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Abstract

In this paper | motivate defing andillustratethe notion
of computationallygroundedtheoriesof agency A theory
of agencyis said to be computationallygroundedif we can
givethetheoryan interpretationin termsof someconciete
computationalmodel. This requirementis essentialif we
areto claimthat thetheorieswedevelopcanbeundeistood
as expressingpropertiesof real multiagent systems.After
introducingandformally definingtheconcepbfa computa-
tionally groundedheoryof agency | illustratetheideawith
refelenceto VSK logic, a formalismfor reasoningabout
agentsystemghat hasa semanticglefinedwith respectto
an automata-like modelof agents. VSK logic is an exten-
sionof modalepistemidogic, which allowsusto represent
what informationis visible to an agent, whatit sees,and
whatit knows.\We are ableto provethat formulaeof VSK
logic correspondlirectlyto propertiesof agents.

1 Introduction

Artificial Intelligence(a1) is abroadchurch,which encom-
passegmary different sub-fields. Researcherfrom such
wildly differing disciplinesas philosophy cognitive sci-
ence,mathematicalogic, and economicsall countthem-
selvesascarryingout Al research Al draws strengthfrom
this diversity, which hasled to an enormouslyrobust and
rich subjectarea.Oneaspecbf theinterdisciplinarynature
of Al is thatit is both an engineeringand a scientificdis-
cipline. Engineersin Al aim to gain an understandingf
how to build computersystemghat are capableof intelli-
gentbehaviour. Scientistdn Al aimto developtheoriesthat
explainintelligentbehaiour.

Evenif you do not view multiagentsystemsas a sub-
field of A1, | hopeyouwill accepthatit sharesnary of the
characteristicef Al asaresearcldiscipline.Like Al itself,

*Muchof thework on VS K logic summarisedh this papemwascarried
outjointly with AlessioLomuscio.

multiagentsystemss a broadchurch,taking input from a

numberof diversedisciplines,ncludingeconomicssociol-
ogy, ethology andof coursesub-fieldsof computerscience
suchas distributed systems. The goals of the multiagent
systemsproject are also similar in natureto thoseof the

Al project. The eventualsuccess— or otherwise— of the

multiagentsystemsprojectwill have implicationsthatare
every bit asprofoundasthe succes®f the Al project. As

in Al, researchers; multiagentsystemsanalsobebroadly
divided into thosethat do engineering(and so aim to un-

derstanchow we canbuild societiesof agentsthat exhibit

variouskindsof socialbehaiour, suchascooperatie prob-

lem solvingandnegotiation),andthosethatdo sciencgand
so aim to develop theoriesthat explain and predictthe be-

haviour of suchsocialsystems).

In this paper | am primarily concernedvith multiagent
systemsas a scientific endeaour. My goal is to moti-
vateandexplain a particularrequirement— computational
grounding— for a certainclassof agenttheories. | take
my cue for this requirementfrom the following obsena-
tion: What makesmultiagentsystemauniqueasa research
discipline,distinctfrom suchdisciplinesassociology eco-
nomics,andgametheory is thatit is concernedvith com-
putationalmodels.This obsenationwill be self-evidentto
practitionersof multiagentsystemswhonaturallymake use
of computationaimodelsto implementand evaluatetheir
systems.Whenwe considerthe theory of multiagentsys-
tems, however, the situationis lessclearcut. Many the-
ories have beenput forward to explain aspectof rational
ageng andmultiagentsystemsHowever, | claimthatthese
theorieshave, for the mostpart, not beengroundedin ary
computationamodel. In the remainderof this paper| will
explainin detailwhatl meanby computationagrounding,
andattemptto justify the claim that,for mary kind of theo-
riesof ageny andmultiagentsystemgthoughby no means
all), computationabroundingis animportantrequirement.
Toillustratetheseideas,| presen?’SK logic, in which for-
mulaecanbe interpreteddirectly with respecto a compu-
tationalmodel.| concludewith adiscussioronopenissues.



