
The Computational Complexity of Agent Design Problems

Michael Wooldridge
Departmentof ComputerScience,Universityof Liverpool

LiverpoolL69 7ZF, UnitedKingdom

M.J.Wooldridge@csc.liv.ac.uk

Abstract

Thispaperinvestigatesthecomputationalcomplexity of
a fundamentalproblemin multi-agentsystems:givenanen-
vironmenttogetherwith a specificationof sometask,canwe
constructan agentthatwill successfullyachievethetaskin
theenvironment?We refer to this problemasagentdesign.
Using an abstract formal modelof agentsand their envi-
ronments,we begin by investigatingvariouspossibleways
of specifyingtasksfor agents,and identify two important
classesof such tasks.Achievementtasksare thosein which
an agent is required to bring aboutoneof a specifiedset
of goal states,andmaintenancetasksare thosein which an
agent is required to avoid somespecifiedsetof states.We
provethatin themostgeneral casetheagentdesignproblem
is PSPACE-completefor bothachievementandmaintenance
tasks.We briefly discussthe automaticsynthesisof agents
fromtaskenvironmentspecifications,andconcludeby dis-
cussingrelatedwork andpresentingsomeconclusions.

1 Introduction

Therearemany approachesto thedesignof agentsthatmust
operateautonomouslyin someenvironment[20]. Most of
theseapproachesfocus on the problemof decisionmak-
ing given fixed time boundsand computationalresource
constraints. The result hasbeena rangeof software ar-
chitecturesfor autonomousagents,andan increasingbody
of work evaluatingthesearchitecturesin differentenviron-
mentalsettings.

To date,the agentcommunityhasgiven comparatively
little attentionto thebasiccomputationalproblemsthatun-
derpinthe deploymentof agentsystems.In this paper, we
focuson oneparticularsuchproblem,which we call agent
design. Theagentdesignproblemariseswhenwearegiven
a specificationof a particularenvironment,which anagent
must inhabit, togetherwith a specificationfor a task. The
agentdesignproblemis simply that of answeringwhether

or not thereexistsanagentwhichcanbeguaranteedto suc-
cessfullycarryout the taskin theenvironment.Of course,
an agentthat succeedswith a particulartask in oneenvi-
ronmentwould not necessarilysucceedin anotherenviron-
ment. The agentdesignproblemthus involvesconsidera-
tion of boththetaskandenvironmentproperties.

We begin ouranalysisby settingupanabstractmodelof
agentsandenvironments,which we useto formally define
theagentdesignproblem.Usingthis model,section3 con-
sidersthe variouspossibleways in which tasksmight be
specified.We concludeby identifying two commontypes
of tasks:achievementtasks(in which an agentis required
to bring aboutoneof a specifiedsetof “goal” states),and
maintenancetasks(whereanagentis requiredto avoidaset
of states). We thenproceedto analysethe computational
complexity of the agentdesignproblemfor achievement
and maintenancetasks. We prove that, for both typesof
tasks,theproblemis PSPACE-completein themostgeneral
case.

In section4,weconsideraproblemthatis closelyrelated
to agentdesign:theautomaticsynthesisof agentsfrom task
environmentspecifications.We briefly discusstheimplica-
tions of our agentdesignresultsfor synthesisalgorithms,
focussingparticularlyon thepossibilitythattasksarespec-
ified logically. We discussrelatedwork in AI andcomputer
sciencein section5, andpresentsomeconclusionsin sec-
tion 6.

Notation: We usestandardsettheoreticandlogical nota-
tion whereverpossible,augmentedasfollows. If S is a set,
thenthesetof finite sequencesover S is denotedby S

�
. If��� S

�
ands � S, thenthesequenceobtainedby appending

s to � is denoted��� s. We write s ��� to indicatethatele-
ments is presentin sequence� , andwrite last� �	� to denote
the final elementof � . Throughoutthe paper, we assume
somefamiliarity with complexity theory[14].

2 Agents and Environments

In this section, we presentan abstractformal model of
agentsandtheenvironmentsthey occupy; we thenusethis
modelto framethe decisionproblemswe study. The sys-
temsof interestto us consistof an agentsituatedin some
particularenvironment; the agentinteractswith the envi-
ronmentby performingactionsupon it, and the environ-
ment respondsto theseactionswith changesin state. It
is assumedthat the environmentmay be in any of a finite
setE
�� e e���������� of instantaneousstates.Agentsareas-
sumedto have a repertoireof possibleactionsavailableto
them, which transformthe stateof the environment. Let
Ac
������������������ bethe(finite) setof actions.

Thebasicmodelof agentsinteractingwith theirenviron-
mentsis asfollows. The environmentstartsin somestate,
andthe agentbegins by choosingan actionto performon
that state. As a resultof this action, the environmentcan
respondwith a numberof possiblestates.However, only
onestatewill actuallyresult— thoughof course,theagent
doesnot know in advancewhich it will be. On the basis
of this secondstate,the agentagainchoosesan action to
perform. The environmentrespondswith one of a set of
possiblestates,the agentthenchoosesanotheraction,and
soon.

A run, r, of anagentin anenvironmentis thusasequence
of interleavedenvironmentstatesandactions:

r � e��� �!#" e$%�'&!#" e(��*)!#" e+�� ,!#" ����� � u - &!." eu

Let / bethesetof all suchpossibleruns. We user r �0������
to standfor membersof / .

