The Computational Complexity of Agent Design Problems

Michael Wooldridge

Departmenbf ComputerScienceUniversityof Liverpool
LiverpoolL69 7ZF, United Kingdom

M J. Wol dri dge@sc. |iv. ac. uk

Abstract

This paperinvestigateshe computationacompleity of
afundamentaproblemin multi-agentsystemsgivenanen-
vironmentogetherwith a specificatiorof sometask,canwe
constructan agentthatwill successfullyachievethetaskin
the ervironment?We referto this problemasagentdesign
Using an abstract formal modelof agentsand their envi-
ronmentswe begin by investigatingvariouspossibleways
of specifyingtasksfor agents, and identify two important
classe®f sut tasks.Achievementiasksare thosein which
an agentis required to bring aboutone of a specifiedset
of goal states and maintenancéasksare thosein which an
agentis required to avoid somespecifiedsetof states. e
provethatin themostgenel casetheagentdesignproblem
is PSPACE-completefor bothachievementaindmaintenance
tasks. We briefly discussthe automaticsynthesiof agents
fromtaskervironmentspecificationsand concludeby dis-
cussingrelatedwork and presentingsomeconclusions.

1 Introduction

Therearemary approachet thedesignof agentghatmust
operateautonomouslyn someernvironment[20]. Most of
theseapproachegocus on the problem of decisionmak-
ing given fixed time boundsand computationalresource
constraints. The resulthasbeena rangeof software ar-
chitecturedor autonomousgentsandanincreasingoody
of work evaluatingthesearchitecturesn differenterviron-
mentalsettings.

To date,the agentcommunity hasgiven comparatiely
little attentionto the basiccomputationaproblemsthatun-
derpinthe deploymentof agentsystems.In this paper we
focuson oneparticularsuchproblem,which we call agent
design Theagentdesignproblemarisesvhenwe aregiven
a specificatiorof a particularenvironment,which anagent
mustinhabit, togetherwith a specificationfor a task. The
agentdesignproblemis simply that of answeringwhether

or notthereexistsanagentwhich canbe guaranteedtb suc-
cessfullycarry out the taskin the ervironment. Of course,
an agentthat succeedwith a particulartaskin one ervi-
ronmentwould not necessarilysucceedn anothererviron-
ment. The agentdesignproblemthusinvolvesconsidera-
tion of boththetaskand ernvironmentproperties.

We begin our analysishy settingup anabstracimodelof
agentsandervironments,which we useto formally define
theagentdesignproblem.Usingthis model,section3 con-
sidersthe various possiblewaysin which tasksmight be
specified. We concludeby identifying two commontypes
of tasks: achievementasks(in which anagentis required
to bring aboutone of a specifiedsetof “goal” states)and
maintenancéasks(whereanagents requiredto avoidaset
of states). We then proceedto analysethe computational
compl«ity of the agentdesignproblemfor achiesement
and maintenanceaasks. We prove that, for both types of
tasks,the problemis PsPACE-completein the mostgeneral
case.

In sectio4, we considela problemthatis closelyrelated
to agentdesign:theautomaticsynthesi®f agentfrom task
ervironmentspecificationsWe briefly discusgheimplica-
tions of our agentdesignresultsfor synthesisalgorithms,
focussingparticularlyon the possibility thattasksarespec-
ified logically. We discusgelatedwork in Al andcomputer
sciencein section5, andpresentsomeconclusionsn sec-
tion 6.

Notation: We usestandardsettheoreticandlogical nota-
tion wherever possible augmentedsfollows. If Sis a set,
thenthe setof finite sequencesver Sis denotedby S*. If
o € S* ands € S, thenthesequencebtainedby appending
sto o isdenoteds - s. We write s € ¢ to indicatethatele-
mentsis presentn sequence, andwrite last(c) to denote
the final elementof o. Throughoutthe paper we assume
somefamiliarity with complexity theory[14].



2 Agentsand Environments

In this section, we presentan abstractformal model of
agentsandthe ervironmentsthey occupy; we thenusethis
modelto framethe decisionproblemswe study The sys-
temsof interestto us consistof an agentsituatedin some
particularernvironment; the agentinteractswith the envi-
ronmentby performingactionsuponit, and the erviron-
mentrespondgo theseactionswith changesn state. It
is assumedhat the ervironmentmay bein ary of a finite
setE = {e €,...} of instantaneoustates.Agentsareas-
sumedto have a repertoireof possibleactionsavailableto
them, which transformthe stateof the ervironment. Let
Ac= {a,d/,...} bethe(finite) setof actions.

Thebasicmodelof agentdnteractingwith theirerviron-
mentsis asfollows. The ervironmentstartsin somestate,
andthe agentbegins by choosingan actionto performon
that state. As a resultof this action, the ervironmentcan
respondwith a numberof possiblestates. However, only
onestatewill actuallyresult— thoughof coursetheagent
doesnot know in advancewhich it will be. On the basis
of this secondstate,the agentagainchoosesan actionto
perform. The ernvironmentrespondswith one of a set of
possiblestates the agentthenchoosesanotheraction,and
soon.

