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Abstract

Agents often interact strategically to meet conditions in-
volving their own or other agents’ knowledge. This interac-
tion can be modeled using a new method of game construc-
tion, knowledge condition games, introduced in this paper.
Knowledge condition games are games in which a coali-
tion of agents chooses its strategy in an extensive game form
such that an epistemic logic condition is fulfilled. In this pa-
per knowledge condition games are defined and applied to
two example problems involving voting and a quiz master
problem. It is also shown that a restricted class of know-
ledge condition games is NP-complete.

1. Introduction

Participating in a game can be more important than win-
ning. This is certainly true for game-like situations such
as auctions and voting protocols, since agents might enter
these situations solely to gain knowledge about for instance
the choices other agents make. Similarly, an agent might
vote strategically in an election just to find out the prefer-
ences of other agents [14]. Other agents might want to use a
protocol for the exchange of information, or under the con-
straint that certain information must remain private [22].In
this paper a new method of game construction,knowledge
condition games, is presented that can capture these situa-
tions.

Extensive game forms with imperfect information [10]
are often used as a model for multi agent interaction. Ex-
tensive game forms do not specify the preferences of agents,
and therefore a game form does not define a game. One can
create a game based on a game form by adding preferences
for all agents over the different outcomes. Instead of this,
we assume that a coalition of agents wants a certain know-
ledge condition to hold at the end of the protocol. The know-
ledge condition is expressed in epistemic logic [11]. Epis-
temic logic originates in philosophy [8] but has been suc-
cessfully used in the domain of computer systems to cap-
ture the knowledge of agents in interpreted systems [6]. It

has been combined with temporal logic [17] and coalition
logic [19] in order to capture knowledge development over
time, to capture knowledge change after announcements [1]
or knowledge evolution in games such as Cluedo [21].
These frameworks have been applied to a range of differ-
ent situations, such as the Russian Cards problem [22, 23]
and the Dining Cryptographers Problem [20]. All these ap-
proaches mentioned treat the knowledge of agents as arising
solely from their observations on the system, assuming that
agents have no access to the strategies of other agents. An
exception is the approach by Druiven [5] which introduces
the termstrategic knowledgefor the knowledge derived
from knowing a strategy, and develops a dynamic epistemic
logic framework for handling strategic knowledge derived
from deterministic strategies.

In knowledge condition games, agents do know the
strategies that other agents use. This is a useful fea-
ture in for instance security protocols, where the security
should not depend on keeping the strategy or algo-
rithm used secret [14] and in protocols that are repeated
often, such as daily auctions. In these repeated proto-
cols agents can study the previous behaviour of oppo-
nents to form conjectures about their strategies. On the one
hand knowledge condition games can be seen as an exten-
sion of the ‘epistemic logic for multi agent systems’ pro-
gramme, with the goal of modeling adversarial multi agent
systems. On the other hand it is a simplification of log-
ics that try to combine features such as knowledge, time
and strategies, such as Alternating-time Temporal Epis-
temic Logic(ATEL) [19]. In ATEL one can combine strate-
gic operators, to say for instance thatA knows it is able
to preventB to be able to letC know p. This express-
ibility comes at a price:ATEL formulas are harder to
understand. Knowledge condition games provide a sim-
pler alternative.

The main idea of the paper, expressed in a formal nota-
tion, is that an extensive game form interpretationF can be
transformed in a knowledge condition gameg(F,Γ,Ξ, φ).
This is essentially a two player game, where the players are
the coalitions of agentsΓ andΞ. Throughout this paper we
assume thatΓ andΞ are disjoint.Γ wantsφ to hold at the
end of each run of the protocol, whileΞ wants to prevent



thatφ holds for at least one run of the protocol. In section
2 this idea is formally defined. Section 3 contains examples
of knowledge condition games, while section 4 looks at the
computational complexity of knowledge condition games.
Section 5 is the conclusion.

2. Definitions

In this section we define how one can create a knowledge
condition gameG from a game form interpretationF . In or-
der to do this one needs a conditionφ, a set of agentsΓ that
wantφ to hold, and a set of agentsΞ that does not wantφ to
hold. We use the notationG = g(F,Γ,Ξ, φ) for this game.
In this section we formally define the notions used and the
functiong.