In order to representthe effect that an agent’s actions
have on an environment,we introducea statetransformer
function(cf. [6, p154]):1 �2/ "43 E

Thusa statetransformerfunction mapsa run (assumedto
endwith theactionof anagent)to asetof possibleenviron-
mentstates.Therearetwo importantpointsto noteabout
this definition. First, environmentsareassumedto be his-
tory dependent. In otherwords, the next stateof an envi-
ronmentis not solely determinedby the actionperformed
by theagentandthecurrentstateof theenvironment.The
actionsmadeearlier by theagentalsoplay a part in deter-
mining the currentstate. Second,note that this definition
allows for non-determinismin the environment. Thereis
thusuncertaintyabouttheresultof performinganactionin
somestate.

If 1 � r �
65 , (wherer is assumedto endwith anaction),
thentherearenopossiblesuccessorstatesto r. In this case,
wesaythattherearenoallowableactions, andthatthesys-
temhasendedits run. Oneimportantassumptionwe make

is that every systemis guaranteedto endwith runswhose
lengthis polynomialin thesizeof Ac 7 E. Thus,wedonot
considerrunsthatareinfinite in length.

Formally, we sayan environmentEnv is a pair Env
8
E 1:9 whereE is a set of environmentstates,and 1 is a

statetransformerfunction.
We now needto introducea modelof theagentsthatin-

habitsystems.Many architecturesfor agentshave beenre-
portedin theliterature[20], andonepossibilitywouldthere-
fore beto directly useoneof thesemodelsin our analysis.
However, in orderto ensurethat our resultsareasgeneral
aspossible,we chooseto modelagentssimply asfunctions
whichmapruns(assumedto endwith anenvironmentstate)
to actions(cf. [16, pp580–581]):

Ag �;/ " Ac

Notice that while environments are implicitly non-
deterministic,agentsareassumedto be deterministic.Let<>=

bethesetof all agents.
We say a systemis a pair containingan agentand an

environment.Any systemwill have associatedwith it a set
of possibleruns; we denotethe setof runsof agentAg in
environmentEnv by /�� Ag Env� . Formally, a sequence� e� ?� � e$?� $ e(������ �
representsarunof anagentAg in environmentEnv
 8

E 1:9
if f both:

1. e�@
 1 �BA � and ���@
 Ag� eo
� (where A is the empty

sequence);and

2. for u CED ,

eu
� 1 �?� e�'?���*�������?� u F $ �G� where� u
 Ag�G� e�*��H� ������� eu

�G�
3 Tasks for Agents

We build agentsin orderto carryout tasksfor us. Thetask
to becarriedout mustbespecifiedby us.An obviousques-
tion is how to specifythesetasks.Onepossibilitywouldbe
to associateutilities with individualstates— thetaskof the
agentis thento bring aboutstatesthatmaximiseutility. In
this approach,a taskspecificationwould simply bea func-
tion V � E " IR, which associateda realvaluewith every
environmentstate. This is similar to the approachusedin
Markov decisionprocesses[10]. Themaindisadvantageof
this approachis that it assignsutilities to local states;it is
difficult to specifya longtermview whenassigningutilities
to individual states.(Markov decisionprocessesattemptto
overcomethis problemby “discounting”, wherestatesin
theshorttermareconsideredmoreimportantthanstatesin
thelongerterm;this approachhaswell-known drawbacks.)

Another possibility is to specify a task as a function
V �I/ " IR, which assignsa utility not to individual
states,but to runs themselves. If we are concernedwith
agentsthat must operateindependentlyover long periods
of time, thenthis approachappearsmoreappropriateto our
purposes.However, it is oftendifficult to definesuchutility
functions.

Ratherthanattemptto assignrealor naturalnumberutil-
ities to runs,we will focusin this paperon a subsetof such
specifications,where the utility function acts as a predi-
cate over runs. Formally, we will say a utility function
V �;/ " IR is apredicateif therangeof V is theset �JDK�L2� ,
that is, if V guaranteesto assigna run either1 (“true”) or
0 (“f alse”). A run r � / will be consideredto satisfythe
specificationV if V � r �
ML , andfails to satisfythespecifi-
cationotherwise.

Sincewe will now focusexclusively on predicatespeci-
fications,we will use N to denotea predicatespecification,
andwrite NO� r � to indicatethat run r � / satisfiesN . In
otherwords, NO� r � is true if f V � r �
4L . For the moment,
we will leave asidethe questionsof what form a predicate
might take (e.g., whether N is expressedin somelogical
language). Similarly, we will not considerwhat sortsof
tasksmight be specifiedusinga predicatespecification—
wereturnto theseissuesbelow.

We have now introducedthe two key componentsre-
quiredto frameour decisionproblems.A taskenvironment
is definedto be a pair

8
Env PN 9 , whereEnv is an environ-

ment,and N��;/ " �JD:�L2� is a predicateover runs.Let QSR
bethesetof all taskenvironments.A taskenvironmentthus
specifiesthepropertiesof thesystemtheagentwill inhabit
(i.e., the environmentEnv), andalsothe criteria by which
an agentwill be judgedto have either failed or succeeded
(i.e., thespecificationN).

