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Logic and Philosophy Today:
Editorial Introduction

AMITABHA GUPTA AND JOHAN VAN BENTHEM

The Initiative This special issue of the Journal of the Indian Council
of Philosophical Research (JICPR; http:��www.icpr.in�journal.html), is the
result of a recent initiative aimed at improving the interactions between
contemporary logic and philosophy at universities and colleges in India.
This initiative arose out of a chance meeting between Professors Mrinal
Miri, the Editor of the JICPR, and Amitabha Gupta. During that meet-
ing, Professor Miri expressed his desire to bring out a Special Issue of the
JICPR on the interface of recent developments in Logic and Philosophy.
The Journal has maximum reach throughout the country. It was thought
that it would be the best instrument to disseminate knowledge of modern
logic and its relationship to philosophy in order to enhance the levels of
research and education of logic in India. There are already eminent and
outstanding Indian logicians residing outside India. What we need now is
a strong group inside India involved in advanced research and in training
brilliant Indian minds, unleashing local energies in the field - as in ancient
times with the Nyāya-Vaiśhes.hika, Jaina and Buddhist schools.
E�orts have already started in India to rejuvenate advanced research

and education in logic and its applications, with successful outreach into
mathematics and computer science, by organizing Conferences and Winter
Schools and forming a new Association for Logic in India (ALI; http:��ali.
cmi.ac.in�), overseeing a wide range of initiatives, including scientific events
and various publications. The initiative to publish a Special Issue of the
JICPR is in line with this, complementing these e�orts by specifically tar-
geting the field of philosophy in India and its activities and programmes
relating to research, teaching and learning, by highlighting recent develop-
ments in logic and their relevance to philosophy.
The urgent need to come up with a publication that would impact a broad

philosophy community in India by making modern logic accessible to it
struck a sympathetic chord with Professor Johan van Benthem, a logician
based at Stanford University and the University of Amsterdam, who has
initiated and supported the cause of propagating logic the world over, in-
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cluding recently in China, and who has been associated with the recent
Indian e�orts from their very inception. Thus, Gupta and van Benthem
were invited as Guest Editors entrusted with the ambitious task of bring-
ing out an innovative and distinctive volume on "Logic and Philosophy
Today" of the JICPR, soliciting articles from among first-rate logicians in
all continents. The volume that you are holding in your hand right now
is the result of this editorial collaboration between two Dutch and Indian
colleagues. But at the same time, it is much more than that, being the con-
crete outcome of a truly international e�ort. It is a pleasure to note the
overwhelming response of top-ranking logicians to help enliven the inter-
face of logic and philosophy in India by contributing a paper to this Special
Issue of the JICPR. Likewise, the support of the Indian Council of Philo-
sophical Research (ICPR) in Delhi, http:��www.icpr.in�, for this enterprise
has been generous and gracious all the way.
After this brief history and acknowledgment, let us now turn to matters

of content. What you see here before you is a lively panorama of logic re-
search today in a broader setting, written by a large group of distinguished
authors who each open a window to their field of expertise for a general
philosophical audience. Our aim in all this is to give our readers an im-
pression of what is going on, as well as a path into the literature. Let us
first say a bit more about the intellectual background as we see it.

Logic and philosophy over time The juxtaposition of two fields in our
title needs no justification. There is a millennia-old history of fruitful inter-
actions between logic and philosophy, in both Western and Eastern tradi-
tions. But paths have diverged in recent years. During the last half-century,
modern logic has been undergoing a fast expansion of themes and new in-
terdisciplinary alliances, a rich new reality that has hardly registered in the
consciousness of philosophers, even those well-disposed toward logic in-
deed, even those who teach it. What we have tried to do with this issue is
provide the reader with a map of major thematic developments in modern
logic and its current interfaces.

Logic today Broadly speaking, modern logic was forged in the study of
the foundations of mathematics, its rigour and consistency. In e�ect, this
concern with truth and proof in mathematics was a contraction of the tradi-
tional agenda of reasoning in general domains, still found with great 19th
century logicians like Bolzano or Peirce. But it led to the Golden Age of
Mathematical Logic with Frege, Russell, Hilbert and Gödel, whose results
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are still central to the discipline as we know it today. At the same time,
these new technical insights turned out to be relevant to philosophy, illumi-
nating old issues and creating new directions, witness the work of Wittgen-
stein, Carnap, or Quine. What has happened after the Second World War is
both a continuation of these streams, with many new eminent names join-
ing the pioneers, and also the rise of a wealth of new interfaces of logic
with other disciplines. These include linguistics, computer science, and in
recent years, also economics and psychology. Logical structures and meth-
ods have turned out to be crucial in studying natural language, computa-
tion, information flow, interaction, and above all, our cognitive abilities in
general. Thus, in a sense, logic is returning to its old broad agenda once
more, but with new mathematical tools.

Migrations This broad contemporary role of logic also presents philos-
ophy with new interfaces. It would be hard to write the intellectual his-
tory of major themes in logic and philosophy in the last century without
tracing their striking further intellectual migrations back and forth across
academia. Here is one such saga out of many. It was philosophers who
started the study of counterfactual conditionals in their analysis of natu-
ral laws; logicians then developed these ideas into conditional logics be-
yond what mathematical logic provides, and this topic then turned out to
be crucial to understanding non-monotonic consequence relations for prac-
tical default reasoning in artificial intelligence, while finally, the later logic
systems are now being applied in areas as far apart (to the superficial ob-
server) as legal argumentation, the linguistic semantics of normality, brain
research with neural nets, and recently, even the study of traditional In-
dian logic. Van Benthems paper ‘Logic in Philosophy’ [H. B. Jacquette,
ed., 2007, Handbook of the Philosophy of Logic, Elsevier, Amsterdam, pp.
65–99] discusses many further examples of this interplay between logic,
philosophy and other disciplines, with key logical themes such as knowl-
edge and information coming to reach from practical philosophy to game
theory and the social sciences, or dynamic theories of meaning that bridge
philosophy, linguistics and computer science.

Logic in India While the above trends make sense for logic and philoso-
phy generally, there is a special interest in bringing these developments to
attention in India. It may not be evident a priori why people in diverse cul-
tures, with distinct pursuits, disparate convictions, divergent customs and
a veritable feast of viewpoints would develop what Amartya Sen called ar-
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gumentative traditions and ingeniously nurture them. But they have. And
while there are scholarly debates about just what characterized the old In-
dian study of logic, it is clear that inspired by a robust and vibrant tradition
of naturalism, India made its mark in the world history of logic, with fa-
mous names such as Akapda Gautama, Vasubandhu, Nagarjuna, and Sid-
dhasena Divkara, representing a wealth of schools, in particular, Nyaya,
Buddhist Logic, Navya Nyaya, and Jainist logic.
When modern Western logic came to India, scholars first took the Frege-

Russell stance, interpreting and reformulating traditional Indian logic to
fit that mould, even when the linguistic realities of Sanskrit needed to be
twisted occasionally. Whether biased or not, these studies did provide the
first significant links, and thereby started a potential conversation across
traditions. A later generation of distinguished scholars, influenced more
by Quine, then produced much more sensitive analyses of Indian logical
thought, widening the contacts. This volume contains a paper by Prabal
Sen and Amita Chatterjee, illustrating this by reviewing Navya-Nyya Logic
and explaining its di�cult ideas and terminology in an accessible fash-
ion, using first order language in the tradition of Sibajiban Bhattacharyya,
Daniel Ingalls, Bimal Krishna Matilal, Frits Staal, and in particular, Jonar-
don Ganeri. In recent years, we see a third wave of studies, many of them
bringing the broader logic perspectives outlined in the above to bear on un-
derstanding Indian logic. This makes sense, because now that the agenda
of Western Logic itself is in flux, its openness to ideas from other traditions
tends to increase. These newer perspectives on interpreting Indian texts in
logic include case-based reasoning developed by Jonardon Ganeri, para-
consistent logic by Graham Priest, non-monotonic logic by Claus Oetke,
dialogical logic by Shahid Rahman, or modern situational logics of infor-
mation flow, games, and social software by Sarah Uckelman. Our col-
lection includes a paper adding yet one more perspective; Fabien Schang
surveys two Indian dialectical traditions and shows how the ancient Indian
logicians successfully buttressed the dialectic tradition.
We see in all these phases of contacts historically important stages in

increasing mutual understanding between traditions, and we hope that this
issue will encourage such studies even further.

Contents of this issue In designing this issue, we have chosen a num-
ber of broad areas that allowed us to sample major developments, some
extending proven classical lines, others opening new ones. Even so, this
publication is not a textbook, but an invitation. Each chapter consists of a
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description of an area, with some special highlights, and pointers to further
literature. If an author has succeeded in getting you interested, you will
then know where to look further.

In Part 1, History of Logic, Wilfrid Hodges and Stephen Read give a
masterly survey of Western logic, including its subsequent ramifications in
Arabic logic. Fabien Schang then samples the Indian tradition through the
theme of dialectical logics, while Prabal Sen and Amita Chatterjee intro-
duce its major flowering in Navya-Nyaya Logic. Fenrong Liu and Wujing
Yang then conclude with a brief history of a perhaps less-known tradition,
that of Chinese logic since Antiquity.

Part 2, Mathematical Logic and Foundations, gives some essential
technical pillars of the field, with chapters on model theory by Anand Pil-
lay, set theory by Jouko Väänänen, proof theory and the philosophy of
mathematics by Jeremy Avigad, computability theory by Barry Cooper,
and algebraic logic by Hiroakira Ono.

Part 3, Logics of Processes and Computation, charts the thriving inter-
face of logic and computer science (arguably the locus of the bulk of logic
research today), with chapters on temporal and dynamic logic by Frank
Wolter and Michael Wooldridge, logic and categories by Samson Abram-
sky, and logic and automata theory by Ramaswamy Ramanujam.

Part 4, Logics of Information and Agency, broadens the theme of com-
putation to communication, agency, and logical structures in social orga-
nization. Eric Pacuit describes logics of informational attitudes and infor-
mative actions, Richard Booth and Tommie Meyer survey modern logics
of belief change (the engine of learning and adaptation), and Rohit Parikh,
the originator of the well-known program of Social Software employing
logic to understand (and improve) social procedures, ends with a key piece
on knowledge, games and society.

While many of the earlier pieces are of great relevance to philosophers
interested in logical analyis, Part 5, Logic and Its Interfaces with Philos-
ophy, tells a more explicit story of contacts between logic and philosophy
today. Out of a large set of possible topics, we have selected a representa-
tive sample from philosophy of language (Isidora Stojanovic), formal epis-
temology (Je�rey Helzner and Vincent Hendricks), logic and philosophy
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of science (Bas van Fraassen), logic and ethics (Sven Ove Hansson), quan-
tified modal logic (Horacio Arlo Costa), logic and philosophy of mathe-
matics (Hannes Leitgeb), and logic and metaphysics (Edward Zalta).

We continue this exploration, in line with what we said about migrations
earlier, with a number of congenial further interfaces in Part 6, Logic and
Other Disciplines. Its chapters cover logic and quantum physics (Sonja
Smets), logic and probability (Kenny Easwaran), logic and argumentation
theory (Dov Gabbay), logic and cognitive science (Alistair Isaac and Jakub
Szymanik), decision and game theory (Olivier Roy), and many-valued and
fuzzy logics (Petr Hajek).

Taken together, the articles in our issue paint a very broad picture of our
field. But pictures arise as much from omitting as applying brush strokes.
We could have included many more topics, and we may, in later extensions
of this issues. But for now, the material presented here should be enough
to open anyone’s eyes to the power, sweep and beauty of logic today.

Conclusion This volume does not stand in a vacuum. Indian logicians
today are active in university departments of mathematics, computer sci-
ence, and philosophy and they have been remarkably active in recent years
in joining the international community. Organizational e�orts began with
a series of successful Conferences (2005 and 2007) and Winter Schools
(2006) held at IIT Bombay on Logic and its Relationship with other Dis-
ciplines that are documented in two forthcoming books: Proof, Compu-
tation, and Agency: Logic at the Crossroads, Vol. 1, Amitabha Gupta,
Rohit Parikh and Johan van Benthem, eds., and Games, Norms, and Rea-
sons: Logic at the Crossroads Vol. 2, Johan van Benthem, Eric Pacuit and
Amitabha Gupta, eds., both published by Springer Verlag.
Our present initiative hopes to strengthen this process by drawing in

more of the Indian philosophical community than was done so far, both
through the papers in our volume and an associated meeting in a Confer-
ence Week on Logic to be held at the University of Delhi from January 5
11, 2011. We plan to bring together our authors with teachers, research
scholars and students from Departments of Philosophy in the country as
well as participants of ALI Winter School.
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But let content have the final say. The various contributions in this issue
paint a rich picture of logic today, in a way that we hope will be of interest
to philosophers. It has amazed us to see how easy it was to collect a distin-
guished galaxy of both senior and junior logicians from all over the world,
willing to share their ideas and insights with a broader audience. The arti-
cles collected here may not all be ‘easy reads’, but if you make the e�ort,
they will show you something that is rare: both the broader vision of to-
days researchers on their broader areas, and their enthusiasm about specific
themes. Indeed, the editors themselves have learnt a lot of new things about
logic today, beyond what they imagined. Of course, not all our authors will
agree on what modern logic is exactly, or where it is heading. We stated
our own view in the above, but that was just an ‘editorial license’: taken
together, it is the papers in this volume that tell the real story of the field to-
day. But no matter how one construes the march of history, we are certain
that, once these contacts have been made, Indian logicians will come to be
noticed more and more at the world-wide stage, adding original insights
in philosophy, mathematics, language, computation, and even the social
sciences. And we would not be surprised at all if some of this innovation
would come about by drawing upon India’s own rich logical tradition.

