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Abstract

In this paper, I motivate, define, andillustratethenotion
of computationallygroundedtheoriesof agency. A theory
of agencyis saidto becomputationallygroundedif wecan
givethetheoryan interpretationin termsof someconcrete
computationalmodel. This requirementis essentialif we
are to claimthat thetheorieswedevelopcanbeunderstood
as expressingpropertiesof real multiagent systems.After
introducingandformallydefiningtheconceptof a computa-
tionally groundedtheoryof agency, I illustratetheideawith
referenceto

�����
logic, a formalismfor reasoningabout

agentsystemsthat hasa semanticsdefinedwith respectto
an automata-like modelof agents.

�����
logic is an exten-

sionof modalepistemiclogic, which allowsusto represent
what information is visible to an agent, what it sees,and
what it knows.We are ableto provethat formulaeof

�����
logic corresponddirectlyto propertiesof agents.

1 Introduction

Artificial Intelligence(AI) is abroadchurch,whichencom-
passesmany different sub-fields. Researchersfrom such
wildly differing disciplinesas philosophy, cognitive sci-
ence,mathematicallogic, and economicsall count them-
selvesascarryingout AI research.AI draws strengthfrom
this diversity, which hasled to an enormouslyrobust and
rich subjectarea.Oneaspectof theinterdisciplinarynature
of AI is that it is both an engineeringanda scientificdis-
cipline. Engineersin AI aim to gain an understandingof
how to build computersystemsthat arecapableof intelli-
gentbehaviour. Scientistsin AI aimto developtheoriesthat
explain intelligentbehaviour.

Even if you do not view multiagentsystemsas a sub-
field of AI, I hopeyouwill acceptthatit sharesmany of the
characteristicsof AI asa researchdiscipline.Like AI itself,�

Muchof thework on �
	�� logic summarisedin thispaperwascarried
out jointly with AlessioLomuscio.

multiagentsystemsis a broadchurch,taking input from a
numberof diversedisciplines,includingeconomics,sociol-
ogy, ethology, andof coursesub-fieldsof computerscience
suchas distributed systems. The goalsof the multiagent
systemsproject are also similar in natureto thoseof the
AI project. Theeventualsuccess— or otherwise— of the
multiagentsystemsprojectwill have implicationsthat are
every bit asprofoundasthe successof the AI project. As
in AI, researchersin multiagentsystemscanalsobebroadly
divided into thosethat do engineering(andso aim to un-
derstandhow we canbuild societiesof agentsthat exhibit
variouskindsof socialbehaviour, suchascooperativeprob-
lemsolvingandnegotiation),andthosethatdoscience(and
soaim to develop theoriesthatexplain andpredictthe be-
haviour of suchsocialsystems).

In this paper, I amprimarily concernedwith multiagent
systemsas a scientific endeavour. My goal is to moti-
vateandexplain a particularrequirement— computational
grounding— for a certainclassof agenttheories. I take
my cue for this requirementfrom the following observa-
tion: Whatmakesmultiagentsystemsuniqueasa research
discipline,distinct from suchdisciplinesassociology, eco-
nomics,andgametheory, is that it is concernedwith com-
putationalmodels.This observationwill beself-evidentto
practitionersof multiagentsystems,whonaturallymakeuse
of computationalmodelsto implementand evaluatetheir
systems.Whenwe considerthe theoryof multiagentsys-
tems,however, the situation is lessclear-cut. Many the-
orieshave beenput forward to explain aspectsof rational
agency andmultiagentsystems.However, I claimthatthese
theorieshave, for the mostpart, not beengroundedin any
computationalmodel. In theremainderof this paper, I will
explain in detailwhat I meanby computationalgrounding,
andattemptto justify theclaim that,for many kind of theo-
riesof agency andmultiagentsystems(thoughby nomeans
all), computationalgroundingis an importantrequirement.
To illustratetheseideas,I present

�����
logic, in which for-

mulaecanbe interpreteddirectly with respectto a compu-
tationalmodel.I concludewith adiscussiononopenissues.



2 Theories of Multiagent Systems

Computerscienceis, asmuchasit is aboutanything,about
developingformalismsandtheoriesthatenableusto model,
understand,andreasonaboutcomputationalsystems.Many
formalismshave beenproposedfor reasoningaboutintelli-
gentagentsandmulti-agentsystems,andusing thesefor-
malisms,many theorieshave beendevelopedthat attempt
to explainaspectsof multiagentbehaviour.

