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Abstract

In this article, we look at formal methods for reasoning about multi-agent sys-
tems, with particular emphasis on the twin problems of specifying and verifying
such systems. We begin by critically reviewing several types of formalism, from
both Al and mainstream computer science, which suggest themselves as possible
candidates for the task. This review leads us to conclude that none of these form-
alisms are ideal, but that a hybrid approach might be suitable. The method we
propose involves constructing a model of multi-agent systems, and then defining
an execution model, which describes how agents may act and interact. As execu-
tion proceeds in the manner defined by the execution model, a system traces out
a history which may be used as the basis for a temporal belief logic. This logic can
then be used to reason about the systems described by the model of multi-agent
systems. We outline the development of a model of agents and multi-agent sys-
tems, and give an example of a temporal belief logic developed to reason about

this model. We then discuss the use of the logic and point to future research topics.



10.1 Introduction

This article discusses the use of formal methods for reasoning about DAI systems. By
formal, we really mean mathematical, and in particular, this article is concerned with
using logics for reasoning about multi-agent systems. Now the use of formal methods
to reason about computer systems is not universally accepted as both worthwhile and
practicable, even in mainstream computer science, (where such techniques have been
the object of study since the late 1960s). The article therefore begins, in the following
section, by motivating the work. Following this, a critical review is presented of three
types of formalism that suggest themselves as being appropriate to the task. These
formalisms are: (i) intentional logics, developed by researchers in Al and philosophy
to describe systems with beliefs, goals, intentions, and so on; (ii) temporal logics, de-
veloped by researchers in computer science for reasoning about ‘reactive’ systems;
and (iii) process algebras, developed for modelling concurrent activity. The review
concludes that none of these types of formalism are ideal for the task. However, it is
suggested that a hybrid approach might be suitable. Specifically, the article proposes

the following three-stage research programme:

1. Develop a formal model of the type of multi-agent system you wish to reason

about;

2. For the model developed in (1), construct an execution model, which states form-

ally how the execution of such a system may proceed;

3. Use the histories traced out in the execution of a system as defined in (2) as the
semantic basis for a logic, which can then be used to represent and reason about

the systems modelled in (1).

In section 10.3, we give an example, worked in as much detail as space allows, to
illustrate this programme; this section results in the definition of a temporal belief logic
called AL, which, it is claimed, can be used to express the properties of multi-agent
systems. The use of this logic is discussed in section 10.4, and some conclusions are

presented in section 10.5.

10.1.1 Motivation

There are a number of reasons why one should study formal methods for multi-agent

systems. The first, and most obvious reason, is that they might provide a tool to help

3



manage the complexity of such systems. Such a tool is highly desirable, as designing,
implementing and debugging multi-agent systems is not easy: in a 1987 article, Gasser

et al. observed that

‘Concurrency, problem domain uncertainty and non-determinism in exe-
cution together conspire to make it very difficult to understand the activity

within a distributed intelligent system’. (Gasser et al., 1987, p148)
To counter such problems, the authors advocated the development of

‘...graphic displays of system activity linked to intelligent model based
tools which help a developer reason about expected and observed beha-

viour’. (Gasser et al., 1987, p148)

The work described by Gasser and colleagues is firmly and unashamedly in the ex-
perimental tradition of Al hence the call for practical tools to aid understanding.
However, given the software experience of the past two decades, it seems surprising
that no similar plea was made for principled techniques for specifying and verifying
multi-agent systems.

In addition to providing a tool to help understand and manage multi-agent sys-
tems, it is to be expected that a suitable formalism would provide a framework in
which general questions about cooperation and social interaction might be posed, and
solutions developed. For example, a number of theories of social activity have been
developed by workers in DAI, of which probably the best-known is the Levesque-
Cohen model of joint intentions (Levesque et al., 1990). And yet such theories are
typically expressed in formalisms that cannot be related to ‘real” DAI systems, as they
make unreasonable assumptions about the deductive capabilities of agents. So, more
realistic formalisms for representing multi-agent systems might be used as the basis

of more pragmatic theories of social activity.