We use a notation that is standard for alternating time
temporal logic [19] and useΣ for the set of all agents,Γ
andΞ for coalitions of agents,X for a single agent,P for a
set of atomic propositions andπ for an interpretation func-
tion.

In order to express knowledge conditions we use the lan-
guage of epistemic propositional logic, along with itsS5n

semantics [6, 11] and this language is calledK in this pa-
per.

Definition 1 Let P be a finite set of atomic propositions
andΣ a finite set of agents. The languageK of epistemic
logic overP andΣ is the smallest setL such thatP ⊂ L
and for anyφ, ψ ∈ L andX ∈ Σ

φ ∨ ψ ∈ L

¬φ ∈ L

KXφ ∈ L

An example formula in this language isφ0 = KBp. This
formula expresses thatB knows thatp holds. Conjunction
φ ∧ ψ is defined as¬(¬φ ∨ ¬ψ).

This logic is interpreted over Kripke models [11]. A
(multi-agent) Kripke modelM is a tupleM = (Σ, S,∼
, P, π), whereΣ is a set of agents,S is a set of states and∼
is a collection of equivalence relations∼X between states,
one for each agentX ∈ Σ. The meaning of the equiva-
lence relations is that it relates states that cannot be distin-
guished by an agent:s ∼X t means that the statess andt
look the same according toX . P is a set of atomic proposi-
tions andπ is an interpretation function such thatπ(s) ⊆ P
returns the atomic propositions that are true ins.

An example Kripke model is the modelM0, which has
two statess1 ands2 and two agentsA andB. AgentA can
distinguish these states, but agentB cannot:s1 ∼B s2. In
this model only one atomic proposition, propositionp, oc-
curs. This proposition only holds in states1.

Epistemic formulasφ ∈ K can be interpreted over
Kripke models. LetM = (Σ, S,∼, P, π) be a Kripke model

ands ∈ S. We writeM, s |= φ if φ is true ins. This no-
tion is defined in the following way.

M, s |= p iff p ∈ π(s)
M, s |= φ ∨ ψ iff π, s |= φ or π, s |= ψ
M, s |= ¬φ iff not π, s |= φ
M, s |= KXφ iff ∀t ∈ S : s ∼X t =⇒ π, t |= φ

We can use this definition to show the following results
for the example model.

M0, s1 |= KAp
M0, s1 |= ¬KBp
M0, s2 |= KB(p ∨ ¬p)

A game form interpretation is basically a game form to
which an interpretation function for atomic propositions has
been added. A game form can be described in different but
equivalent ways, for instance as a set of runs [12] or as a
game tree [10]. We follow Osborne and Rubinstein [12] and
use the idea of a setH of runsh. Each runh is one possible
sequence of actions by agents that is allowed by the rules of
the game. The whole setH of them fully describes what can
be done in the game. First we define game forms, then we
extend this definition with an interpretation function to ob-
tain the definition of a game form interpretation.

Definition 2 A game formis a tuple(Σ, H,Ow,∼), where
Σ is a finite set of agents,H is a non-empty set of finitehis-
tories, such that for any sequenceha ∈ H also h ∈ H .
Let ε to denote the empty sequence. The set of all single ac-
tions available afterh is denotedA(h) = {a|ha ∈ H}.
A history h ∈ H is terminal if A(h) = ∅. The set of
all terminal histories ofH is denotedZ(H). The function
Ow(h) : H \ Z(H) → Σ defines which player chooses
the next action. Intuitively the agentOw(h) owns the his-
tory h. For each agentX ∈ Σ, the relation∼X is an equiv-
alence relation between histories, whereh ∼X j expresses
the fact that agentX cannot tell the difference between hav-
ing gone through historyh and historyj. One condition ap-
plies: ifOw(h) = X andh′ ∼X h then alsoOw(h′) = X
and furtherA(h) = A(h′). This condition ensures that an
agent knows when it can select an action and that it knows
which actions are available.

This definition is taken from Osborne and Rubin-
stein [12], definition 200.1, where it is called an exten-
sive game form. We have extended the information sets
such that agents also have information when they are not
in charge, which is a common extension for logical pur-
poses [16, 2].