Most formalismsfor multiagentsystemsresearchhave
takenastheirstartingpointeithergametheory[2, 16, 19] or
mathematicallogic [29]. Researchersusinggametheoryfo-
cusprimarilyoninteractionsbetweenself-interestedagents.
A typical researchprogrammestartsby identifying a par-
ticular type of interactionscenario(suchas the prisoner’s
dilemma[1]), andthenaskswhatthebeststrategy is for any
agentplacedin sucha scenario.Anothercommonresearch
programmeinvolvesaskinghow aninteractionprotocolcan
be engineeredso that if participatingagentsbehave ratio-
nally, thencertaindesirableoutcomesareguaranteed(such
asthemaximisationof socialwelfare)— this is mechanism
design.

In this paper, I will focus on logical theoriesof ratio-
nal agentsandmultiagentsystems.A typical researchpro-
grammeinvolvesattemptingto develop a logical axioma-
tizationof somephenomenonof interest,andtheninvesti-
gatingtheextent to which the logical consequencesof this
axiomatizationcorrespondto ourunderstandingof thephe-
nomenon. Someof the best-known papersin the multia-
gentsystemsfield areexamplesof suchwork — thesein-
cludeCohenandLevesque’s well-known theoryof inten-
tion [4], RaoandGeorgeff ’swork onformalisingthebelief-
desire-intentionparadigm[14, 26], andthe many attempts
to formalisesocial phenomena,suchas the semanticsof
speechacts [5, 22], teamwork [11], cooperative problem
solving[30], cooperationprotocols[7], argumentation[10],
andthedynamicsof mentalstates[12].

Most formalismsfor expressingaxiomatic theoriesof
multiagentsystemshavebeenbaseduponmodallogic with
Kripke, or possibleworlds semantics[3]. Following Hin-
tikka’s pioneeringwork on the useof modal logic for for-
malisingknowledgeandbelief [8], theideais to usemodal
operatorsto representanagent’sattitudes— its beliefs,de-
sires,andthe like. (Themotivationsfor this approach,and
thetechnicalitiesof Kripkesemanticsarebeyondthescope
of this paper; see[21, 29, 27] for introductions.) As an
approachto characterisingan agent’s attitudes,Kripke se-
manticshavemuchin their favour. In particular:


 the associatedmathematicsof correspondencetheory
makes it comparatively easy to prove propertiesof
modalities,and in particular, to prove soundnessand
completenessresults;


 Kripkesemanticsallow usto remainsilentwith respect
to theinternalstructureof anagent.

Despitetheseadvantages,mostsuchformalismshave one
maindisadvantage:they arenotcomputationallygrounded,
in thefollowing sense.

Suppose we have some set of programs, � ����
�����������������
. Think of theseasJAVA or PASCAL programs,

for example. We want to show that one of thesepro-
grams

��� � correspondsto, or implementssometheory
of agency. The theory of agency is representedas a for-
mula � of somelogical language . This logic might be
CohenandLevesque’s intentionlogic [4], for example,or
RaoandGeorgeff ’s BDI logic [14, 26]. How might we go
aboutshowing thatprogram

�
implementstheory � ?

The semanticsof  will be given with respectto a set
mod!" $# of logical modelsfor  . Formally, the semantics
of  will begivenby a function

% %������ & &('*)
wff !" $#�+-,.! mod!/ 0#�#

which assignsto every formula � of  a setof models—
thosein which � is satisfied.

The semanticsof a program
�

are given in termsof a
function

% %������ & &213) �4+5,6!"78#
which mapsa programto a setof computations. Think of
a computationasa “run”, or possiblehistoryof a program.
Thusif c

�9% % �:& &;1
, thenthe computationc

� 7 represents
onepossiblerun of theprogram

�
. Thesetof all suchruns

representsthemeaningof theprogram
�

— its semantics.
Now, in general,thereis no relationshipbetweenmod-

els mod!" $# for  and computations7 . For example, in
CohenandLevesque’s logic, an agent’s beliefs andgoals
arecharacterisedmodel-theoreticallyin termsof belief and
goalaccessibilityrelations;but we have no way of system-
atically associatingsuchrelationswith arbitrarycomputer
programs.In simpleterms,this meansthatwe will in gen-
eral be unableto characterisethe behaviour of

�
in terms

of thelogic  , andto returnto our motivatingexample,we
haveno wayof showing that

�
implementsthetheory � .