10.2 Background

If one aims to develop formal methods for reasoning about multi-agent systems, a
good place to start is by observing how the mainstream AI/DAI community has gone
about building intelligent (social) agents. Unfortunately, one immediately runs into

difficulties, as the issue of ‘intelligent agent architecture’ is the subject of a somewhat



heated ongoing debate in Al Interesting and important though this debate is, it is
not the aim of this article to become embroiled in it (see, e.g., (Brooks, 1991) for one
view). Despite the intense interest — and controversy — that alternative approaches
have evoked, the majority of work in DAI lies in the so-called ‘classical’, or ‘delib-
erative’” camp, and it is on such work that this article focusses. Briefly, this camp
proposes that individual agents are symbolic Al systems in the classical sense, with
some ‘knowledge’, (expressed in a symbolic language), some reasoning ability, and
so on. Examples of classical approaches to DAI are AGENTO (Shoham, 1993), Con-
current METATEM (Fisher and Wooldridge, 1993a), MACE (Gasser et al., 1987), and
MCS/IPEM (Doran et al., 1991).

How is one to go about reasoning about such systems? What techniques are appro-
priate, and/or available for the task? There are three resources which initially suggest

themselves as suitable:

* Intentional logics.

Researchers in Al, philosophy, and economics have developed many logics for
representing and reasoning about the so-called intentional notions: belief, desire,
and so on. If it is accepted that the agents we wish to reason about may be
described in such terms (see, e.g., (Shoham, 1993)), then one might use such a

logic to reason about them.

* Temporal logics.

Researchers in mainstream computer science have for some time used temporal
logics for reasoning about reactive systems, of which DAI systems are a subset
(see below). Therefore, some variant of temporal logic might be suitable for

reasoning about DAI systems.

* Process algebras.

In order to model concurrency, a variety of process algebras have been developed;
since DAI systems are by definition concurrent, it may be that some formalism

of this type may be used.

In the remainder of this section, we discuss these formalisms in more detail.



Intentional Logics

There is a well established tradition in AI/philosophy of devising logics of the men-
talistic, intentional notions: belief, knowledge, intention, and so on (Hintikka, 1962;
Moore, 1985; Konolige, 1986a; Cohen and Levesque, 1990). Such logics identify an

agent with an intentional system:

‘intentional systems ... [are] entities whose behaviour can be predicted by

the method of attributing beliefs, desires, and rational acumen ...” (Den-
nett, 1987, p49)

The prevalent method for defining the semantics of intentional logics has been to give
them a possible worlds interpretation (Halpern and Moses, 1992). Possible worlds se-
mantics have the advantage of a well established, theoretically attractive foundation,
(see, e.g., (Chellas, 1980)), but suffer from several disadvantages. Chief among these is
the famous ‘logical omniscience” problem, which seems to imply that agents are per-
fect reasoners. Another difficulty is that unless the worlds in the semantics are in some
way ‘grounded’, (i.e., given some concrete interpretation in terms of agents), then they
must remain a theoretical nicety. Given that standard possible worlds semantics are
not suited to the task of reasoning about multi-agent systems, one seems to be faced
by three options. If one wishes to retain possible worlds semantics, (they are, after
all, highly attractive from a theoretical point of view), then one might attempt to find
some way of grounding the possible worlds. The second option is to try to weaken
the possible worlds model in some way. The final option is to reject possible worlds
altogether, and seek an alternative semantic base.

Epistemic logics with grounded possible worlds semantics have recently become
the object of study for researchers in mainstream computer science, who found that the
notion of knowledge is a valuable one for analyzing distributed systems and protocols
(see (Halpern, 1987) for an overview). However, it is not clear how these approaches
are related to the classical model of agents — if at all. So, while distributed systems
models of knowledge are an important research topic in their own right, they are, at
the moment, only of tangential interest to DAL

Another possibility is to weaken possible worlds semantics in some way; Levesque
suggested one way of doing this, (Levesque, 1984), by borrowing some ideas from
situation semantics (Barwise and Perry, 1983). Another scheme is described in (Fagin

and Halpern, 1985). However, these methods have been criticised for their essentially

6



ad hoc nature (Konolige, 1986b). Also, they suffer from one of the key problems of
standard possible worlds approaches: they are not grounded.