Definition 3 A game form interpretationis a tuple
(Σ, H,Ow,∼, P, π). The first elements(Σ, H,Ow,∼)
form a game form. The setP contains atomic propositions
andπ : Z(H) → 2P is a function that assigns to each ter-
minal history the set of atomic propositions that are true in
the final state of that history.
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Figure 1. Game form interpretation F0

The idea is that these propositions can be used to refer
to certain histories, for instance to histories where an agent
achieves a certain goal. The idea of annotating end states or
terminal runs with logical propositions has been used before
by Harrenstein e.a. [7] and the authors [24]. Approaches
based on temporal logic [17, 18] often annotate all nodes of
the model with propositions, so that formulas can be inter-
preted anywhere in the model.

An example game form interpretationF0 is depicted
in figure 1. In this example, agentA can make a choice
from two alternatives (numbered1 and 2), one of which
satisfiesp. After this choice,A can distinguish these sit-
uations, butB cannot. This game form interpretation can
be defined asF0 = ({A,B}, {ε, 1, 2}, Ow0,∼0, {P}, π0),
whereOw0(ε) = A, π0(1) = {p}, π0(2) = ∅ and1 ∼0

B 2
but not1 ∼0

A 2.
For every game formF we can calculate a Kripke model

M = m(F ) representing the knowledge in the end states
of F . We do this by taking all the terminal histories ofF as
the set of states ofM . Let F = (Σ, H,Ow,∼, P, π). The
functionm is defined by

m(F ) = (Σ, Z(T ),∼, P, π)

If we apply the functionm to the example game formF0,
we get the example Kripke modelM0 = m(F0). The trans-
formationm is used to express when a game formF makes
a formulaφ true. We say that a game formF makes a for-
mulaφ true, writtenF |= φ, if φ holds after every terminal
history ofF .

F |= φ⇔ ∀s ∈ Z(T ) m(F ), s |= φ

Strategies are an important part of every game. Infor-
mally a strategyσΓ is a function that tells all agents in coali-
tion Γ what to do next in the histories they control. We use
nondeterministic strategies for our agents. This means that
a strategy does not return a unique option that the agent
should take, but it returns a set of options, with the inten-
tion that the agent should randomly select an element of this
set. A strategyσΓ is thus a function such that for any nodeh
with Ow(h) ∈ Γ it returns a non-empty setσΓ(h) ⊆ A(h).
An extra condition is thath ∼Ow(h) h

′ must imply that
σΓ(h) = σΓ(h′). This condition states that a strategy should
not prescribe different options for histories that an agent

cannot distinguish. An agent would not have the knowledge
to adhere to a strategy that does not satisfy this condition.

A mixed strategyis a function that for each node returns
a probability function over the available options, with the
intention that the agent should randomize over these ac-
tions with exactly the probabilities specified for each option.
These mixed strategies are often used for the analysis of im-
perfect information games, because these strategies can pro-
vide agents much better expected payoffs then determinis-
tic or pure strategies [12]. A nondeterministic strategy can
be seen as an abstraction of a mixed strategy. It indicates
which actions should be played with nonzero probability,
but ignores the actual probabilities. This abstract view on
strategies is sufficient to decide whether agents know some-
thing for sure at the end of a game, which is the reason that
we use nondeterministic strategies.

For the example game formF0 there are three different
strategiesσ{A} for agentA. The strategy can either tell the
agent to take the first option, or it can prescribe the sec-
ond option, or the strategy can express that the agent should
randomly choose between both options. Formally these
possibilities are defined by respectivelyσ1

{A}(ε) = {1},

σ2
{A}(ε) = {2} andσ3

{A}(ε) = {1, 2}.
For any strategyσΓ for a game formF we can con-

sider a restricted game formF ′ in which the agentsX ∈ Γ
only choose options that are part of the strategy. The agents
Y /∈ Γ can still do whatever they want inF ′. Such a re-
stricted game form models the situation in which coalition
Γ is committed to the given strategy. The restricted model
F ′ is computed by an update functionF ′ = u(F, σΓ). Let
F = (Σ, H,Ow,∼, P, π). We defineu by u(F, σΓ) =
(Σ, H ′, Ow′,∼′, P, π′). The new setH ′ is the smallest set
such that three conditions are met:

• ε ∈ H ′

• for eachh ∈ H ′ with Ow(h) ∈ Γ we have that
∀a (a ∈ σΓ(h) → ha ∈ H ′)

• for eachh ∈ H ′ with Ow(h) /∈ Γ we have that
∀a (ha ∈ H → ha ∈ H ′)

The new equivalence relations∼′
X are restricted to histo-

ries that are part ofH ′: ∼′
X=∼X ∩(H ′ × H ′). The func-

tionsOw′ andπ′ are the same as their unprimed counter-
parts, except that their domain is restricted to histories in
H ′.

