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ABSTRACT
We advance two main claims. The first is that logics — and in
particular, modal strategy logics — are a powerful formal tool for
representing and reasoning about the properties of game theoretic
mechanisms. The second is that techniques developed for the for-
mal specification and verification of computer systems (and in par-
ticular, the use of logic for specification, and automated verification
via model checking) can be usefully applied to mechanism design
problems. We begin by reviewing the mechanism design problem,
and discussing the issue of how mechanisms might be specified and
verified. We then discuss a logic (Alternating-time Temporal Logic
— ATL), which is well suited to representing and reasoning about
strategic encounters. We show how ATL can be used to formally
specify two social choice mechanisms, and we demonstrate how
current model checkers for ATL can be used to verify properties
of these mechanisms. We conclude by discussing issues for future
research.

1. INTRODUCTION
The problem of mechanism design, as understood and studied in

the game theory community, has recently begun to attract attention
in the computer science community. This interest has been spurred
at least in part by the development of electronic auction houses and
automated negotiation techniques, in which the participants are not
humans, but software agents. Although algorithmic approaches to
mechanism design, and the computational issues surrounding these
approaches, have begun to attract some attention in the computer
science community [24], very little research has to date addressed
the issue of systematically specifying, implementing, and verifying
mechanisms from the perspective of computer science.

The purpose of this paper is to advance two key claims.

� The first claim is that logics — specifically, modal logic [9],
and more specifically, modal strategy logics such as coalition
logic [26, 27, 28] and Alternating-time temporal logic [3] —
have an important role to play in the specification, imple-
mentation, and verification of mechanisms. Modal strategy
logics in this sense play a role analogous to that of (for exam-
ple) temporal logics in the development of reactive systems
(see, e.g., [23]).
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� Our second claim is that techniques developed for the auto-
mated verification of computer systems can be usefully ap-
plied to mechanism design problems in the game-theoretic
sense. Arguably the most successful technology developed
in the formal methods community is that of model check-
ing [11], which was originally intended as a technique for
verifying that finite state concurrent systems satisfy speci-
fications expressed in the language of temporal logic [12].
Just as model checking has played an enormously successful
role in the verification of finite state concurrent systems, so
we believe that it can have an analogous role to play in the
analysis and verification of mechanisms.

We proceed as follows. We begin by reviewing the mechanism de-
sign problem, comparing the issues that arise in mechanism design
to those that arise in the development of provably correct computer
systems, and discuss how mechanisms might be specified and ver-
ified. We then review a logic (Alternating-time Temporal Logic
— ATL), which is well suited to representing and reasoning about
strategic, multi-agent encounters. By way of illustrating our ap-
proach, we show how ATL can be used to formally specify two
social choice mechanisms, and we demonstrate how current model
checkers for ATL can be used to verify properties of these mecha-
nisms. We conclude by discussing issues for future research.

2. MECHANISMS, PROGRAMS, AND COR-
RECTNESS

Computer science and game theory share a concern with mech-
anisms, broadly conceived. The mechanisms of computer science
are computational mechanisms, or programs, which may be mod-
eled mathematically in a variety of ways (e.g., as input-output re-
lations, Turing machines, or state transition diagrams to name just
three popular alternatives). Game-theoretic mechanisms, or game
forms, on the other hand can be viewed as multi-agent programs,
where a number of players are involved in determining the be-
haviour of the mechanism. The main models for mechanisms used
within noncooperative game theory are strategic and extensive game
forms. There is a great degree of similarity between extensive game
forms and computational models. This similarity is perhaps most
apparent when comparing a state transition diagram of a nondeter-
ministic program on the one hand, and an extensive game form of
perfect information on the other [7]. As has been discussed more
formally elsewhere [26], conventional (e.g., deterministic Turing
machine) programs can thus be viewed formally as 1-player game
forms. At this level of abstraction, therefore, the notion of a game
form subsumes the notion of a program. Thus, the notion of a mech-
anism we arrive at is sufficiently general to encompass computer
programs, as well as various social procedures such as voting pro-
cedures, auctions, fair division algorithms — and multiagent sys-



tems.
Computer science has developed a great deal of theory about

what it means for a computer program to be correct [10]. In gen-
eral, verifying the correctness of a program means checking that the
program satisfies its specification. Checking correctness might in-
volve proving, e.g., that a program has indeed calculated the great-
est common divisor of two numbers