A run, r, of anagentin anervironments thusasequence
of interleavedervironmentstatesandactions:

ay—
Foe 2% e e e 2%, % g

Let R bethesetof all suchpossibleruns. We user,r’, ...
to standfor memberf R.

In orderto representhe effect that an agents actions
have on an ervironment,we introducea statetransformer
function(cf. [6, p154]):

iR —=2F

Thusa statetransformerfunction mapsa run (assumedo
endwith theactionof anagent)}to a setof possibleerviron-
mentstates. Thereare two importantpointsto note about
this definition. First, environmentsareassumedo be his-
tory dependent In otherwords, the next stateof an ervi-
ronmentis not solely determinedby the action performed
by the agentandthe currentstateof the ervironment. The
actionsmadeearlier by the agentalsoplay a partin deter
mining the currentstate. Second note that this definition
allows for non-determinismin the ervironment. Thereis
thusuncertaintyaboutthe resultof performinganactionin
somestate.

If 7(r) = @, (wherer is assumedo endwith anaction),
thenthereareno possiblesuccessostatedor. In this case,
we saythatthereareno allowableactions andthatthe sys-
temhasendedits run. Oneimportantassumptiorwe make

is that every systemis guaranteedo endwith runswhose
lengthis polynomialin thesizeof Ac x E. Thus,we donot
considerunsthatareinfinite in length.

Formally, we sayan ernvironmentEnv is a pair Env =
(E,7) whereE is a setof ervironmentstates,andr is a
statetransformeifunction.

We now needto introducea modelof theagentghatin-
habitsystemsMarny architecturedor agentshave beenre-
portedin theliterature[20], andonepossibilitywould there-
fore beto directly useoneof thesemodelsin our analysis.
However, in orderto ensurethat our resultsare asgeneral
aspossiblewe chooseto modelagentssimply asfunctions
whichmapruns(assumedo endwith anernvironmentstate)
to actions(cf. [16, pp580-581]):

Ag: R — Ac

Notice that while ervironments are implicitly non-
deterministic,agentsare assumedo be deterministic. Let
AG bethesetof all agents.

We say a systemis a pair containingan agentand an
ervironment.Any systemwill have associateavith it aset
of possibleruns; we denotethe setof runsof agentAg in
environmentEnv by R(Ag, Env). Formally, asequence

(a)aa07e17a17e27"‘)

representarunof anagentAgin ervironmentEnv = (E, 7)
iff both:

1. e = 7(e) anday = Ag(e,) (wheree is the empty
sequence)and

2. foru> 0,

& € T((Q)JO‘O:"'aaufl)) where

ay = Ag((eOaa(J;"'an))

3 Tasksfor Agents

We build agentsn orderto carry outtasksfor us. Thetask
to be carriedout mustbe specifiedby us. An obviousques-
tion is how to specifythesetasks.Onepossibilitywould be
to associateitilities with individual states— thetaskof the
agentis thento bring aboutstatesthat maximiseutility. In
this approacha taskspecificatiorwould simply be a func-
tionV : E — IR, which associated real valuewith every
ervironmentstate. This is similar to the approachusedin
Markov decisionprocessefl0]. The maindisadwantageof
this approachs thatit assignautilities to local states;t is
difficult to specifyalong termview whenassigningutilities
to individual states.(Markov decisionprocesseattemptto
overcomethis problemby “discounting”, where statesin
the shorttermare considerednoreimportantthanstatesn
thelongerterm;this approacthaswell-known dravbacks.)



Another possibility is to specify a task as a function
V : R — IR, which assignsa utility not to individual
states,but to runs themseles. If we are concernedwith
agentsthat must operateindependentlyover long periods
of time, thenthis approachappearsnoreappropriatego our
purposesHowever, it is oftendifficult to definesuchutility
functions.

Ratherthanattemptto assigrrealor naturalnumberutil-
ities to runs,we will focusin this paperon a subsebf such
specificationswhere the utility function actsas a predi-
cate over runs. Formally, we will say a utility function
V: R — IRis apredicatdf therangeof V is theset{0, 1},
thatis, if V guarantee$o assigna run either1 (“true”) or
0 (“false”). A runr € R will beconsideredo satisfythe
specificationV if V(r) = 1, andfails to satisfythe specifi-
cationotherwise.

Sincewe will now focusexclusively on predicatespeci-
fications,we will use¥ to denotea predicatespecification,
andwrite ¥(r) to indicatethatrunr € R satisfies®. In
otherwords, ¥(r) is trueiff V(r) = 1. For the moment,
we will leave asidethe questionof whatform a predicate
might take (e.g., whether¥ is expressedn somelogical
language). Similarly, we will not considerwhat sorts of
tasksmight be specifiedusing a predicatespecification—
we returnto theseissuesbelow.

We have now introducedthe two key componentse-
quiredto frameour decisionproblems.A taskernvironment
is definedto be a pair (Env, ¥), whereEnv is an erviron-
ment,and? : R — {0,1} is apredicateoverruns.Let TE
bethesetof all taskervironments A taskervironmentthus
specifieshe propertiesof the systemthe agentwill inhabit
(i.e., the ervironmentEnv), andalsothe criteria by which
anagentwill be judgedto have eitherfailed or succeeded
(i.e.,thespecification¥).