An update of the exampleF0 with strategyσ3
{A} does

not change anything:u(F0, σ
3
{A}) = F0. An update with

σ1
{A} returns a modelF1 with only two histories:ε and1.

This means that the Kripke model ofF1 only has one state
in whichp holds.

m(u(F0, σ
1
{A})) |= KBp



By adopting the strategyσ1
{A}, the agentA can thus ensure

thatB knows thatp will hold in the outcome of the pro-
tocol. Agents are aware of the strategies that other agents
use. The assumption implicit in our definition of knowledge
is that the game form used is common knowledge, and that
every strategy adopted by a coalition of agent is also com-
mon knowledge between all agents of the system.

As promised at the start of the section, the function
G = g(F,Γ,Ξ, φ) defines a knowledge condition game in
which Γ wishes to achieveφ, while Ξ hopes to prevent it.
The gameG is not an extensive game, but a game in nor-
mal or strategic form [12]. It is not possible to considerG
as an extensive game, because whether the knowledge con-
dition holds is not a local property of each end state, but a
property that depends on the strategies as a whole. A strate-
gic game is defined as a tuple(N,A,�) [12]. The know-
ledge condition gameg(F,Γ,Ξ, φ) = (N,A,�) is defined
as follows.

• The ordered set of playersN isN = (Γ,Ξ)

• A = {AΓ, AΞ} contains the actions of each player.
In our caseAΓ contains all strategiesσΓ that can be
played inF . SimilarlyAΞ contains all strategiesσΞ.

• �Γ and�Ξ are the preference relations for the agents,
over strategy combinations . We define

(σΓ, σΞ) �Γ (σ′
Γ, σ

′
Ξ) iff v(F, σΓ, σΞ) ≥ v(F, σ′

Γ, σ
′
Ξ)

In order to define the functionv, assume that at the start of
the game, the coalitionΓ chooses a strategyσΓ and simulta-
neouslyΞ selects a strategyσΞ. An updated gameG′ is now
calculated asG′ = u(u(G, σΓ), σΞ). The gameG is won by
Γ if G′ |= φ. OtherwiseΞ wins. We writev(G, σΓ, σΞ) = 1
if Γ wins andv(G, σΓ, σΞ) = 0 in caseΞ wins.

Let F0 be the example game form and takeφ0 = KBp.
For the gameG0 = g(F0, {A}, ∅, φ0) we can compute a
payoff matrix. As calculated before,{A} has three strate-
gies. The empty coalition has only the functionf∅ as a strat-
egy. This functionf∅ is the function with an empty domain.

σ1
{A} σ2

{A} σ3
{A}

f∅ 1 0 0

We see that for this game,{A} has a winning strategy
(namelyσ1

{A}). The existence of a winning strategy for the
first player of a game is denoted byw(G) = 1. The formal
winning strategy condition for knowledge condition games
is

w(g(F,Γ,Ξ, φ)) = 1 ⇔ ∃σΓ∀σΞ v(G, σΓ, σΞ) = 1

Note that for the example game it is the case for
any φ that w(g(F0, {A}, ∅, φ)) = 1 if and only if
w(g(F0, {A}, {B}, φ)) = 1. The reason is that the sec-
ond playerB only has no choices in this model. In
general it does matter whether an agentY is an oppo-
nent (Y ∈ Ξ) or neutralY /∈ Γ ∪ Ξ.