I believe that computationalgroundingis not simply a
desirablepropertythatwe canchooseto ignore. If a logic
of agency is not computationallygrounded,thenthis must
throw doubton the claim that this logic canbe useful for
reasoningaboutcomputationalagentsystems.If we really
intendour theoriesto betheoriesof computationalsystems,
thencomputationalgroundingis an issuethat mustbe ad-
dressed.In [25], I point out that computationalgrounding
is essentialif weareto treatagenttheoriesasspecifications
for systems.
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Figure 1. Computationally ungrounded (a) and computationally grounded (b) logics.

To becomputationallygrounded,a theorydoesnot nec-
essarilyhave to havea directinterpretationin termsof pro-
gramcomputations.An alternative is to definea function

f
) ,6!"78#�+ wff !" $#

thatwould takeasinputasetof computations,representing
thesemanticsof aprogram,andfrom themderiveaformula
of  representingthepropertiesof thisprogram.

Of course,not all formalismsfor reasoningaboutmul-
tiagentsystemsare ungrounded. The bestknown exam-
ple of a groundedformalism for reasoningaboutmultia-
gentsystemsis alsooneof the mostsuccessful:epistemic
logic [6]. Epistemiclogic is themodallogic of knowledge.
Thesemanticsof epistemiclogic aregiven in termspossi-
ble worlds,but crucially, thesepossibleworldsaregivena
concrete interpretation in termsof the statesof computer
processes:

[An agent]. . . x is saidto carry the information
thatp in world states, written s Q � K ! x � p# , if for
all world statesin which x hasthesamevalueas
it doesin s, thepropositionp is true. [9, p36]

Becausethe semanticsof the knowledgemodality in epis-
temic logic are given in termsof the statesof programs,
whenwe write a formula of epistemiclogic thereis some
justificationfor the claim that this formula is expressinga
propertyof programs. Programcomputationscan be un-
derstoodasmodelsfor epistemiclogic, and in this sense,
epistemiclogic is computationallygrounded.Thenotionof
computationallygroundedlogicsis illustratedin Figure1.

In the remainderof this paper, I describe
�����

logic,
an extensionof epistemiclogic that maintainsthe compu-
tationalgroundingof the original formalism. The presen-
tationof this logic is in two parts.First, thecomputational
model that underpins

�����
logic is presented.In the sec-

tions that follow, the logic itself is developed,andI show
how possibleaxiomsof

�����
logic canbe understoodas

expressingpropertiesof thecomputationalmodel.

see

next state
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Figure 2. A computational model.

3 A Computational Model

In thissection,we presenta computationalmodelof agents
andthe environmentsthey occupy — seeFigure2. First,
it is assumedthat the environmentmay be in any of a set
E � �

e
�
eR ��������� of instantaneousstates,andthat the (sin-

gle) agentoccupying this environmentmay be in any of
a setL � �

l
�
l R �������S� of local states. Agentsare assumed

to have a repertoireof possibleactionsavailable to them,
which transformthe stateof the environment — we let
Ac � ��T��UT R �������V� bethesetof actions.We assumeadistin-
guishedmembernull of Ac, representingthe“noop” action,
which hasno effecton theenvironment.

In order to representthe effect that an agent’s actions
have on an environment,we introducea statetransformer
function, W ) E X Ac + E (cf. [6, p154]). Thus W8! e�YT #
denotesthe environmentstatethat would result from per-
forming action

T
in environmentstatee. Note thatour en-

vironmentsaredeterministic: thereis no uncertaintyabout
theresultof performinganactionin somestate.Dropping
thisassumptionis notproblematic,but it doesmakethefor-
malismsomewhatmoreconvoluted.