�
and � ; that two subpro-

cesses do not read and write into a memory location at the same
time; or that no subprocess deadlocks. Starting with the work of
Hoare [18], various deductive methods for reasoning about pro-
gram correctness have been developed, some of which have turned
into full-fledged program logics such as Dynamic Logic [16]. More
recently, semantic approaches to verification — and in particular,
model checking — have been successfully used to verify that sys-
tems satisfy properties expressed in various temporal and modal
logics [11].

While a correct program may be seen as an implementation of its
specification, game theory has its own theory of mechanism design
and implementation. The mechanism design problem in the context
of game theory is in fact quite a broad notion, but it is most often ex-
pressed in the context of auction design (see, e.g., [8, pp.523–536]
for an overview, and [22] for an in-depth study). In the general
setting, the problem is understood in terms of a “principal”, who
wishes to design a protocol (in fact, a mechanism), for a collection
of agents, so that if the agents behave rationally when enacting the
protocol (in the sense of, for example, attempting to maximise their
expected utility), then the resulting overall behaviour will be opti-
mal for the principal. In the context of auction design, for example,
the principal may be identified with an agent selling some good,
and may wish to simply maximise expected revenue.

Of course, mechanism design is not restricted to auctions. For
example, voting procedures — social choice functions — can be
understood as mechanisms in exactly the same way. Without going
into any detail, consider a social choice function � which, given
the preferences � of the individual agents over a set of alternatives,
selects a particular alternative ������� as the social choice. A Nash-
implementation of this social choice function � will be a strategic
game form such that for every preference profile � there will be a
Nash-equilibrium whose outcome is ������� . Things are complicated
somewhat by the fact that games may have multiple Nash equilib-
ria and that social choice functions often will select not only one
but multiple alternatives. Also, analogous implementation notions
exist which are based on refinements of the Nash-equilibrium.

As we noted above, the formal, logic-based specification and ver-
ification of computing mechanisms (i.e., programs) has received
considerable attention in the computer science community. How-
ever, there has been only very little work in game theory on formal,
logical approaches to mechanism verification. It is thus the aim of
this manifesto to (a) argue for the need of work in this area, (b) de-
velop some key points for a research agenda, and (c) illustrate the
general approach by means of two modest, but meaningful case
studies.

Before proceeding, it may be useful to point out the advantages
of formal logic approaches to mechanism specification and verifica-
tion. While many computer scientists may already be convinced by
the arguments for the formal verification of computer programs, the
game theorist may not know these arguments and may also wonder
whether these arguments can simply be transferred from computer
programs to game-theoretic mechanisms. We can summarise the
key benefits of such an approach as follows.

Explicitness: Formal verification requires specifying the mecha-
nism under consideration in great detail, removing all ambi-
guities and vagueness, making explicit any hidden assump-
tions. For an auction mechanism, this may refer to tie-breaking

rules, whether bids have to be made in increments of pounds
rather than pennies, and so on. While this level of detail will
often be a nuisance to the mechanism designer, it has turned
out that such details can greatly influence the properties of
a program (e.g., leading to termination failure) or a mech-
anism (e.g., leading to signaling phenomena through bids,
greatly reducing auction revenue).

Automation The greater degree of explicitness allows us to auto-
mate mechanism verification, obtaining tools which perform
a semi-automatic analysis of the mechanism under consid-
eration, indicating why, for example, a particular desirable
property fails. As a result, while losing time by having to
specify mechanisms to a greater level of detail, we make
up for it by automating (part of) the mechanism’s analysis.
Thus, developing a logical system for reasoning about mech-
anisms is not only a tool which illuminates conceptual diffi-
culties, it also provides the prerequisite for automated tools
for mechanism analysis. We are thinking here primarily of
the use of model checking as a tool for automated verifica-
tion [11].