N

1 2 3 4

23 24 34
13 14

34

12
14

24
12 13

23

Figure 2. The fifty fifty problem FQ

3. Examples

3.1. Anonymous Voting

A voting protocol is used when a group of agents has to
make a joint decision on a certain issue. A standard pro-
tocol is majority voting: each agent can vote for an op-
tion and the option that gets the most votes is the outcome
of the protocol. In the example game form interpretation
FV , three agentsA, B andC use this protocol to decide
whetherp should be true or not. They vote in alphabetical
order, so firstA chooses from actionp or p̄, thenB (with-
out knowingA’s choice) chooses eitherp or p̄ and finally
C does the same, unaware of whatA,B did. This protocol
thus has eight terminal runs. The propositionp holds if at
least two agents choosep. Furthermorea holds ifA chooses
p, b if B choosesp and the same forC with c. The inter-
pretation function is thusπ(ppp) = {a, b, c, p}, π(ppp̄) =
{a, b, p} . . . π(p̄p̄p̄) = ∅. We assume thats 6∼X s′ if s and
s′ differ in the evaluation of the outcomep, or if the vote of
X differs in s from that ins′.

The following game results hold.

w(g(FV , {A,B}, {C}, p)) = 1
w(g(FV , {A,B}, {C},KBc ∨KB¬c)) = 1
w(g(FV , {B}, {C},KBc ∨KB¬c)) = 0

A andB together can ensure thatp is true, by votinga and
b. What they also can do is vote differently, for instancea
and¬b. In this case the outcome will solely depend onC ’s
choice. In this case they thus learn whatC voted. AgentB
cannot achieve this on its own.

One example, described by Schneier [14], p. 133, is a
voting protocol whereB would have the option of copy-
ingA’s (encrypted) vote. In that case one might get

w(g(FV , {B}, {AC},KBa ∨KB¬a)) = 1

This is an unwanted property and thus a ‘bug’ in the proto-
col. It is easy to overlook such bugs if one does not assume
that cooperating agents know each other’s strategy, because
detection of these bugs may depend on this assumption.



3.2. Fifty fifty Problem

In a weekly broad casted TV show the quiz mas-
ter asks a candidate the next question: Which day
of the week comes directly after Tuesday? Is that
a) Monday, b) Wednesday, c) Friday or d) Satur-
day. The candidate replies: ‘I am not sure. Can I
do fifty fifty?’. The quiz master has to remove two
options that are not the answer, so he says: ‘The
answer is not Monday and neither Friday’. Does
the candidate know the answer?

This situation frequently occurs on television in several Eu-
ropean countries in the ‘Millionaire show’. The stakes in
this game start out low, but potentially the stake is a mil-
lion pounds or euros. Let us model this in a game form in-
terpretationFQ involving an agentN (nature) that deter-
mines what the right answer is, a quiz masterQ that elimi-
nates two answers, and a candidateC. This game form inter-
pretation is depicted in figure 2. First nature selects one of
the answers to be the right answer. it can chose from the ac-
tions1, 2, 3 and4. The quiz master, who knows the right an-
swer, can then select an actionij that indicates that the two
optionsi andj are eliminated.i, j must be different from
the right answer. The terminal histories are thus all histories
(k, ij). For such histories,(k, ij) ∼C (k′, i′j′) if the same
options are eliminated:ij = i′j′. The set of atomic propo-
sitions isP = {ai|1 ≤ i ≤ 4} ∪ {ei|1 ≤ i ≤ 4}, and
each terminal history is interpreted in the following way:
π((k, ij)) = {ak, ei, ej}. The question is whether the can-
didate knows the answer at the end of the protocol. This is
expressed byψ = KCa1∨KCa2∨KCa3∨KCa4. The fol-
lowing table lists several properties of this situation.

Nature may favour the candidate:
w(g(FQ, {N}, ∅, ψ)) = 1

Nature may not favour the candidate:
w(g(FQ, {N}, ∅,¬ψ)) = 1

The quiz master can help the candidate:
w(g(FQ, {Q}, ∅, ψ)) = 1

We see that the question whether the candidate knows the
answer depends on nature and on the quiz masterQ. If na-
ture uses a deterministic strategy, in which for instancea1

always holds, then the candidate knows that this is the right
answer. However, if Nature uses the non-deterministic strat-
egy in which each answer could be the right answer, the can-
didate will not know the answer.

It becomes more interesting if the quiz master gets in-
volved. In this game the quiz master has the ability to sig-
nal the right answer to the candidate. Take for instance this
strategyσ{Q}.