In order to representwhat is knowableaboutthe envi-
ronment,we usea visibility function, Z ) E +[!\,6! E #.]_^`# .
The idea is that if the environment is actually in statee,



then it is impossiblefor any agentin the environmentto
distinguishbetweene and any memberof Z
! e# . We re-
quirethat Z partitionsE into mutuallydisjointsetsof states,
and that e

� Z8! e# , for all e
�

E. For example,supposeZ
! e� #a� �
e
�b�

ec � ed � . Then the intuition is that the agent
would be unableto distinguishbetweene

�
andec , or be-

tweene
�

anded . Note that visibility functionsarenot in-
tendedto capturethe everydaynotion of visibility, as in
“objectx is visible to theagent”.

We will say Z is transparent if Z
! e#e� � e� . Intuitively,
if Z is transparent,thenit will bepossiblefor anagentob-
servingtheenvironmentto distinguisheverydifferentenvi-
ronmentstate.

Formally, an environmentEnv is a 4-tuple f E � W � Z � eo g ,
whereE is a setof environmentstatesasabove, W is a state
transformerfunction, Z is a visibility function,andeh � E
is theinitial stateof Env.

FromFigure2, we canseethatanagenthasthreefunc-
tional components,representingits sensors(the function
see), its next statefunction (next), andits actionselection,
or decisionmakingfunction(do). Formally, theperception
functionsee

) ,.! E #i+ P mapssetsof environmentstates
to percepts— we denotemembersof P by j � j R ������� . The
agent’s next statefunction next

)
L X P + L mapsan in-

ternalstateandperceptto an internalstate;andtheaction-
selectionfunctiondo

)
L + Ac simply mapsinternalstates

to actions.
The behaviour of an agentcan be summarisedas fol-

lows. Theagentstartsin somestatel h . It thenobservesits
environmentstateeh throughthe visibility function Z
! eh�# ,
and generatesa perceptsee!IZ
! eh�#Y# . The internal stateof
theagentis thenupdatedto next ! l h � see!kZ
! eh�#�#�# . Theaction
selectedby theagentis thendo! next ! l h � see!kZ
! ehl#Y#�#Y# . This
actionis performed,andtheagententersanothercycle.

Together, anenvironment/agentpair comprisea system.
Theglobalstateof asystematany time is apaircontaining
thestateof theagentandthestateof theenvironment.Let
G � E X L be the setof all suchglobal states.We useg
(with annotations:g

�
gR ������� ) to standfor membersof G. A

run of asystemcanbethoughtof asaninfinite sequence:

ghnm`op + g
� mrqp + g

� mtsp + gcum`vp +5w�w�w m u x qp + gu m up +5w�w�w
A sequence! gh � g�l� g��������� # over G representsa run of an
agent f see

�
next

�
do
�
l h g in anenvironment f E � W � Z � eh g if f:

1. gh_��f eh � next ! l h � see! vis! eh�#Y#�# g and;

2. y u
�

IN, if gu ��f e� l g andguz � �nf eR � l R g then

eR � W8! e� do! l #Y# and
l R � next ! l � eR #

Let GEnv { Ag | G denotethesetof globalstatesthatsystem
Env

�
Agcouldenterduringexecution.

In order to representthe propertiesof systems,we as-
sumea set }~� �

p
�
q
�
r
�������S�

of primitive propositions.
In order to interpret thesepropositions,we usea function�3) }4X GAg { Env + �

T
�
F
�
. Thus

� ! p � g# indicateswhether
propositionp

� } is true (T) or false(F) in stateg
�

G.
Note thatmembersof } areassumedto expressproperties
of environmentstatesonly, andnot theinternalpropertiesof
agents.We alsorequirethatany two differentstatesdiffer
in thevaluationof at leastoneprimitiveproposition.

Wereferto atriple f Env
�
Ag
��� g asamodel— ourmodels

play theroleof interpretedsystemsin knowledgetheory[6,
p110]. We useM (with annotations:M R � M � ������� ) to stand
for models.

4 A Computationally Grounded Logic

Now that we have the computationalmodel in place,we
progressively introduce

�����
logic, whichwill enableusto

representpropertiesof agentsandtheir environments[31].�����
logic is anextensionof modalepistemiclogic, which

in additionto allowing usto representwhatis trueof anen-
vironmentandwhat an agentknows aboutit, allows us to
representwhat is visible, or knowableof the environment,
thenwhat an agentperceivesof the environment. The se-
manticsof

�����
logic are given directly in termsof the

computationalmodel presentedabove, and thus when we
write a formula of

�����
logic, it is possibleto establish

propertiesof the agentandenvironmentthat this formula
correspondsto.