Amitabha Gupta and Johan van Benthem
October 2, 2010
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PART I

History of Logic





Western Logic
WILFRID HODGES AND STEPHEN READ

The editors invited us to write a short paper that draws together the main
themes of logic in the Western tradition from the Classical Greeks to the
modern period. To make it short we had to make it personal. We set out the
themes that seemed to us either the deepest, or the most likely to be helpful
for an Indian reader.

Western logic falls into seven periods:

(1) Classical Greece (Parmenides, Plato, Aristotle, Chrysippus; 5th to
1st centuries BC)

(2) The Roman Empire (Galen, Alexander, Porphyry, John Philoponus,
Boethius; 1st to 7th centuries AD)

(3) The Arabs (Al-Fārābı̄, Ibn Sı̄nā, Khūnajı̄, Qazwı̄nı̄; 8th century –
present)

(4) The Scholastics (Peter Abelard, Peter of Spain, William of Ockham,
John Buridan; 12th - 15th centuries)

(5) Renaissance to Enlightenment (Ramus, Port-Royal Logic, Leibniz;
15th to 18th centuries)

(6) Transitional (Boole, Peirce, Frege, Peano, Russell, Gödel, Tarski,
Gentzen; 19th century – mid 20th century)

(7) The modern period (mid 20th century – present)

The division is rather neat; each period built on the one before it. The chief
exception to this is Arabic logic; its high point partly overlapped the be-
ginning of Scholastic logic, and after the 13th century its development was
independent of European logic. Of course all the dates are approximate,
and there were many important logicians besides those named above.
We finish this paper at the end of period (6), in the mid 20th century.

That period saw some major changes of paradigm in the study of logic.
By the time of the Second World War those changes had worked their way

13



14 WILFRID HODGES AND STEPHEN READ

through the system, and post-war logicians set their minds to exploiting the
new paradigms. The rest of this volume tells you how they did it.
Our thanks to Khaled El-Rouayheb, Robert Gleave, Graham Priest, Karen

Thomson, Johan van Benthem and an anonymous referee for various cor-
rections and suggestions. All remaining errors are our own.

1 Classical Greece

1.1 Aristotle’s predecessors

Early in the 5th century BC a Greek philosopher named Parmenides, who
lived in the Greek colony of Elea in South Italy, published a poem called
the Way of Truth. In the Introduction he promised his readers that they
would learn about the ‘well-rounded truth’ as well as the ‘utterly untrust-
worthy common opinions (doxai) of humans’. Like the Advaita Vedānta,
he believed that there is only one real entity. He claimed to prove this by
assuming the opposite (the ‘untrustworthy common opinion’ that there is
more than one thing) and deducing a contradiction.
His arguments were embarrassingly bad. But he established several of

the key traditions of Greek logic. First, he showed (or claimed to show) that
we can learn new and surprising things by using methods of pure thought.
The chief method that he used is known today as Proof by Contradic-
tion, or Reductio Ad Absurdum (Indian prasaṅga, traditionally ascribed to
Nāgārjuna in around AD 200). But although Parmenides used this method,
he didn’t describe it. That was left to Aristotle around 150 years later, and
is one of the reasons why Aristotle is reckoned the inventor of logic.
Second, Parmenides invented the Greek tradition of devising paradoxes;

in fact ‘paradox’ means ‘contrary to common opinion’, as in Parmenides’
use of the word doxai above. But again it was later Greeks who first devised
paradoxes that really challenge our thinking. The first of these later Greeks
was Parmenides’ follower Zeno of Elea, who invented several well-known
mathematical paradoxes, including ‘Achilles and the Tortoise’. Around
350 BC, the Megarian logician Eubulides discovered some of the best log-
ical paradoxes, including the Liar. (Am I telling the truth or lying when I
say ‘I am now telling a lie’?)
Third, he would have been horrified to know it, but Parmenides was prob-

ably one of the origins of the Greek tradition of eristic, which is the art
of winning arguments regardless of whether you have a good case. (The
lawyers must have had something to do with it too.) In the early 4th cen-
tury the Athenian philosopher Plato wrote a number of fictional dialogues,
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mostly involving his philosophical hero Socrates. One of them, the Eu-
thydemus, is an entertaining account of a performance by two itinerant
experts in eristics. Their arguments rest mostly on obvious ambiguities in
words (just as in Parmenides’ poem, but their ambiguities are generally
funnier). Aristotle, who was a student of Plato’s, wrote a book Sophisti-
cal Refutations which analysed the methods of eristics. This book had a
huge influence in late 12th century Europe after the Latin translation be-
came available around 1140 (and was arguably the main stimulus to the
creation of terminism and the theory of properties of terms — see §4 be-
low). In later Western logic, eristics survived as a kind of undercurrent;
Schopenhauer wrote a textbook of it in 1831.
There is an obvious parallel between eristic argument and the jalpa de-

bates described in the Nyāyasūtra a few centuries later, where the aim is
to win by fair means or foul. Aristotle in several places (for example So-
phistical Refutations 2) gave classifications of arguments according to their
purpose, and several of the kinds that he mentions are really kinds of de-
bate. For example he mentions ‘didactic’, ‘dialectical’, ‘examinational’,
‘contentious’ and ‘rhetorical’ arguments. It seems that theNyāyasūtra clas-
sification is completely independent of Aristotle’s; a comparison would be
interesting.
Plato made important contributions of his own to logic. He had learned

from Socrates that one essential ingredient of correct reasoning is to have
sound and well-defined concepts. In his dialogues he developed a tech-
nique of definition which is called Division. To define a class X which
interests us, we take a class A that includes X, and we divide it into two
clearly defined parts A1 and A2, so that one of the parts, say A1, contains
all of X. Then we split A1 into two parts A11 and A12, so that one of the
parts contains all of X. We carry on subdividing until we have narrowed
down to a class that contains all of X and nothing else. Then we can define
X as the class of things that are in A and in A1 and . . . . The fullest account
of this method is in Plato’s dialogue Sophist.

1.2 Aristotle

But the main breakthrough in Classical Greek logic was certainly Aristo-
tle’s work Prior Analytics. Its contents were probably written in the third
quarter of the 4th century BC. Aristotle’s works are a strange mixture of
books, lectures and notes, and we are often unsure that he intended to write
treatises in their present form. Nevertheless the Prior Analytics contains
one of the world’s first tightly integrated formal systems, comparable in a
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way with Pād. ini’s description of Sanskrit. In this work Aristotle described
rules of argument, and showed how all his rules could be derived from a
small starting set. The rules were called ‘syllogisms’.
Ignoring the modal syllogisms (which are still controversial — see §4.1

below), Aristotle described what were later enumerated as nineteen syllo-
gisms. In the Middle Ages they were given mock-Latin names for easy
memorising. (See §4.1 below.) The first and most famous syllogism was
the one that the medievals called Barbara. As Aristotle himself presents it,
it takes the form

If C belongs to all B, and B belongs to all A, then C belongs
to all A.

The letters mark places where one can put terms, i.e. (in general) nouns or
noun phrases; the same noun should be put for ‘A’ at both occurrences, and
likewise with ‘B’ and ‘C’. Probably he intended that di�erent terms should
be put for di�erent letters too. It’s virtually certain that Aristotle took the
idea of using letters from the Greek geometers.
For example Aristotle might write

(1) If every fisher is a hunter, and every angler is a fisher, then every angler
is a hunter.

This is our example and not his; the few explicit examples that he did
give are mostly tricky cases that needed special analysis. We took the idea
of this example from Plato’s definition of ‘angler’ in Sophist; many people
believe that Aristotle first devised his argument rules through developing
Plato’s definitions in this kind of way. However that may be, Aristotle’s
next move was to see that the validity of the argument in (1) doesn’t depend
on the terms that are put for the letters. We could use any terms, provided
that the resulting sentences make sense and we always use the same term
for the same letter. So he had discovered not just valid arguments but valid
argument forms; every argument of that form is guaranteed to be valid. He
could have written this form as

(2) Every B is a C. Every A is a B. So every A is a C.

just as most later logicians did. Perhaps he used the roundabout phrasing
‘C belongs to all B’ because he realised that he had invented a completely
new discipline, and he wanted to mark this with some new technical termi-
nology.
What was most distinctive of Aristotle’s contribution to logic, however,

was that he gave general form to two methods: the method of showing
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syllogisms to be valid, and the method of showing invalid argument forms
to be invalid. The former method was to reduce all valid syllogisms to what
he called the ‘perfect’ or ‘first figure’ syllogisms, and ultimately to two of
these, Barbara (as above), and Celarent:

No B is a C. Every A is a B. So no A is a C.

The other method, of showing arguments invalid, was to find replacements
for the constituent descriptive terms, or the symbolic letters, such that the
premises are true and the conclusion false. E.g., take the argument form:

Every A is a B. Some B is a C. So some A is a C.

If we replace ‘A’ by ‘horse’, ‘B’ by ‘animal’ and ‘C’ by donkey’, we can
see that the conclusion cannot follow from the premises, since it is false
and they are true.
Although Aristotle began his career as a follower of Plato, he later as-

serted his independence, and for some centuries his followers (the Peri-
patetics) and the Platonists formed competing schools. This rivalry gen-
erated a number of myths that still survive today; you can find some of
them on the internet. For example it was claimed that Pythagoras and Par-
menides both had systems of logic, and that Plato had inherited them. But
in fact there is not the slightest evidence that Pythagoras ever had anything
to do with logic, and certainly Parmenides had nothing like a system.

1.3 Stoic Logic

Attempts by Platonists to establish a platonist logic to rival Aristotle’s logic
never succeeded: Aristotle had cornered all the logically worthwhile ideas
in Plato’s work. But the later classical Greeks were fortunate in having a
second substantial theory of logic besides Aristotle’s, namely that of the
Stoics (who inherited logical insights from some earlier logicians, notably
the Megarians). The leading figure of the Stoic school was Chrysippus,
who lived in the second half of the 3rd century BC. Unfortunately no com-
plete logical works from this school survive — though we are told that
Chrysippus himself wrote over a hundred logical treatises, including seven
on the Liar Paradox. But we know enough to point to some important
innovations by this school.
First, they invented propositional logic. Second, their notion of modal-

ity was formally di�erent from Aristotle’s. For Aristotle (at least on one
reading of his rather obscure explanations), humans are ‘necessarily ani-
mals’ but ‘possibly writers’; the modality goes with the description. For
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the Stoics, necessity and possibility are properties of whole assertions: ‘It
is night’ is possibly the case but not necessarily the case. In the later ter-
minology, Stoic modalities were de dicto, ‘about something said’. (And as
in some Indian traditions, Stoic logicians used modal notions as properties
of propositions rather than as parts of propositions.) Third, Stoics had the
notion of ‘incomplete’ meanings, which (to use modern terminology) have
an argument place that needs to be filled. For example ‘writes’ is incom-
plete because it needs a subject argument, as in ‘The moving finger writes’.
Fourth, they had at least the beginnings of a sophisticated philosophical
theory of meanings, intended to answer questions like ‘What entities are
most properly described as having a truth value?’ The Stoics also had a
reputation for being formalistic, but at this distance in time and with the
scanty records that we have, it would be unsafe for us to ascribe to them
any particular formalistic doctrine.
The first three of these Stoic contributions eventually passed into the

general practice of logic. But by the time of Arabic logic the Stoics as a
distinct school of logic had faded from the record.

1.4 Acquisition of knowledge

Writers on Indian logic have often remarked that Indian logic, unlike most
modern Western logic, is about how an individual comes to know some-
thing that he or she didn’t know before. Inference is a process that hap-
pens in the mind of the reasoner. It is not always realised that, with only
marginal exceptions, exactly the same was true for all proofs in Western
logic before the beginning of the twentieth century. For example the syllo-
gisms that Aristotle counted as not ‘perfect’ were those where the conclu-
sion doesn’t obviously follow from the premises. His reductions of these
syllogisms to perfect syllogisms were not just abstract validity proofs; they
were chains of reasoning that a reasoner could use in order to be convinced
of the truth of the conclusion of a non-perfect syllogism.
One of the main purposes of logic in the West has been to validate ar-

guments by bringing them to some appropriate kind of ‘logical form’. But
this meant something di�erent in traditional Western logic from what it
came to mean in the twentieth century. The traditional logicians reckoned
that a piece of informal reasoning could be reduced to steps, and each step
introduces its own piece of knowledge. The steps could be formalised sep-
arately; for example there was no requirement even to use the same terms
in one step as in the next. So a complicated argument would be reduced to a
mixture of logical steps— each simple in itself — and linguistic rearrange-
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ments or paraphrases. But in the late nineteenth century logicians started
to take a very di�erent approach: the terms in an argument are symbolised,
and the same assignment of symbols applies to the whole argument from
start to finish, even if the argument consists of many pages of mathemat-
ics. As a result, a modern Western student of logic learns how to operate
formal proofs of much greater complexity than in the traditional format. In
this modern style the separate steps of a formalised argument are not each
intended to convey a separate piece of knowledge — at least, not in any
straightforward way. One reason for the current interest in the Scholastic
obligational disputations (see §4.3 below) is that unlike syllogisms, they
do generate arguments with some significant complexity, though these ar-
guments are not really proofs that give us new knowledge.