N

1 2 3 4

23 34 14 12

Figure 3. The updated game form interpreta-
tion u(FQ, σ{Q})

σ{Q}(1) = {23}
σ{Q}(2) = {34}
σ{Q}(3) = {14}
σ{Q}(4) = {12}

This strategy tells the candidate exactly what the right
answer is: The answer directly before the two eliminated
options (assuming4 comes before1). The updated model
u(FQ, σ{Q}) is given in figure 3. This strategy acts as a code
between the candidate and the quiz master. It is the strategy
that proves thatw(g(FQ, {Q}, ∅, q)) = 1. A practical con-
clusion one can draw is that one should not bet on this quiz
if one does not know what the interests of the quiz mas-
ter are.

The fifty fifty problem is in fact similar to the Monty
Hall dilemma [9]. In that problem there are only three op-
tions, and the quiz master (Monty Hall) only removes one
option. The role or intentions of the quizmaster, whether
he opens doors at random or not, is relevant in both prob-
lems. However one needs reasoning about chance in order
to solve the Monty Hall dilemma, whereas we could anal-
yse the quiz master problem without probabilities.

4. Complexity

The key decision problem for knowledge condi-
tion games is to decide, for a givenF,Γ,Ξ andφ, whether
w(g(F,Γ,Ξ, φ)) = 1. Naturally one wants to know how
easy or hard it is to decide the problem, since this deter-
mines the practical applicability of this new game con-
cept. Problems like these are often called feasible or
tractable if they can be solved in polynomial time, and in-
tractable if this cannot be done. In this section we show
that even a restricted problem, withΞ = ∅, is NP com-
plete. This problem is called therestricted kcg prob-
lem. It is generally believed that NP-complete problems are
not tractable [3, 4].

Theorem 1 The problem to decide for givenF,Γ and φ
whetherw(g(F,Γ, ∅, φ)) = 1 is NP-complete.



Proof: To prove this theorem, we must first show that this
problem is in NP. Then we show that the NP-complete prob-
lem 3SAT can be reduced to this problem.

Assume thatF,Γ, φ are given. The empty coalition has
only one strategyσ∅ such thatu(F, σ∅) = F . Therefore

w(g(F,Γ, ∅, φ)) = 1 ⇔ ∃σΓ u(F, σΓ) |= φ

A nondeterministic polynomial algorithm for this problem
exists. Find or guess nondeterministically a strategyσΓ.
Since a strategy encodes a subset of actions available inF ,
the size ofσΓ is smaller than the size ofF and thus poly-
nomial in the input size. Now calculateM = m(u(F, σΓ)),
and verify for each statess of M thatM, s |= φ. The num-
ber of states inM is at most the number of end states ofF ,
so |M | ≤ |F |. All of this can be done in polynomial time.
Therefore, this problem can be solved using a nondetermin-
istic polynomial algorithm and this problem is in NP.

In order to show that the restriced kcg problem of the
theorem is as hard as any NP problem, we show that any
instance of the 3SAT problem can be transformed into an
equivalent restriced kcg instance. Letφ3 =

∧
i(ai ∨ bi ∨ ci)

be a propositional logic formula in conjunctive normal form
with three literals per clause. The atomic formulasai, bi, ci
must be either atomic propositions or negated atomic propo-
sitions. The 3SAT problem is to decide whether a truth-
assignmentA for all atomic propositions inφ3 exists such
that A |= φ3. We can construct a game form interpreta-
tion F with a single agentΣ = {A} and a formulaφ such
thatw(g(F, {X}, ∅, φ)) = 1 if and only if ∃A : A |= φ3.

The modelF = ({A}, H,Ow,∼, P, π) is constructed
in the following way. LetP 3 be the set of atomic propo-
sitions occurring inφ3. The new set of atomic proposi-
tionsP contains two propositions for any old proposition:
P = {x+|x ∈ P 3} ∪ {x−|x ∈ P 3}. For each new propo-
sition a history is created:H = {ε} ∪ {ep|p ∈ P}. The
interpretation function is such that only the correspond-
ing atomic proposition is true:π(ep) = {p}. Furthermore
Ow(n0) = A, because there are no other options. AgentA
cannot distinguish any end state:ep ∼A eq for all statesep

andeq.
We useMXφ as a shortcut for¬KX¬φ. The formula

φ = φ1 ∧ φ2 is a conjunction of two parts. The partφ1 ex-
presses that for each original atomic propositionp ∈ P 3,
either the positive propositionp+ is considered possible or
the negativep−, but not both:

φ1 =
∧

p∈P 3

(MAp
+ ∨MAp

−) ∧ ¬(MAp
+ ∧MAp

−)

The idea is that the strategy thatA uses is actually an assign-
ment of values to all atomic propositions inP 3. A merely
expresses that such assignment must assign either the truth
value true (p+) or false (p−) to each propositionp.