I begin by introducingthe propositionallogic fragment
of  , which allows us to representwhat is true of the en-
vironment. Propositionalformulaeof  arebuilt up from} usingtheclassicallogic connectives“ � ” (and),“ � ” (or),
“ � ” (not), “ � ” (implies),and“ � ” (if, andonly if), aswell
aslogical constantsfor truth (“ true”) andfalsity (“ false”).
I definethesyntaxandsemanticsof thetruth constant,dis-
junction,andnegation,andassumethe remainingconnec-
tives and constantsare introducedas abbreviations in the
conventionalway. Formally, thesyntaxof thepropositional
fragmentof  is definedby thefollowing grammar:

f wff g )�) � true Q any elementof }4Q���f wff g Q�f wff g ��f wff g
Thesemanticsaredefinedvia thesatisfactionrelation“ Q � ”:

f M � gg Q � truef M � gg Q � p if f
� ! p � g#�� T (wherep

� } )f M � gg Q ���6� if f not f M � gg Q ���f M � gg Q ������� if f f M � gg Q ��� or f M � gg Q ���
I will assumethe conventionaldefinitionsof satisfiability,
validity, andvalidity in a model.

I now enrich  by theadditionof a unarymodality“
�

”,
which will allow us to representthe information that is



instantaneouslyvisible or knowableaboutan environment
state. Thussupposethe formula

� � is true in somestate
g
�

G. The intendedinterpretationof this formula is that
theproperty� is knowableof theenvironmentwhenit is in
stateg; in otherwords,thatanagentequippedwith suitable
sensoryapparatuswould be able to perceive the informa-
tion � . If � � � weretrue in somestate,thenno agent,no
matterhow goodits sensoryapparatuswas,would beable
to perceive � .

Notethatourconceptof visibility is distinctfrom theev-
erydaynotion of visibility as in “object o is visible to the
agent”. If we were interestedin capturingthis notion of
visibility we could usea first-order logic predicatealong
the lines of visible! x � y � o# to representthe fact that when
anagentis in position ! x � y# , objecto is visible. Theargu-
mentsto suchvisibility statementsare terms, whereasthe
argumentsto thevisibility statement

� � is a proposition.
In orderto give a semanticsto the

�
operator, I definea

binaryvisibility accessibilityrelation ��� | GAg{ Env X GAg{ Env

as follows: f e� l g ����f eR � l R g if f eR � Z
! e# . Since Z par-
titions E, it is easyto seethat ��� is an equivalencerela-
tion. Thesemanticrule for the

�
modalityis givenin terms

of the � � relationin the standardway for possibleworlds
semantics: f M � f e� l g�g Q � � � if f f M � f eR � l R gYg Q ��� for allf eR � l R g � GAg{ Env suchthat f e� l g � � f eR � l R g . As � � is an
equivalencerelation,the

�
modality hasa logic of S5 [6].

In otherwords,formulaschemas(1)-(5)arevalid in  :

� !k������#���!Y! � �6#���! � ��#Y# (1)� ����� � �6� (2)� ����� (3)� ��� � ! � �6# (4)

� � ��� � � � � (5)

I will omit the(by now standard)proofof this result— see,
e.g.,[6, pp58-59].

Formulaschema(3) capturesthefirst significantinterac-
tion betweenwhatis trueandwhatis visible. However, we
canalsoconsidertheconverseof this implication:

��� � � (6)

This schemasaysthat if � is true of an environment,then� is knowable.We cancharacterisethisschemain termsof
the environment’s visibility function: formula schema(6)
is valid in a modelif f the visibility function of that model
is transparent.Thusin transparentenvironments,visibility
collapsesto truth, since ��� � � will bevalid in suchen-
vironments.In otherwords,everythingtruein a transparent
environmentis alsovisible, andvice versa. Note that this
a helpful propertyof environments— in the terminology
of [18], suchenvironmentsareaccessible. Unfortunately,
mostenvironmentsdo not enjoy this property.