Some researchers have rejected possible worlds altogether, and looked instead to
the possibility of developing an alternative semantics. The best-known example of this
work is the deduction model of belief developed by Kurt Konolige (Konolige, 1986a). The
deduction model defines a belief system as a tuple containing a ‘base set” of formulae
in some internal, logical language of belief, together with a set of deduction rules for
deriving new beliefs. Konolige argued that an agent with such a belief system could
be said to believe something if it was possible to derive that thing from its base set
using its deduction rules. Logically incomplete reasoning may be modelled by giving
the agent logically incomplete deduction rules. Interestingly, the deduction model can
be viewed as an abstract model of the beliefs of classical Al systems. For this reason,
the deduction model seems to be the best candidate out of all the intentional logics

mentioned so far for the purposes of this research.

Temporal Logics

The second resource that may possibly be used for reasoning about multi-agent sys-

tems is the Pnuelian tradition of using temporal logics to reason about reactive systemslz

‘Reactive systems are systems that cannot adequately be described by the
relational or functional view. The relational view regards programs as func-
tions ... from an initial state to a terminal state. Typically, the main role of
reactive systems is to maintain an interaction with their environment, and
therefore must be described (and specified) in terms of their on-going be-
haviour ... [E]very concurrent system ... must be studied by behavioural
means. This is because each individual module in a concurrent system is
a reactive subsystem, interacting with its own environment which consists

of the other modules.” (Pnueli, 1986)

IThere are at least three current usages of the term reactive system in computer science. The first,
oldest usageis that by Pnueli and followers (see, e.g., (Pnueli, 1986), and the description above). Second,
researchers in Al planning take a reactive system to be one that is capable of responding dynamically
to changes in its environment — here the word ‘reactive’ is taken to be synonymous with ‘responsive’
(see, e.g., (Kaelbling, 1986)). More recently, the term has been taken to denote systems which respond
directly to the world, rather than reason explicitly about it (see, e.g., (Connah and Wavish, 1990)). In

this article the term is used in its Pnuelian sense.



There are good reasons for supposing that multi-agent systems of the type this article

is interested in modeling are reactive:

* the applications for which a multi-agent approach seems well suited (e.g., air
traffic control (Cammarata et al., 1983)) are typically non-terminating, and there-

fore cannot be described by the functional view;

* multi-agent systems are necessarily concurrent, and as Pnueli observes (above)

each agent should therefore be considered a reactive system.

In a 1977 article, Pnueli proposed the use of temporal logic for reasoning about reactive
systems (Pnueli, 1977). Much research effort has subsequently been devoted to invest-
igating this possibility (see, e.g., (Emerson, 1990) for a good overview and references).
Unfortunately, naive attempts to adapt such techniques to DAI seem doomed to fail-
ure, as Pnuelian models of concurrency typically deal with the execution of individual

program instructions, a grain size too fine for our purposes.

Process Algebras

Process algebras are model-based formalisms developed by researchers in computer
science to allow reasoning about concurrency in systems. Probably the best-known
examples of process algebras are Milner’s Calculus of Communicating Systems (CCS)
(Milner, 1989) and its recent offspring, the rr-calculus (Milner et al., 1992). In a formal-
ism such as CCS, the behaviour of an agent? is defined as a set of equations; an algebra
is provided for manipulating these equations, and so proving properties of agents.
CCS and its relatives are the subject of much ongoing work in computer science, and
together they form a rich family of techniques for modelling and understanding con-
currency. However, the abstract properties of systems that we wish to reason about
are often difficult to express using process algebras. Also, at the time of writing, pro-
cess algebras are not in the mainstream of (D)AI research at all; in fact the author is
aware of no published work which applies them to the problems of (D)AI For these

reasons, we do not consider CCS-like formalisms any further in this article.