Given a task environment
8
Env TN 9 , we write/VUW� Ag Env� todenotethesubsetof /�� Ag Env� thatsatisfyN , thatis, /VUW� Ag Env�
6� r X r � /�� Ag Env� and NO� r � � .

We thensaythatanagentAg succeedsin taskenvironment8
Env PN 9 if /VUY� Ag Env�
Z/�� Ag Env� . In otherwords,

Ag succeedsin
8
Env PN 9 if every run of Ag in Env satisfies

specificationN .
Note that this is in onesensea pessimisticdefinition of

success,asanagentis only deemedto succeedif everypos-
siblerunof theagentin theenvironmentsatisfiesthespecifi-
cation.If required,we couldeasilymodify thedefinitionof
successby extendingthestatetransformerfunction 1 to in-
cludeaprobabilitydistributionoverpossibleoutcomes,and
henceinducea probability distribution over runs. We can
thendefinethesuccessof anagentastheprobabilitythatthe
specificationN is satisfiedby theagent.Let P � r X Ag Env�
denotetheprobabilitythatrun r occursif agentAg is placed
in environmentEnv. Thenthe probability P �[N\X Ag Env�
that N is satisfiedby Ag in Env would thensimply be:

P �0N]X Ag Env�
 ^
r _2`badc Age Envf P � r X Ag Env�

For thepurposesof thispaper, however, wewill assumethat
taskenvironmentsarenot stochastic.

We cannow expressthebasicdecisionproblemthatwe
considerthroughoutthe remainderof this paper. We refer
to this problemasAGENT DESIGN.

AGENT DESIGN

Given: taskenvironment
8
Env TN 9 .

Answer: “Yes” if thereexists an agentthat suc-
ceedsin

8
Env TN 9 , “no” otherwise.

Thecomplexity of this problemwill in part bedetermined
by the way in which the predicateN is represented.For
example, if N is expressedin an undecidablelogic, then
thecorrespondingAGENT DESIGN problemwill alsobeun-
decidable.In what follows, we will considerspecialcases
of the AGENT DESIGN problem,wherespecificationpredi-
catesareexpresseddirectly assets,ratherthanthroughthe
mediumof a specificationlanguage.In particular, we con-
sider tasksthat are specifiedin one of the following two
forms:

1. Achievementtasks: “achievestateof affairs g ”.

2. Maintenancetasks: “maintainstateof affairs h ”.

In thesubsectionsthatfollow, wewill discussbothtypesof
tasksin detail.

3.1 Achievement Tasks

Intuitively, anachievementtaskis specifiedby a numberof
goalstates;theagentis requiredto bringaboutoneof these
goalstates(we do not carewhich one).Achievementtasks
are probablythe most commonlystudiedform of task in
artificial intelligence.Many well-known AI problems(e.g.,
the blocksworld) areachievementtasks. A taskspecified
by a predicateN is anachievementtaskif we canidentify
somesubset

=
of environmentstatesE suchthat NO� r � is

true just in caseoneor moreof
=

occur in r; an agentis
successfulif it is guaranteedto bringaboutoneof thestates=

, thatis, if everyrunof theagentin theenvironmentresults
in oneof thestates

=
.

Formally, the task environment
8
Env PN 9 specifiesan

achievementtaskif f thereis some
=�i

E suchthat for all
r � /�� Ag Env� , the predicateNO� r � is true if f thereexists
somee � =

suchthat e � r. We refer to the set
=

of an
achievementtaskenvironmentasthegoalstatesof thetask;
we use

8
Env = 9 to denotetheachievementanachievement

taskenvironmentwith goal states
=

andenvironmentEnv.
Thedecisionproblemcorrespondingto AGENT DESIGN for
achievementtasksis asfollows:

ACHIEVEMENT AGENT DESIGN

Given: achievementtaskenvironment
8
Env = 9 .

Answer: “yes” if thereexists an agentthat suc-
ceedsin

8
Env = 9 , “no” otherwise.

A useful way to think aboutACHIEVEMENT AGENT DE-
SIGN is astheagentasplayinga gameagainsttheenviron-
ment.In theterminologyof gametheory[2], this is exactly
what is meantby a “game againstnature”. The environ-
mentandagentbothbegin in somestate;theagenttakesa
turn by executinganaction,andtheenvironmentresponds
with somestate;the agentthentakesanotherturn, andso
on. The agent“wins” if it can force the environmentinto
oneof the goalstates

=
. Theachievementdesignproblem

canthenbe understoodasaskingwhetheror not thereis a
winningstrategy thatcanbeplayedagainsttheenvironment
Env to bringaboutoneof

=
.