2 Theoriesof Multiagent Systems

Computersciencds, asmuchasit is aboutanything, about
developingformalismsandtheorieghatenableusto model,
understandandreasoraboutcomputationasystemsMany
formalismshave beenproposedor reasoningaboutintelli-
gentagentsand multi-agentsystems and using thesefor-
malisms,mary theorieshave beendevelopedthat attempt
to explain aspect®f multiagentbehaiour.

Most formalismsfor multiagentsystemsresearchhave
takenastheir startingpointeithergametheory[2, 16, 19] or
mathematicalogic [29]. Researchenssinggametheoryfo-
cusprimarily oninteractiondetweerself-interesteégents.
A typical researchprogrammestartsby identifying a par
ticular type of interactionscenario(suchasthe prisoners
dilemma[1]), andthenaskswhatthebeststratayy is for ary
agentplacedin sucha scenario Anothercommonresearch
programmenvolvesaskinghow aninteractionprotocolcan
be engineeredso thatif participatingagentsbehae ratio-
nally, thencertaindesirableoutcomesareguaranteedsuch
asthemaximisatiorof socialwelfare)— thisis mechanism
design.

In this paper | will focuson logical theoriesof ratio-
nal agentsandmultiagentsystems A typical researctpro-
grammeinvolves attemptingto develop a logical axioma-
tization of somephenomenorf interest,andtheninvesti-
gatingthe extentto which the logical consequencesf this
axiomatizatiorcorrespondo our understandingf the phe-
nomenon. Someof the best-knevn papersin the multia-
gentsystemdfield are examplesof suchwork — thesein-
clude Cohenand Levesques well-known theory of inten-
tion [4], RaoandGeogeff’swork onformalisingthebelief-
desire-intentiorparadigm[14, 26], andthe mary attempts
to formalise social phenomenasuch as the semanticsof
speechacts[5, 22], teamwork [11], cooperatie problem
solving[30], cooperatiorprotocolg 7], agumentatiorj10],
andthe dynamicsof mentalstateq12].

Most formalismsfor expressingaxiomatic theoriesof
multiagentsystemshave beenbasediponmodallogic with
Kripke, or possibleworlds semanticd3]. Following Hin-
tikka's pioneeringwork on the useof modallogic for for-
malisingknowledgeandbelief [8], theideais to usemodal
operatorgo represenainagents attitudes— its beliefs,de-
sires,andthelike. (The motivationsfor this approachand
thetechnicalitiesof Kripke semanticarebeyondthe scope
of this paper;see[21, 29, 27] for introductions.) As an
approachto characterisingan agents attitudes,Kripke se-
manticshave muchin their favour. In particular:

e the associatednathematicof correspondencéheory
makes it comparatiely easyto prove propertiesof
modalities,andin particular to prove soundnessnd
completeneseesults;

e Kripkesemanticallow usto remainsilentwith respect
to theinternalstructureof anagent.

Despitetheseadvantagesmostsuchformalismshave one
maindisadwantagethey arenot computationallygrounded
in thefollowing sense.

Supposewe have some set of programs, II =
{m1,m2,...}. Think of theseasJavA or PASCAL programs,
for example. We want to shov that one of thesepro-
gramsz € II correspondso, or implementssometheory
of ageng. The theoryof ageny is representeds a for-
mula ¢ of somelogical languagel. This logic might be
CohenandLevesques intentionlogic [4], for example,or
RaoandGeogeff’'s BDI logic [14, 26]. How might we go
aboutshaving thatprogramr implementsheory?

The semanticof £ will be givenwith respectto a set
mod£) of logical modelsfor £. Formally, the semantics
of £ will begivenby afunction

[.- ]z : Wif(£) = p(mod L))

which assigngo every formulay of £ a setof models—
thosein which ¢ is satisfied.

The semanticof a programs aregivenin termsof a
function

[[]]1'[ 11— p(C)

which mapsa programto a setof computations Think of
acomputatiorasa “run”, or possiblehistory of a program.
Thusif ¢ € [7]u, thenthe computationc € C represents
onepossiblerun of the programr. Thesetof all suchruns
representshe meaningof the programm — its semantics.