A

p+ p− q+ q− r+ r−

Figure 4. The model of 3SAT formula ψ

Theφ2 part encodes the original formulaφ3 =
∧

i(ai ∨
bi ∨ ci). In the next definition we use a helper functionf
that takes an atomic proposition:f(¬p) = p− andf(p) =
p+. using this function we defineB as follows.

φ2 =
∧

i

MA(f(ai) ∨ f(bi) ∨ f(ci))

It is not hard to see that any strategyσ{X} such that
m(u(F, σ{X})) |= φ1∧φ2 corresponds to an assignmentA
such thatA(p) = true if and only if p+ ∈ σ{X}(n0), and
that this assignment satisfiesA |= φ3. Since the formula
and model constructed have a size that is linear with respect
to the size ofφ3, this is a polynomial reduction. Therefore
the restricted kcg problem is NP-hard. Since we have also
shown that the problem is in NP, we conclude that the re-
stricted kcg problem is NP-complete.�

As an example, consider the satisfiability of the 3SAT
formulaψ = (p∨¬q∨r)∧(¬q∨¬p∨r). This formula con-
tains three propositions, so the corresponding game form in-
terpretation, depicted in figure 4 contains six terminal his-
tories. The corresponding knowledge formula isψK .

ψK = (MAp
+ ∨MAp

−) ∧ ¬(MAp
+ ∧MAp

−)∧
(MAq

+ ∨MAq
−) ∧ ¬(MAq

+ ∧MAq
−)∧

(MAr
+ ∨MAr

−) ∧ ¬(MAr
+ ∧MAr

−)∧
MA(p+ ∨ q− ∨ r+) ∧MA(q− ∨ p− ∨ r+)

When comparing this result with other complexity re-
sults for multi agent logics, one should keep in mind that we
have represented the modelF explicitly. Other results may
use an implicit representationR of a set of historiesH(R),
such that the size ofH(R) is not polynomially bounded in
the size ofR.

One can make a comparison betweenATEL and know-
ledge condition games. Any protocol can be formulated as
a concurrent game structureC suitable forATEL model
checking and as a game form interpretationF . We assume
thatC contains a atomic propositionstart that holds in
the initial state, andend that holds in any end state. Sup-
pose that we want to find out whether coalitionΓ can en-
sure that the epistemic logic formulaφ holds at the end of
the protocol. This can be expressed as the following model
checking problem.

C |= �(start→� Γ � �(end→ φ))



One can also formulate this question as a knowledge condi-
tion game.

w(g(F,Γ, ∅, φ)) = 1

These two statements have a slightly different interpreta-
tion, because inATEL it is not assumed that agents know
which strategies are played. Model checkingATEL under
the assumption of uniform strategies is NP-complete [15],
but the proof requires a different construction than the proof
presented in this paper. The hardness of KCG is caused by
the interaction between knowledge and strategies, whereas
ATEL model checking is difficult because agents must co-
ordinate.

Since the decidability problem for knowledge condition
games is at least NP-hard (the general problem is at least
as difficult as the restricted problem), automatic verification
is restricted to small problem size, or easy special cases. In
the remainder of this section we look at a special case that
might help one to solve these problems.

A positive knowledge formulas is a formula inK in
which every operatorKX appears within the scope of an
even number of negations. Examples of positive formu-
las areKAp and¬(p ∨ ¬KAKB¬p). Negative knowledge
formulas are the exact opposite: every knowledge operator
KX appears under an odd number of negations. If a know-
ledge condition gameg(F,Γ,Ξ, φ) is played with a posi-
tive knowledge formulaφ, then the best strategy forΞ is
to play any option available. Therefore,Ξ should not com-
mit to anything, andΓ might as well play against the empty
coalition. This is expressed in the next theorem.