Thefactthatsomethingis visible in anenvironmentdoes
not meanthatanagentactuallyseesit. Whatanagentdoes
seeis determinedby its sensors,whichin ourcomputational
modelarerepresentedby theseefunction. I now extendthe
logic by introducinga unarymodaloperator“

�
”, which is

intendedto allow us to representthe information that an
agentsees.The intuitive meaningof a formula

� � is thus
that the agentperceives the information � . Note that, as
with the

�
operator, theargumentto

�
is aproposition, and

not a termdenotinganobject.
In order to definethe semanticsof

�
, we introducea

perceptionaccessibilityrelation � s | GAg{ Env X GAg{ Env as
follows: f e� l g � s f eR � l R g if f see!kZ
! e#�#�� see!IZ
! eR #�# . That
is, g � s gR if f theagentreceivesthesameperceptwhenthe
systemis in stateg asit doesin stategR . Again,it is straight-
forwardto seethat � s is anequivalencerelation.Notethat,
for any of ourmodels,it turnsout that � � | � s.

The semanticrule for
�

is: f M � f e� l gYg Q � � � if ff M � f eR � l R gYg Q �4� for all f eR � l R g � GAg { Env suchthat f e� l g � sf eR � l R g . As � s is anequivalencerelation,
�

will alsovalidate
analoguesof theS5modalaxioms.

It is worthaskingwhethertheseschemasareappropriate
for a logic of perception.If we wereattemptingto develop
a logic of humanperception,thenanS5logic would not be
acceptable.Humanperceptionis oftenfaulty, for example,
thusrejectingschema

� ����� . We wouldalmostcertainly
reject � � ��� � � � � for similar reasons.However, our
interpretationof

� � is thattheperceptreceivedbytheagent
carries the information � . Underthis interpretation,anS5
logic seemsappropriate.

I now turn to the relationshipbetween
�

and
�

. Given
two unarymodaloperators,� � and � � , themostimportant
interactionsbetweenthemcanbesummarisedasfollows:

� � � �� � � � ! � #
I use ! � # asthebasisof our investigationof therelationship
between

�
and

�
. The most importantinteractionaxiom

saysthatif anagentsees� , then � mustbevisible. It turns
out that formula schema(7), which characterisesthis rela-
tionship,is valid — this follows from thefactthat � s | � � .

� ��� � � (7)

Turningto theconversedirection,thenext interactionsays
that if � is visible, then � is seenby the agent— in other
words,theagentseeseverythingvisible.

� ��� � � (8)

Intuitively, this axiom characterisesagentswith “perfect”
sensoryapparatus,i.e.,aseefunctionthatnever losesinfor-
mation. Formally, we will saya perceptionfunctionseeis



perfectif f it is aninjection;otherwisewewill sayit is lossy.
Lossyperceptionfunctionscanmapdifferentvisibility sets
to the samepercept,andhence,intuitively, lose informa-
tion. It turnsout thatformulaschema(8) is valid in amodel
if theperceptionfunctionof thatmodelis perfect.

I now extendthe language by theadditionof a unary
modaloperator

�
. Theintuitive meaningof a formula

� �
is that the agentknows � . In order to give a semantics
to
�

, we introducea knowledge accessibilityrelation � k |
GAg { Env X GAg{ Env in theby-now conventionalway[6, p111]:f e� l g � k f eR � l R g if f l � l R . As with ��� and � s, it is easyto
seethat � k is anequivalencerelation.Thesemanticrule for�

is asexpected: f M � f e� l g�g Q � � � if f f M � f eR � l R gYg Q �4� for
all f eR � l R g � GAg{ Env suchthat f e� l g � k f eR � l R g . Obviously,
aswith

�
and

�
, the

�
modalityvalidatesanaloguesof the

S5 modal axioms. Now turn to the relationshipbetween
what an agentperceivesand what it knows. As with the
relationshipbetween

�
and

�
, the main interactionsof in-

terestarecapturedin ! � # . Thefirst interactionwe consider
statesthatwhenanagentseessomething,it knowsit.

� ��� � � (9)

Intuitively, this propertywill be trueof anagentif its next
statefunctiondistinguishesbetweeneverydifferentpercept
received.If anext statefunctionhasthisproperty, thenintu-
itively, it never losesinformationfrom thepercepts.Wesay
a next statefunctionis completeif it distinguishesbetween
everydifferentpercept.Formally, a next statefunctionnext
is completeif f next ! l � jr#�� next ! l R � j R # implies j���j R . For-
mulaschema(9) is valid in a modelif f thenext statefunc-
tion of thatmodelis complete.