Given a task ervironment (Ernv,¥), we write
Rw (Ag, Env) todenotehesubsebf R(Ag, Env) thatsatisfy
¥, thatis, Rw(Ag, Env) = {r | r € R(Ag,Env) and¥(r)}.
We thensaythatanagentAg succeed#n taskernvironment
(Erv, ¥) if Ry (Ag,Env) = R(Ag, Env). In otherwords,
Ag succeedsn {Env, ¥) if everyrun of Agin Env satisfies
specification¥.

Note thatthis is in onesensea pessimistidefinition of
successasanagentis only deemedo succeedf every pos-
siblerunof theagenin theervironmentsatisfieshespecifi-
cation.If required we couldeasilymodify the definition of
succes$y extendingthe statetransformerfunction to in-
cludeaprobabilitydistribution over possibleoutcomesand
henceinducea probability distribution over runs. We can
thendefinethesuccessf anagentastheprobabilitythatthe
specification¥ is satisfiedby theagent.Let P(r | Ag, Env)
denotetheprobabilitythatrunr occursif agentAgis placed
in ervironmentEnv. Thenthe probability P(¥ | Ag, Env)
that ¥ is satisfiedoy Agin Env would thensimply be:

P(T|AGEN) = 3

reRw (Ag,Env)

P(r | Ag, Env)

For thepurpose®f this paperhowever, wewill assumehat
taskervironmentsarenot stochastic.

We cannow expressthe basicdecisionproblemthatwe
considerthroughoutthe remainderof this paper We refer
to this problemasAGENT DESIGN.

AGENT DESIGN
Given taskervironment(Env, ¥).
Answer “Yes” if thereexists an agentthat suc-
ceedsn (Env, ¥), “no” otherwise.

The compleity of this problemwill in partbe determined
by the way in which the predicate® is represented.For
example,if ¥ is expressedn an undecidabldogic, then
thecorrespondingnGENT DESIGN problemwill alsobeun-
decidable.In whatfollows, we will considerspecialcases
of the AGENT DESIGN problem,wherespecificatiorpredi-
catesareexpressedlirectly assets ratherthanthroughthe
mediumof a specificationanguage.In particular we con-
sider tasksthat are specifiedin one of the following two
forms:

1. Achievementasks “achieve stateof affairs¢”.
2. Maintenancdasks “maintain stateof affairsq”.

In the subsectionshatfollow, we will discussothtypesof
tasksin detail.

3.1 Achievement Tasks

Intuitively, anachiezementtaskis specifiedoy a numberof
goalstatestheagentis requiredto bring aboutoneof these
goalstategwe do not carewhich one). Achievementtasks
are probablythe most commonly studiedform of taskin
artificial intelligence.Many well-known Al problems(e.g.,
the blocksworld) are achievementtasks. A task specified
by a predicate¥ is an achiezementtaskif we canidentify
somesubsetg of environmentstatesE suchthat ¥(r) is
true justin caseone or more of G occurin r; anagentis
successfuif it is guaranteedo bringaboutoneof thestates
G, thatis, if everyrunof theagentin theervironmentresults
in oneof thestates;.

Formally, the task ervironment (Env, ¥) specifiesan
achievementtaskiff thereis someG C E suchthatfor all
r € R(Ag, Env), the predicate®(r) is trueiff thereexists
somee € G suchthate € r. We referto the setG of an
achiezementaskervironmentasthegoal statesof thetask;
we use(Env, G) to denotethe achierementanachiezement
taskervironmentwith goal statesG andervironmentEnv.
Thedecisionproblemcorrespondingo AGENT DESIGN for
achierementtasksis asfollows:



ACHIEVEMENT AGENT DESIGN

Given achisvementtaskernvironment(Env, G).
Answer “yes” if thereexists an agentthat suc-
ceedsdn (Env, G), “no” otherwise.

A usefulway to think aboutACHIEVEMENT AGENT DE-
SIGN is asthe agentasplayinga gameagainsthe environ-
ment.In theterminologyof gametheory[2], thisis exactly
whatis meantby a “game againstnature”. The environ-
mentandagentboth begin in somestate;the agenttakesa
turn by executingan action,andthe ervironmentresponds
with somestate;the agentthentakesanotherturn, andso
on. The agent‘wins” if it canforce the ervironmentinto
oneof the goalstatesj. The achievementdesignproblem
canthenbe understoodasaskingwhetheror not thereis a
winningstrategy thatcanbe playedagainstheernvironment
Env to bring aboutoneof G.