Theorem 2 LetF,Γ,Ξ andφ be given such thatφ is a pos-
itive knowledge formula.w(g(F,Γ,Ξ, φ)) = 1 if and only
if w(g(F,Γ, ∅, φ)) = 1

Proof: As a first step in the proof, note that for any strat-
egy σ, the Kripke modelm(u(F, σ)) is exactly the same
asm(F ), except that the set of states might be smaller
in m(u(F, σ)). We say thatm(u(F, σ)) is a submodel of
m(F ). By induction we can show that ifM ′ is a submodel
ofM andφ a positive knowledge formula, then for any state
s existing inM ′ we have thatM, s |= φ ⇒ M ′, s |= φ.
For negative knowledge formulasφ it works the other way
around:M, s |= φ ⇐ M ′, s |= φ. For any atomic proposi-
tion p this certainly holds and there is even an equality. As-
suming that the claims are true for subformulasψ andφ that
are either both positive or both negative, one can show that
both claims hold forφ ∨ ψ. ForM, s |= KXφ the positive
claim is also true, since∀t ∈ S : s ∼ t ⇒ M, t |= φ im-
plies that∀t ∈ S′ : s ∼ t ⇒ M, t |= φ for the smaller set
of statesS′. For dealing with negation we first assume in-
ductively thatφ is a positive knowledge formula, which al-
lows us to show the negative claim for¬φ: M, s |= ¬φ ⇐
M ′, s |= ¬φ. Then we assume thatφ is negative and we

can show thatM, s |= ¬φ ⇒ M ′, s |= ¬φ for the posi-
tive knowledge formula¬φ.

Using this first step, we know that for any strategyσΞ it
is the case thatm(F ) |= φ⇒ m(u(F, σΞ)) |= φ. Using the
fact that for the empty strategyσ∅ we have thatu(F, σ∅) =
F , we get

∃σΓ∀σΞu(u(F, σΞ), σΓ) |= φ⇔ ∃σΓu(u(F, σ∅), σΓ) |= φ

which had to be proven.�
A similar theorem regarding positive knowledge formu-

las has been formulated by Parikh and Ramanujam [13].
Positive knowledge formulas occur in situations where

agents want to communicate: they want each other to know
certain facts about the outcome. Such situations are often
described as cooperative agent systems. Negative or non-
positive formulas might occur in situations where agents
want to keep each other uninformed. One can think of such
examples as adversarial systems. This result thus makes it
easier to check knowledge properties of cooperative multi
agent systems. The conclusion here is thus similar to the ob-
servation made elsewhere that checking knowledge is eas-
ier for cooperative than for adversarial systems [23].

5. Conclusion

Knowledge condition games can be used for expressing
properties of multi agent protocols that are hard to express
in other frameworks. It shows how logic can contribute to
game theory, and logic and game theory to the theory of
multi agent systems, protocols and verification. One under-
lying assumption of the kcg framework is that strategies
used by agents are known by all agents. This assumption
makes knowledge condition games a suitable framework for
modeling security protocols or adversarial multi agent sys-
tems. The main result we have established is that finding
out whether a player has a winning strategy in a knowledge
condition game is at least NP-hard. For positive knowledge
formulas, which are useful in cooperative multi agent sys-
tems, it is in NP. Automatic verification is thus not a very
tractable problem, but possible for small systems and sim-
ple knowledge properties.

In future work we hope to investigate the relation know-
ledge condition games and other frameworks. In particular
it would be interesting to see whether complexity results for
extensive games also apply to knowledge condition games.
Furthermore we would like to compare other logical frame-
works, such asATEL and dynamic epistemic logic, to know-
ledge condition games. In order to do this one needs to make
different assumptions regarding strategic knowledge, forin-
stance allowing agents to know something but not every-
thing about strategies. The question here is how general a



framework should be in order to capture realistic verifica-
tion problems. More case studies based on larger problems
would help to answer this question.

At the moment there is no practical implementation that
can be used to automatically evaluate knowledge condition
games. Since we have shown that this evaluation problem
has a high computational complexity, such an implementa-
tion should in some way exploit formula structure in order
to deal with game forms that are large enough to be interest-
ing. Protocols with large numbers of agents or actions occur
often in practical model checking problems, whereas com-
plicated formulas are relatively rare. We speculate that con-
straint satisfaction techniques might be applicable.
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