Confidence As a result of the added degree of explicitness and a
computer-verified mechanism, we have increased our confi-
dence in the correctness of the mechanism, partly because we
will have already eliminated some design errors in the pro-
cess. Note that for all practical purposes, this will not lead to
a guarantee that the mechanism is optimal. First, there may
be properties which turn out to be important but which we did
not check for. Second, the automated verification tools may
themselves have errors, and hence errors in the mechanism
may go undetected.

Having made the argument for why logical approaches to mecha-
nism specification and verification are likely to be useful, our next
step is to illustrate our approach by means of two case studies. In
these case studies, we use a logic called Alternating-time Temporal
Logic (ATL) [3]; we first review the syntax and semantics of this
logic.

3. ATL
In 1997, Alur, Henzinger, and Kupferman introduced a temporal

logic intended to make it possible to express cooperative proper-
ties of multiagent systems [3]. This logic, Alternating-time Tem-
poral Logic (ATL), can be understood as a generalisation of the
well-known branching time temporal logic CTL [12], in which path
quantifiers are replaced by cooperation modalities. A cooperation
modality 	 	�

� ��� , where 
 is a group of agents, expresses the fact
that the group 
 can cooperate to ensure that � ; more precisely,
that there exists a strategy profile for 
 such that by following this
strategy profile, 
 can ensure � . Thus, for example, the system
requirement “agents � and � can cooperate to ensure that the sys-
tem never enters a fail state” may be captured by the ATL formula
	 	�������� � ��������� . The “ ” temporal operator means “now and for-
ever more”: additional temporal connectives in ATL are “ � ” (“ei-
ther now or at some point in the future”), “ � ” (“until”), and “  ”
(“in the next state”).

One of the main reasons for the current level of interest in ATL is
that the ATL model checking problem is in general no more com-
plex than that of CTL: it can be solved in time !"��#%$'&(� , where #
is the size of the formula, and & is the size of the model in which
the formula is to be checked. This tractability result has led to the
development of an ATL model checking system called MOCHA [4,
1].



To give a precise definition of ATL, we must first introduce the
semantic structures over which formulae of ATL are interpreted.
An alternating transition system (ATS) is a 5-tuple 	��"��� ��� ��� �	��� ,
where:

� � is a finite, non-empty set of atomic propositions;

� ��

� ��� ��������� ����� is a finite, non-empty set of agents;

� � is a finite, non-empty set of states;

� ������� ��� gives the set of primitive propositions satisfied
in each state;

� ����� $�� � �"!$# is the system transition function, which
maps states and agents to the choices available to these a-
gents. Thus � ��% � � � is the set of choices available to agent �
when the system is in state % . We require that this function
satisfy the requirement that for every state %'&(� and every
set �)� ���$��� �*�+� of choices �+,-&.� ��% � ��,�� , the intersection
� �0/21�1$13/ � � is a singleton.

We denote the set of sequences over � by �54 , and the set of non-
empty sequences over � by �76 .

An ATL formula, formed with respect to an alternating transition
system 8�
 	��"�9� �*� ��� ����� , is then one of the following:

(S1) � , where ��&:� is a primitive proposition;

(S2) � � or �<;>= , where � and = are formulae of ATL;

(S3) 	 	�

� �  � , 	 	�
 � � � , or 	 	�
 � � � ��= , where 
@?�� is a set of
agents, and � and = are formulae of ATL.

To give a precise semantics to ATL, we need some further defi-
nitions. (Note that the semantics given here is based on [3] and
differs slightly from the semantics in [2].) For two states % ��%�AB&��
and an agent �C&�� , we say that state %3A is an � -successor of %
if there exists a set � A &D� ��% � � � such that % A &E� A . Intuitively,
if % A is an � -successor of % , then % A is a possible outcome of one
of the choices available to � when the system is in state % . We
denote by F�G � ����% � � � the set of � successors to state % . We say
that %3A is simply a successor of % if for all agents �:&H� , we have
%�AB&IF�G � ����% ��� � ; intuitively, if %3A is a successor to % , then when the
system is in state % , the agents � can cooperate to ensure that % A is
the next state the system enters.