This type of problem — determiningwhetheror not
thereis a winning stratey for one playerin a particu-
lar two-playergame— is closelyassociatedavith PSPACE-
completeproblems[14, pp459-474]. And in fact, we
canprove thatundercertaincircumstanceshe ACHIEVE-
MENT AGENT DESIGN decisionproblemis indeedPsPACE-
complete However, in orderto do this, we needto consider
how ervironmentsareencodedor describedin thesedeci-
sion problems. To understandvhatis meantby this, con-
siderthattheinputto our decisionproblemsincludessome
sort of representationf the behaviour of the ernvironment,
and more specifically the ernvironments statetransformer
functionr. Now, onepossibledescriptionof 7 is asatable
which mapsrun/actionpairsto the correspondingpossible
resultingernvironmentstates:

- {e,e,...}
... - ...

r,on — {...}
Sucha “verbose”encodingof + will clearly be exponen-
tially large (in the sizeof E x Ac), but sincethe lengthof
runswill beboundedby a polynomialin thesizeof E x Ac,
it will befinite. Oncegivensuchan encoding,finding an
agentthatcanbe guaranteedo achieve a setof goal states
will, however, be comparatiely easy Unfortunately of
courseno suchdescriptionof the ervironmentwill usually
be available. In this paper therefore,we will restrictour
attentionto ervironmentswhosestatetransformerfunction
is describedhsatwo-tapeTuring machinewith theinput (a
run andan action) written on onetape;the output(the set
of possibleresultantstates)s written onthe othertape.lt is
assumedhatto computetheresultanstatesthe Turing ma-
chinerequiresa numberof stepsthatis at mostpolynomial
in the lengthof the inputt. We refer to suchervironment
representationasconcise

f,on

1] amindebtedto Paul Dunnefor drawing this requiremento my at-
tention,andsuggestinghesolution.

Giventhe assumptiorof conciseervironmentrepresen-
tations,we canprove thefollowing.

Theorem 1 ACHIEVEMENT AGENT DESIGN iS PSPACE-
complete

Proof: Theproofinvolves(i) shaving thatACHIEVEMENT
AGENT DESIGN is in PSPACE (i.e., thereis a polynomial
spacealgorithmthat solvesthe problem),and (ii) shaving
thata known pspACE-completeproblemcanbe reducedo
ACHIEVEMENT AGENT DESIGN usingpolynomialtime.

For (i), we givethedesignof anon-deterministipolyno-
mial spaceTuring machineM thatacceptsnstanceof the
problemthathave a successfubutcome andrejectsall oth-
ers.Theinputsto thealgorithmwill bethetaskervironment
(Env, G), togethemwith arunr = (&, ag,- - -, k-1, €) —
the algorithm actually decideswhetheror not thereis an
agentthatwill succeedn theernvironmentgiventhiscurrent
run. Initially, therunr will besetto theemptysequence.
Thealgorithmfor M is asfollows:

1. if r endswith an ernvironmentstatein G, thenM ac-
cepts;

2. if thereareno allowable actionsgivenr, thenM re-
jects;

3. non-deterministicallychoosean actiona € Ac, and
thenfor eache € 7(r - a) recursvely call M with the
runr - a- €

4. if all of theseacceptthenM acceptsptherwiseM re-
jects.

Thealgorithmthusnon-deterministicallygxploresthespace
of all possibleagents,guessingwhich actionsan agent
should perform to bring aboutG. Notice that since ary

run will be at mostpolynomialin the sizeof E x Ac, the
depthof recursionstackwill be alsobe at mostpolynomial
in the sizeof E x Ac. HenceM requiresonly polynomial
space.lt followsthatACHIEVEMENT AGENT DESIGN isin

NPSPACE (i.e.,non-deterministipolynomialspace)lt only

remainsto notethat PSPACE = NPSPACE [14, p150],andso
ACHIEVEMENT AGENT DESIGN is alsoin PSPACE.

For (ii), we must reducea known PSPACE-complete
problemto ACHIEVEMENT AGENT DESIGN. The problem
we chooseis that of determiningwhethera given player
hasa winning stratgy in the gameof generalisedjeogra-
phy [14, pp460-462].We referto this problemasGaG. An
instanceof GG is atriple T = (N, A, n), whereN is a setof
nodesA C N x N isadirectedgraphoverN, andn € Nisa
nodein N. GG is atwo playergame,in which playersl and
Il takeit in turns,startingwith I, to selectanarc(n’,n”) in
A, wherethefirst arcn’ mustbethe “currentnode”, which
at the startof play is n. A move (n’,n") changeshe cur-
rentnodeto n”. Playersarenot allowedto visit nodesthat



have alreadybeenvisited: play endswhenoneplayer, (the
loser),hasno movesavailable. The goal of GG is to deter
minewhetherplayerl hasawinning strateyy.

GG hasasimilarstructureo ACHIEVEMENT AGENT DE-
SIGN, andwe canexploit this to producea simplemapping
from instanced” = (N, A, n) of GG to the task erviron-
ments(Env, G) of ACHIEVEMENT AGENT DESIGN. The
agenttakesthe part of playerl, the ervironmenttakesthe
partof playerll. Begin by settingE = Ac = N. We adda
furtherelementeg to E, anddefineg to beasingletoncon-
tainingeg. We now needto definer, the statetransformer
function of the ervironment;the ideais to directly encode
thearcsof I into 7.

0 ifr=(...,0,n""yand(n’,n"") g A
{n} ifr=ec

(= { {e?} if {n’ | (last(r),n’) € Aandn’ g r} =0
{n” | (last(r),n’) € Aandn’ & r} otherwise.