This type of problem — determiningwhetheror not
there is a winning strategy for one player in a particu-
lar two-playergame— is closelyassociatedwith PSPACE-
completeproblems[14, pp459–474]. And in fact, we
canprove that undercertaincircumstances,the ACHIEVE-
MENT AGENT DESIGN decisionproblemis indeedPSPACE-
complete.However, in orderto do this,weneedto consider
how environmentsareencodedor describedin thesedeci-
sion problems.To understandwhat is meantby this, con-
siderthattheinput to our decisionproblemsincludessome
sortof representationof thebehaviour of theenvironment,
andmorespecifically, the environment’s statetransformer
function 1 . Now, onepossibledescriptionof 1 is asa table
which mapsrun/actionpairsto the correspondingpossible
resultingenvironmentstates:

r $?� $ " � e$ e(������j������ " �����
rn ?� n

" � �����k�
Sucha “verbose”encodingof 1 will clearly be exponen-
tially large (in the sizeof E 7 Ac), but sincethe lengthof
runswill beboundedby apolynomialin thesizeof E 7 Ac,
it will be finite. Oncegiven suchan encoding,finding an
agentthatcanbeguaranteedto achieve a setof goalstates
will, however, be comparatively easy. Unfortunately, of
course,no suchdescriptionof theenvironmentwill usually
be available. In this paper, therefore,we will restrict our
attentionto environmentswhosestatetransformerfunction
is describedasatwo-tapeTuringmachine,with theinput (a
run andan action)written on onetape;the output(the set
of possibleresultantstates)is writtenontheothertape.It is
assumedthatto computetheresultantstates,theTuringma-
chinerequiresa numberof stepsthatis at mostpolynomial
in the lengthof the input1. We refer to suchenvironment
representationsasconcise.

1I am indebtedto Paul Dunnefor drawing this requirementto my at-
tention,andsuggestingthesolution.

Giventheassumptionof conciseenvironmentrepresen-
tations,wecanprovethefollowing.

Theorem 1 ACHIEVEMENT AGENT DESIGN is PSPACE-
complete.

Proof: Theproof involves(i) showing thatACHIEVEMENT

AGENT DESIGN is in PSPACE (i.e., thereis a polynomial
spacealgorithmthat solvesthe problem),and(ii) showing
thata known PSPACE-completeproblemcanbereducedto
ACHIEVEMENT AGENT DESIGN usingpolynomialtime.

For (i), wegivethedesignof anon-deterministicpolyno-
mial spaceTuring machineM thatacceptsinstancesof the
problemthathaveasuccessfuloutcome,andrejectsall oth-
ers.Theinputsto thealgorithmwill bethetaskenvironment8
Env = 9 , togetherwith a run r
l� e� ?� � �������?� k F $ ek

� —
the algorithm actually decideswhetheror not there is an
agentthatwill succeedin theenvironmentgiventhiscurrent
run. Initially, therun r will besetto theemptysequenceA .
Thealgorithmfor M is asfollows:

1. if r endswith an environmentstatein
=

, thenM ac-
cepts;

2. if thereareno allowableactionsgiven r, thenM re-
jects;

3. non-deterministicallychoosean action � � Ac, and
thenfor eache �m1 � r � � � recursively call M with the
run r � � � e;

4. if all of theseaccept,thenM accepts,otherwiseM re-
jects.

Thealgorithmthusnon-deterministicallyexploresthespace
of all possibleagents,guessingwhich actions an agent
shouldperform to bring about

=
. Notice that sinceany

run will be at mostpolynomial in the sizeof E 7 Ac, the
depthof recursionstackwill bealsobeat mostpolynomial
in the sizeof E 7 Ac. HenceM requiresonly polynomial
space.It follows that ACHIEVEMENT AGENT DESIGN is in
NPSPACE (i.e.,non-deterministicpolynomialspace).It only
remainsto notethatPSPACE = NPSPACE [14, p150],andso
ACHIEVEMENT AGENT DESIGN is alsoin PSPACE.

For (ii), we must reducea known PSPACE-complete
problemto ACHIEVEMENT AGENT DESIGN. The problem
we chooseis that of determiningwhethera given player
hasa winning strategy in the gameof generalisedgeogra-
phy [14, pp460–462].We refer to this problemasGG. An
instanceof GG is a triple n�
 8

N A n9 , whereN is a setof
nodes,A

i
N 7 N is adirectedgraphoverN, andn � N is a

nodein N. GG is a two playergame,in which playersI and
II take it in turns,startingwith I, to selectanarc � n�� n� � � in
A, wherethefirst arcn� mustbethe“currentnode”,which
at the startof play is n. A move � n�0 n� � � changesthe cur-
rentnodeto n� � . Playersarenot allowedto visit nodesthat

have alreadybeenvisited: play endswhenoneplayer, (the
loser),hasno movesavailable. Thegoalof GG is to deter-
minewhetherplayerI hasawinningstrategy.

GG hasasimilarstructureto ACHIEVEMENT AGENT DE-
SIGN, andwe canexploit this to producea simplemapping
from instancesno
 8

N A n9 of GG to the task environ-
ments

8
Env = 9 of ACHIEVEMENT AGENT DESIGN. The

agenttakesthe part of player I, the environmenttakesthe
partof playerII. Begin by settingE
 Ac
 N. We adda
furtherelementep to E, anddefine

=
to bea singletoncon-

tainingep . We now needto define 1 , thestatetransformer
functionof the environment;the ideais to directly encode
thearcsof n into 1 .

qTr r s;t>u�v if r t rxwyw0w[z n { z n { {|s and r n { z n { {xs~}� A�
n � if r tW��
e� � if

�
n {'� r last r r s z n { s � A andn { }� r �:t v�

n {'� r last r r s z n { s � A andn { }� r � otherwise.