2 The Roman Empire

During the first century BC, Aristotle’s logical writings — which had pre-
viously been kept in the private hands of Peripatetics — were edited and
published as a group of books called the Organon. The editor (said to be
Andronicus of Rhodes) put first the book Categories, which is about the
meanings of single words. Book 2 was On Interpretation, which discussed
the ways in which words are arranged in sentences. Then he put book 3,
the Prior Analytics, which explained how to arrange sentences into valid
arguments. Book 4, the Posterior Analytics, was about how to use syllo-
gisms in order to increase our knowledge. Book 5, the Topics, was about
debate. Book 6 was the Sophistical Refutations; we mentioned it in §1.1
above. In one tradition, two more of Aristotle’s books were included in the
Organon, namely the Rhetoric and the Poetics; the first of these was about
persuasive public argument and the second was about the expressive force
of poetry and drama.
TheOrganon and other works of Aristotle contained an immense amount

of learning, but they were hard to read. Around AD 200 the Peripatetic
philosopher Alexander of Aphrodisias wrote commentaries on the main
works, including the Prior Analytics. His is the first commentary to sur-
vive of a tradition which lasted for a thousand years. The commentary
format was so successful that throughout the first millennium AD and for
some while after, the main research in logic appeared in the form of com-
mentaries on books of the Organon.
Students working in this tradition were shown how to break a text down

into separate inferences, and to check each inference by logic. Each infer-
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ence needed to be tickled into the shape of a syllogism by suitable para-
phrasing. The result was that any substantial piece of logical analysis used
partly logic and partly paraphrase. The paraphrase was done by intuition
based on studying many cases, and not by rule. Leibniz later described
such steps of paraphrase as ‘valid non-syllogistic inferences’.

We can illustrate this with an important example from the Roman period.
Aristotle had been interested in the nature of mathematical knowledge, and
his views about this may well have influenced later Greek mathematical
writing, for example Euclid’s Elements. But it seems unlikely that the rea-
soning procedures of Greek mathematics had any influence on Aristotle’s
syllogisms — the mismatch is too great. For example most statements in
geometry use relations: ‘lines L and M are parallel’, ‘point p lies on line L’
and so on. Syllogisms had no machinery that handles relations naturally.
Nor had the propositional logic of the Stoics. The logicians of the 2nd
century AD made the first attempts to reconcile logical methods and math-
ematical ones. It was apparently Alexander of Aphrodisias who took the
crucial step of representing relations by allowing the ‘Every’ and ‘Some’
in syllogisms to range over pairs or triples as well as individuals.

In fact, in the 1880s C. S. Peirce took up this idea of using pairs, triples
etc. (which he credited to his own student Oscar Mitchell who had intro-
duced ‘propositions of two dimensions’). On the basis of it Peirce invented
what we now recognise as the earliest form of first-order predicate logic.
But there is an important di�erence between Alexander’s idea and Peirce’s.
Alexander never introduced any method for passing from statements about
individuals to statements about pairs, or from statements about pairs to
statements about triples, etc. For him and the traditional logicians who fol-
lowed his lead, no such method was needed, because one could take care of
the switch by using paraphrase between the logical steps of an argument.
But Peirce’s predicate logic allows us to use facts about pairs to deduce
facts about individuals, and so on, all within the same formalism. Today
no logician would dream of stepping outside a formal proof in mid stream
in order to cover a step by paraphrasing.

The Roman Empire commentators tidied up several other aspects of
Aristotle’s logic. One important contribution from this period was the
Square of Opposition, a diagram which records the logical relations be-
tween the four propositions in the corners of the square:
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Every S is P

Some S is P Not every S is P

No S is P
contraries

subcontraries
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contradictories

A proposition entails its subalternates; contraries cannot both be true, but
can be false together; subcontraries cannot be false together, but could be
true together; contradictories cannot both be true and cannot both be false.

Most of the Roman Empire commentators on Aristotle after Alexander
of Aphrodisias were in fact Platonists or Christians, not Peripatetics. How
could they justify teaching the views of the founder of a rival philosophy?
They found a tactful solution to this problem. Logic was so obviously
valuable that all students should learn it. But the commentators found that
they could detach the logic from Aristotle’s philosophy and metaphysics.
A philosophy-free logic was taught as a first step, and when the students
had it under their belt, they would move onto the higher truths of Platonism
(or later, Christianity or Islam). But the commentators didn’t want to teach
logic by pure rote, so they found a kind of justification for it in semantics
— the study of the meanings of words and sentences. Thus the students
would learn semantics from the first two books of the Organon and then
move on to syllogisms in the third book.

An example may help comparison with Indian traditions. The point
comes up in various Indian treatises that when we make a deduction from a
general rule, e.g. ‘Whenever there is smoke there is fire’, we need to point
to an instance that confirms the rule (a sādharmya-dr. s. t.ānta). The Roman
Empire commentator tradition wouldn’t have put it like that. If the reason
for giving the instance is that a general rule doesn’t count as true unless it
has an instance, then that should have been said in the explanation of the
meaning of general rules. It should be made a point of semantics, not a
step in arguments. And in fact some of the commentators of this period
did count an a�rmative universal statement ‘Every A is a B’ as false unless
there is at least one A. (But they allowed the negative statement ‘No A is a
B’ to be true when there are no As.)
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This meaning-based logic must have been the brainchild of many di�er-
ent scholars, but the Palestinian Platonist philosopher Porphyry of Tyre in
the late 3rd century is believed to have played a key role. Porphyry also
wrote an elementary introduction to logic; he called it the Introduction
(Eisagōgē� in Greek), and for several hundred years it was read by every
student of logic. In it he mentions some philosophical problems about gen-
era and species (like ‘animal’ and ‘human’); these problems later became
known as parts of the ‘problem of universals’. For example do genera and
species really exist as entities in the world? Porphyry adds that he is delib-
erately not discussing these problems. The Scholastics couldn’t resist the
challenge of tackling the problem of universals, and the result was that in
the West the ideal of a philosophy-free logic went down the drain. It was
recovered in a more scientific form through the work of Carnap, Tarski and
other logicians in the period between the two world wars of the twentieth
century. (See §6 on Tarski.)

3 The Arabs

Logic has had a good reputation through most of Islamic history. There
are many statements in the Qur’an along the lines ‘Thus do We explain
the signs in detail for those who reflect’ (10.24), and these are commonly
understood as calls to Muslims to develop their rational thinking. In the
early days of the Islamic empire there were a number of well-to-do Arabic
speakers, spread across the world from Spain to Afghanistan, who regarded
skills of debate as a mark of culture. So they bought logic texts and took
lessons in logic. Tamerlane had two distinguished Arabic logicians at his
court in Samarqand. Ibn Sı̄nā (known in Europe as Avicenna) reported
that in the late 990s the library of the Sultan of Bukhara (in present-day
Uzbekhistan) had a room full of logical texts. Probably it contained trans-
lations of most of the Roman Empire commentaries. Most of this material
is lost today, or at least uncatalogued. We know there are important Arabic
logical manuscripts that have never been edited; for example some are in
Turkey and some are in the Indian National Library.
Logic did sometimes have to fight its corner. There were demarcation

disputes between logicians and linguists about which aspects of language
should be studied in which discipline. A more serious problem developed
later: some of the main experts in logic had unorthodox religious views. In
around 1300 Ibn Taymiyya — whose religious and political writings have
inspired Osama bin Laden— argued strongly against Aristotle’s logic. But
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about 200 years earlier Al-Ghazālı̄ had mounted a largely successful cam-
paign to convinceMuslims that Aristotle’s logic was theologically innocent
and a great help for reaching the truth. It’s largely thanks to Al-Ghazālı̄ that
logic has been a major part of the madrasa syllabus ever since.
The first Arabic logician of distinction was Al-Fārābı̄ in the early 10th

century. Today philosophers cite him for his views on the relation of logic
to determinacy, among other things. A century later came Ibn Sı̄nā, a log-
ical giant comparable in various ways to Leibniz. It almost passes belief
that the medieval scholars who translated classical Arabic philosophy into
Latin thought his logic was not worth translating, so that it was unknown
in Europe. (But they did translate the more conservative modal logic of Ibn
Rushd — Averroes — which influenced the English logicians Kilwardby
and Ockham.) One of Ibn Sı̄nā’s books (Easterners, which unfortunately
is available only in an unreliable Arabic version) has a long section on how
he thought logic should be done; in comparison with Aristotle’s logic, this
section had much less about rules of proof, much more about how to in-
terpret statements and texts, and a long section on definition. Here and
elsewhere Ibn Sı̄nā emphasised that what we mean is nearly always a good
deal more complex than what we say — we mentally add ‘conditions’ to
the public meanings of our public words.
Here is a typical example of Ibn Sı̄nā’s semantic analysis. What does

a statement ‘Every A is (or does) B’ mean? If we look at examples we
can see that there are various patterns. When we say that every horse is
a non-sedentary animal, we don’t mean just now or sometimes, we mean
always. But again we don’t imply that every horse is eternal; every horse is
a non-sedentary animal for as long as it lives. But when we say God is mer-
ciful, we mean it for all time. Next take the statement that everyone who
travels from Ray in Iran to Baghdad in Iraq passes through Kermanshah
near the border. A person who says this certainly doesn’t mean that every
such person passes through Kermanshah for as long as he lives; she means
sometime during the journey. On the other hand a biologist who says ‘Ev-
erything that breathes in breathes out’ doesn’t mean that it breathes out at
some time while it was breathing in! And so on. Ibn Sı̄nā did some pre-
liminary cataloguing of these and other cases. But his general position on
these examples seems to have been that we should be alert to the possibili-
ties, and we should aim to reason with them in ways that we find intuitively
natural. He believed that a training in Aristotle’s syllogisms would help us
to do that.
Note the form of the statement about the traveller from Ray to Baghdad.

It can be written as follows:
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Every traveller who makes a journey from Ray to Baghdad
reaches Kermanshah during the journey.

Sentences with a similar form appeared in Scholastic logic in the early 14th
century. One due to Walter Burley reads:

Every person who owns a donkey looks at it.

Thanks to Burley’s example, sentences of this kind have become known
as ‘donkey sentences’. The mark of a donkey sentence is that it contains
two parts, and the second part refers back to something introduced by an
implied existential quantifier inside the first part. For first-order logic these
sentences are nonsensical: the reference in the second part is outside the
scope of the quantifier. In the English-speaking world the question what
we can infer from a donkey sentence has been seminal for research into
natural language semantics. About the same time as this research began,
Islamic jurists independently realised that they had a donkey sentence in a
verse of the Qur’an (49.6):

If a person of bad character brings you a report, you should
scrutinize it carefully.

(Note the quantifier ‘a report’ in the first part, and the back reference ‘it’
in the second — strictly the ‘it’ is missing in the Arabic, but it is clearly
understood.) A number of jurists have published analyses of this verse and
its implications. They make no direct reference to logic, but it’s plausible
to see in their analyses an indirect influence of Ibn Sı̄nā, through the logic
of the madrasas. The most famous of these jurists is well known for other
reasons: Ayatollah Khomeini.
A second feature of the traveller example is that there are quantifiers both

over the traveller and over time. This makes it a ‘proposition of two di-
mensions’ in Oscar Mitchell’s sense (see §2 above). Sadly Ibn Sı̄nā had no
Peirce to transmute his ideas into a radically new logic. In fact later Arabic
logicians recognised the originality of Ibn Sı̄nā’s examples, but often their
tendency was to introduce new moods of ‘syllogism’ for each new kind of
example. Later Arabic logicians studied further examples and duly added
further ‘syllogisms’. This style of logical research made strides in the Ot-
toman empire during the 18th century and led to a relatively sophisticated
logic of relations, at a time when European logic was largely moribund.
It seems to have been the Arabic logicians who began the study of rea-

soning in conditions of uncertainty. Both Al-Fārābı̄ and Ibn Sı̄nā repri-
manded the doctor and logician Galen (2nd century AD) for missing the
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fact that most medical statements are probabilistic. Much later, in Paris
in 1660, the Port-Royal Logic of Arnauld and Nicole discussed how to
think rationally about the danger of being struck by lightning. In the 19th
century Augustus De Morgan and George Boole tried to incorporate quan-
titative probability reasoning into logic. But the trend was against them,
and in the 20th century probability theory came to be recognised as a sep-
arate discipline from logic. (See also the paper ‘Logic and probability’ by
K. Easwaran in this collection.)