Turning to the conversedirection,we might expect the
following schemato bevalid:

� ��� � � (10)

While this schemais satisfiable,it is not valid. To under-
standwhatkindsof agentsvalidatethisschema,imaginean
agentwith a next statefunction that choosesthenext state
solely on the basisof it currentstate. Let us say that an
agentis local if it hasthis property. Formally, an agent’s
next-statefunctionis local if f next ! l � j�#�� next ! l R � jr# for all
local statesl

�
l R � L, andperceptsj � P. It is not hardto

seethatformulaschema(10) is valid in a modelif thenext
statefunctionof theagentin this modelis local.

4.1 Systems of
�����

Logic

The precedingsectionsidentifiedthe key interactionsthat
mayholdbetweenwhatis true,visible,seen,andknown. In
this section,we considersystemsof

�����
logic, by which

we meanpossiblecombinationsof interactionsthat could
hold for any givenagent-environmentsystem.To illustrate,

considertheclassof systemsin which: (i) theenvironment
is not transparent;(ii) theagent’sperceptionfunctionis per-
fect; and(iii) theagent’snext statefunctionis neithercom-
pletenor local. In thisclassof models,theformulaschemas
(3), (7), and(8) arevalid. Theseformula schemascanbe
understoodascharacterisinga classof agent-environment
systems— thosein which the environment is not trans-
parent,the agent’s perceptionfunction is perfect,and the
agent’s next statefunction is neithercompletenor local. In
thisway, by systematicallyconsideringthepossiblecombi-
nationsof

�����
formulaschemas,weobtainaclassification

schemefor agent-environmentsystems.As thebasisof this
scheme,weconsideronly interactionschemaswith thefol-
lowing form.

� � � �� � � �
Giventhethree

�����
modalitiestherearesix suchinterac-

tion schemas:(6), (3), (8), (7), (9), and(10). This in turn
suggeststhereshouldbe 64 distinct

�����
systems.How-

ever, as(3) and(7) arevalid in all
�����

systems,thereare
in factonly 16 distinctsystems,summarisedin Table1.

In systems
�����

-8 to
�����

-15 inclusive, visibility and
truth areequivalent,in that everythingtrue is alsovisible.
Thesesystemsarecharacterisedby transparentvisibility re-
lations.Formally, theschema��� � � is avalid formulain
systems

�����
-8 to

�����
-15. The

�
modality is redundant

in suchsystems.

In systems
�����

-4 to
�����

-7 and
�����

-12 to
�����

-15,
everything visible is seen,and everything seenis visible.
Visibility andperceptionare thusequivalent: the formula
schema

� ��� � � is valid in suchsystems. Henceone
of the modalities

�
or
�

is redundantin systems
�����

-
4 to

�����
-7 and

�����
-12 to

�����
-15. Models for these

systemsarecharacterisedby agentswith perfectperception
(see) functions.

In systems
�����

-3,
�����

-7,
�����

-11, and
�����

-15,
knowledgeandperceptionareequivalent: an agentknows
everythingit sees,andseeseverything it knows. In these
systems,

� ��� � � is valid. Modelsof suchsystemsare
characterisedby complete,localnext statefunctions.

In systems
�����

-12 to
�����

-15, we find that truth, vis-
ibility , and perceptionare equivalent: the schema���� � � � � is valid. In suchsystems,the

�
and

�
modalities

areredundant.

An analysisof individual
�����

systemsidentifiesanum-
berof interestingproperties,but spacelimitationsprevents
suchan analysishere. Simply note that in system

�����
-

15, the formula schema�O� � �4� � �O� � � is valid,
andhenceall threemodalities

�
,
�

, and
�

areredundant.
System

�����
-15 thuscollapsesto propositionallogic.