Now, in generalthereis no relationshipbetweenmod-
els mod£) for £ and computationsC. For example,in
Cohenand Levesques logic, an agents beliefs and goals
arecharacterisedhodel-theoreticallyn termsof beliefand
goalaccessibilityrelations;but we have no way of system-
atically associatingsuchrelationswith arbitrary computer
programs.In simpleterms,this meangshatwe will in gen-
eral be unableto characterise¢he behaiour of 7 in terms
of thelogic £, andto returnto our motivatingexample ,we
have noway of shaving that= implementghetheory.

| believe that computationalgroundingis not simply a
desirablepropertythat we canchooseto ignore. If alogic
of agengy is not computationallygrounded thenthis must
throw doubton the claim that this logic canbe useful for
reasoningaboutcomputationabgentsystems.If we really
intendourtheorieso betheoriesof computationabystems,
thencomputationafgroundingis anissuethat mustbe ad-
dressed.In [25], | point out thatcomputationagrounding
is essentialf we areto treatagenttheoriesasspecifications
for systems.
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Figure 1. Computationally ungrounded (a) and computationally grounded (b) logics.

To be computationallygroundeda theorydoesnot nec-
essarilyhave to have adirectinterpretatiorin termsof pro-
gramcomputationsAn alternative is to definea function

f 1 p(C) = wif (L)

thatwould take asinput a setof computationstepresenting
thesemantic®f aprogramandfrom themderive aformula
of £ representinghe propertiesof this program.

Of course,not all formalismsfor reasoningaboutmul-
tiagentsystemsare ungrounded. The bestknown exam-
ple of a groundedformalism for reasoningabout multia-
gentsystemss alsoone of the mostsuccessfulepistemic
logic [6]. Epistemiclogic is themodallogic of knowledge.
The semanticof epistemicogic aregivenin termspossi-
ble worlds, but crucially, thesepossibleworlds aregivena
conceete interpretationin termsof the statesof computer
processes:

[An agent]... xis saidto carrytheinformation
thatp in world states, written s |= K(x, p), if for
all world statesin which x hasthe samevalueas
it doesin s, the propositionp is true.[9, p36]

Becausdhe semanticof the knowledgemodality in epis-
temic logic are given in termsof the statesof programs,
whenwe write a formula of epistemiclogic thereis some
justificationfor the claim that this formulais expressinga
propertyof programs Programcomputationscan be un-
derstoodas modelsfor epistemiclogic, andin this sense,
epistemidogic is computationallygrounded Thenotionof
computationallygroundedogicsis illustratedin Figurel.
In the remainderof this paper | describeVSK logic,
an extensionof epistemiclogic that maintainsthe compu-
tationalgroundingof the original formalism. The presen-
tationof this logic is in two parts. First, the computational
modelthat underpinsVSK logic is presented.In the sec-
tions that follow, the logic itself is developed,and| shov
how possibleaxiomsof VSK logic canbe understoodas
expressingpropertieof thecomputationamodel.

AGENT

Figure 2. A computational model.

3 A Computational Model

In this sectionwe present computationamodelof agents
andthe ervironmentsthey occupy — seeFigure 2. First,
it is assumedhat the ervironmentmay bein ary of a set
E = {e¢,...} of instantaneoustates,andthat the (sin-
gle) agentoccupying this ervironmentmay be in ary of
asetL = {I,I',...} of local states. Agentsare assumed
to have a repertoireof possibleactionsavailableto them,
which transformthe state of the ervironment— we let
Ac= {a,d/,...} bethesetof actions.We assume distin-
guishedmembemull of Ac, representinghe“noop” action,
which hasno effecton the ervironment.

In order to representhe effect that an agents actions
have on an ervironment,we introducea statetransformer
function, 7 : E x Ac — E (cf. [6, p154]). Thus7(e, a)
denoteghe ervironmentstatethat would resultfrom per
forming actiona in ervironmentstatee. Notethatour en-
vironmentsaredeterministic thereis no uncertaintyabout
theresultof performinganactionin somestate.Dropping
thisassumptioris not problematicput it doesmake thefor-
malismsomeavhatmorecorvoluted.