A computation of an ATS 	�� ��� �*� ��� �	� � is an infinite sequence
of states J@
K%�L���% � ������� such that for all GCMON , the state %9P is a
successor of % P3Q � . A computation J(&E� 6 starting in state % is
referred to as a % -computation; if G@&�R , then we denote by JBSTGVU
the G ’th state in J ; similarly, we denote by JBS N ��GVU and JBSTG �XW�U
the finite prefix % L �$����� ��% P and the infinite suffix % P ��% P 6 � �$����� of J
respectively.

Intuitively, a strategy is an abstract model of an agent’s decision-
making process; a strategy may be thought of as a kind of plan for
an agent. By following a strategy, an agent can bring about certain
states of affairs. Formally, a strategy �$Y for an agent �'&�� is a total
function � Y �Z�[6E� �]\ , which must satisfy the constraint that
� Y �^J 1 %��)&_� ��% � � � for all J_&D� 4 and %Z&C� . Given a set 
H?(�
of agents, and an indexed set of strategies `bac
d� �XY�e �C& 
�� ,
one for each agent ��& 
 , we define f�G�g���% ��` a � to be the set of
possible outcomes that may occur if every agent �h& 
 follows
the corresponding strategy � Y , starting when the system is in state
%i&d� . That is, the set f�G�g���% �X`�a � will contain all possible % -
computations that the agents 
 can “enforce” by cooperating and
following the strategies in ` a . Note that the “grand coalition” of all
agents in the system can cooperate to uniquely determine the future

state of the system, and so f�G�g���% �X`�j � is a singleton. Similarly,
the set f�G�g���% �X`�k � is the set of all possible % -computations of the
system.

We can now give the rules defining the satisfaction relation “ e 
 ”
for ATL, which holds between pairs of the form 8 ��% (where 8 is an
ATS and % is a state in 8 ), and formulae of ATL:

� 8 ��%Ze 
 � iff ��&_� ��%�� (where ��&:� );

� 8 ��%Ze 
 � � iff 8 ��%<le 
 � ;

� 8 ��%Ze 
 �>;-= iff 8 ��%me 
 � or 8 ��%Ze 
(= ;

� 8 ��%>e 
 	 	�
 � �  � iff there exists a set of strategies ` a , such
that for all J:&@f�G�g���% �9`�a � , we have 8 �9JBS �$Ube 
 � ;

� 8 ��%-e 
 	 	�
 � � � iff there exists a set of strategies `ba , such
that for all J
&Ef�G�g���% �X` a � , we have 8 �XJBSTGnUZe 
 � for all
G:&:R ;

� 8 ��%Ze 
 	 	�
 � ��� �I= iff there exists a set of strategies `ba , such
that for all Ji&
f�G�g���% �X` a � , there exists some GC&�R such
that 8 ��JBSoGVU�e 
h= , and for all Nqphrms�G , we have 8 �9JBSTr"U0e 

� .

4. TWO CASE STUDIES
Our aim in this section is to add some technical substance to the

ideas and claims we have sketched out thus far. We will demon-
strate how the approach works with respect to scenarios from the
domain of social choice. Thus, we want mechanisms that will
choose an outcome from a set of possible outcomes, in accordance
with certain principles. Of course, there are impossibility results
in the social choice domain, (Arrow’s impossibility theorem being
probably the best known [5]), which tell us that there are rather
important limits to the general applicability of any mechanism that
we might find. However, these negative results do not preclude the
generation of mechanisms that are of value for particular scenarios.

So, we will consider two social choice scenarios, of increasing
complexity. For both, we will demonstrate how the requirements
for these scenarios can be naturally captured in Alternating-time
Temporal Logic. We will then show how model checking tools for
ATL may be used to verify these mechanisms.

4.1 A Social Choice Scenario
The first scenario we consider is adapted from [26]. Consider the

following, informal, requirements for a social choice mechanism.