One would expect some mutual influence between Arabic and Indian
logic because of the geographical closeness. But no direct influences have
been discovered. For example one of the leading Arabic scientists, Al-
Bı̄rūnı̄, being compelled to visit North India in the early 11th century as
part of the entourage of a warlord, used the opportunity to collect informa-
tion on Indian science and culture. He wrote a long report with a mass of
information about Indian achievements, including philosophy and astron-
omy. But his book makes no mention of Indian logic. He does refer to one
logical text, the Nyāyābhāsa, but he describes it as a book on Vedic inter-
pretation. If he came across Indian logic at all, he simply didn’t recognise
it as logic.

4 The Scholastics

Although there are important discussions of logical issues in such eleventh
and early twelfth century thinkers as Anselm of Canterbury, Peter Abelard
and AdamBalsham, the distinctive contribution of medieval logic as a body
of doctrine began in the late twelfth century in the study of consequence
and fallacies. This began with the rediscovery in the Latin West of Aristo-
tle’s doctrine of fallacy in his Sophistical Refutations (known in Latin asDe
Sophisticis Elenchis) and of the syllogism in his Prior Analytics. However,
although Boethius (480-525) had translated all of Aristotle’s Organon ex-
cept the Posterior Analytics (as part of a grand project, never completed, of
translating all of Aristotle’s works into Latin with commentaries on them),
only Boethius’ translations of the Categories and On Interpretation (De
Interpretatione in Latin, Peri Hermeneias in Greek) were known and in
circulation at the start of the twelfth century — these two were termed,
along with Porphyry’s Introduction, the logica vetus. During the rest of the
century, Boethius’ translations of the other works emerged (from where is
unknown) and in addition translations of both Analytics, the Topics and the
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Sophistical Refutations were made by James of Venice (who had studied in
Constantinople) around mid-century. These became known as the logica
nova. The theory of the syllogism became the basis of the medieval theory
of consequence. What is important to realise is that the assertoric syllogism
only takes up a relatively small part of the Prior Analytics. Aristotle there
also developed a theory of the modal syllogism. But whereas his theory of
the assertoric syllogism was clear and convincing, his theory of the modal
syllogism was highly problematic.

4.1 Consequence

In fact, the syllogism is not the whole of Aristotle’s logic. For as we noted,
Aristotle’s method of validating syllogisms was to reduce all syllogisms
to the perfect syllogisms of the first figure — and ultimately to Barbara
and Celarent. The method of reduction depended on a number of one-
premise inferences elaborated in On Interpretation, in particular, simple
conversion, conversion per accidens, subalternation, and reductio per im-
possibile. The assertoric syllogism is concerned with so-called categorical
propositions (a better translation is “predicative proposition”, or “subject-
predicate proposition”, since the Latin categorica is simply a transliteration
of the Greek katēgorikē�, ‘predicative’), in particular, the four forms ‘Every
S is P’ (so-called A-propositions), ‘No S is P’ (E-propositions), ‘Some
S is P’ (I-propositions) and ‘Some S is P’ (or better, ‘Not every S is P’,
O-propositions).
One of the main sources of our knowledge of late twelfth and early thir-

teenth century logic is Peter of Spain. For many centuries, he was thought
to be the same Peter of Spain as Pope John XXI, who was killed in 1276
when the roof of his new library fell on him. Recently, however, it has been
established that this was a misidentification, and that the logician Peter was
a Dominican from Estella (Lizarra) in the Basque country. His Tractatus
(‘Treatises’) record the state of the art, and contain the famous mnemonic
by which students learned the theory of the assertoric syllogism:

Barbara Celarent Darii Ferio Baralipton
Celantes Dabitis Fapesmo Frisesomorum;
Cesare Camestres Festino Baroco; Darapti
Felapton Disamis Datisi Bocardo Ferison.

There are here three figures. Aristotle conceived of syllogisms as pairs
of premises, asking from which such pairs a conclusion could be drawn.
Those pairs of categorical propositions containing between them three terms
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could share their middle terms as subject of one and predicate of the other
(figure I), as predicate of both (figure II — Cesare - Baroco) and as subject
of both (figure III — Darapti - Ferison). In the first figure, the predicate of
the conclusion could be the predicate in its premise (concluding directly —
Barbara - Ferio) or the subject (concluding indirectly — Baralipton - Fris-
esomorum). Only when the syllogism was thought of as an arrangement
of three propositions, two premises and a conclusion, did it seem better to
call the indirect first figure a fourth figure, as some Stoics (e.g., Galen) and
some medievals (e.g., Buridan) did.
The mnemonic lists 19 valid syllogisms. Five more result from weaken-

ing a universal conclusion by subalternation. The first three vowels give
the type of the constituent propositions; certain consonants record the re-
duction steps needed to reduce the mood to a perfect syllogism, that is, one
in the direct first figure. E.g., Baralipton (aai in the indirect first figure) is
reduced to Barbara by converting the conclusion of Barbara per accidens
(from ‘Every S is P’ to ‘Some P is S ’), as indicated by the ‘p’ following
the ‘i’. The initial consonant indicates the perfect syllogism to which it
reduces.
The modal syllogism results from adding one of three modalities to one

or more of the premises and the conclusion. The modalities Aristotle con-
siders are ‘necessary’, ‘possible’ and ‘contingent’ (or ‘two-way possible’).
In its full articulation, the theory was very complex. But there was some-
thing puzzling right at its heart, sometimes known as the problem of the
two Barbaras. In ch. 3 of the Prior Analytics, Aristotle says that E- and
I-propositions of necessity convert simply, that is, ‘No A is necessarily B’
converts to ‘No B is necessarily A’ and ‘Some A is necessarily B’ converts
to ‘Some B is necessarily A’, and necessary A-propositioins convert per
accidens, that is, ‘Every A is necessarily B’ converts to ‘Some B is neces-
sarily A’. But in ch. 9 of that work, he says that adding ‘necessarily’ only
to the premise of Barbara containing the predicate of the conclusion validly
yields a necessary conclusion (i.e., ‘Every B is necessarily C, every A is B,
so every A is necessarily C’ is valid), but not if ‘necessarily’ is only added
to the other premise (i.e., ‘Every B isC, every A is necessarily B, so every A
is necessarily C’ is invalid). The challenge is to find a common interpreta-
tion of ‘Every S is necessarily P’ which verifies these two claims. A very
natural interpretation of the remark in ch. 3 is that he takes necessity de
dicto, or as the medievals would say, in the composite (or “compounded”)
sense, or as modern logicians would say, with wide scope, so that it predi-
cates necessity of the dictum, the contained assertoric proposition. But on
this reading, the modal Barbara of ch. 9 would not be valid. For necessar-
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ily every bachelor is unmarried (taken de dicto), but supposing everyone
in the room is a bachelor, it does not follow that necessarily everyone in
the room is a bachelor. One way to make the syllogism valid is to take the
necessity de re, or as the medievals would say, in the divided sense, or in
modern terms, with narrow scope: every B is of necessity C. For then the
syllogism reduces to a non-modal case of Barbara with a modal predicate,
‘of necessity C’, and so is valid. But the conversions of ch. 3 fail when
taken de re.
Forcing a choice between de re and de dicto interpretations of the modal

premise may be anachronistic and out of sympathy with Aristotle’s meta-
physical projects. Nonetheless, this and other problems with the modal
syllogism led to much discussion of modal propositions and a variety of
logics of modality in the scholastic period and among the Arabs. We will
return to a further problem of interpretation of modal propositions shortly.
The main development of medieval logic (the logica modernorum, the

logic of the “moderns”, as it came to be known), however, was to develop
a general theory of consequence. In the twelfth century, one focus of con-
cern was a claim of Aristotle’s, endorsed by Boethius, that no proposition
entailed its contradictory, since they could not both be true, nor did any
single proposition entail contradictories, so if it entailed one of a contradic-
tory pair, it couldn’t entail the other. But there is, at least with hindsight, an
obvious counterexample, namely, an explicitly contradictory proposition,
which entails (by the rule known as Simplification, from a conjunction to
each of its conjuncts) each of its contradictory conjuncts. Moreover, a con-
tradiction entails not just its conjuncts, but any proposition whatever. For
we can disjoin one of the contradictory conjuncts with any other proposi-
tion, and since the other conjunct contradicts the first disjunct, that other
arbitrary proposition immediately follows. Such surprising results showed
that what was needed was a general theory, and it developed along two
fronts. The primary line of development was a theory of inference, fram-
ing inference rules in terms of the structure of the propositions in question.
At the same time, the theory of fallacies developed, building on Aristo-
tle’s theory of fallacy in his Sophistical Refutations and on his method of
counterexamples from the Prior Analytics. In time this led to a second and
supplementary account of consequence in terms of truth-preservation.

4.2 Properties of Terms

Aristotle had had relatively little to say about propositional consequence in
On Interpretation apart from the rules that the later commentators incor-
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porated in the Square of Opposition (§2 above). But what, for example,
explains subalternation, from ‘Every S is P’ to ‘Some S is P’? To explain
such inferences, the medievals developed their distinctive theory of prop-
erties of terms. As the twelfth century proceeded, many properties were
mooted: signification, supposition, appellation, copulation, ampliation, re-
striction and relation were some of them. Part of the spur to this was meta-
physical: if, as Aristotle had said, everything is individual, and the only
universals were names, one needed a theory of signification, or meaning,
to explain the functioning of names. Supposition then explained how terms
functioned in propositions, and in particular picked out that class of things
the term stood for, and how it did so. Thus the theory of supposition has
two aspects, the first concerning what the term stands for, the other the
mode of supposition. Sometimes, for example, a term supposits for itself,
or some other term (one which it doesn’t signify), as in ‘Man is a noun’,
or ‘The spoken sounds “pair” and “pear” sound the same’ — we nowadays
mark such uses with inverted commas. The medievals said the term had
material supposition. Other cases where a term does not supposit for the
things it signifies are when it stands for the universal (if there is one) or the
concept, e.g., in ‘Man is a species’. This was said to be a case of simple
supposition. Some authors, especially realists, thought supposition should
be restricted to subjects, and predicates had copulation (i.e., coupled to the
subject). Others thought predicates had simple supposition, for the uni-
versal. The hard-line nominalists, however, like William of Ockham and
John Buridan, in the fourteenth century, thought both subject and predicate
stood for individuals. For example, in ‘A man is running’, ‘man’ and ‘run-
ning’ stand for men and runners, respectively, and have so-called personal
supposition. The proposition is true if subject and predicate supposit for
something in common — if the class of men overlaps the class of runners.
Thus subject and predicate in personal supposition stand for everything of
which the term is presently true. ‘Man’ supposits for all (present) men and
‘running’ for all those presently running.
What, however, of, e.g., ‘Some young man was running’? Suppose

Socrates is now old, but in his youth he ran from time to time. ‘Young’
restricts ‘man’ to supposit only for young men; but ‘was running’ ampli-
ates the subject ‘young man’ to supposit for what is now, or was at some
time, a young man. So the proposition is true of Socrates, since he was at
some time a young man and ran. Indeed, it is true if he never ran in his
youth but ran yesterday, say. So ampliation and restriction analyse ‘Some
young man was running’ to say ‘Something which is or was at some time a
young man was at some time (not necessarily the same time) running’. Not
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only tense, but also predicates such as ‘dead’ ampliate the subject. ‘Some
man is dead’ is true because something which was a man is now dead.
Modal verbs also ampliate their subjects. But there was disagreement

how they did so, and what the truth-conditions of modal propositions were.
For example, ‘Cars can run on hydrogen’ is true even if no existing cars can
run on hydrogen provided something which could be a car could run on hy-
drogen. So the modal verb ampliates the subject to supposit for possible
cars. What of ‘A chimera is conceivable’ (‘chimera’ is ambiguous, but in
one sense means an impossible combination of the head of a lion, the body
of a goat and the tail of a serpent)? — Buridan claimed the modal ‘-ble’
here ampliates only for possibles (so the proposition is false); others, e.g.,
Marsilius of Inghen in the next generation, thought such verbs ampliate
for the imaginable, even the impossible (so the proposition is true). More
problematic is the supposition of the subject in a proposition of the form
‘Every S is necessarily P’. Buridan claimed that ‘necessarily’ again ampli-
ates the subject to what is possible, so that ‘Some S might not be P’ is its
contradictory. William of Ockham disagreed. He eschews the language of
ampliation, and thinks that ‘Some S might not be P’ is ambiguous between
‘Something which is S might not be P’ and ‘Something which might be S
might not be P’, but ‘Every S is necessarily P’ is not ambiguous, and can
only mean ‘Everything which is S is necessarily P’. Thus one reading of
‘Some S might not be P’ contradicts ‘Every S is necessarily P’, the other
does not. Ockham is arguably truer to the everyday understanding of modal
propositions than Buridan, who has a tendency to regiment language to his
theory, and in the face of opposition responds that language is a matter of
convention and he intends to use words the way he wants.
However, none of this explains subalternation. That comes from the the-

ory of modes of common personal supposition, that is, of the supposition
of general terms for the things they signify. There are two divisions, into
determinate and confused supposition, and of confused supposition into
confused and distributive and merely confused. Broadly, the divisions were
characterised syntactically in the thirteenth century and semantically in the
fourteenth, though accompanied by syntactic rules. Determinate supposi-
tion is that of a general term suppositing “for many as for one”, as do both
terms in ‘Some S is P’; confused and distributive that of a term suppositing
“for many as for any”, as do both terms in ‘No S is P’; merely confused
that of a term like ‘P’ in ‘Every S is P’ or in ‘Only Ps are S s’. In confused
and distributive supposition, one can descend (as they termed it) to every
singular, indeed, to a conjunction of singulars, replacing the term in ques-
tion by singular terms: ‘Every S is P’ entails ‘This S is P and that S is P
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and so on for all S s’, so ‘S ’ in the original has confused and distributive
supposition. This kind of descent is invalid for ‘P’ in ‘Every S is P’. One
can ascend from any singular (so ‘Every S is this P’ entails ‘Every S is
P’) but one can only descend through what was called a “disjunct term”:
‘Every S is P’ entails ‘Every S is this P or that P and so on’. In determi-
nate supposition, one can descend to a disjunction of singulars, and ascend
from any singular. Thus is subalternation explained: ‘Every S is P’ entails
‘This S is P and that S is P and so on’, which in turn entails ‘Some S is
P’. From confused and distributive supposition to determinate supposition
is valid, but not conversely.
Buridan used the doctrine of supposition, and in particular, the notion of

distribution in confused and distributive supposition, to provide an alterna-
tive to Aristotle’s explanation of the validity of syllogisms.