In orderto representvhatis knowable aboutthe ervi-
ronment,we usea visibility function v : E — (p(E) \ 0).
The ideais that if the ervironmentis actually in statee,



thenit is impossiblefor ary agentin the ervironmentto

distinguishbetweene and ary memberof v(e). We re-

quirethatw partitionsk into mutuallydisjoint setsof states,
andthate € v(e), for all e € E. For example,suppose
v(ex) = {e,e3,e4}. Thentheintuition is that the agent
would be unableto distinguishbetweene, ande;, or be-

tweene, andey. Notethatvisibility functionsarenot in-

tendedto capturethe everyday notion of visibility, asin

“objectx is visibleto theagent”.

We will sayv is transpaentif v(e) = {e}. Intuitively,
if v is transparentthenit will be possiblefor anagentob-
servingthe ervironmentto distinguishevery differentervi-
ronmentstate.

Formally, an ervironmentEnv is a 4-tuple (E, 7, v, &),
whereE is a setof ervironmentstatesasabove, 7 is a state
transformerfunction, v is a visibility function,andey € E
is theinitial stateof Env.

FromFigure 2, we canseethatan agenthasthreefunc-
tional componentsyepresentingts sensors(the function
sed, its next statefunction (next), andits actionselection,
or decisionmakingfunction (do). Formally, the perception
functionsee: p(E) — P mapssetsof ervironmentstates
to percepts— we denotemembersof P by p, p',.... The
agents next statefunctionnext : L x P — L mapsanin-
ternalstateandperceptto aninternalstate;andthe action-
selectionfunctiondo : L — Ac simply mapsinternalstates
to actions.

The behaiour of an agentcan be summarisedas fol-
lows. The agentstartsin somestatel,. It thenobsenresits
environmentstatee, throughthe visibility function»(ey),
and generates perceptsedr(g)). The internal stateof
theagentis thenupdatedo next(ly, se€v(gy))). Theaction
selectedby the agentis thendo(next(ly, se€v(gy)))). This
actionis performedandthe agententersanothercycle.

Togethey an ervironment/agenpair comprisea system
Theglobal stateof a systematary timeis apair containing
the stateof the agentandthe stateof the ervironment. Let
G = E x L bethesetof all suchglobal states.We useg
(with annotationsyg, d, . ..) to standfor memberof G. A
run of asystemcanbethoughtof asaninfinite sequence:

@Q a1 a2 [¢ %} Qy—1 @
Go—> 01 —> G —> 03 —> - — Qu—

A sequenceédo, di,Js, - - -) over G represents run of an
agent(seenext, do, lg) in anervironment(E, 7, v, &) iff:

1. go = {ep, next(lp, se€vis(g)))) and;
2. Yue IN,if g, = (g 1) andg, 41 = (€,1") then

7(e,do(l)) and
next(l, €)

|I

Let Gen,ag C G denotethe setof global stateshatsystem
Env, Ag couldenterduringexecution.

In orderto representhe propertiesof systemswe as-
sumeaset® = {p,q,r,...} of primitive propositions.
In orderto interpret thesepropositionswe usea function
m: ® x Gagew — {T,F}. Thusw(p, g) indicateswhether
propositionp € @ is true (T) or false(F) in stateg € G.
Notethatmembersof ® areassumedo expressproperties
of ervironmenstatesonly, andnottheinternalpropertieof
agents.We alsorequirethatarny two differentstatesdiffer
in thevaluationof atleastoneprimitive proposition.

Wereferto atriple (Env, Ag, 7) asamodel— ourmodels
playtherole of interpretedsystemsn knowledgetheory[6,
p110]. We useM (with annotations:M’, My, ...) to stand
for models.