2We stress that in process algebras, the term ‘agent’ is used in a much looser sense than it is used

here.



Comments

None of the formalisms described above are directly applicable to our problem. However,
there are elements of both intentional logics and temporal logics that are appealing.
In an ideal formalism, a temporal component would seem useful to describe the react-
ive nature of DAI systems; and a model of belief such as Konolige’s deduction model
could be used to represent the beliefs that agents have. However, simply combining
formalisms in an unprincipled way would not be helpful. Instead, we must be careful
to develop a temporal belief logic and establish a precise relationship between that lo-
gic and the systems we wish to reason about. This leads us to the three-stage research

programme mentioned earlier.

10.3 An Approach to Reasoning about Multi-Agent Systems

Recall the three stage programme of research we sketched out earlier: (i) define a
formal model of the multi-agent systems about which we wish to reason; (ii) define
an execution model for such systems, which describes how agents may act and inter-
act; and (iii) use runs of such a system as a model for a temporal-based logic. This
programme is illustrated, by means of a worked example, in this section, which con-
cludes with the definition of a logic called AL. Although AL has superficial syntactic
similarities to logics such as that described in (Cohen and Levesque, 1990), it is closely
linked to the systems we are modelling. We can thus begin to realistically claim that

we have a logic for reasoning about the kind of system we might actually build.

10.3.1 A Model of Multi-Agent Systems

In this section, we define a simple formal model that captures the following key prop-

erties of classical multi-agent systems:

 Agents have names. Each agent is uniquely identified by an agent id, drawn from

the set Ag. We usually write i and j for agent ids.

* Agents have beliefs. As we observed above, it is reasonable to model the ‘know-
ledge’ of a classical Al system as a belief set, after (Konolige, 1986a). We assume
for our model that agent’s beliefs are expressed in some internal language L; this

language could be a frame or semantic net language, but we shall suppose it is



a logical language. We write Form(L) for the set of (well-formed) formulae of L,

and we let BS be the set of possible belief sets that an agent could have:

BS £ O (Form(L)).

Agents can perform actions. The problem of modelling and reasoning about ac-
tions performed in the physical world is the subject of much ongoing work in
Al To avoid the problems inherent in any treatment of such actions, we shall as-
sume that agents can only perform private actions; that is, they can only perform

actions which operate on their own state. We let Ac be the set of all such actions.

Agents can send messages. Although communication is not universally assumed
in DAL, it is, nevertheless, a common assumption. We therefore suppose that
agents can communicate by sending messages. A message is a triple (i,j, ¢),
where i [0 Ag is the sender of the message, j U Ag is the recipient, and ¢ O Form(L)
is the message content. (We could assume a different communication language

if required.) Let Mess be the set of all messages:
Mess = {(i,j, ¢) |i,j O Ag and ¢ O Form(L)}.
It is useful to assume a function rcv, with the signature
rcv : Ag X powerset(Mess) — U (Mess)

such that if i 0 Ag and m 0O Mess, then rco(i, m) is that subset of m in which i is

the recipient.

We now define an agent to be a 4-tuple:

(B, A, M, N

where

B° 0O BS is the agent’s initial belief set;
A :BS - Acis the agent’s action function;
M : BS — 0O (Mess) is the agent’s message generation function;

N :BS x Ac x [0 (Mess) — BS is the agent’s next state function.
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The idea is that on the basis of its initial beliefs, an agent selects an action to perform
using the function 4, and some messages to send, using the function M. The function
N then transforms the agent from one state to another, on the basis of the messages it
receives, and action it has just performed.

A multi-agent system is then just an indexed set of such agents:
{(B?, Ai, M;, Ny) 11 0 Ag.

We must now consider how the execution of such a system may proceed.