It should be noted that by these three conclusions, that is, the
sixth, seventh and eighth, and by the second, the number of
all the modes useful for syllogizing in any of the three figures
both direct and indirect is made manifest.

The second conclusion showed that nothing follows from two negative
premises, the sixth and seventh that the middle term must be distributed,
and the eighth that any term distributed in the conclusion must be dis-
tributed in its premise.

4.3 Obligations

Logic lay at the heart of the medieval curriculum, and a further distinc-
tive medieval doctrine was the mainstay of the education in logic, that of
obligational disputations. This was a disputation between an Opponent
and a Respondent, where the Opponent poses various propositions, as he
chooses, and the Respondent is obliged to grant them, deny them or ex-
press doubt about them according to closely circumscribed rules — hence
the description “(logical) obligations”. There were several types of obli-
gation: let us concentrate on just one, positio. In positio, the Opponent
starts by describing a hypothetical situation and posing (or “positing”) a
certain proposition, the positum. The Respondent must accept it, unless
it is explicitly contradictory; in “possible positio”, provided it could be
true. E.g., suppose as hypothesis that Socrates is not running, and take as
positum, ‘Every man is running’. The Respondent accepts this, and the dis-
putation now starts. The Opponent proposes a succession of propositions;
each proposition is “relevant” if it follows from (sequens) or is inconsistent
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with (repugnans) the positum or any proposition previously granted, or the
contradictory of one previously denied; otherwise it is “irrelevant”. If it is
relevant, the Respondent must grant it if it is sequens and deny it if it is
repugnans; if irrelevant, he must grant it if it is known by the participants
to be true, deny it if known to be false, and express doubt if its truth or
falsity is unknown — a classic example is ‘The king is sitting’, which is
standardly doubted if irrelevant. Here is a typical sequence of challenge
and response:

Opponent Respondent
Suppose Socrates is not running
Positum: Every man is running Accepted (possible)
Socrates is running Denied (irrelevant and false)
Socrates is a man Denied (relevant and repugnans)

If the Respondent makes a mistake (that is, grants contradictories, or grants
and denies the same proposition) or after a certain agreed time, the dispu-
tation ends and an analysis of the disputation ensues.
Not every obligation is as simple as this. Walter Burley, who wrote a

treatise onObligations in 1302 which is usually credited as representing the
standard doctrine, noted that there were certain tricks an Opponent could
use to force the Respondent to grant any other falsehood compatible with
the positum. For example:

Opponent Respondent
Positum: Every man is running Accepted (possible)
Socrates is not running or you
are a bishop

Granted (irrelevant and true,
since by hypothesis Socrates is
not running)

Socrates is a man Granted (irrelevant and true)
Socrates is running Granted (relevant and sequens)
You are a bishop Granted (relevant and sequens)

Once one has understood how the Respondent was forced to concede the
falsehood ‘You are a bishop’ (assuming it is false), one can see that the
Respondent can be forced to concede any falsehood whatever.
Like noughts-and-crosses (aka tic-tac-toe), the rules mean that there is

always a winning strategy for the Respondent — keeping a clear head, the
responses can be kept consistent. But mistakes are easy, because of the
way relevant and irrelevant proposition must be so di�erently dealt with.
If a positum really is inconsistent, it should not have been accepted to start
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with. Or the disputation may exploit a paradox. Consider this example:

Opponent Respondent
Positum: A man is an ass or
nothing posited is true

Accepted (the second disjunct
could be true)

A man is an ass Denied (irrelevant and false)
Nothing posited is true Granted (relevant and sequens)
The positum is true Granted (relevant and sequens?)
Something posited is true Granted (relevant and sequens)
Time’s up.

Contradictories have been granted. So has the Respondent made a mistake?
Burley points out that the positum is an insoluble. Insolubles were, in
Ockham’s famous phrase, so called not because they could not be solved
but because they were “di�cult to solve”. They constitute various kinds
of logical paradox, including the Liar paradox itself: ‘What I am saying is
false’. It seems that this cannot be true, since if it were, it would, as it says,
be false; and it cannot be false, for if it were, things would be as it says, so
it would be true.

4.4 Insolubles

A variety of solutions to the Liar paradox were explored during the me-
dieval period. Nine solutions were listed in Thomas Bradwardine’s treatise
on Insolubles in the early 1320s; fifteen are listed in Paul of Venice’s Log-
ica Magna (‘The Great Logic’) composed during the 1390s. The majority
fall into three classes: the cassationists (cassantes), who claim that nothing
has been said; the restrictionists (restringentes), who claim that no term
can refer to a proposition of which it is part; and those, like Bradwardine,
who diagnose a fallacy secundum quid et simpliciter (of relative and ab-
solute), following Aristotle’s comments in Sophistical Refutations ch. 25.
The cassationist solution is known almost entirely by report by logicians
who reject the suggestion, only one surviving text, from the early thirteenth
century, advocating it. The idea is that any attempt to construct a proposi-
tion containing a term referring to this very proposition, fails on grounds
of circularity to express any sense. More popular, at least before Bradwar-
dine’s devastating criticisms, was the restrictionist solution, sometimes in
a naive version, similar to the cassationist story but inferring not that noth-
ing had been said, but that the term trying to refer to the proposition of
which it is part, in fact must refer to some other proposition of which it is
not part — its scope for referring is thus restricted. A more sophisticated
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version, put forward by Burley and Ockham, among others, proposed that
the restriction only applied to insolubles, and prevented a term suppositing
for propositions of which it is part, or their contradictories. For exam-
ple, Burley’s diagnosis of the error in the Respondent’s responses in the
obligation above was that the proposition ‘The positum is true’ should not
be granted, for ‘the positum’ cannot refer to this positum, for part of the
positum contradicts the proposition of which ‘the positum’ is part. ‘The
positum’ must refer to some other positum, so the proposition is irrelevant
and should be responded to according to what holds of that positum. In any
case, contradiction is avoided.
Bradwardine attacked the restrictionist view mercilessly, pointing out

how implausible it was. His own view was taken up directly by very few
(Ralph Strode, writing a generation later in the 1360s, was one of his cham-
pions), but he seems to have indirectly influenced most of the later propos-
als. The central idea to all these subsequent solutions is that an insoluble
says more than appears on the surface. For whatever reason (and the rea-
sons were multifarious), an insoluble like ‘What I am saying is false’ says
not only that it is false but also that it is true — all insolubles, or perhaps
all propositions, say implicitly of themselves that they are true. Hence no
insoluble can be true, since it is self-contradictory. All insolubles are false.

5 Renaissance to Enlightenment

5.1 The Renaissance

During the fifteenth century a major change came over European logic.
Some people have tied this change closely to the French logician Petrus
Ramus (Pierre de la Ramée, 1515–72), who for his Master’s degree in 1536
defended the thesis that ‘Everything said by Aristotle is a pack of lies’;
logic texts that are seen as influenced by Ramus are often referred to as
Ramist Logic. But there may be a misunderstanding here. As a masters’
student Ramus may well have been given his thesis title by his teachers —
so he was being required to defend an obvious falsehood rather in the spirit
of the obligational disputations that we described in §4 above. In fact his
logic was not at all anti-aristotelian, but it does illustrate a general trend to
relate logic to humanism.
This trend can be traced back earlier than Ramus. In fact some of its main

features are already visible in the colourful Majorcan eccentric Ramon
Llull (c. 1300), who proposed to use logic as a tool for converting North
African Muslims to Christianity. Llull seems to have had little influence in
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his lifetime, but many later logicians have seen his ideas as prophetic. Four
features of his work are worth recording.
First, Llull addressed his logic to the general public, not just to university

students and colleagues. (He was deported from Tunis three times for at-
tempting public debates with Muslims there.) During the seventeenth and
eighteenth centuries, most publications in logic were for general readers,
particularly those with an interest in raising their level of culture. In Britain
the authors were often literary figures rather than university teachers; we
have logic texts from the poets John Milton (17th century), Isaac Watts
(18th century) and Samuel Coleridge (early 19th century). Inevitably these
works avoided all the subtler points of Scholastic logic and said more about
general improvement of the mind.
Second, Llull wanted to use logic as an instrument of persuasion. In the

early 15th century Lorenzo Valla argued that the central notions of logic
should be not deduction but evidence and testimony; the best logician is
one who can present a sound case persuasively. This whole period saw
debates about how to speak both to the ‘heart’ and to the ‘mind’ (as Blaise
Pascal put it in the 17th century). For example one way of catching the
interest of the listener or reader is visual display. Llull himself had some
strange display consisting of rotating disks with Latin words written on
them — we will say more on these below. Several writers devised ways
of making logic itself more appealing by presenting it as a ‘game’; for
example in the 16th century Agostino Nifo wrote a ‘Dialectica Ludicra’,
which one might translate as ‘Logic by games’. This trend towards associ-
ating logic with games has become a permanent feature of Western logic.
Lewis Carroll joined it in 1887 with his book The Game of Logic. Today
Katalin Havas in Hungary uses games to teach logic to schoolchildren, and
Johan van Benthem in the Netherlands does something similar at a more
advanced level, using some elementary mathematical game theory to ad-
vertise epistemic logic. It’s worth noting here that in the late 20th century
game theory was used partly to restore links between logic and probabil-
ity, which (as we remarked in §3) were broken when probability theory
became an independent discipline.
Third, this period saw logic drawing closer to mathematics, in the sense

that logical deductions came to be seen more as calculations. Exactly what
Llull contributed here is unclear, but many later logicians were inspired
by his use of a mechanical device for making logical points. Some people
even honour him as a forerunner of computer science. Leibniz named Llull
as someone who had anticipated Leibniz’s own project (on which more
below) for building a logical calculus based on mathematics. We should
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also mention the mathematicians Leonhard Euler (18th century) and John
Venn (19th century) who gave us respectively Euler Diagrams and Venn
Diagrams as ways of using visual display to help logical calculations.
The fourth prophetic feature of Llull’s approach to logic was his use of

classifications. His rotating disks were meant to illustrate di�erent combi-
nations of properties from a given set. Leibniz saw this as an anticipation
of his own view of logic as a ‘combinatorial art’. But it was also an an-
ticipation of the enormous interest that some logicians of this period took
in classification and cataloguing. Ramus was famous for his binary classi-
fications; in Christopher Marlowe’s play The Massacre at Paris (c. 1592)
Ramus is murdered for being ‘a flat dichotomist’. It was during this period
that notions from Aristotle’s theory of definition, such as ‘genus’, ‘species’
and ‘di�erentia’, were adapted to provide a structure for biological taxon-
omy. Some of the least appealing logic texts of the period are long cata-
logues of logical definitions, for example the 236-page ‘Compendium’ of
Christian Wol�’s Logica published in the mid 18th century by Frobesius.