Thisconstructionrequiresalittle explanation.Thefirst case
dealswith thesituationwheretheagenthasmadeanillegal
move, in which casetheenvironmentdisallows any further
moves:thegameendswithoutthegoalstatebeingachieved.
Thesecondcasesimply definesthe environmentstatecor-
respondingto the first move of GG, i.e., the initial staten
of GG. Thethird caseis whereplayerI (representedby the
agent)wins, becausethereareno movesleft for playerII.
In this casetheenvironmentreturnsep , indicatingsuccess.
The fourth is the generalcase,wherethe environmentre-
turnsstatescorrespondingto all possiblemoves.Usingthis
construction,therewill exist an agentthat cansucceedin
the environmentwe constructjust in caseplayer I hasa
winning strategy for the correspondingGG game. Since
theconstructionclearlytakespolynomialtime,weconclude
that ACHIEVEMENT AGENT DESIGN is PSPACE-hard,and
wearedone. �
Thepreciserelationshipof theclassPSPACE to theclassNP,
of problemsthatmaybe solved in non-deterministicpoly-
nomialtime, is not currentlyknown. It is known that NP

i
PSPACE, andalthoughit is notknown whethertheinclusion
is strict (i.e., NP � PSPACE), it is stronglysuspectedthat it
is strict. It is thusgenerallybelievedthatPSPACE-complete
problemsaremorecomplex thanNP-completeproblems.

Before leaving this section,we can make the follow-
ing observation about ACHIEVEMENT DESIGN problems:
an achievementdesignproblem

8
Env = $ 9 is easierthana

problem
8
Env = (9 if

= (i�= $. This leadsto the following
lemma(theproof is simple).

Lemma 1 If
8
Env = $ 9 and

8
Env = (9 are instancesof

ACHIEVEMENT AGENT DESIGN such that
= (i = $,

and there exists someagent that succeedswith respectto8
Env = (9 , thenthere existssomeagent that succeedswith

respectto
8
Env = $ 9 .

3.2 Maintenance Tasks

Justas many predicatetask environmentscan be charac-
terisedas problemswhere an agent is requiredto bring
aboutsomestateof affairs,somany otherscanbeclassified
asproblemswheretheagentis requiredto avoidsomestate
of affairs. As anextremeexample,considera nuclearreac-
tor agent,the purposeof which is to ensurethat the reac-
tor neverentersa “meltdown” state.Somewhatmoremun-
danely, wecanimagineasoftwareagent,oneof thetasksof
which is to ensurethata particularfile is never simultane-
ouslyopenfor both readingandwriting. We refer to such
taskenvironmentsasmaintenancetaskenvironments.

A task environmentwith specification N is said to be
a maintenancetask environment if we can identify some
subset� of environmentstates,suchthat NO� r � is falseif
any memberof � occursin r, andtrueotherwise.Formally,8
Env TN 9 is amaintenancetaskenvironmentif thereis some� i

E suchthat NO� r � if f for all e � � , we have e �� r for
all r � /�� Ag Env� . We refer to � as the failure set. As
with achievementtaskenvironments,we write

8
Env ?� 9 to

denotea maintenancetaskenvironmentwith environment
Env andfailureset � .

The decision problem for maintenancetask environ-
ments,correspondingto AGENT DESIGN, is asfollows.

MAINTENANCE AGENT DESIGN

Given: maintenancetaskenvironment
8
Env G� 9 .

Answer: “yes” if thereexistsanagentAg thatsuc-
ceedsin

8
Env G� 9 , “no” otherwise.

It is againuseful to think of MAINTENANCE AGENT DE-
SIGN asa game.This time, theagentwins if it managesto
avoid � . The environment,in the role of opponent,is at-
temptingto forcetheagentinto � ; theagentis successfulif
it hasa winningstrategy for avoiding � .

Intuition suggeststhat MAINTENANCE AGENT DESIGN

mustbeharder that ACHIEVEMENT AGENT DESIGN. This
is becausewith achievementtasks, the agentis only re-
quired to bring about

=
once, whereaswith maintenance

tasksenvironments,the agentmust avoid � indefinitely.
However, as the following result illustrates,this turnsout
not to bethecase:theproblemshave thesamecomplexity.

Theorem 2 MAINTENANCE AGENT DESIGN is PSPACE-
complete.

Proof: To show that MAINTENANCE AGENT DESIGN is
in PSPACE, we proceedas in Theorem1 to definea non-
deterministicpolynomialspaceTuring machineM thatac-
ceptsjust thoseinstancesof the problemthathave a “yes”
outcome. The constructionis similar to Theorem1. The
inputsto M will bethetaskenvironment,

8
Env G� 9 , together

with a run r
�� e�*��H�'��������� k F $� ek
� . As in Theorem1, r

will initially betheemptysequenceA . Thealgorithmfor M
is asfollows:

1. if r endswith an environmentstatein � , thenM re-
jects;

2. if thereareno allowableactionsgiven r, or if thereis
anactionthatendstherun, thenM accepts;

3. non-deterministicallychoosean action � � Ac, then
for eache ��1 � r � � � , recursivelycall M with runr � � � e;

4. if all of theseaccept,thenM accepts,otherwiseM re-
jects.