FormulaSchemas
System (6) (3) (8) (7) (9) (10)
Name ¡a¢¤£.¡ £.¡a¢¥¡ £.¡a¢§¦�¡ ¦�¡�¢§£.¡ ¦.¡�¢�¨©¡ ¨ª¡�¢«¦�¡£¬¦­¨ -0 ® ®£¬¦­¨ -1 ® ® ®£¬¦­¨ -2 ® ® ®£¬¦­¨ -3 ® ® ® ®£¬¦­¨ -4 ® ® ®£¬¦­¨ -5 ® ® ® ®£¬¦­¨ -6 ® ® ® ®£¬¦­¨ -7 ® ® ® ® ®£¬¦­¨ -8 ® ® ®£¬¦­¨ -9 ® ® ® ®£¬¦­¨ -10 ® ® ® ®£¬¦­¨ -11 ® ® ® ® ®£¬¦­¨ -12 ® ® ® ®£¬¦­¨ -13 ® ® ® ® ®£¬¦­¨ -14 ® ® ® ® ®£¬¦­¨ -15 ® ® ® ® ® ®

Table 1. The sixteen possible
�����

systems. A cross ( X ) indicates that the schema is valid in the
corresponding system; all systems include (3) and (7).

5 Discussion and Related Work

Thenotionof computationallygroundedtheoriesof agency
has beena leitmotif to much of my own research. My
PhDthesiswason groundedsemanticsfor multiagentsys-
tems[24, 28]; theissuesweresuggestedto meby thework
of Seel[20].

Sincethemid 1980s,Halpernandcolleagueshave used
modalepistemiclogic for reasoningaboutmulti-agentsys-
tems[6]. In this work, they demonstratedhow interpreted
systemscouldbeusedasmodelsfor suchlogics.Interpreted
systemsarevery closeto our agent-environmentsystems:
the key differencesare that they only record the stateof
agentswithin a system,andhencedo not representtheper-
ceptsreceived by an agentor distinguishbetweenwhat is
trueof anenvironmentandwhat is visible of thatenviron-
ment. Halpernandcolleagueshave establisheda rangeof
significantresultsrelatingto suchlogics,in particular, cate-
gorisationsof thecomplexity of variousdecisionproblems
in epistemiclogic, thecircumstancesunderwhich it is pos-
siblefor agroupof agentsto achieve“commonknowledge”
aboutsomefact, andmostrecently, the useof suchlogics
for directlyprogrammingagents.Comparatively little effort
hasbeendevoted to characterising“architectural” proper-
tiesof agents.Theonly obviousexamplesaretheproperties
of no learning,perfectrecall,andsoon [6, pp281–307].In
their “situatedautomata”paradigm,Kaelbling andRosen-
scheindirectly synthesisedagents(in fact, digital circuits)
fromepistemicspecificationsof theseagents[17]. Thissyn-
thesisprocesswasonly becausethesemanticsof theirspec-

ification logic werecomputationallygrounded.
Many other formalismsfor reasoningabout intelligent

agentsand multi-agentsystemshave beenproposedover
the past decade[29]. Following the pioneering work
of Moore on the interactionbetweenknowledgeand ac-
tion [13], mostof theseformalismshaveattemptedto char-
acterisethe“mentalstate”of agentsengagedin variousac-
tivities. Well-known examplesof this work includeCohen-
Levesque’stheoryof intention[4], andtheongoingwork of
Rao-Georgeff on thebelief-desire-intention(BDI) modelof
agency [14]. Theemphasisin this work hasbeenmoreon
axiomaticcharacterisationsof architecturalproperties;for
example,in [15], Rao-Georgeff discusshow variousaxioms
of BDI logic canbeseento intuitively correspondto proper-
tiesof agentarchitectures.However, thiswork is specificto
BDI architectures,andin addition,thecorrespondenceis an
intuitive one: BDI logicsarenot computationallygrounded
in thesensedescribedin this paper.

One major open issuein the areaof computationally
groundedlogics of agency is that of giving a semanticsto
goals. The conceptof a goal is ubiquitousin AI, andyet
goalshave no universally acceptedsemantics. In [28], I
proposeda preliminarysemanticsof goalsalongthe lines
of “an agenthasagoalof � if � is anecessaryconsequence
of thestrategy theagentis currentlyemploying”; Singh[23]
proposeda similar idea.

To summarise,we have madesignificantprogressin de-
velopinglogic-basedtheoriesof agentsandmultiagentsys-
temssinceHintikka’spioneeringwork on formalmodelsof
knowledge.However, if we areto justifiably claim that the



theoriesandformalismwe developmaybeusedto express
thepropertiesof computationalmultiagentsystems,thenwe
needto addresstheissueof computationalgrounding.
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