Thisconstructiomequiresalittle explanation.Thefirst case
dealswith the situationwherethe agenthasmadeanillegal
move, in which casethe ernvironmentdisallows ary further
moves:thegameendswithoutthegoalstatebeingachieved.
The secondcasesimply definesthe ernvironmentstatecor-
respondingo the first move of GG, i.e., the initial staten
of GG. Thethird caseis whereplayerl (representedy the
agent)wins, becausdhereare no movesleft for playerll.

In this casethe ervironmentreturnseg, indicatingsuccess.

The fourth is the generalcase,wherethe ervironmentre-
turnsstatescorrespondingo all possiblemoves.Usingthis
construction therewill exist an agentthat cansucceedn
the environmentwe constructjust in caseplayer| hasa
winning strateyy for the correspondingsG game. Since
theconstructiorclearlytakespolynomialtime, we conclude
that ACHIEVEMENT AGENT DESIGN is PSPACE-hard, and
we aredone. o

Thepreciserelationshipof theclasspPsPACE to theclassnp,
of problemsthat may be solvedin non-deterministigoly-
nomialtime, is not currentlyknown. It is known thatNp C
PSPACE, andalthoughit is notknown whethertheinclusion
is strict (i.e., NP C PSPACE), it is stronglysuspectedhatit
is strict. It is thusgenerallybelievedthat PSPACE-complete
problemsaremorecomplex thanNP-completeproblems.

Before leaving this section,we can make the follow-
ing obsenation about ACHIEVEMENT DESIGN problems:
an achieeementdesignproblem(Env, G,) is easierthana
problem(Env, G>) if Go C G,. Thisleadsto the following
lemma(the proofis simple).

Lemmal If (Env,G;) and (Env,G,) are instancesof
ACHIEVEMENT AGENT DESIGN sud that Go C Gy,
and there exists someagent that succeedsith respectto
(Env, G2), thenthere exists someagent that succeedsvith
respecto (Env, G, ).

3.2 Maintenance Tasks

Justas mary predicatetask ervironmentscan be charac-
terised as problemswhere an agentis requiredto bring
aboutsomestateof affairs,somary otherscanbeclassified
asproblemswvheretheagentis requiredto avoid somestate
of affairs. As anextremeexample,considera nuclearreac-
tor agent,the purposeof which is to ensurethat the reac-
tor never entersa “meltdown” state.Somevhatmoremun-
danely we canimaginea softwareagent,oneof thetasksof
which is to ensurethata particularfile is never simultane-
ously openfor both readingandwriting. We referto such
taskervironmentsasmaintenanceaskervironments.

A task environmentwith specification¥ is saidto be
a maintenancdask ervironmentif we can identify some
subsetB of ervironmentstates,suchthat ¥(r) is falseif
any memberof B occursin r, andtrue otherwise Formally,
(Env, ¥) is amaintenancgaskervironmentif thereis some
B C E suchthat ¥(r) iff for all e € B, we havee ¢ r for
all r € R(Ag,Env). We referto B asthe failure set As
with achieementtask ervironments,we write (Env, B) to
denotea maintenanceaask environmentwith ervironment
Env andfailuresetB.

The decision problem for maintenancetask environ-
ments,correspondindo AGENT DESIGN, is asfollows.

MAINTENANCE AGENT DESIGN
Given maintenancéaskernvironment(Env, B).
Answer “yes” if thereexistsanagentAgthatsuc-
ceedsn (Env, B, “no” otherwise.

It is againusefulto think of MAINTENANCE AGENT DE-
SIGN asa game.This time, theagentwinsiif it manageso
avoid B. The ervironment,in the role of opponent,is at-
temptingto forcetheagentinto B; the agentis successfuif
it hasawinning stratgy for avoiding 5.

Intuition suggestghat MAINTENANCE AGENT DESIGN
mustbe harder that ACHIEVEMENT AGENT DESIGN. This
is becausewith achievementtasks,the agentis only re-
quiredto bring aboutG once whereaswith maintenance
tasks ernvironments,the agentmust avoid B indefinitely
However, asthe following resultillustrates,this turns out
notto bethecase:the problemshave the samecomplexity.

Theorem 2 MAINTENANCE AGENT DESIGN iS PSPACE-
complete

Proof: To shaw that MAINTENANCE AGENT DESIGN iS

in PSPACE, we proceedasin Theoreml to definea non-
deterministicpolynomialspaceTuring machineM thatac-
ceptsjust thoseinstanceof the problemthat have a “yes”

outcome. The constructionis similar to Theorem1. The
inputsto M will bethetaskenvironment,(Env, B), together
with arunr = (ep,ag,...,ak—1,8&). Asin Theoreml, r

will initially bethe emptysequence. Thealgorithmfor M

is asfollows:



1. if r endswith an ervironmentstatein B, thenM re-
jects;

2. if thereareno allowableactionsgivenr, or if thereis
anactionthatendstherun,thenM accepts;

3. non-deterministicallichoosean actiona € Ac, then
for eache € 7(r-a), recursvely callM with runr-a.-€;

4. if all of theseacceptthenM acceptsptherwiseM re-
jects.