10.3.2 Execution Models

The execution model we present in this section hinges on the notion of the state of
a system, and of changes in state being caused by transitions. Crudely, a state is a
‘snapshot’ of the belief set of every agent in the system at some moment in time. These
belief sets are assumed to be in some kind of ‘equilibrium’ (cf. (Gardenfors, 1988)). A
state change, or transition, occurs when one or more agents receive some messages
and perform actions.

Let us return to our model of multi-agent systems. The initial state of the system is
given by every agent i having its initial belief set Bf. The next state of agent i depends
upon the action that i performed, the messages that were sent to it, and its initial state.
Formally, the state B} of agent i at time 1 is given by the following equation:

B E Ni(BY, A(BY), reo(i, | Mi(BD))).
jBAg
We can thus deduce the state of the system at time 1. This equation can easily be
generalised to give the belief set of agent i for an arbitrary time u O IN such that u > 0:

Bl £ Ni(B™, AiBT), reo(i, | ) Mi(BF)). (10.1)

joAg
The execution of a system thus proceeds, according to this very simple execution
model, with each agent picking an action to perform, sending messages, receiving
messages, shifting into its next state, and so on. Note that this execution model does
not really describe concurrency at all, as it assumes that agents act in synchrony (see
section 10.5).
As it executes, a system traces out an execution history, which describes each agent’s

state, the actions it performed, and the messages it sent at each moment in time.
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Without going into formal details, we shall assume that Z is the set of all such ex-
ecution histories, and we shall use 0 to denote a member of this set. If we write s, for

the uth state of 0, and 1, for the uth transition of g, then we can visualise 0 as follows.

T T T; T Ty T,
UIS()—>0 51—>1 Sz—>2 S3—>3 HISM—>” T

It is assumed that executions are non-terminating.

10.3.3 A Linear Time Temporal Belief Logic

This section introduces a logic for reasoning about multi-agent systems of the type
described by the model developed above. The logic is called AL, which stands for
‘Agent Logic’. The logic is propositional, in that it does not allow quantification®, and
it contains three atomic operators: Bel, for describing the beliefs of agents; Send, for
describing the messages that agents send; and Do, for describing the actions that agents
perform. Additionally, AL contains a set of modal temporal operators, which allow
the description of the dynamic properties of agents. Finally, note that AL is based on
a model of time that is linear (i.e., each moment in time is assumed to have just one
successor), bounded in the past (i.e., there is a ‘beginning of time’), and infinite in the
future (i.e., there is no ‘last moment” of time). For alternative versions of AL, based on

a branching model of time, see (Wooldridge, 1992; Wooldridge and Fisher, 1992).

Syntax

AL is intended to allow reasoning about agents: their beliefs, their actions, and the
messages they send. Since it isn’t possible to actually put an action or agent directly
into a formula of the language, there must be a way of referring to them. This is
achieved by putting symbols into the language whose denotation is an agent identifier
or action. Since quantification isn’t allowed in AL, these symbols will be constants.
Also, to express the beliefs of agents, the internal language L must appear in AL
somewhere.

More formally, the language of AL based on L contains the following symbols:

1. The symbols {true, Bel, Send, Do};

3There is no special reason why we should not define a quantified language other than the space

restrictions of this article; for quantified versions of AL, see (Wooldridge, 1992).
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2. A countable set of constant symbols Const made up of the disjoint sets Const 4

(agent constants), and Const . (action constants);
3. All closed formulae of the internal language L;
4. The unary propositional connective =" and binary propositional connective ‘ [T;

5. The unary temporal connectives {O, @} and the binary temporal connectives
{u,sy

6. The punctuation symbols {), (}.

AL is thus parameterized by the internal language, L.  The set of (well-formed)

formulae of AL based on internal language L is defined by the following rules:

1. If i, j are agent ids, ¢ is a closed formula of L, and a is an action constant, then

the following are atomic formulae of AL:

true (Bel i @) (Sendij @) (Doi a)

2. If ¢, P are formulae of AL, then the following are formulae of AL:
¢ oLy
3. If ¢, Y are formulae of AL, then the following are formulae of AL:

O¢ O Uy ¢Sy

Table 10.1 summaries the meaning of the non-standard operators in AL.