5.2 Leibniz

The most powerful logician of this period was Gottfried Leibniz (1646–
1716). He was also a mathematician, in fact one of the founders of the
di�erential and integral calculus. Some of his most lasting contributions to
logic are about combining logic and mathematics. He wrote several papers
developing a logical calculus of ‘coincidence’, i.e. identity. He devised a
way of translating definitions into numbers, so that logical properties of
the definitions could be checked by arithmetical calculation. Above all he
is remembered for his project of designing a ‘universal characteristic’, by
which he seems to have meant an ideal language in which all human rea-
soning can be expressed in a form that can be checked by calculation. He
imagined a day when scholars or lawyers would resolve their di�erences
by writing down their arguments in his language and saying to each other
‘calculemus’ (‘let us calculate’). The project never came anywhere near
completion, but Leibniz’s calculi of identity and definitions were certainly
intended to be contributions to it.
It might seem a short step from claiming that all logical proofs can be

checked by calculation, to claiming that all logical problems can be solved
by calculation. Leibniz himself seems never to have taken this step. It was
left to the 1930s to sort out these claims. By that date, higher-order logic
had replaced syllogisms, and a much wider range of logical problems could
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be formulated. Thanks to work of Kurt Gödel and Alan Turing above all
(for which see Barry Cooper’s chapter ‘Computability Theory’ in this vol-
ume), we now know that Leibniz’s instincts were sound: for higher-order
logic we can check by elementary calculation whether a supposed proof
is correct, but by contrast there is no mechanical method of calculation
that will tell us whether any given sentence of the language of higher-order
logic is a logical truth. The same holds for first-order logic.
Since the mid 20th century, Western modal logicians have often used the

notion of possible worlds: a sentence is necessarily true if and only if it is
‘true in’ every possible world. The notion is often credited to Leibniz, who
certainly did talk about alternative worlds that are possible but not actual.
But he himself didn’t use this notion for logical purposes. In any case one
might argue that the ‘possible worlds’ of modern modal logicians are not
alternative worlds but reference points or viewpoints, as when we say that
something will be true at midday tomorrow, or that something is true in
Smith’s belief system. (The study of things being true or false at di�erent
times goes back to Aristotle, though Ibn Sı̄nā may have been the first to
build a logic around it. The study of the logic of belief systems is much
more recent in the West; the Jaina logicians got there first with their notion
of perspectives, anekāntavāda.)

5.3 The philosophical turn

During the late 18th and early 19th centuries several metaphysicians made
attempts to base logic on a theory of rational thinking. The results of these
attempts were strictly not a part of logic at all, but comments on logic
from the outside. But we need to mention them, both because they had
an influence in logic, and because their importance in Western logic has
been exaggerated in a number of recent comparisons between Western and
Indian logic.
Thus Immanuel Kant (1724–1804) believed he had identified a central

core of logic, which he called ‘pure general logic’ or ‘formal logic’. The
defining feature of pure general logic was that it studies the absolutely
necessary laws of thought without regard to subject matter. All other logic
was dependent on this central core. Some later logicians agreed with Kant
that there is a central ‘genuine logic’; in a few cases their definition of it
(which was nearly always di�erent from Kant’s) influenced the direction of
their research, and in this way Kant’s notion indirectly a�ected the history
of logic.
Among these later logicians, pride of place goes to Gottlob Frege (1848–
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1925), who aimed to show that arithmetic and mathematical analysis are
parts of pure general logic. Frege achieved a combination of depth and
precision that had certainly never been seen in logic before him, and has
rarely been equalled since. But his actual historical influence is another
matter; it is quite subtle to trace and has often been overblown. For example
one reads that Frege founded mathematical logic; but as we will see in
section §6, both the name ‘mathematical logic’ and its initial programme
were proposed by Giuseppe Peano, quite independently of Frege.

The period around 1800 also saw the formulation of some ‘fundamen-
tal laws of thought’, such as the Law of Non-Contradiction and the Law
of Excluded Middle. These two laws were popularised in the 1830s by
the Scottish metaphysician William Hamilton in his lectures on logic. For-
mulations of the laws have changed over the years, and today few people
would recognise Hamilton’s versions. The broad sense of the Law of Non-
Contradiction is that it can never be correct both to assert and to deny the
same proposition at the same time. The broad sense of the Law of Ex-
cluded Middle is that every proposition either can be correctly asserted or
can be correctly denied (though we might not know which).

The claim that these are fundamental laws bears little relation to tra-
ditional practice in Western logic. True, many logicians from Aristotle
onwards said things that look like the laws; but one has to allow for sim-
plifications and idealisations. In fact many traditional Western logicians
accepted that a proposition could fail to be straightforwardly true or false
in several circumstances: for example if it was ambiguous, or a border-
line case, or paradoxical, or a category mistake. Likewise many traditional
logicians were happy to say that a sentence or proposition (the two were of-
ten confused) could be true from one point of view and false from another.
Perhaps no Western logician pursued this last point to the same extent as
the Jaina logicians, though Ibn Sı̄nā came close at times. In any case, to
treat the Laws as a basic di�erence between Western and Indian logic is
certainly a distortion.

In the twentieth century it became common to use purpose-built formal
systems of logic. The Laws then served as ways of classifying formal
systems. For example, it is crucial to distinguish Excluded Middle, the
claim that every proposition or its contradictory is true, from Bivalence,
that every proposition is either true or false.
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6 Transitional

Aristotelian logicians through the ages claimed that logic can free us from
errors in reasoning. The claim was fraudulent. From Aristotle onwards,
logicians made catalogues of types of fallacious argument, in terms of
kinds of ambiguity. But until the early 19th century no aristotelian lo-
gician made any serious attempt to discover whether the ambiguities are
causes or symptoms of the breakdown of reasoning, or what are the best
ways of protecting ourselves against falling into fallacies. (By contrast
the Buddhist logicians appreciated early on that making errors is a failure
of our cognitive apparatus, and at least part of the reason for errors must
lie in facts about that apparatus and its powers of ‘constructive thinking’,
vikalpa.)
In the West the first step into intellectual honesty seems to have been

taken by the philosopher Jeremy Bentham, who never published his views
on logic— they were reported later by his nephewGeorge Bentham. Jeremy
Bentham argued that a good strategy for avoiding errors is to translate ar-
guments into what we now call set theory. One should identify the classes
of objects that one is talking about, and express the argument in terms of
relations between these classes.
These remarks were ahead of their time. Bentham couldn’t have fore-

seen another result of translating logic into set theory. Namely, set theory
provides a universe of abstract objects and a set of sharply defined rules
for operating with them. So it gives us building materials and a space for
developing logic in a way that had never been possible before.
The three logicians most responsible for moving logic into set theory

were George Boole (1815–64), Giuseppe Peano (1858–1932) and Alfred
Tarski (1901–83, whom we postpone for a moment). Boole is well known
for boolean algebra; in his hands it was an algebra of classes. Peano was
interested in avoiding errors in mathematics. He believed that the best pro-
tection against errors was to translate mathematical arguments wholesale
into a symbolic language of his own invention, and he wrote down rules for
operating with this language. With this he had invented a new discipline.
Peano named this discipline ‘mathematical logic’ and did vigorous propa-
ganda for it. His most important convert was Bertrand Russell, whose book
Principia Mathematica (written with Alfred North Whitehead) became the
showpiece for the Peano programme. Peano had little interest in traditional
logic and he largely made things up as he went along; this certainly helped
him to break free from some unhelpful traditional views. With hindsight,
perhaps his biggest breakthrough was that he formalised entire complex
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arguments, not single inference steps as in the aristotelian tradition. (Re-
call §1.4 above.) This forced him, and the later logicians who plugged the
holes in his work, to rethink logic from the ground up. Logicians would
no longer state more and more complicated inference rules. Instead they
would isolate fundamental ideas and principles, that you could use to de-
rive whatever arguments you were interested in. For example logicians had
been using existential quantification since Aristotle, but Peano was one of
the first logicians to isolate the existential quantifier (the symbol � is his)
so that it could be used in any context. One consequence of Peano’s work
was that for half a century, mainstream logicians more or less abandoned
any interest in natural language arguments.
Peano worked in a kind of mishmash of logic and set theory. Russell

brought some order into the system with his ‘theory of types’. At the bot-
tom level one has expressions for talking about individuals; then there are
expressions for talking about relations between individuals, then expres-
sions for talking about relations between relations between individuals, and
so on. David Hilbert in 1928 published what became accepted as the stan-
dard version of this logical system; it was known as the ‘logic of finite
types’, or ‘higher-order logic’. One could separate out parts of it. For
example if one stopped at the relations between individuals, one got ‘first-
order logic’. Cutting out even more, one got ‘propositional logic’. This was
probably the main source of the idea that logicians study formal systems
called ‘logics’. In the 1920s and 1930s logicians came to realise that they
could bring their subject to levels of precision and accuracy undreamed of
before, by defining formal systems. A definition of a formal system would
say precisely what symbols were used (and even list the variables exactly
— people never did that before about 1930). The rules for manipulating
the symbols were exact mechanical rules that could be used by a machine
(and today often are). It was largely thanks to this that the new subject
of computability theory, founded in the 1930s by Alan Turing, came to be
regarded as a branch of logic, although it had no real antecedents in earlier
Western logic.
Now we can explain Tarski’s role. Tarski studied various fundamental

notions of logic such as truth and logical consequence, which are meta-
level notions, i.e. they are used for talking about formal systems rather than
being expressed in them. He showed that these notions have set-theoretical
translations that for practical purposes we can use instead of the original
ones. This had an e�ect that he didn’t foresee at first. We can in princi-
ple throw the whole of logic — both the formal systems themselves and the
meta-level study of them— into the formal system of first-order set theory.
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Tarski’s work neatly complemented ideas of Hilbert. Hilbert had argued in
the 1920s that we can discover useful mathematical facts by studying the
ways in which mathematicians move symbols around on the page, without
bothering with the meanings of the symbols; this would be a way of study-
ing mathematics from the outside, and Hilbert coined the name ‘metamath-
ematics’ for it, to distinguish it from mathematics proper. (Hilbert was a
leading mathematician of the early 20th century, and his own contributions
ranged far beyond metamathematics.) Hilbert’s metamathematics was an
important step towards the invention of digital computers, which do move
symbols around without any understanding of what they mean. It also led
to a new mathematical theory of formal proofs; Gerhard Gentzen proved
deep results in this theory, and most of today’s proof calculi trace back to
him in one way or another.
Within the framework of first-order set theory we can do logic without

any philosophical assumptions; we need not even agree on why the prin-
ciples of set theory are true or usable, so long as we agree to use them.
Old philosophical questions about logic haven’t gone away, but today we
can separate them o� as questions about logic, not questions that logicians
themselves need to think about. (It’s like the di�erence between doing his-
tory and doing philosophy of history.) One can argue that some Indian
logic compares better with Western philosophy of logic than it does with
Western logic proper. Recall here the remarks about Frege and others in
subsection §5.3 above.
Frege’s writings contain by far the most penetrating account of what

needed to be changed and corrected in aristotelian logic. So it was ironic
that a contradiction in his own work seemed for a time to threaten the
coherence of set theory. Frege had a principle, known today as the Unre-
stricted Comprehension Axiom, which said that for every property P there
is a class whose members are exactly those things that have the property
P. We get a contradiction by applying this to the property ‘class which is
not a member of itself’. If C is the class of all classes that are not members
of themselves, then we easily show that C is a member of itself, and that
it isn’t a member of itself. This contradiction was pointed out by Russell
in 1901, and is known as Russell’s Paradox. Ernst Zermelo (who inde-
pendently noticed the paradox) developed a way of doing set theory that
— as far as we know, one century later — doesn’t lead to paradoxes. We
do know that there is a price to pay: if Zermelo’s set theory is consistent,
then it leaves some important questions unanswered, such as the size of the
continuum.
Could we perhaps prove, by mathematical or logical methods, that Zer-
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melo’s system of set theory will never lead to a contradiction? Hilbert
hoped that his metamathematics would give an answer. The aim would be
to prove, by studying the ways in which a mathematician using Zermelo’s
system moves symbols around, that this mathematician could never reach
the point of writing ‘0 � 1’. The proof should use only what Hilbert called
‘finitist’ reasoning about the symbols, so as to avoid circularity. In one
of the strongest tours de force of logic — perhaps of mathematics too —
Gödel showed in 1931 that this is impossible. To state his result briefly
but a little imprecisely, Gödel showed that there is no argument that can be
expressed in elementary arithmetic and proves that elementary arithmetic
itself is consistent, unless in fact elementary arithmetic is inconsistent.
In the first decades of the 20th century Russell’s Paradox made many

mathematicians and philosophers suspicious of set theory, and it certainly
encouraged some logicians to develop logical systems that didn’t depend
on set theory. One important example was the intuitionist system which
L. E. J. Brouwer devised as a basis for mathematics. His central notion
was not truth but mental construction. A meaningful sentence is either true
or false; but we may not be able to make a mental construction that justifies
the sentence, or one that justifies its negation. So intuitionists do not accept
the Law of Excluded Middle in the form of the law ‘Either p or not-p’.
Some more radical followers of Brouwer constructed systems of logic

which avoid the notion of negation altogether. This makes a curious con-
trast with the frequent appearances of double negation in Buddhist logic
under the influence of the doctrine of apoha. The contrast is not hard
to explain when we remember that these Western logicians were study-
ing mental constructions while the Buddhist logicians were thinking about
classification by universals. A general point to draw from this is that the
history of logic makes little sense if one doesn’t appreciate what the vari-
ous logicians were aiming to do with their logic. We hope our short survey
has illustrated this point in a range of ways.
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Abstract. A rational interpretation is proposed for two ancient Indian logics: the
Jaina saptabhaṅgı̄, and the Mādhyamika catus. kot.i. It is argued that the irrational-
ity currently imputed to these logics relies upon some philosophical preconcep-
tions inherited from Aristotelian metaphysics. This misunderstanding can be cor-
rected in two steps: by recalling their assumptions about truth; by reconstructing
their ensuing theory of judgment within a common conceptual framework.
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1 Two logics?