4 A Computationally Grounded Logic

Now that we have the computationaimodelin place,we
progressiely introduceVSK logic, whichwill enableusto
represenpropertiesof agentsandtheir ervironments[31].
VSK logic is anextensionof modalepistemidogic, which
in additionto allowing usto representvhatis true of anen-
vironmentandwhat an agentknows aboutit, allows usto
representvhatis visible, or knowableof the ervironment,
thenwhat an agentpercevesof the ervironment. The se-
manticsof VSK logic are given directly in terms of the
computationaimodel presentechbore, and thus whenwe
write a formula of VSK logic, it is possibleto establish
propertiesof the agentand ervironmentthat this formula
correspondso.

| begin by introducingthe propositionallogic fragment
of £, which allows usto representvhatis true of the en-
vironment. Propositionaformulaeof £ arebuilt up from
& usingtheclassicalogic connectves“A” (and),“Vv” (or),
“=" (not),“=" (implies),and“ <" (if, andonly if), aswell
aslogical constantdor truth (“true”) andfalsity (“false”).
| definethe syntaxandsemantic®f the truth constantdis-
junction, and negation,and assumehe remainingconnec-
tives and constantsare introducedas abbreiationsin the
corventionalway. Formally, the syntaxof the propositional
fragmentof £ is definedby the following grammar:

(wif) ::= true | ary elementof & | =(wff) | (wff) v (wff)

Thesemanticaredefinedvia the satishictionrelation® |=":

(M, 9) = true

M, 9) = p iff 7(p,g) =T (wherep € ®)
M, 9) F - iff not(M, g) = ¢
<M,g>|—soV¢ iff (M, 9) = por{M,g) E v

I will assumehe corventionaldefinitionsof satisfiability
validity, andvalidity in amodel.

I now enrich£ by theadditionof a unarymodality“ V",
which will allow us to representhe information that is



instantaneouslyisible or knowable aboutan ervironment
state. Thussupposethe formula Vg is true in somestate
g € G. Theintendedinterpretationof this formulais that
thepropertyyp is knowableof the ervironmentwhenit is in
stateg; in otherwords,thatanagentequippedwith suitable
sensoryapparatusvould be ableto perceve the informa-
tion . If =Vp weretrue in somestate,thenno agent,no
matterhow goodits sensoryapparatusvas,would be able
to perceve .

Notethatour concepof visibility is distinctfrom theev-
erydaynotion of visibility asin “object o is visible to the
agent”. If we were interestedin capturingthis notion of
visibility we could use a first-orderlogic predicatealong
the lines of visible(x, y, 0) to representhe fact that when
anagentis in position(x, y), objecto is visible. The argu-
mentsto suchvisibility statementareterms whereashe
argumentdo thevisibility statemenVy is a proposition

In orderto give a semanticgo the V operator| definea
binaryvisibility accessibilityrelation~, C Gagem X Gag,emn
asfollows: (e l) ~, (&,I) iff € € v(e). Sincev par
titions E, it is easyto seethat ~,, is an equivalencerela-
tion. Thesemantiaule for the) modalityis givenin terms
of the ~,, relationin the standardwvay for possibleworlds
semantics:(M, (g, 1)) | Vo iff (M,({€,l")) E ¢ for all
(€,l") € Gagemw suchthat(e ) ~, (€¢,l'). As~, isan
equivalencerelation, the VV modality hasa logic of S5[6].
In otherwords,formulaschemag1)-(5) arevalid in L:

V(e =¢) = (Vo) = (V¥)) 1)
Ve = V- (2)
Vo = ¢ 3)
Vo = V(Vy) (4)
Vo = V-Vop (5)

I will omitthe (by now standardproof of thisresult— see,
e.g.,[6, pp58-59].

Formulaschemd3) captureghefirst significantinterac-
tion betweerwhatis trueandwhatis visible. However, we
canalsoconsiderthe corverseof thisimplication:

o=V (6)

This schemasaysthatif ¢ is true of anenvironment,then
o is knowable.We cancharacteris¢his scheman termsof
the ervironments visibility function: formula schema(6)
is valid in a modeliff the visibility function of thatmodel
is transparentThusin transparenervironments visibility
collapsedo truth, sincey < Vo will bevalid in suchen-
vironments.In otherwords,everythingtruein atransparent
ervironmentis alsovisible, andvice versa Note that this
a helpful propertyof ernvironments— in the terminology
of [18], suchernvironmentsare accessible Unfortunately
mostervironmentsdo not enjoy this property

Thefactthatsomethings visiblein anervironmentdoes
notmeanthatanagentactuallyseest. Whatanagentdoes
seeis determinedy its sensorswhichin ourcomputational
modelarerepresentetly theseefunction.| now extendthe
logic by introducinga unarymodaloperatorS”, which is
intendedto allow us to representhe information that an
agentsees.The intuitive meaningof a formulaSy is thus
that the agentpercevesthe information . Note that, as
with theV operatoytheargumentto S is a proposition and
notatermdenotinganobject.