To prove that MAINTENANCE AGENT DESIGN is complete
for PSPACE, we againdo areductionfrom GG. Many details
of the reductionare similar to Theoreml, andso we will
omit them. Thefirst point to noteis thatwe createa state
eg andsetB = {eg}. In addition,we needto redefiner:

it {n’ | (last(r),n’) € Aandn’ g r} =0
otherwise.

{n} ifr=e
_ {eg} ifr=(...,n",n""yand(n’,n"") g A
() = 0

{n’ | (last(r),n’) € Aandn’ ¢& r}

Thefirst casecaptureghefirst move of GG; theseconctase
capturesan agentmakinganillegal move. The third case
captureghesituationwhereplayerll (theervironment)has
no availablemoves,in which casethe agentwins. Thefinal
caseis wherethereare available moves. It is againeasy
to seethattherewill be anagentthatcanavoid ez justin
casehecorrespondingsG gameis awin for playerl. Since
the constructiorcanbe donein polynomialtime, it follows
that MAINTENANCE AGENT DESIGN is PSPACE-hard, and
we aredone. o

Notice thata MAINTENANCE AGENT DESIGN problem
(Env, By) is easierthana problem{Env, B.) if By C Ba
(thereverseof the situationfor ACHIEVEMENT AGENT DE-
SIGN). Thefollowing lemma,correspondindgo Lemmal,
is similarly easyto prove.

Lemma2 If (Env,B;) and (Env,By) are instancesof
ACHIEVEMENT AGENT DESIGN sud that By C B,
and there exists someagent that succeedsith respectto
(Env, Bs), thenthere exists someagent that succeedsvith
respecto (Ernv, By).

4 Automatic Synthesis of Agents

Knowing that there exists an agentwhich will succeedn
a giventaskernvironmentis helpful, but it would be more
helpfulif, knowing this, we alsohadsuchanagentto hand.
How do we obtainsuchan agent? The obvious answeris
to “manually” implementthe agentfrom the specification.
However, thereareat leasttwo otherpossibilities(see[19]
for adiscussion):

1. we cantry to developanalgorithmthatwill automat-
ically synthesissuchagentdor usfrom taskenviron-
mentspecificationsor

2. we cantry to develop an algorithmthat will directly
executeagentspecificationsn orderto produceheap-
propriatebehaiour.

In this section,we will briefly considerthesepossibilities
with respecto ourframework, focussingprimarily onagent
synthesis.

Agent synthesisis, in effect, automaticprogramming:
the goalis to have a programthatwill take asinput a task
ervironment,andfrom this taskernvironmentautomatically
generatean agentthat succeedsn this ervironment. For-
mally, an agentsynthesisalgorithm syncanbe understood
asafunction

syn: 7€ = (AGU {L}).

Notethatthefunctionsyncanoutputanagentor elseoutput
1. Wewill sayasynthesislgorithmis soundif, whenever
it returnsanagentthenthis agentsucceedi thetaskenvi-
ronmentthatis passedsinput. We will saysynis complete
if it is guaranteedo returnan agentwheneer thereexists
anagentthatwill succeedn thetaskervironmentgivenas
input. Thusa soundandcompletesynthesisalgorithmwill
only output L giveninput (Env, ¥) whenno agentexists
thatwill succeedn (Env, 7).

Formally, synthesisalgorithmsynis soundif it satisfies
thefollowing condition:

syn({Env, ¥)) = AgimpliesR(Ag, Env) = R¢ (Ag, Env).

Similarly, synis completdf it satisfieghefollowing condi-
tion:

JAg € AG s.t. R(Ag, Env) = Ry (Ag, Env)
impliessyn(Env, ¥)) # L.

Intuitively, soundnessnsureghata synthesisalgorithmal-
waysdeliversagentghatdo theirjob correctly but maynot
alwaysdeliver agents gven wheresuchagentsarein prin-
ciple possible.Completenessnsureghatanagentwill al-
waysbedeliveredwheresuchanagentis possible put does
not guarantedhat theseagentswill do their job correctly
Ideally, we seeksynthesisalgorithmsthat are both sound
and complete. Of the two conditions,soundnesss proba-
bly themoreimportant:thereis notmuchpointin complete
synthesisalgorithmsthatdeliver “buggy” agents.

Using the resultsof this paper we can make several
commentson the computationacompleity of agentsyn-
thesisalgorithms. The first, and mostohvious, is that ary
soundand completesynthesisalgorithm implicitly solves
a PSPACE-completeproblem,sincewe canusesuchanal-
gorithmto solve PSPACE-completeagentdesignproblems:



simply give thetaskernvironmentto thesoundandcomplete
synthesisalgorithm,andseewhetherthe outputis anagent
(in which casethe answerto the agentdesignproblemis
“yes”), or L (the answeris “no”). If we are preparedto
relaxeithersoundnessr completenessonditions thenwe
may be able to obtain an algorithmwith more acceptable
compleity.

We obtainaninterestingperspectie on the synthesisof
agentsf we view taskspecificationsl asformulaeof some
logical language.In particular supposehatwe have some
logic for which modelsare sequencesf states analogous
to ourruns. Temporallogic is exactly suchalogic [11, 12]:
modelsfor (linear, discrete)temporallogic areinfinite, lin-
ear discretesequencesf states,similar to our runs (we
commentbn theuseof temporallogic in section5).