A note on Indian “logics” is in order, to begin with. By a logic, it is ordinar-
ily meant a specific set of consequence relations between a set of premises
� and a conclusion B such that, for every formula A � �, if A is true then so
is B. Formally: if v(A) � T then v(B) � T, where v is a valuation function
from a set of formulas to a set of truth-values. But such a modern definition
of logic as a set of rules for truth preservation cannot be properly applied
to ancient logics, including those from India. Rather, ancient and medieval
logics include epistemology in the scope of the formal discipline: how to
assess the content of a judgment isn’t separable in Aristotle’s Organon or
the Port-Royal Logic, for instance, and Indian logics are not an exception.
The epistemological import of Indian logics largely accounts for their

peculiar content; the metaphysical assumptions that underlie these Indian
schools of philosophy also results in specific theories of truth, and the main
aim of the present paper will be to give a formal presentation of the ways to
produce a judgment or predication such as “S is P” or “S is not P” (where
S is the subject-term and P the predicate-term). As a matter of rule, Indian
logics are about judgments and not about the sentences expressing them;
we will restrict our attention to two such cases: the Jaina saptabhaṅgı̄; and
the catus. kot.i from the Buddhist school of Mādhyamaka (literally, “Middle
Way”).
As a general rule, the logics emerging from the Jaina and Mādhyamika

schools include both a theory of knowledge (about how to come to know
something) and a complementary theory of judgment (about how to ex-
press this something known). Concerning the theory of knowledge, the
nayavāda is a Jaina theory (vāda) of standpoints (nayas) that includes
seven kinds of justification for the truth of a sentence.1 Furthermore, a
set of seven (sapta) distinct judgments (bhaṅgı̄) can be made about a given

1The seven kinds of justification (nayas) include metaphysical, physical and gram-
matical features. These are the following: naigama-naya (non-distinguished standpoint);
sam. graha-naya (collective standpoint); vyavahāra-naya (particular standpoint); r. ju-sūtra-
naya (momentary viewpoint); śabda-naya (synonym viewpoint); samabhirūd. ha-naya (ety-
mological viewpoint); and, finally, evam. bhūta-naya (momentary etymological viewpoint).
For instance, “the existence of an entity such as a pot, depends upon its being a particular
substance (an earth-substance), upon its being located in a particular space, upon its being
in a particular time, and also upon its having some particular (say, dark) feature. With
respect to a water-substance, it would be non-existent, and the same with respect of an-
other spatial location, another time (when and where it was non-existent), and another (say,
red) feature. It seems to me that the indexicality of the determinants of existence is being
emphasized here.” ([12], p. 132).
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topic. There is no causal relation between the number of standpoints and
judgments, however. After all, the Greek skeptic Agrippa proposed five
kinds of justification while sticking to an Aristotelian or bivalent view
of judgments: either S is P or S is not P, period. Rather, the number of
the Jaina judgments is due to their endorsement of a metaphysical plural-
ism according to which reality is many-faceted and cannot be restricted
to a unique predication. As to the Mādhyamika school and its founder
Nāgārjuna (� 100 C.E.), they did not present a competing theory of knowl-
edge but advanced four (catus. ) main sorts of stances (kot.i) for any subject-
matter.
As noted in [15], “logic is not metaphysically neutral”, and the di�erence

between the Jaina seven and Nāgārjuna’s four judgments is due to their
rival views of truth. Ganeri advances (in [6], p. 268) a relevant distinction
between three semantic views of truth-assignment, namely: doctrinalism,
skepticism, and pluralism. According to the doctrinalist view, “it is always
possible, in principle, to discover which of two inconsistent sentences is
true, and which is false.” This doctrine is related to Aristotle’s two-valued
logic, where only two judgments can be made about any subject-matter
(S is P, S is not P) and only one of which comes to be accepted as true
while the other is to be false. Bivalence is the logical cornerstone of such
a doctrine and entails that every judgment is either a truth- or a falsity-
claim, i.e. a statement. Skepticism and relativism challenge this binary
view in opposite directions. According to skepticism, “the existence both
of a reason to assert and a reason to reject a sentence itself constitutes a
reason to deny that we can justifiably either assert or deny the sentence”,
so that some sentences can be taken to be neither true nor false. Conversely,
the pluralistic watchword is “to find some way conditionally to assent to
each of the sentences, by recognizing that the justification of a sentence is
internal to a standpoint”; in this sense, one and the same sentence can be
taken to be both true and false depending upon the condition under which
its content is assessed.
We take these three doctrines of truth-assignment to be the crucial path

for a better understanding of Indian logics. While these have been dis-
missed by Western thinkers, as having “irrational” or “unintelligible” out-
look2, we suspect this uncharitable preconception to stem from a narrow
reading of bivalence that takes Frege’s modern logic as a standard for any

2“Manifoldness in this context is understood to include mutually contradictory proper-
ties. Hence on the face of it, it seems to be a direct challenge to the law of contradiction.
However, this seeming challenge should not be construed as an invitation to jump into the
ocean of irrationality and unintelligibility” ([12], pp. 129-30).
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meaningful judgment. If so, the next sections insist upon the discursive
and non-standard form of judgments in Jaina and Mādhyamika logics: it is
still possible to preserve bivalence within these Indian theories and, thus,
to preserve their intelligibility, but only if such a bivalence is not defined
in Fregean terms and reformulated as a question-answer game between
speakers.

2 Two opposite logics?

An intriguing feature of Jaina and Mādhyamika logics concerns their at-
titude towards inference: the relativist doctrine of truth seems to entail a
fully inconsistent logic, whereas the skeptic doctrine of truth would en-
tail a fully incomplete logic. This means that, for any sentences A and
B, B seems to be inferred from every premise A in Jaina logic (say, J): A
��J B (for every B); whereas no sentence B would be inferred from A in
Nāgārjuna’s logic (say, N): A ���N B. Parsons described in [14] these cases
in terms of ultimate eclecticism and complete nihilism, respectively3.
Is Jaina logic a formal system of eclecticism, and Nāgārjuna’s logic a

system for nihilism? This is not so, at least for one simple reason: nihilism
assumes that the premise A is accepted as true, while the coming exposition
of Nāgārjuna’s Principle of Four-Cornered Negation amounts to a denial of
every sentence including A. As to the Jaina logic, the role of standpoints
means that not every conclusion B can be inferred from A irrespective of
the context in which A and B are assessed. This entails that not everything
can be inferred from every given context, and Priest recalls this fact in [15]
to make his own dialetheist reading of Jaina logic immune from triviality.
We will return to this modern translation in Section 5.
Two Sanskrit notions will be introduced now, in order to throw some

light upon the Jaina and Mādhyamika ways of doing logic. The first con-
cept is anekāntavāda: this term means non one-sidedness and character-
izes the Jaina conditional view of truth, according to which the truth of a
sentence is never one-sided (ekānta) but always depends upon the context
in which it is assessed. The second concept is prasajya pratisedha (see

3See [14], p. 141. Roughly speaking, eclecticism refers to the view that sentences of
two di�erent theories can be accepted consistently within a third embracing theory: T1

�� p, T2 �� q, T3 �� p and T3 �� q. This is not the point of Jainism. As to nihilism, it
refers to the belief that nothing is true. This is not the point of Mādhyamaka, either. The
di�erence between such nihilists and the latter could be made clearer by the di�erence
between atheism (negative assertion about the existence of God) and agnosticism (mere
denial about the existence of God).



Two Indian Dialectical Logics 51

[5],[11],[13]); Mohanta mentions this concept in [13] as a non-relational
negation which somehow corresponds to the contemporary denegation or
illocutionary negation4. In contrast to the Jaina conditions for truth - as-
signment, the Mādhyamikas defended the view that being dependent upon
anything else is a su�cient ground for denying a corresponding predi-
cation: S cannot be said to be P or not to be P whenever S is not self-
originated and is caused by another substance than itself. This refers to the
two-truths doctrine and its distinction between absolute truth (paramārtha-
satya) and conventional truth (sam. vr. ti-satya) in the Mādhyamika’s
sūnyavāda (doctrine of emptiness); we will see how this doctrine leads
to Ganeri’s previous distinction between the pluralist and skeptic condi-
tions for truth-assignment. While the Jains favor a contextual theory of
a�rmation, Nāgārjuna endorses a peculiar use of denial which is to be
rigorously distinguished from negative assertion and departs from falsity-
assignment. Thus, saying that S is not P results in an ambiguous judgment
between a�rming that the sentence “S is P” is false and denying that “S
is not-P” is true. From an Aristotelian or doctrinalist approach, a�rm-
ing S not to be P and denying S to be P are synonymous with each other;
from a Mādhyamika or skeptic approach, however, P may be denied to
be true of S without being a�rmed to be false of S. Such a confusion
amounts to a harmful confusion between two sorts of Indian negations
(pratisedha), namely: the previous prasajya pratisedha and paryudāsa
pratis. edha, which is a relational (see [13]) or locutionary negation used
by the later Navya school.
To sum up, Jaina and Mādhyamika logicians do oppose each other with

respect to their underlying criterion for truth-assignment. Given two op-
posite sentences “S is P” and “S is not P”, how to decide on the truth
of either? The main di�erence between Jainas and Mādhyamikas lies in
their answer to this question. Thus, Matilal claims (in [12], p. 129) that
“the di�erence between Buddhism and Jainism in this respect lies in the
fact that the former avoids by rejecting the extremes altogether, while the
latter does it by accepting both with qualifications and also by reconcil-

4Illocutionary negation (denial, or denegation) has been defined by John Searle in [19].
Let the speech act F(p) � “I promise that I will come”, where F is the act of promise and
p the sentential content “I will come”; then its locutionary negation F(�p) is “I promise
that I will not come”, while its illocutionary negation �(Fp) is “I do not promise that I
will come”. Denial has been ordinarily rendered as a reversed turnstile �, in reference to
Frege’s turnstile of assertion, while Kei� views it in [11] as a merely failed assertion �. In
both cases, denial occurs as an operator; in QAS, however, denial is an operand (a logical
value: the no-answer ai � 0).
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ing them.” It is worthwhile to note that these opposite modes of truth-
assignment also foreshadow the contemporary opposition between seman-
tic realism and anti-realism: [22] and [23] notice that the Jains countenance
a correspondence theory of truth, whereas Siderits’ comparison (in [21])
between Nāgārjuna’s denials and Dummett’s anti-realist semantics entails
that Nāgārjuna’s conception of truth doesn’t transcend recognitional capac-
ity by a given agent.
Before approaching this last problem about the relations between judg-

ments, let us consider the way to describe their various admitted judgments
within a clear and uniform formal semantics.

3 Two many-valued logics?

One of the primary aims of the paper is to insist upon the dialectical nature
of Indian logics, i.e. their presentation in terms of speech-acts within an ar-
gumentative framework of questions and answers. To put it in other words,
each truth- or falsity-assignment proceeds by means of an intermediary act
of a�rmation and denial. Importantly, we take the asymmetry between the
pairs true-false and a�rmation-denial to be the key for a better understand-
ing of Indian logics. A number of logical techniques have been proposed
in the literature to catch the dialectical or discursive feature of Indian log-
ics: relational or possible-world semantics ([15]), dialogics ([8],[11]), and
algebraic or many-valued semantics ([6],[15],[18],[20])5.
In order to give a more fine-grained description of Jaina andMādhyamika

logics, we resort here to many-valuedness. Roughly speaking, the various
ways of making a judgment require the introduction of alternative logical
values beyond the doctrinalist values of truth and falsity. In the case of
Jaina philosophy, no judgment uniquely claims plain truth or falsity be-
cause of its underlying one-many correspondence theory of truth: a given
sentence partly describes a fact following the perspective from which its

5Gokhale rejected the many-valued interpretation of Jain logic because, according to
him, a di�erence is to be made between epistemological and logical values. Thus: “The
middle value designated by the term avaktavyam is therefore better understood as the epis-
temic middle rather as the logical middle. It is closer to the middle truth-value called
‘undeterminable’ of Kleene’s three-valued system than to the Łukasiewiczian third truth-
value called ‘indeterminate’. (� � �) As a result we can say that avaktavya is not the third
truth-value in the logical sense of the term, because it does not arise out of the violation
of the laws of logic such as non-contradiction and excluded middle” ([7], p. 75). This ob-
jection assumes that every logical value should have an ontological import, but our purely
algebraic viewpoint of logic does not require this and Belnap’s four-valued system is an
instance where all the logical values have an epistemological import.
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content may be described.6 In the case of Nāgārjuna’s Principle of Four-
Cornered Negation, it will be shown that the assumption of bivalence can-
not make sense of the four negative stances together (see section 5). At the
same time, the metaphysical pluralism of the Jains does not entail that new
truth-values should be devised in addition to the Aristotelian framework
of bivalence. Rather, these alternative logical values are various combina-
tions of truth and falsity inside the initial set of values T (for true) and F
(for false).
In particular, the Jaina theory of sevenfold predication (saptabhaṅgı̄) re-

minds one of Belnap’s system of generalized truth-values and Shramko &
Wansing’s extension from 2 to n truth-values (see [3],[20]). Taking 2 �
{T,F} as a basic set and its two elements of truth and falsity, an extension
from 2 to 4 results from its powerset �(2), that is the set of the subsets of
2. Thus 4 � {{T},{F},{T,F},�}, and Belnap symbolized the new combi-
nations of truth-values as {T,F} � B (for “both true and false”) and � �
N (for “neither true nor false”) in its four-valued logic FDE (First Degree
Entailment). The same process can be applied indefinitely, leading to a set
of �(n) elements for any n-valued logic (where n � 1). Another such gen-
eralized set is �(3), with n � 3 basic elements T, F and {T,F}. One of these
generalized sets is

8 � {{T},{F},{B},{{T},{F}},{{T},{B}},{{F},{B}},{{T},{F},{B}},�}.

