, the goal was simply to
converge on the target.

Our results for this experiment are given in Figure 5 (we onlyran this experiment
with one agent). In the case of a single agent pursuing the target, the results are com-
parable to Experiment 2a (the pursuit problem with an infinite goal).

5 Related Work

Although there is much work in the literature on multiagent planning, we are not aware
of any that directly usesLTL model checking; see [4] for an overview of work on mul-
tiagent planning. Our approach was inspired by the work of Giunchiglia, Traverso, and
colleagues, who have used symbolicCTL model checking for single agent planning [8].
The basic idea in this approach was that a classical planningdomainD could be en-
coded as a Kripke structureMD, and the goal as a state formulaϕ of CTL; the behaviour
of actions in the domain is captured in the transitions ofMD. To determine whether
there exists a plan to achieveϕ, simply check whether theCTL formulaE♦ϕ (on some
path,ϕ eventually holds) is true inMD: if it does, then the witness to this will be a
path throughMD encoding the actions that must be performed to achieveϕ. The work
of several other authors is worth mentioning: Bacchus and Kabanza have looked at the
synthesis of “rule→ action” pairs from temporal logic specifications [1], and have also
investigated the synchronisation of multiagent plans using temporal logic [11]. How-
ever, these approaches are not based on model checking. Finally, Fisher’s METATEM
paradigm is based on the direct execution of temporal logic formula, although the ex-
ecution algorithms are based on checking the satisfiabilityof the input formula, rather
than on model checking [7].

6 Conclusions

We have described a novel approach to multiagent planning, and reported some results
with an implementation of this approach — theatmp system. Inatmp, multiagent
planning is treated as a problem of Linear Temporal Logic model checking, as im-
plemented in theSPIN system. Our results thus far are encouraging; the fact that we

12

#define EAST 0
#define WEST 1
int direction = WEST;

agent target %{
do
:: (direction == EAST) && (targetX == SIZE - 1) ->

atomic {
printf("target changing direction to WEST");
direction = WEST;
NEXT;

}
:: (direction == WEST) && (targetX == 1) ->

atomic {
printf("target changing direction to EAST");
direction = EAST;
NEXT;

}
:: (direction == WEST) && (targetX > 1) ->

atomic {
printf("target moves WEST");
targetX = targetX - 1;
NEXT;

}
:: (direction == EAST) && (targetX < SIZE - 1) ->

atomic {
printf("target moves EAST");
targetX = targetX + 1;
NEXT;

}
od
%}

Figure 4: The moving target as an agent (Experiment 3).

were able to get results with more than one agent, for moderately complexLTL goals
suggests that the approach is certainly worth further investigation. There are many
avenues for future research. An example is the ongoing development of more com-
plex environments, with larger numbers of agents: on the basis of our experiments, we
hypothesise that the number of agents/processes in the environment is the dominant
factor in determining the time to solution, rather than merely the number of bits in the
state vector. It would be interesting to investigate whether this hypothesis is borne out.
Acknowledgements:Thanks to Rafael Bordini for proof reading & sanity checking.

References

[1] F. Bacchus and F. Kabanza. Planning for temporally extended goals. InProceed-
ings of the Thirteenth National Conference on Artificial Intelligence (AAAI-96),
pages 1215–1222, Portland, OR, 1996.

13

1

10

100

1000

0 20 40 60 80 100 120 140 160 180

tim
e

to
 s

ol
ut

io
n

(s
ec

on
ds

/lo
gs

ca
le

)

world size

Experiment 03a (1 agent pursuit, moving target)

’expt03a-data.txt’

Figure 5: Experiment 3: The pursuit problem with a moving target.

[2] A. Cimatti and M. Roveri. Conformant planning via symbolic model checking.
Journal of AI Research, 13:305–338, 2000.

[3] E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. The MIT Press:
Cambridge, MA, 2000.

[4] E. H. Durfee. Distributed problem solving and planning.In G. Weiß, editor,
Multiagent Systems, pages 121–164. The MIT Press: Cambridge, MA, 1999.

[5] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science Volume B: Formal Models and Semantics,
pages 996–1072. Elsevier Science Publishers B.V.: Amsterdam, The Nether-
lands, 1990.

[6] R. E. Fikes and N. Nilsson. STRIPS: A new approach to the application of
theorem proving to problem solving.Artificial Intelligence, 2:189–208, 1971.

[7] M. Fisher. A survey of Concurrent METATEM — the language and its applica-
tions. In D. M. Gabbay and H. J. Ohlbach, editors,Temporal Logic — Proceed-
ings of the First International Conference (LNAI Volume 827), pages 480–505.
Springer-Verlag: Berlin, Germany, July 1994.

[8] F. Giunchiglia and P. Traverso. Planning as model checking. In S. Biundo and
M. Fox, editors,Recent Advances in AI Planning (LNAI Volume 1809), pages
1–20. Springer-Verlag: Berlin, Germany, 1999.

14

[9] G. Holzmann. Design and Validation of Computer Protocols. Prentice Hall
International: Hemel Hempstead, England, 1991.

[10] G. Holzmann. The Spin model checker.IEEE Transaction on Software Engi-
neering, 23(5):279–295, May 1997.

[11] F. Kabanza. Synchronizing multiagent plans using temporal logic specifications.
In Proceedings of the First International Conference on Multi-Agent Systems
(ICMAS-95), pages 217–224, San Francisco, CA, June 1995.

[12] Z. Manna and A. Pnueli.The Temporal Logic of Reactive and Concurrent Sys-
tems. Springer-Verlag: Berlin, Germany, 1992.

[13] Z. Manna and A. Pnueli.Temporal Verification of Reactive Systems — Safety.
Springer-Verlag: Berlin, Germany, 1995.

[14] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal
logics. Journal of the ACM, 32(3):733–749, 1985.

[15] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor,Handbook of
Theoretical Computer Science Volume B: Formal Models and Semantics, pages
133–192. Elsevier Science Publishers B.V.: Amsterdam, TheNetherlands, 1990.

15