Two agents,
�

and � , must choose between two out-
comes, � and % . We want a mechanism that will al-
low them to choose, which will satisfy the following
requirements. First, whatever happens, we definitely
want an outcome to result — that is, we want either
� or % to be selected. Second, we really do want the
agents to be able to collectively choose an outcome.
However, we do not want them to be able to bring
about both outcomes simultaneously. Similarly, we do
not want either agent to dominate: we want them both
to have equal power.

It should be clear that we can naturally capture these requirements
using ATL, as follows.



	 	 � �  ���q;�%�� (1)

	 	 � ���"� �  ���'	 	 � ���"� �  % (2)

� 	 	 � � �"� �  ������%�� (3)

� 	 	 � � �  ��� � 	 	 �"� �  � (4)

� 	 	 � � �  %�� � 	 	 � � �  % (5)

The first requirement states that an outcome must result: this will
happen inevitably, whatever the agents do. Requirement (2) states
that the two agents can choose between the two outcomes: they
have a collective strategy such that, if they follow this strategy, out-
come � will occur, where � is either � or % . Requirement (3),
however, says that the agents cannot choose both outcomes. Re-
quirements (4) and (5) state that neither agent can bring about an
outcome alone. It should be immediately obvious how these ax-
ioms capture the requirements as stated above.

Now consider the following mechanism, intended to permit the
agents to select between the outcomes in accordance with these
requirements.

The two agents vote on the outcomes, i.e., they each
choose either � or % . If there is a consensus, then the
consensus outcome is selected; if there is no consen-
sus, (i.e., if the two agents vote differently), then an
outcome � or % is selected non-deterministically.

Notice that, given this simple mechanism, the agents really can
collectively choose the outcome, by cooperating. If they do not
cooperate, however, then an outcome is chosen for them.

Having formally set out the desirable properties that we wish a
mechanism to satisfy, and having described a mechanism that we
believe satisfies these properties, our next step is to formally verify
that the mechanism does indeed satisfy them. We do this via model
checking: we express the mechanism as a model suitable for the
ATL model checking system MOCHA, and then, using MOCHA, we
check whether the requirements are realised in this model.

A MOCHA model of the mechanism is given in Figure 1. While
space restrictions preclude a detailed introduction to the modelling
language of MOCHA, it is nevertheless worth briefly describing the
key features of this representation. We model the scenario via three
agents, which in MOCHA terminology are called modules:

� AgentA and AgentB correspond to the
�

and � in our
scenario. Each agent controls (i.e., has exclusive write access
to) a variable that is used to record their vote. Thus voteA
records the vote of AgentA, where a value of false in this
variable means voting for outcome P, while true implies
voting for Q. The “program” of each agent is made up of
two remaining guarded commands, which simply present the
agent with a choice of voting either way.

� The Environment module is used to model the mecha-
nism itself. This module simply looks at the two votes, and
if they are the same, sets the variable outcome to be the
consensus outcome; if the two votes are different, then the
guarded commands defining Environment’s behaviour say
that an outcome will be selected non-deterministically.

Notice that in translating this simple mechanism in a form suit-
able for MOCHA, it has not been possible to remain entirely neutral
with respect to all issues. For example, the way we have coded
the mechanism means that it is in principle possible for one agent
to see another agent’s vote (i.e., votes are common knowledge),
even though, in the implementation given here, agents do not make

any use of this information. The informal description of the mech-
anism — and indeed, the original requirements — said nothing
about whether votes (and hence preferences) should remain hidden
or should be common knowledge, and in fact, we could have coded
the scenario in such a way that an agent’s vote was visible only to
the Environment module. But the point is that we have been
forced to make a commitment one way or the other by the need
to code the scenario. (It is of course likely that in more sophis-
ticated (and realistic) scenarios, we would desire votes to remain
private. To express such requirements, we would require the use of
knowledge modalities, of the type described in [13]. We will not
explore this issue further, except to report that preliminary work on
extending ATL with knowledge modalities is described in [19, 21,
20].)