It is easyto seethata specification® will notbeimple-
mentablaf ¥ is unsatisfiableif ¥ is unsatisfiablethenno
runwould satisfy®. So,asoundandcompletesynthesisl-
gorithmcanbe usedasasatisfiabilitytestfor apredicate¥:
if syn({Env, ¥)) returnsanagentthen¥ is satisfiable This
impliesthatthe computationatomplexity of synwill beat
leastasbadasthe computationatompleity of the satisfia-
bility problemfor thelanguagen which ¥ is expressed(In
fact— thiswill perhapsomeasno surprise— thesatisfia-
bility problemfor lineardiscreteemporallogic, of thekind
usedin [11, 12], is PSPACE-complete[17].)

If ¥ is expressedn alogicalform, thenwe have thepos-
sibility to synthesisagentdy doinga constructiveproof of
the satisfiability of specifications.Seesection5 for a dis-
cussion.

We concludeby notingthatanalternatize to synthesising
agentdrom specificationss to directly executethem. This
option hasbeenexplored in more detail in the literature.
For example, it is the conceptthat underpinsthe Concur
rentMETATEM agentprogramminganguagd8]. We leave
consideratiorof directexecutionfor futurework.

5 Reated Work

Theformal modelof agentsandernvironmentsusedin this
paperis similarto mary thatarenow usedin artificial intel-
ligence,for example,[9, 16].

Probablythe mostrelevantwork from mainstreancom-
puter scienceto that discussedn this paperhasbeenon
the applicationof temporallogic to reasoningaboutsys-
tems[11, 12]. Temporalogic hasbeenparticularlyapplied
to the specificationof non-terminatingsystems.Temporal
logic is particularlyappropriatdor the specificatiorof such
systemsbecauseét allows a designerto succinctlyexpress
comple propertiesof infinite sequencesf states.

We identified several decision problemsfor agentde-
sign, and closely relatedproblemshave also beenstudied
in the computerscienceliterature. Perhapshe closestto

our view is thework of PnueliandRosner{15] on the au-
tomatic synthesisof reactve systemsrom branchingtime
temporallogic specifications.They specifya reactve sys-
temin termsof a first-orderbranchingtime temporallogic

formulaVx 3y A ¢(x,y). Thepredicatep characterisethe
relationshipbetweeninputs to the system(x) and outputs
(y). Inputsmay be thoughtof assequencesf ervironment
states,and outputsas correspondingequencesf actions.
TheA is abranchingtime temporallogic connectve mean-
ing “on all paths”,or “in all possiblefutures”. The spec-
ification is intendedto expressthe factthatin all possible
futures,the desiredrelationshipy holdsbetweertheinputs
to thesystemy, andits outputs,y. PnueliandRosnershov

thatthetime complexity of the synthesigprocesds doubly
exponentialin the sizeof the specification.

Similar automaticsynthesistechniqueshave also been
deployedto developconcurrensystenskeletonsdrom tem-
poral logic specifications. Mannaand Wolper presentan
algorithmthat takes as input a linear time temporallogic
specificatiorof thesyndironizationpartof aconcurrensys-
tem, and generatess output a programskeletonthat re-
alizesthe specification[13]. Similar work is reportedby
Clarke and Emerson[5], who synthesizesynchronization
skeletonsfrom branchingtime temporallogic (CTL) speci-
fications.

In artificial intelligence,the planning problemis most
closelyrelatedto our achiezement-basethskervironments
[1]. sTRIPs wasthe archetypalplanningsystem[7]. The
STRIPS systemis capableof taking a descriptionof theini-
tial environmentstatee,, a specificationof the goalto be
achieved, G, andthe actionsAc availableto anagent,and
generates sequencef actionsr € Ac* suchthatwhenex-
ecutedfrom g, 7 will achieve oneof thestatesj. Theini-
tial state goal state,andactionswerecharacterisedeclar
ativelyin STRIPS, usinga subsebf first-orderlogic. Bylan-
der shaved that the (propositional)sTRIPS decisionprob-
lem (given gy, Ac, and G specifiedin propositionallogic,
doesthereexist aw € Ac* suchthat 7w achievesG?) is
PSPACE-completef4].

More recently there has beenrenaved interestby the
artificial intelligenceplanningcommunityin decisionthe-
oretic approacheso planning[3]. One popularapproach
involvesrepresentingigentsandtheir environmentsasPar
tially Obsenable Markov Decision ProcessegPOMDPS)
[10]. Putsimply, the goal of solving a POMDP is to de-
terminean optimal policy for actingin an ervironmentin
which thereis uncertaintyaboutthe ervironmentstate,and
whichis non-deterministicFindingan optimal policy for a
POMDP problemis similarto our agentdesignproblem.

Also closely relatedis the work of Tennenholtzand
Moseson the multi-entity model of multi-agentsystems
[18]. They usethis modelto definethe coopeative goal
achievement(cGA) problem,which can be crudely stated



as: given a setof beneolent agents,eachwith their own
goals,is theresomeplanfor thesetthatwill achieveall their
goals? They shov that this problemis psPACE-complete.
This problemis similarin flavourto our achierement-based
implementatiorproblem.