In orderto definethe semanticsof S, we introducea
perceptionaccessibilityrelation ~sC Gagem X Gagen as
follows: (g |) ~s (€,I") iff sedv(e)) = sedv(€)). That
is, g ~s ¢ iff theagentrecevesthe sameperceptwhenthe
systenisin stateg asit doesin stateg’. Again, it is straight-
forwardto seethat~ is anequivalencerelation.Notethat,
for ary of ourmodels,it turnsoutthat~, C ~s.

The semanticrule for S is: (M,{e,l)}) E Sy iff
(M, (€,1")) = ¢ forall (¢,1") € Gagen Suchthat(e,l) ~s
(e,1"). As ~gisanequivalenceelation,S will alsovalidate
analogue®f the SSmodalaxioms.

It is worth askingwhethertheseschemasireappropriate
for alogic of perception.If we wereattemptingto develop
alogic of humanperceptionthenan S5logic would not be
acceptableHumanperceptionis oftenfaulty, for example,
thusrejectingschemaSy = . We would almostcertainly
reject-S¢ = S-Sy for similar reasons.However, our
interpretatiorof Sy is thatthe perceptreceivedytheagent
carriestheinformationy. Underthis interpretationan S5
logic seemsappropriate.

I now turn to the relationshipbetweeny andS. Given
two unarymodaloperators[; andOs,, the mostimportant
interactionsdbetweerthemcanbe summarisedsfollows:

=

- O (%)

D130
| use(x) asthebasisof ourinvestigatiorof therelationship
betweeny andS. The mostimportantinteractionaxiom
saysthatif anagentseesp, theny mustbevisible. It turns
out thatformula schemg7), which characterisethis rela-
tionship,is valid — thisfollows from thefactthat~sC~,,.

Sp =V (7)

Turningto the corversedirection,the next interactionsays
thatif ¢ is visible, theny is seenby the agent— in other
words,the agentseesaverythingvisible.

Vo = Sy (8)
Intuitively, this axiom characterisesigentswith “perfect”

sensoryapparatus,e., aseefunctionthatneverlosesinfor-
mation Formally, we will saya perceptiorfunctionseeis



perfectiff it is aninjection;otherwisewe will sayit is lossy
Lossyperceptiorfunctionscanmapdifferentvisibility sets
to the samepercept,and hence,intuitively, lose informa-
tion. It turnsoutthatformulaschemgs8) is valid in amodel
if theperceptiorfunctionof thatmodelis perfect.

| now extendthe languagel by the additionof a unary
modaloperatorC. Theintuitive meaningof aformula/Cy
is that the agentknows ¢. In orderto give a semantics
to K, we introducea knowled@ accessibilityrelation ~,C
Gag,env X Gag,env in theby-now corventionalway [6, p111]:
(e, 1y ~ (&, Iy iff | =1'. Aswith ~, and~s, it is easyto
seethat~y is anequivalencerelation. Thesemantiqule for
K is asexpected:(M, (e, 1)) |E Ky iff (M,{€,I")) |E ¢ for
all (¢,1") € Gagen suchthat(e,l) ~ (€¢,I"). Obviously,
aswith V andS, the X modality validatesanalogue®f the
S5 modal axioms. Now turn to the relationshipbetween
what an agentpercevesand what it knows. As with the
relationshipbetweenS andV, the maininteractionsof in-
terestarecapturedn (). Thefirst interactionwe consider
stateghatwhenanagentseessomethingjt knowsit.