Having captured the mechanism in the modelling language of
MOCHA, we can now actually use MOCHA to check the properties
(1)–(5), above. Property (1) turns out to hold trivially, by the law of
the excluded middle, from the way in which we represent the out-
come. Property (2) can be represented in the following two MOCHA

properties to be checked.

atl "f00"
<<>> G <<AgentA, AgentB>> X outcome ;

atl "f01"
<<>> G <<AgentA, AgentB>> X ˜outcome;

The prefix to these formulae (<<>> G) simply says that we check
this property across all reachable states of the system; the remain-
der of the property is simply the property to be checked, rewritten
in the textual input form required by MOCHA. In exactly the same
way, we can check the following properties, and we trust the reader
can see that these are direct expressions of the remaining original
requirements given above, as follows (note that, again, property (3)
follows trivially: outcome cannot be both true and false):

atl "f02"
<<>> G ˜<<AgentA>> X outcome ;

atl "f03"
<<>> G ˜<<AgentA>> X ˜outcome ;

atl "f04"
<<>> G ˜<<AgentB>> X outcome ;

atl "f05"
<<>> G ˜<<AgentB>> X ˜outcome ;

All these properties are correctly checked, as we would hope.
Having checked these properties, we can in fact go on to check

some further interesting properties. For example, the following say
that the mechanism itself — captured in the Environment vari-
able — cannot choose the outcome.

atl "f06"
<<>> G ˜<<Environment>> X outcome ;

atl "f07"
<<>> G ˜<<Environment>> X ˜outcome ;

Again, these properties correctly hold, as we would expect.
Note that the example described in this section only makes use

of a very limited fragment of ATL known as Coalition Logic [28].
The relationship between ATL and Coalition Logic is investigated
in [14].

4.2 Eternal Voting
For the second case study (adapted from [26, pp.99-101]), we

consider a more complex scenario, as follows.

A political body � 
 � ����� ��� ����� has to decide on
passing a new law. There are two versions of the law,



-- voteA == false ... agent A votes for outcome P
-- voteA == true ... agent A votes for outcome Q
module AgentA

interface voteA : bool
atom controls voteA
init update

[] true -> voteA’ := false
[] true -> voteA’ := true

endatom
endmodule

-- voteB == false ... agent B votes for outcome P
-- voteB == true ... agent B votes for outcome Q
module AgentB

interface voteB : bool
atom controls voteB
init update

[] true -> voteB’ := false
[] true -> voteB’ := true

endatom
endmodule

-- outcome == false ... P is selected
-- outcome == true ... Q is selected
module Environment

interface outcome : bool
external voteA, voteB : bool
atom controls outcome awaits voteA, voteB
init update
-- if votes are the same, go with selected outcome

[] (voteA’ = voteB’) -> outcome’ := (voteA’ & voteB’)
-- otherwise select outcome non-deterministically

[] � (voteA’ = voteB’) -> outcome’ := true
[] � (voteA’ = voteB’) -> outcome’ := false

endatom
endmodule -- Environment

System := (AgentA || AgentB || Environment)

Figure 1: A simple social choice mechanism, defined in the ReactiveModules language of the MOCHA model checker.

law1 and law2, and the process begins by a sin-
gle agent, agent 2, proposing which of these versions
should be adopted. Once agent 2 has selected a ver-
sion, the entire body votes on whether to accept the
proposal; if there is a majority in favour of acceptance,
then the proposed version is accepted; if there is a ma-
jority against, then there is deadlock, and the process
begins again, with agent 2 selecting a version of the
law to propose; if there is no majority one way or the
other, then the vote of the chairman, agent 1, is deci-
sive, in either accepting the proposed law or returning
it to agent 2.

Here, we can use ATL to examine the relative powers of coalitions,
and determine whether the mechanism has any undesirable prop-
erties; one such undesirable property, for example, would be if it
was possible for a coalition to force a deadlock indefinitely, with
no agreement ever being reached.

We begin, as before, by modelling the mechanism in a form suit-
able for MOCHA — the code is given in Figure 2:

� Agent1 is the “generic” agent in this scenario, which sim-
ply has to decide whether to accept or reject the proposed
law. The vote of Agent1 is held in a variable agree1.
(Agents 3 and 4 are essentially identical, and for this reason
we do not give their code.)