Semantics

A model for AL is a structure:
M = (0, Ag, Ac, bel, action, sent, I)
where
« 0 [ Z is an execution history;

» Agis a set of agent ids;
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(Beli @) Agenti believes ¢
(Sendij ¢) Agentisentjmessage ¢
(Doia) Agentiperforms action o
O¢ Next ¢
O¢ Last ¢ (strong)
dUY ¢ Until ¢ (not strict)
PSY ¢ Since Y (strict)

Table 10.1: Non-standard Operators in AL

* Acis a set of actions;

* bel : 2 xAgxIN - BS

is a function that takes an execution history, an agent identifier, and a time, and

returns the belief set of the agent in the execution history at that time;

* action : ZxAgxIN - Ac

is a function that takes an execution history, an agent identifier, and a time, and

returns the action performed by the agent in the execution history at that time;

e sent: ZxIN - [0 (Mess)

is a function that takes an execution history and a time, and returns the set of

messages sent in the execution history at that time;

I:Const « (AgU Ac)

interprets constants.

There is a close relationship between the formal model of multi-agent systems de-
veloped earlier, and logical models for AL. We can characterise this relationship by

stating precisely the conditions under which a model for AL can be considered to

represent an execution of a multi—agent system:
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(M, u) E true

(M, 1) [ (Bel i §) itf ¢ O bel(a, 1(i), u)

(M, u) E (Doi ) iff  action(o, 1), u) = I(a)

(M,u) f (Sendij¢)  iff (1), 1(), ¢) O sent(o, u)

(Mu) ¢ iff (M, u) [ ¢

(M,u) F o Oy iff  (M,u) ¢ or (M,u) g

Mu)EO¢ iff Mu+l)E¢

Mu)E ©¢ iff u>0and (M,u-1)E ¢

MuyEoUY iff [ OINstv2uand (M, v)E () and
OwON st usw<o,(Muw) k¢

Mu)EoSy iff v0{0,...,u-1}st (M) F @ and
DwONsto<w<u (Muw)E @

Figure 10.1: Semantic Rules for AL
A model

(0,Ag, Ac, bel, action, sent, I)

for AL represents a run of the system

iff the following condition obtains:

OuOIN i 0OAgO

{(BY, A;, M;, N3) i 0 Ag}

bel(o,i,u) = Bj' Oaction(0,i,u) = A(B;) Osent(0, u) = Ujnags M;(B}).

(Recall that B} is defined in equation (10.1).) The satisfaction relation ‘" for AL holds
between pairs of the form (M, u), (where M is a model for AL, and u [0 IN is a temporal

index into M), and formulae of AL. The semantic rules for AL are given in Figure 10.1.
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@) = -0-¢ (Weak) last ¢

stat £ - Otrue Initially ...

O = trueld ¢ Sometime ¢

(o = =9 Always ¢
oWy = ¢ OoUY ¢ Unless

o = trueS¢ Was ¢

My £ -¢-¢ Heretofore ¢

$Zy = Mo 09SyY ¢ Zince ¢
PBY £ -((-9)UY) ¢ Before (precedes) @

Table 10.2: Derived Temporal Operators

The first four rules deal with atomic formulae, (or atoms), of AL. The formula true
is a logical constant for truth; it is always satisfied. The formula (Bel i ¢) is read ‘agent
i believes ¢’. Bel is essentially the belief operator from Konolige’s logic L? (Konolige,
1986a). The formula (Do i ) is read ‘agent i performs the action a’. The formula
(Send i j ¢) describes the sending of messages, and will be satisfied if agent i has sent
j a message with content ¢.

The propositional connectives = (not) and [ (or) have standard semantics. The
remaining propositional connectives (O (if ... then ...), O(and), and < (iff))are defined
as abbreviations in the usual way.