6 Conclusions

In this paper we investigatedthe agentdesignproblem:
givenataskernvironment,consistingof anervironmentto-
getherwith a task specification,doesthereexist an agent
that will successfullycarry out the task in the erviron-
ment?In particular we definedtwo differenttypesof tasks:
achievementaskswhereanagents requiredo bringabout
oneof asetof goalstatesandmaintenancéasks,wherean
agentis requiredto avoid a setof states.We sav thatthe
agentdesignproblemfor bothtypesof taskswas PSPACE-
complete. In addition,we investigatedhe implicationsof
this resultfor the automaticsynthesisof agentsfrom task
environmentspecifications.

Therearemary relatedproblemsthat demandattention
in futurework, includingfor example:

e a precisecharacterisatiomf the circumstancesinder
which theagentdesignproblembecomedractable;

e investigationof the verification problem: doesagent
Agachievetask® in ervironmentErv?

e investigatiorof stochastiernvironments;
e developmenbf efficient synthesislgorithms;

o developmenbf techniquesor directly executingagent
specifications;

e multi-agentextensions.
Acknowledgements

This paperhasbenefittedenormouslyfrom the suggestions
of Paul E. DunneandWojciechRytter.

References

[1] J. F Allen, J. Hendler and A. Tate, editors. Readingsin
Planning Morgan KaufmannPublishers:SanMateo, CA,
1990.

[2] K. Binmore. Funand Games:A Text on GameTheory D.
C. HeathandCompary: Lexington,MA, 1992.

[3] J.Blythe. An overview of planningunderuncertainty In
M. WooldridgeandM. Veloso editors Artificial Intelligence
Today(LNAI 1600) pages85-110.SpringefVerlag: Berlin,
Germauy, 1999.

[4] T.Bylander Thecomputationatomplexity of propositional
STRIPSplanning. Atrtificial Intelligence 69(1-2):165-204,
1994.

[5] E. M. Clarke and E. A. Emerson. Designand synthesis
of synchronizationskeletonsusing branchingtime tempo-
ral logic. In D. Kozen,editor, Logics of Programs— Pro-
ceedingsl981(LNCSWolumel131) pagess2—71.Springer
Verlag:Berlin, Germary, 1981.

[6] R.Fagin,J.Y. Halpern,Y. Moses,andM. Y. Vardi. Rea-
soningAboutKnowled@. TheMIT Press:Cambridge MA,
1995.

[7] R.E.FikesandN. Nilsson. STRIPS:A new approacho the
applicationof theoremproving to problemsolving. Artificial
Intelligence 5(2):189-2081971.

[8] M. Fisher A surwey of ConcurrentMETATEM — the lan-
guageand its applications. In D. M. Gabbayand H. J.
Ohlbach editors,Tempoal Logic —Proceeding®f theFir st
International Confeence (LNAI Volume 827), pages480—
505.SpringefVerlag: Berlin, Germary, July 1994.

[9] M. R. GeneseretlandN. Nilsson. Logical Foundationsof
Artificial Intelligence Morgan KaufmannPublishers:San
Mateo,CA, 1987.

[10] L. P. Kaelbling, M. L. Littman, andA. R. CassandraPlan-
ning andactingin partially obserable stochasticdomains.
Artificial Intelligence 101:99-1341998.

[11] Z. MannaandA. Pnueli. The Tempoarl Logic of Reactive
andConcurentSystemsSpringerVerlag: Berlin, Germary,
1992.

[12] z. MannaandA. Pnueli. Tempoal Verification of Reactive
Systems— Safety SpringerVerlag: Berlin, Germary, 1995.

[13] Z. MannaandP. Wolper. Synthesisof communicatingpro-
cessefrom temporalogic specificationsACM Transactions
on ProgrammingLanguayes and Systems6(1):68-93,Jan.
1984.

[14] C.H. Papadimitriou. ComputationalCompleity. Addison-
Wesleg/: ReadingMA, 1994.

[15] A. PnueliandR. RosnerOnthesynthesiof areactve mod-
ule. In Proceeding®f the SixteentrACM Symposiunon the
Principlesof ProgrammingLanguajes (POPL), pagesl79—
190,Jan.1989.

[16] S.RussellandD. SubramanianProvably bounded-optimal
agents.Journal of Al Reseath, 2:575-609,1995.

[17] A. P. Sistlaand E. M. Clarke. The compleity of propo-
sitional linear temporal logics. Journal of the ACM,
32(3):733-7491985.

[18] M. TennenholtzandY. Moses. On cooperationn a multi-
entity model: Preliminary report. In Proceedingsof the
EleventhInternational Joint Confeenceon Artificial Intel-
ligence(IJCAI-89), Detroit, MI, 1989.

[19] M. Wooldridge . Agent-basedoftwareengineeringlEE Pro-
ceeding®n Softwae Engineering 144(1):26—37Feh 1997.

[20] M. Wooldridge and N. R. Jennings. Intelligent agents:
Theoryand practice. The Knowled@ EngineeringReview,
10(2):115-1521995.