� Agent2 is composed of two separate “update threads”. The
first of these is responsible for proposing a law when the
mechanism is in “subcommittee” phase (i.e., at the start, and

whenever a proposal has been rejected by the whole political
body). The variable subCommittee keeps track of when
the mechanism is in subcommittee phase. The proposal made
by agent 2 is carried in variable scchosen. The second up-
date thread is responsible for deciding whether to accept a
proposal, as with the other agents in the system. (Of course,
it would in some sense be nonsensical for agent 2 to vote
against accepting a proposal that it had put forward, but the
mechanism does not preclude it.)

� The Outcome module is responsible for determining the
outcome, based on the votes of the agents in the system.
It is also composed of two update threads. The first is re-
sponsible for keeping track of whether the mechanism is in
sub-committee phase (this will be initially, and whenever
the overall outcome is deadlock). The second update thread
decides what the outcome is: the three rules defining this
thread correspond to (a) whether there is an equal number of
agents for and against accepting the proposal, in which case
the mechanism looks to the vote of agent 1, and if this was
positive (i.e., agent 1 voted to accept), then the proposal is
accepted; otherwise it is rejected; (b) a majority agree on ac-
cepting the proposal, in which case the overall outcome is
that in the variable scchosen; and (c) there is a majority
against accepting the proposal, in which case the outcome
is deadlock. Note that the overall outcome (i.e., law1,
law2, or deadlock) is recorded in variable outcome.
Note that:

– MajorityInFavourFmla,



type law :
�
law1, law2, deadlock �

module Agent1
external scchosen : law
interface agree1 : bool
atom controls agree1 reads scchosen
update

[] true -> agree1’ := true
[] true -> agree1’ := false

endatom
endmodule -- Agent1
module Agent2

external subCommittee : bool
interface agree2 : bool;

scchosen : law
atom controls scchosen reads subCommittee
update

[] subCommittee -> scchosen’ := law1
[] subCommittee -> scchosen’ := law2

endatom
atom controls agree2 reads scchosen
update

[] true -> agree2’ := true
[] true -> agree2’ := false

endatom
endmodule -- Agent2
...
module Outcome

external
scchosen : law;
agree1, agree2, agree3, agree4, subCommittee : bool

interface
outcome : law;
subCommittee : bool

atom controls subCommittee reads outcome awaits outcome
init

[] true -> subCommittee’ := true
update

[] outcome’ = deadlock -> subCommittee’ := true
[] � (outcome’ = deadlock) -> subCommittee’ := false

endatom
atom controls outcome

reads scchosen, agree1, agree2, agree3, agree4
awaits scchosen, agree1, agree2, agree3, agree4

init
[] true -> outcome’ := deadlock

update
[] NoConsensusFmla -> outcome’ :=

if (agree1’) then scchosen’ else deadlock fi
[] MajorityInFavourFmla -> outcome’ := scchosen’
[] MajorityAgainstFmla -> outcome’ := deadlock

endatom
endmodule -- Outcome
System := (Agent1 || Agent2 || Agent3 || Agent4 || Outcome)

Figure 2: An eternal voting scenario, represented in the MOCHA modelling language.

– MajorityAgainstFmla, and
– NoConsensusFmla

are abbreviations we are using here for MOCHA expressions
which capture whether or not there is a majority for or against
acceptance, or whether there is a deadlock, respectively.

Now we have our mechanism, we can check some properties. The
first three properties demonstrate that the coalition � �����*� is in fact
all-powerful: this coalition can bring about any outcome, including
deadlock. Moreover, they can do this indefinitely.