To prove that MAINTENANCE AGENT DESIGN is complete
for PSPACE, weagaindoareductionfrom GG. Many details
of the reductionaresimilar to Theorem1, andso we will
omit them. The first point to noteis that we createa state
e� andset �@
�� e��� . In addition,we needto redefine1 :

qTr r s;t u �
n � if r tW��
e��� if r t rxwyw0w[z n { z n { { s and r n { z n { { s~}� Av if

�
n { � r last r r s z n {|s � A andn {�}� r �:t v�

n { � r last r r s z n {xs � A andn {K}� r � otherwise.

Thefirst casecapturesthefirst moveof GG; thesecondcase
capturesan agentmakingan illegal move. The third case
capturesthesituationwhereplayerII (theenvironment)has
noavailablemoves,in whichcasetheagentwins. Thefinal
caseis wherethereare available moves. It is againeasy
to seethat therewill be an agentthat canavoid e� just in
casethecorrespondingGG gameis awin for playerI. Since
theconstructioncanbedonein polynomialtime, it follows
that MAINTENANCE AGENT DESIGN is PSPACE-hard,and
wearedone. �

Notice that a MAINTENANCE AGENT DESIGN problem8
Env ?� $ 9 is easierthan a problem

8
Env G� (9 if � $ i � (

(thereverseof thesituationfor ACHIEVEMENT AGENT DE-
SIGN). The following lemma,correspondingto Lemma1,
is similarly easyto prove.

Lemma 2 If
8
Env G��$ 9 and

8
Env ?��(9 are instancesof

ACHIEVEMENT AGENT DESIGN such that � $ i � (,
and there exists someagent that succeedswith respectto8
Env ?� (9 , thenthere existssomeagent that succeedswith

respectto
8
Env G� $ 9 .

4 Automatic Synthesis of Agents

Knowing that thereexists an agentwhich will succeedin
a given taskenvironmentis helpful, but it would be more
helpful if, knowing this,we alsohadsuchanagentto hand.
How do we obtainsuchan agent?The obvious answeris
to “manually” implementthe agentfrom the specification.
However, thereareat leasttwo otherpossibilities(see[19]
for a discussion):

1. we cantry to developanalgorithmthatwill automat-
ically synthesisesuchagentsfor usfrom taskenviron-
mentspecifications;or

2. we can try to develop an algorithm that will directly
executeagentspecificationsin orderto producetheap-
propriatebehaviour.

In this section,we will briefly considerthesepossibilities
with respectto ourframework, focussingprimarily onagent
synthesis.

Agent synthesisis, in effect, automaticprogramming:
the goal is to have a programthatwill take asinput a task
environment,andfrom this taskenvironmentautomatically
generatean agentthat succeedsin this environment. For-
mally, an agentsynthesisalgorithmsyncanbe understood
asa function

syn �*QSR " � <>=�� �;�>� � �
Notethatthefunctionsyncanoutputanagent,orelseoutput� . We will saya synthesisalgorithmis soundif, whenever
it returnsanagent,thenthisagentsucceedsin thetaskenvi-
ronmentthatis passedasinput. Wewill saysynis complete
if it is guaranteedto returnan agentwhenever thereexists
anagentthatwill succeedin thetaskenvironmentgivenas
input. Thusa soundandcompletesynthesisalgorithmwill
only output � given input

8
Env TN 9 whenno agentexists

thatwill succeedin
8
Env PN 9 .

Formally, synthesisalgorithmsyn is soundif it satisfies
thefollowing condition:

syn� 8 Env TN 9G�
 Ag implies /�� Ag Env�
�/ U � Ag Env� �
Similarly, synis completeif it satisfiesthefollowing condi-
tion: �

Ag � <>=
s.t. /�� Ag Env�
�/VUY� Ag Env�

impliessyn� 8 Env PN 9G� �
%���
Intuitively, soundnessensuresthata synthesisalgorithmal-
waysdeliversagentsthatdo their job correctly, but maynot
alwaysdeliver agents,evenwheresuchagentsarein prin-
ciple possible.Completenessensuresthatanagentwill al-
waysbedeliveredwheresuchanagentis possible,but does
not guaranteethat theseagentswill do their job correctly.
Ideally, we seeksynthesisalgorithmsthat are both sound
and complete.Of the two conditions,soundnessis proba-
bly themoreimportant:thereis notmuchpoint in complete
synthesisalgorithmsthatdeliver “buggy” agents.

Using the resultsof this paper, we can make several
commentson the computationalcomplexity of agentsyn-
thesisalgorithms. The first, andmostobvious, is that any
soundand completesynthesisalgorithm implicitly solves
a PSPACE-completeproblem,sincewe canusesuchan al-
gorithmto solve PSPACE-completeagentdesignproblems:

simplygivethetaskenvironmentto thesoundandcomplete
synthesisalgorithm,andseewhethertheoutputis anagent
(in which casethe answerto the agentdesignproblemis
“yes”), or � (the answeris “no”). If we are preparedto
relaxeithersoundnessor completenessconditions,thenwe
may be able to obtainan algorithmwith moreacceptable
complexity.

We obtainan interestingperspective on thesynthesisof
agentsif weview taskspecificationsN asformulaeof some
logical language.In particular, supposethatwe have some
logic for which modelsaresequencesof states,analogous
to our runs.Temporallogic is exactlysucha logic [11, 12]:
modelsfor (linear, discrete)temporallogic areinfinite, lin-
ear, discretesequencesof states,similar to our runs (we
commenton theuseof temporallogic in section5).