For convenience, the abbreviations in Table 10.2 are assumed. ‘O’ and * @’ are the
next and (strong) last operators respectively: O ¢ is satisfied if ¢ is satisfied at the next
time; ‘@’ is the past time version of this operator, so that @ ¢ is satisfied if ¢ was
satisfied at the last time. “@’ is said to be strong because it is never satisfied at the
beginning of time. The ‘@ operator is the weak version of “ ©: it is alway satisfied
at the beginning of time. The formula ‘start’ is only satisfied at the beginning of time.

‘[[]”and ‘W’ are the always and heretofore operators respectively: [ ]¢ will be satis-
fied iff ¢ is satisfied now and in all future moments; ‘B’ is the past time version. ‘<)’
and ‘4’ are the sometime and was operators respectively: )¢ will be satisfied if ¢ is

satisfied now, or becomes satisfied at least once in the future; 4’ is the past version,
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so® ¢ will be satisfied if ¢ was satisfied at least once in the past. ‘U’ and ‘W’ are the
until and unless operators respectively (‘W' is sometimes called the weak until oper-
ator): ¢ U P will be satisfied if ¢ is satisfied at all times until () becomes satisfied —
must eventually be satisfied. W’ is similar to ¢/ ’, but allows for the possibility that
the second argument never becomes satisfied. Finally, the *S’ (since) and “ Z’ (zince)
operators are the past time versions of /" and “ W' respectively.

Satisfiability and validity for AL are defined in the usual way.

Proof Theory

The proof theoretic aspects of the linear discrete temporal logic upon which AL is
based have been examined at length elsewhere, and we will not, therefore, discuss
them here. The reader is referred to (Gough, 1984; Fisher, 1991, Manna and Pnueli,

1992; Emerson, 1990) for references and overviews.

10.4 Reasoning about Multi-Agent Systems

Having developed, in the preceding sections, a logic which may be used to represent
the properties of multi-agent systems, we now turn to the issue of actually using the
logic. There are two obvious ways in which the logic might be used: for specification,

and for verification.

Specification

A system’s specification is a statement describing those properties that it is intended
the system should exhibit. A formal specification is one which is expressed (for the
most part) in the language of mathematics. It is possible to use AL as a formal spe-
cification language for multi-agent systems, in a way that we shall now illustrate®.

It was pointed out in section 10.2 that temporal logics have for some time been used
as a specification language for reactive systems, of which DAI systems are a subset.

There are two types of properties of such systems that we normally wish to specify:
* liveness properties, which assert that ‘something good will happen’, and

* safety properties, which assert that ‘nothing bad happens’.

“Examples are actually presented using the quantified version of AL developed in (Wooldridge,
1992).
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To illustrate such properties, and the way in which they might be expressed using
AL, we shall consider a trivial example of a protocol for cooperative activity. In this

protocol, agents communicate through just two message types (cf. (Shoham, 1993)):

Request(a) a request for action o to be performed

Inform(¢) sender informs recipient of ‘fact’” ¢

Two domain predicates are assumed:

Friend(i) agentiis a friend

Trust(i) agentiis trusted

An agent that receives a Request from a friendly agent to do some action will eventually
do it, but not otherwise (i.e., actions will only be done at the request of a friendly
agent). If an agent receives an Inform message, it will add the ‘fact” to it beliefs only
if the sender is trusted.

This simple protocol may specified with ease. First, we state that an agent that

receives a Request from a friendly agent will do the action; this is a liveness property.
[(J0i Jj Ma [Send i j Request(a)) O (Bel j Friend(i)) O (Do j a)

That is, it is always true that if i sends j a Request for a, and j believes i to be friendly,
then j will eventually do a.