	 	 � � 	 	���� ��� �  ��f�G�g ��f�&�� 
 � ���b��� (6)

	 	 � � 	 	���� ��� �  ��f�G�g ��f�&�� 
 � ��� ! � (7)

	 	 � � 	 	���� ��� �  ��f�G�g ��f�&�� 
������	� �of ��
 � (8)

These can be straightforwardly encoded in the required MOCHA

textual form, as follows — all of these properties were successfully
checked against our mechanism.

atl "f00"
<<>> G <<Agent1,Agent2>> X (outcome = law1);

atl "f01"
<<>> G <<Agent1,Agent2>> X (outcome = law2);

atl "f02"
<< >> G <<Agent1,Agent2>> X (outcome = deadlock);

In contrast to the coalition � ��� �"� , the coalition � � � ��� is very weak.
In fact, they cannot achieve anything: all the following properties
fail when we check them against the mechanism.

atl "f03"
<< >> G <<Agent3,Agent4>> X (outcome = law1);

atl "f04"
<< >> G <<Agent3,Agent4>> X (outcome = law2);

atl "f05"
<< >> G <<Agent3,Agent4>> X (outcome = deadlock);

This demonstrates that, in fact, our mechanism has several undesir-
able properties. Not only does it transpire that the coalition � �����"�



is vastly more powerful than � � � ��� , it also turns out that the mecha-
nism does not even guarantee an outcome: a deadlock can be forced
indefinitely.

5. TOWARDS A RESEARCH AGENDA
While we believe that the ATL-based approach discussed pro-

vides an interesting step in the direction of a general formal mech-
anism verification framework, a lot remains to be done. Below,
we mention some key issues which need to be addressed for this
research program to be successful:

� We need to incorporate more game-theoretic notions in the
logics we use. While the logics discussed are capable of cap-
turing some game theoretic notions, they are still too close to
their computer science origins. For example, players’ prefer-
ences, strategies, equilibrium notions, are all notions which
so far are inadequately represented both in the underlying
semantic models and in the logical languages used. It is
also still an open question whether we will eventually end
up with one general-purpose logic which functions as a stan-
dard, much the way first-order logic or modal logic do in
computer science. Equally possible seems a rich logical land-
scape of formalisms, each well-equipped to handle a particu-
lar range of problems. In analogy with the situation in tempo-
ral logic, one could also imagine a combination of these two,
where there is a general logical framework (the � -calculus)
with many special purpose fragments (LTL, CTL, . . . .) for
specific applications. There are some promising results on
capturing game theoretic notions in modal and dynamic log-
ics. For example, Harrenstein and colleagues show how no-
tions such as Nash equilibrium and subgame perfect Nash
equilibrium can be captured in a dynamic logic [17]; simi-
larly, Baltag shows how a range of game theoretic constructs
can be captured in dynamic epistemic update logics [6]; and
of course, regular epistemic logics can be used to capture
many interesting information-theoretic properties of game-
like scenarios, such as perfect recall [13, 15].

� We need more interaction with research and researchers in
game theory and social choice theory. In order to convince
researchers in these areas of the usefulness of formal mech-
anism verification, they need to be involved from the begin-
ning in the development of these logics.

� Convincing these communities will be greatly facilitated once
we have more substantial case studies. An example might be
the formal verification of a specific auction procedure. Auc-
tion procedures which have been used e.g. in national spec-
trum auctions provide a good example of mechanisms which
are (a) sufficiently complex to demonstrate the usefulness of
formal verification, and (b) not too complex to make formal
verification infeasible. The extreme complexity of the mech-
anism under consideration has been a problem which stands
in the way of more widespread software verification, but we
believe that even rather complicated social mechanisms such
as auction procedures are still very simple when compared to
common computer programs in use today.

� Eventually, we need computational tools implementing the
logical formalisms we come up with. It is only through these
tools that semi-automatic verification of mechanisms will be
possible. From computer science, we have a great deal of
experience with the principles underlying these tools, usually
they will rely on theorem proving or model checking.

Naturally, we do not expect this research program to be success-
fully completed in the near future. We do however believe that this
research program deserves our efforts because it can potentially be
of great benefit to society as a whole. Furthermore, we do believe
that the initial steps which have been taken in this direction and
which have been surveyed here provide sufficient grounds for op-
timism: we are at least beginning to develop the tools necessary to
obtain a better analysis of social software, in the sense proposed by
Parikh [25].

6. REFERENCES
[1] R. Alur, L. de Alfaro, T. A. Henzinger, S. C. Krishnan,

F. Y. C. Mang, S. Qadeer, S. K. Rajamani, and S. Taşiran.
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