It is easyto seethata specificationN will not beimple-
mentableif N is unsatisfiable:if N is unsatisfiable,thenno
runwouldsatisfy N . So,asoundandcompletesynthesisal-
gorithmcanbeusedasasatisfiabilitytestfor apredicateN :
if syn� 8 Env TN 9?� returnsanagent,then N is satisfiable.This
impliesthat thecomputationalcomplexity of synwill beat
leastasbadasthecomputationalcomplexity of thesatisfia-
bility problemfor thelanguagein which N is expressed.(In
fact— thiswill perhapscomeasnosurprise— thesatisfia-
bility problemfor lineardiscretetemporallogic, of thekind
usedin [11, 12], is PSPACE-complete[17].)

If N is expressedin alogical form, thenwehavethepos-
sibility to synthesiseagentsby doingaconstructiveproofof
the satisfiabilityof specifications.Seesection5 for a dis-
cussion.

Weconcludeby notingthatanalternativeto synthesising
agentsfrom specificationsis to directlyexecutethem.This
option hasbeenexplored in more detail in the literature.
For example,it is the conceptthat underpinsthe Concur-
rentMETATEM agentprogramminglanguage[8]. Weleave
considerationof directexecutionfor futurework.

5 Related Work

The formal modelof agentsandenvironmentsusedin this
paperis similar to many thatarenow usedin artificial intel-
ligence,for example,[9, 16].

Probablythemostrelevantwork from mainstreamcom-
puter scienceto that discussedin this paperhasbeenon
the applicationof temporallogic to reasoningaboutsys-
tems[11, 12]. Temporallogic hasbeenparticularlyapplied
to the specificationof non-terminatingsystems.Temporal
logic is particularlyappropriatefor thespecificationof such
systemsbecauseit allows a designerto succinctlyexpress
complex propertiesof infinite sequencesof states.

We identified several decisionproblemsfor agentde-
sign, andclosely relatedproblemshave alsobeenstudied
in the computerscienceliterature. Perhapsthe closestto

our view is the work of PnueliandRosner[15] on the au-
tomaticsynthesisof reactive systemsfrom branchingtime
temporallogic specifications.They specifya reactive sys-
temin termsof a first-orderbranchingtime temporallogic
formula � x

�
y A gb� x y� . Thepredicateg characterisesthe

relationshipbetweeninputs to the system(x) andoutputs
(y). Inputsmaybethoughtof assequencesof environment
states,andoutputsascorrespondingsequencesof actions.
TheA is a branchingtime temporallogic connectivemean-
ing “on all paths”,or “in all possiblefutures”. The spec-
ification is intendedto expressthe fact that in all possible
futures,thedesiredrelationshipg holdsbetweentheinputs
to thesystem,x, andits outputs,y. PnueliandRosnershow
that thetime complexity of thesynthesisprocessis doubly
exponentialin thesizeof thespecification.

Similar automaticsynthesistechniqueshave also been
deployedto developconcurrentsystemskeletonsfrom tem-
poral logic specifications.Mannaand Wolper presentan
algorithm that takesas input a linear time temporallogic
specificationof thesynchronizationpartof aconcurrentsys-
tem, and generatesas output a programskeletonthat re-
alizesthe specification[13]. Similar work is reportedby
Clarke and Emerson[5], who synthesizesynchronization
skeletonsfrom branchingtime temporallogic (CTL) speci-
fications.

In artificial intelligence,the planningproblemis most
closelyrelatedto ourachievement-basedtaskenvironments
[1]. STRIPS wasthe archetypalplanningsystem[7]. The
STRIPS systemis capableof takinga descriptionof theini-
tial environmentstatee� , a specificationof the goal to be
achieved,

=
, andthe actionsAc availableto an agent,and

generatesasequenceof actions� � Ac
�

suchthatwhenex-
ecutedfrom e� , � will achieveoneof thestates

=
. Theini-

tial state,goalstate,andactionswerecharacteriseddeclar-
atively in STRIPS, usingasubsetof first-orderlogic. Bylan-
der showed that the (propositional)STRIPS decisionprob-
lem (given e� , Ac, and

=
specifiedin propositionallogic,

doesthereexist a � � Ac
�

suchthat � achieves
=

?) is
PSPACE-complete[4].

More recently, therehasbeenrenewed interestby the
artificial intelligenceplanningcommunityin decisionthe-
oretic approachesto planning[3]. Onepopularapproach
involvesrepresentingagentsandtheir environmentsasPar-
tially Observable Markov Decision Processes(POMDPs)
[10]. Put simply, the goal of solving a POMDP is to de-
terminean optimal policy for acting in an environmentin
which thereis uncertaintyabouttheenvironmentstate,and
which is non-deterministic.Findinganoptimalpolicy for a
POMDP problemis similar to our agentdesignproblem.

Also closely related is the work of Tennenholtzand
Moseson the multi-entity model of multi-agentsystems
[18]. They usethis model to definethe cooperative goal
achievement(CGA) problem,which canbe crudelystated

as: given a setof benevolent agents,eachwith their own
goals,is theresomeplanfor thesetthatwill achieveall their
goals? They show that this problemis PSPACE-complete.
Thisproblemis similar in flavour to ourachievement-based
implementationproblem.