The following expresses a safety property, namely that an if an agent does some
action, then the performance of the action must have been preceded by a Request from

a friendly agent to do the action.
—((Send i j Request(a)) U (Bel j Friendly(i)))
[10i Mj Ma O Z O = (Doj a)
(Do j o) O-(Send i j Request(a))
We now move on to the properties of Inform messages. The following liveness

property asserts that an agent receiving an Inform message from a trusted agent will

eventually come to believe the content of the message.
[(J0i j [(Send i j Inform(¢)) O(Bel j Trusted(i)) O <{>(Belj @)

In this case, there is no corresponding safety property: we do not want to specify
that an agent will only believe something if it has previously been informed of it by a

trusted agent.
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This example is admittedly simple, but at least demonstrates how one might go
about the specification process. In (Wooldridge, 1992), several more detailed examples

are provided.

Verification

Verification is the process of showing that an implemented system is correct with re-
spect to its specification. Formally verifying a system involves proving (in the math-
ematical sense) that it is correct. Just as it is possible to use AL for specification, so it
is possible to use it for verification. However, verification is generally regarded as a
much more complex process than specification, and although the principles of formal
verification have been fairly well understood for some time, it is quite rare to find ex-
amples of its use outside textbooks and research papers. We will therefore only touch
on the subject here.

To verify that a system SYS is correct with respect to a specification SPEC (where
SPEC is expressed as a set of formulae of AL, as described above), one first derives the
theory of SYS, which we shall denote by 7H(SYS). Then, one attempts to prove that
SPEC follows from 7 H(SYS), ie., that TH(SYS) - SPEC, using the proof theory of
AL. TH(SYS) will be a set of formulae of AL which capture both general properties of
the type of system being modelled, and specific properties of SYS. Examples of how
one goes about deriving the theory of a system are provided in both (Wooldridge,
1992, Chapter 6) and (Fisher and Wooldridge, 1993b).

10.5 Discussion

This article has described a research programme, directed at developing formal meth-
ods for reasoning about multi-agent systems. This programme was illustrated by
means of a simple worked example. The emphasis throughout the article has been on
developing the ideas in an intelligible way. This has meant that in order to avoid con-
fusion, a number of important issues have been glossed over, or ignored completely.

Future work must focus particularly on the following topics:

* Realistic treatments of concurrency.

The issue of concurrency has scarcely been addressed in formal treatments of

DAL, and yet concurrency is at the very heart of the area. The reluctance to
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address this issue is understandable, however: DAI systems are not simply con-
current systems. DAI researchers have quite rightly focussed on such issues as
coordination, as these are peculiar to the domain. Nevertheless, if we ever hope
to claim that we have a formalism which truly captures the properties of a DAI

system, then we must deal with this issue. There are some signs that work is
being done in this area (Burkhard, 1993).

Modelling more complex and realistic agents and systems.

The model of agents presented in this article was intended to be general, and
yet its very generality makes it unrealistically simple. All but the most basic ap-
plications have a much richer internal structure. Our theories and models must
be able to represent this structural and operational complexity, while remaining
conceptually tractable. In this area too, there are signs that some work is being
done (Rao and Georgeff, 1992; Wooldridge, 1994).

(Semi-)automated theorem proving.

We cannot hope to use logics such as AL for reasoning about realistic multi-agent
systems without some kind of theorem proving support for them. Unfortunately,
this kind of logic tends to be extraordinarily complex in computational terms;
some similar logics are so complex as to be undecidable, even in the propositional
case (Halpern and Vardi, 1989). However, work is underway to find proof meth-

ods for simplied variants of these logics (Wooldridge and Fisher, 1994).

Bridging the gap between theory and practice.

There is an intrinsic value in formal models and theories of the world, that makes
them a worthwhile exercise even if they have no immediately obvious prac-
tical application. However, it is hoped that the research programme sketched
in this article does have some practical applications. One important possibility
for the near future involves bringing the practice of DAI closer to its theory by
using logics such as AL to program agents directly; this is, in essence, what the
‘agent-oriented” paradigm is all about (Shoham, 1993; Thomas, 1993; Fisher and
Wooldridge, 1993a).
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