Sp = Ky 9)

Intuitively, this propertywill betrue of anagentif its next
statefunctiondistinguishedetweerevery differentpercept
receved. If anext statefunctionhasthis property thenintu-
itively, it neverlosesinformationfrom the perceptsWe say
anext statefunctionis completsf it distinguishedetween
every differentpercept.Formally, a next statefunction next
is completaff next(l, p) = next(l’, p') impliesp = p'. For-
mulaschemg9) is valid in a modeliff the next statefunc-
tion of thatmodelis complete.

Turning to the corversedirection, we might expectthe
following schemao bevalid:

Ky = Sp (10)

While this schemais satisfiable|t is not valid. To under
standwhatkindsof agentsvalidatethis schemajmaginean
agentwith a next statefunctionthatchooseghe next state
solely on the basisof it currentstate. Let us saythat an
agentis local if it hasthis property Formally, an agents
next-statefunctionis local iff next(l, p) = next(l’, p) for all
local stated, I’ € L, andperceptsp € P. It is nothardto
seethatformulaschemg10)is valid in amodelif the next
statefunctionof theagentin this modelis local.

4.1 Systemsof VSK Logic

The precedingsectionsidentified the key interactionsthat
mayhold betweerwhatis true,visible, seenandknown. In
this section,we considersystem®f VSK logic, by which
we meanpossiblecombinationsof interactionsthat could
hold for ary givenagent-emironmentsystem.To illustrate,

considerthe classof systemsn which: (i) theervironment
is nottransparent(ii) theagents perceptiorfunctionis per
fect; and(iii) theagentsnext statefunctionis neithercom-
pletenorlocal. In this classof models theformulaschemas
(3), (7), and (8) arevalid. Theseformulaschemasanbe
understoodas characterising classof agent-emironment
systems— thosein which the environmentis not trans-
parent,the agents perceptionfunction is perfect,and the
agents next statefunctionis neithercompletenor local. In
thisway, by systematicallyconsideringhe possiblecombi-
nationsof VSK formulaschemasye obtainaclassification
schemdor agent-emironmentsystemsAs the basisof this
schemeyve consideronly interactionschemasvith thefol-
lowing form.

=
O O
1 = 2p

GiventhethreeVSK modalitiestherearesix suchinterac-
tion schemas{(6), (3), (8), (7), (9), and(10). Thisin turn
suggestghereshouldbe 64 distinct VSK systems.How-
ever, as(3) and(7) arevalid in all VSK systemsthereare
in factonly 16 distinctsystemssummarisedn Tablel.

In systemsVSK-8 to VSK-15 inclusive, visibility and
truth are equivalent,in thateverythingtrue is alsovisible.
Thesesystemarecharacterisetly transparentisibility re-
lations.Formally, theschemap < Vy is avalid formulain
systemsySK-8 to VSK-15. The ¥V modality is redundant
in suchsystems.

In systemsYSK-4 to VSK-7 andVSK-12to VSK-15,
everything visible is seen,and everything seenis visible.
Visibility and perceptionare thus equivalent: the formula
schemaVy & Sy is valid in suchsystems. Henceone
of the modalitiesV or § is redundantin systemsySK-
4 to VSK-7 and VSK-12 to VSK-15. Models for these
systemsarecharacterisedy agentswith perfectperception
(sed functions.

In systemsVSK-3, VSK-7, VSK-11, and VSK-15,
knowledgeand perceptionare equivalent: an agentknows
everythingit sees,and seeseverythingit knows. In these
systemsSy < Ky is valid. Modelsof suchsystemsare
characterisetty completeJocal next statefunctions.

In systems)SK-12 to VSK-15, we find thattruth, vis-
ibility, and perceptionare equivalent: the schemay <
Vy < Spisvalid. In suchsystemstheV andS modalities
areredundant.

An analysisof individual VSK systemsdentifiesanum-
ber of interestingproperties put spacdimitations prevents
suchan analysishere. Simply note thatin system)VSK-
15, theformulaschemay & Vo & Sp & Ky is valid,
andhenceall threemodalitiesV, S, andK areredundant.
SystemVSK-15thuscollapsego propositionalogic.