6 Conclusions

In this paper, we investigatedthe agentdesignproblem:
givena taskenvironment,consistingof anenvironmentto-
getherwith a task specification,doesthereexist an agent
that will successfullycarry out the task in the environ-
ment?In particular, wedefinedtwo differenttypesof tasks:
achievementtasks,whereanagentis requiredto bringabout
oneof asetof goalstates,andmaintenancetasks,wherean
agentis requiredto avoid a setof states.We saw that the
agentdesignproblemfor both typesof taskswasPSPACE-
complete. In addition,we investigatedthe implicationsof
this result for the automaticsynthesisof agentsfrom task
environmentspecifications.

Therearemany relatedproblemsthatdemandattention
in futurework, includingfor example:� a precisecharacterisationof the circumstancesunder

which theagentdesignproblembecomestractable;� investigationof the verification problem: doesagent
Agachievetask N in environmentEnv?� investigationof stochasticenvironments;� developmentof efficient synthesisalgorithms;� developmentof techniquesfor directlyexecutingagent
specifications;� multi-agentextensions.

Acknowledgements

This paperhasbenefittedenormouslyfrom thesuggestions
of PaulE. DunneandWojciechRytter.

References

[1] J. F. Allen, J. Hendler, and A. Tate, editors. Readingsin
Planning. MorganKaufmannPublishers:SanMateo,CA,
1990.

[2] K. Binmore. Fun andGames:A Text on GameTheory. D.
C. HeathandCompany: Lexington,MA, 1992.

[3] J. Blythe. An overview of planningunderuncertainty. In
M. WooldridgeandM. Veloso,editors,Artificial Intelligence
Today(LNAI 1600), pages85–110.Springer-Verlag:Berlin,
Germany, 1999.

[4] T. Bylander. Thecomputationalcomplexity of propositional
STRIPSplanning. Artificial Intelligence, 69(1-2):165–204,
1994.

[5] E. M. Clarke and E. A. Emerson. Design and synthesis
of synchronizationskeletonsusing branchingtime tempo-
ral logic. In D. Kozen,editor, Logics of Programs— Pro-
ceedings1981(LNCSVolume131), pages52–71.Springer-
Verlag:Berlin, Germany, 1981.

[6] R. Fagin, J. Y. Halpern,Y. Moses,andM. Y. Vardi. Rea-
soningAboutKnowledge. TheMIT Press:Cambridge,MA,
1995.

[7] R. E. FikesandN. Nilsson.STRIPS:A new approachto the
applicationof theoremproving to problemsolving.Artificial
Intelligence, 5(2):189–208,1971.

[8] M. Fisher. A survey of ConcurrentMETATEM — the lan-
guageand its applications. In D. M. Gabbayand H. J.
Ohlbach,editors,Temporal Logic —Proceedingsof theFirst
International Conference(LNAI Volume827), pages480–
505.Springer-Verlag:Berlin, Germany, July1994.

[9] M. R. GeneserethandN. Nilsson. Logical Foundationsof
Artificial Intelligence. MorganKaufmannPublishers:San
Mateo,CA, 1987.

[10] L. P. Kaelbling,M. L. Littman, andA. R. Cassandra.Plan-
ning andacting in partially observable stochasticdomains.
Artificial Intelligence, 101:99–134,1998.

[11] Z. MannaandA. Pnueli. TheTemporal Logic of Reactive
andConcurrentSystems. Springer-Verlag:Berlin, Germany,
1992.

[12] Z. MannaandA. Pnueli. Temporal Verificationof Reactive
Systems—Safety. Springer-Verlag:Berlin, Germany, 1995.

[13] Z. MannaandP. Wolper. Synthesisof communicatingpro-
cessesfrom temporallogicspecifications.ACMTransactions
on ProgrammingLanguagesand Systems, 6(1):68–93,Jan.
1984.

[14] C. H. Papadimitriou.ComputationalComplexity. Addison-
Wesley: Reading,MA, 1994.

[15] A. PnueliandR. Rosner. Onthesynthesisof areactivemod-
ule. In Proceedingsof theSixteenthACM Symposiumon the
Principlesof ProgrammingLanguages(POPL), pages179–
190,Jan.1989.

[16] S. RussellandD. Subramanian.Provably bounded-optimal
agents.Journal of AI Research, 2:575–609,1995.

[17] A. P. Sistla and E. M. Clarke. The complexity of propo-
sitional linear temporal logics. Journal of the ACM,
32(3):733–749,1985.

[18] M. TennenholtzandY. Moses. On cooperationin a multi-
entity model: Preliminary report. In Proceedingsof the
EleventhInternationalJoint Conferenceon Artificial Intel-
ligence(IJCAI-89), Detroit,MI, 1989.

[19] M. Wooldridge.Agent-basedsoftwareengineering.IEE Pro-
ceedingsonSoftwareEngineering, 144(1):26–37,Feb. 1997.

[20] M. Wooldridge and N. R. Jennings. Intelligent agents:
Theoryandpractice. TheKnowledge EngineeringReview,
10(2):115–152,1995.