FormulaSchemas

System (6) (3) (8)
Name p=Vyp Vo = ¢

Vo = Sp

(7) 9) (10)
S =V S =Ky Kp =Sy

VSK-0
VSK-1
VSK-2
VSK-3
VSK-4
VSK-5
VSK-6
VSK-7
VSK-8
VSK-9
VSK-10
VSK-11
VSK-12
VSK-13
VSK-14
VSK-15

X X X X

X XX X X X XX X X X X X X X X

X X X X X X X X
X X X X

X

X XX X X X XX X X X X X X X X

Table 1. The sixteen possible VSK systems. A cross (x) indicates that the schema is valid in the
corresponding system; all systems include (3) and (7).

5 Discussion and Related Wor k

Thenotionof computationallygroundedheoriesof agengy
has beena leitmotif to much of my own research. My
PhDthesiswason groundedsemanticfor multiagentsys-
tems[24, 28]; theissuesnveresuggestedo me by thework
of Seel[20].

Sincethe mid 1980s,Halpernandcolleagueave used
modalepistemidogic for reasoningaboutmulti-agentsys-
tems[6]. In this work, they demonstratedhow interpreted
systemsouldbeusedasmodelsfor suchlogics. Interpreted
systemsare very closeto our agent-emironmentsystems:
the key differencesare that they only recordthe state of
agentswithin a systemandhencedo not representhe per
ceptsreceved by an agentor distinguishbetweenwhat is
true of an ervironmentandwhatis visible of thaterviron-
ment. Halpernand colleagueshave established rangeof
significantresultsrelatingto suchlogics,in particular cate-
gorisationsof the compleity of variousdecisionproblems
in epistemidogic, the circumstanceanderwhichit is pos-
siblefor agroupof agentdo achieze “commonknowledge”
aboutsomefact, andmostrecently the useof suchlogics
for directlyprogrammingagents Comparatiely little effort
hasbeendevotedto characterisingarchitectural” proper
tiesof agents.Theonly obviousexamplesarethe properties
of nolearning,perfectrecall,andsoon [6, pp281-307].In
their “situatedautomata’paradigm Kaelbling and Rosen-
scheindirectly synthesiseggents(in fact, digital circuits)
from epistemicspecification®f theseagent§17]. Thissyn-
thesisprocessvasonly becaus¢he semantic®f theirspec-

ification logic werecomputationallygrounded.

Many otherformalismsfor reasoningaboutintelligent
agentsand multi-agentsystemshave beenproposedover
the past decade[29]. Following the pioneering work
of Moore on the interactionbetweenknowledge and ac-
tion [13], mostof theseformalismshave attemptedo char
acterisethe “mental state”of agentsengagedn variousac-
tivities. Well-known examplesof this work include Cohen-
Levesquestheoryof intention[4], andthe ongoingwork of
Rao-Geogeff onthe belief-desire-intentioisb1) modelof
ageng [14]. The emphasisn this work hasbeenmoreon
axiomaticcharacterisationsf architecturalproperties;for
example,in [15], Rao-Geogeff discushow variousaxioms
of BDI logic canbeseerto intuitively correspondo proper
tiesof agentarchitecturesHowever, thiswork is specificto
BDI architecturesandin addition,thecorrespondencis an
intuitive one: BDI logicsarenot computationallygrounded
in thesensealescribedn this paper

One major openissuein the areaof computationally
groundedogics of ageng is that of giving a semanticso
goals The conceptof a goalis ubiquitousin Al, andyet
goals have no universally acceptedsemantics. In [28], |
proposeda preliminary semanticof goalsalongthe lines
of “an agenthasagoalof ¢ if ¢ isanecessargonsequence
of thestratayy theagentis currentlyemploying”; Singh[23]
proposedasimilaridea.

To summarisewe have madesignificantprogressn de-
velopinglogic-basedheoriesof agentsandmultiagentsys-
temssinceHintikka’s pioneeringwork onformal modelsof
knowledge.However, if we areto justifiably claim thatthe



theoriesandformalismwe developmay be usedto express
thepropertieof computationaiultiagentsystemsthenwe
needto addressheissueof computationagrounding.
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