We will see that the latter set can be made very similar to the Jaina se-
mantics, even though the odd number of the seven Jaina judgments may
surprise at a first blush. Moreover, Bahm rightly noted in [2] that Indian
logics are not just formal combinations of truth-values but require a more
comprehensive reading of their original texts.
For this purpose, we propose now a conceptual framework to grasp the

rationale of Indian logics: a Question-Answer Semantics (QAS) that en-
compasses Belnap’s generalizations and helps to account for the Mādhya-
mika’s dialectical logic of Four-Cornered Negation.

6Sylvan noted that “Jainism apparently entailed a correspondence theory of truth” (p.
62), so that the Jain values have an ontological import that di�ers from Belnap’s four values
in FDE: a sentence is true and false (in some respects), rather than told true and told false.
The di�erence between Jain and Aristotelian logic relies upon their underlying ontology:
the latter takes a true sentence to correspond to a fact, while the former reject such a one-
one correspondence between sentences of a language and states of a�airs of the world.
Thus Tripathi argued in [23] that “Jainism is a realistic system. It not only holds that reality
is pluralistic, but also that reality is many-faced (anantadharmātmakam vastu).” ([21], p.
187) The Wittgensteinian Bildtheorie should be strictly kept apart from the Jain view of
reality, consequently.
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DEFINITION 1. A question-answer semantics is a model QAS � ���A�
upon a sentential language � and its set of logical connectives �. It in-
cludes a logical matrix� � �Q�V�D�, with:
- a function Q(�) � �q1(�)� ����qn(�)� that turns any sentence � of � into
a specific speech-act (the sense of which is given by appropriate questions
about it);
- a set V of logical values (where Card(V) � mn);
- a subset of designated values D � V .
It also includes a valuation functionA, such that the logical valueA(�) �
�a1(�)� � � � � an(�)� of V that characterizes a statement by giving an ordered
set of m sorts of answers to each question qi in Q(�) � �q1(�)� � � � �qn(�)�.
This semantic framework results in a variety of logics � � �� � ���� that
include an entailment relation in a model ��� such that, for every set of
premises � and every conclusion � in � , if A(�) � D then A(�) � D:
� ��� �.

A crucial di�erence with the more familiar logics is the meaning of the
semantics values in QAS: each element �a1(�)� � � � � an(�)� of A(�) is a ba-
sic answer ai(�) (where 1 � i � n) with the symbol 1 for a�rmations
(yes-answers) and the symbol 0 for denials (no-answers). Let us call by
the general heading of “logical value” every such ordered set of answers,
rather than the customary “truth-values”: these values are a combination
of yes-no answers to corresponding questions, whereas not every question
is to be asked about the truth-value of a sentence in QAS.
Once the formal structure is set out for any question-answer game, let

us have a closer look at our two Indian logics at hand while attempting to
reconstruct their argumentative games.

4 Jaina’s theory of seven-fold predication

It has been previously claimed that not everything can be derived from
every premise from a Jaina perspective: meaningfulness presupposes that
a restricted set of sentences can be accepted on the basis of certain premises
in a given language, while the remaining sentences of the language should
not be accepted. But the question is how the Jaina predications do make
sense in a consistent set of statements. In particular, the Jaina theory of
seven-fold predication (saptabhaṅgı̄) has been viewed as a challenge to
Aristotle’s logic.
According to Aristotle, the Principle of Non-Contradiction (PNC) is a

universal law of thought that cannot be violated without committing its
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opponent into plain nonsense. It is stated in [1] as follows:
“It is impossible for the same thing to belong and not to belong at the

same time to the same thing and in the same respect.” (Book IV, 1005b19-
20)
An instant reflection su�ces to see that the Jains did not oppose to this

principle as it stands: their semantic pluralism relies upon a doctrine of
conditioned, relative or partial truth (syādvāda). The Jaina philosopher
Vādiveda Sūri (1086-1169 C.E.) displayed the following set of seven pred-
ications and witnessed the crucial role of syād (“arguably”, or “in some
respect”) in every corresponding statement, where every predication ex-
presses a conditioned judgment about a sentence7:

(1) syād asty eva: arguably, it (some object) exists.
(2) syān nāsty eva: arguably, it does not exist.
(3) syād asty eva syān nāsty eva: arguably, it exists; arguably, it does not
exist.
(4) syād asty eva syād avaktavyam eva: arguably, it exists; arguably, it is
non-assertible.
(5) syād asty eva syād avaktavyam eva: arguably, it exists; arguably, it is
non-assertible.
(6) syān nāsty eva syād avaktavyam eva: arguably, it does not exist; ar-
guably, it is non-assertible.
(7) syād asty eva syān nāsty eva syād avaktavyam eva: arguably, it exists;
arguably, it does not exist; arguably, it is non-assertible.

Each of these predications is a combination of three basic semantic pred-
icates (mūlabhaṅgas)8, namely: assertion, or truth-claim; denial, or falsity-

7The saptabhan. gı̄ clearly departs from the Fregean logic of propositions, where a sen-
tence expresses a thought and refers to a unique truth-value. To the contrary, the seven
arguments of nayavāda assume that the meaning of a sentence is context-dependent and
doesn’t refer to some eternal entity as the True. Thus Matilal: “Realists or believers in
bivalence (as Michael Dummett has put it) would rather have the proposition free from
ambiguities due to the indexical elements - an eternal sentence (of the kind W. V. Quine
talked about) or a Thought or Gedanke (of the Fregean kind) - such that it would have a
value, truth or falsity - eternally fixed (� � �) We may assume that a proposition has an eter-
nally fixed truth-value, but it is not absolutely clear to us what kind of a proposition that
would be. For it remains open to us to discover some hidden, unsuspected determinants
that would force us to withdraw our assent to it.” ([12], p. 136)

8A judgment proceeds as a statement in which a semantic value is predicated of the
sentence. Gokhale claims for this higher-order level of discourse: “A syāt-statement, in so
far as it is a statement about a sense of a sentence, is a metalinguistic statement and not an
object-linguistic one.” ([7], p. 80).
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claim9; and a third sort of judgment that Jains called by non-assertibility
(avaktavya). Before discussing the meaning of this third predicate #, it
follows from their combinations that the three basic statements are very
similar to the set 3 � {T,F,#} and its eight combined subsets in �(3) �
8 � {{T},{F},{#},{T,F},{T,#},{F,#},{T,F,#},�}. The logical structure of
QAS brings out the two main features of this sevenfold predication, where
each component is to be rendered in terms of corresponding questions and
answers.

DEFINITION 2. A Jaina predication expresses an ordered answer A(�) �
�a1(�)� a2(�)� a3(�)� to n � 3 basic questions Q(�) � �q1(�)� q2(�)� q3(�)�,
such that q1: “Is � asserted?”, q2: “Is � negated?”, and q3: “Is � non-
assertible?”. There are m � 2 kinds of exclusive answers ai(�) �� �0� 1� to
each ordered question qi, where 0 is a denial “no” and 1 is an a�rmation
“yes”. This yields the following list of mn � 23 � 8 predications and their
counterparts in a Belnap-typed set 8:

(1) � �1� 0� 0� for {T} (2) � �0� 1� 0� for {F}
(3) � �1� 1� 0� for {{T},{F}} (4) � �0� 0� 1� for {#}
(5) � �1� 0� 1� for {{T},{#}} (6) � �0� 1� 1� for {{F},{#}}
(7) � �1� 1� 1� for {{T},{F},{#}} (8) � �0� 0� 0� for �

Each of the seven Jaina statements is an expression of single yes-answers
(ai � 1) among three possible ones, while the remaining no-answers (ai �
0) are left silent by the a�rmative nature of Jaina philosophy. The first two
statements (1) and (2) mean that every standpoint is such that it makes a
given sentence true or false, respectively. (3) means that there are stand-
points for asserting the truth and the falsity of the sentence, while noting
that a standpoint does not make this sentence both true and false at once.
The internal consistency of the standpoints is stated in terms of successive
assertion and denial. (4) is the troublesome statement that the sentence is
non-assertible: although this semantic predicate seems to entail merely that
a given sentence cannot be asserted (made true), this should leave place for
strong denial (falsity-claim); but such a translation would collapse (4) into
(2), all the more that this third mūlabhaṅgi is translated as a case of si-
multaneous assertion and denial. How can one and the same sentence be
non-assertible and asserted at once? We return to this point in the next

9Jain “denial” corresponds to the relational negation of the realists (paryudāsa
pratis. edha), by contrast to the Mādhyamika non-relational negation (prasajya pratisedha).
Accordingly, the “denial” of the secondmūlabhaṅgi (2) amounts to an act of negative asser-
tion or falsity-claim and stands for a commitment of the speaker about how the world is not,
whereas every disciple of Mādhyamaka typically endorses an attitude of non-committment.
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paragraph. The three remaining predications are combinations of the four
preceding ones: (5) and (6) mean that there are standpoints that make the
sentence true and non-assertible, or false and non-assertible. (7) is a com-
bination of the three basic predications such that the available standpoints
make the sentence true, false, and non-assertible.
The ultimate subset (8) doesn’t appear in the list of the Jaina predica-

tions, however; hence the odd number of 8�1 � 7 elements. A combina-
torial account for this odd number of predications can be given as follows:
there is an infinite number of particular arguments for any predication, and
all of these are classified among a set of seven general standpoints in the
nayavāda. Now since any two di�erent kinds of standpoints may result in
one and the same statement of the syādvāda, it follows from it that every
sentence is made (or claimed to be) either true, false or non-assertible by a
variable set of related standpoints. Therefore, there is always at least one
standpoint ai(�) � 1 for any sentence �. This entails that no sentence a can
be an exception to these three basic judgments �a1(�)� a2(�)� a3(�)�, and
the answer A(�) � �0� 0� 0� is made an impossible case.
As rightly noted by Priest10, no contemporary counterpart has been de-

vised for the so-called “Jaina logic”: the Jains have not defined any closed
formal language with a set of constants (connectives) and a closed set of
consequences. However, we can develop a plausible Jain logic within
QAS.

DEFINITION 3. Jain logic is a model J7 � ��� A� upon a sentential lan-
guage � and its set of logical connectives � � ���������. It includes a
logical matrix� � �Q; 7;D�, with:
- a function Q(�) � �q1(�)� q2(�)� q3(�)�;
- a set 7 of logical values;
- a subset of designated values D � 7.

The cardinality of D and the di�erent matrices for� cannot be uniquely
determined without solving an intermediary problem: the meaning of the
“non-assertible” avaktavya in q3, by contrast to the two “assertible” vak-
tavya (asti, nasti) that constitute expressible predications in q1 and q2.
Each ordered answer is a logical value from our many-valued perspective,
and the meaning of the semantic predicate “non-assertible” is crucial to de-
termine whether a positive answer to q3(�) results in a designated or non-

10“What are the semantic values of such compound sentences? Such a question is not
one that Jaina logicians thought to ask themselves, as far as I know. So we are on our own
here.” ([15], p. 268).
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designated value11. For if A(�) � (4) � �0� 0� 1�, then a1(�) � a2(�) � 0
and a3(�) � 1. Assuming with Priest that a semantic value is designated if
it expresses truth, then a non-assertible sentence should be asserted to be
at least true in order to be designated. Is it so?
There are three main interpretations of avaktavya: (4.1) neither true nor

false, (4.2) both true and false, (4.3) none (taking to be granted that not
two of these can be accepted without extending the set of semantic pred-
icates from 8�1 to 16�1 � 15 elements)12. Given the crucial role of the
number 7, only one of these three possibilities is to be accepted as the third
mūlabhaṅgi. The first interpretation is defended by [6], [7], and [9]; the
second is urged by [4], [12], and [15]. [15] and [18] admit both interpreta-
tions, while the third interpretation is supported by [2] and [23].
Those who advocate (4.1) usually claim that the Jains always sustained

internal consistency or non contradiction as an unquestionable meta-principle
(paribhāsā); this amounts to reject any case of simultaneous assertion and
denial from the same standpoint. Ganeri advanced in [6] a reductio argu-
ment against the inconsistent interpretation, to the e�ect that admitting a
simultaneous assertion and denial would reduce the logical values (5) and
(6) to (4). This collapsing argument is rejected in [18]], insofar as it omits
to take the di�erence between the standpoints a1 and a2 into account13.

11An alternative way consists in characterizing logical consequence in terms of an or-
dering relation between the elements of V , such that p ��J7 q if and only if A(p) � A(q).
See [3],[22] about this process. An algebraic presentation for Jain logic is also given in
[20],[22] and results in a bi-and- a-half-lattice (a product of two Belnap’s bi-lattices) with
no lower bound � (�0� 0� 0�, in J7). But given that nothing seems to justify a specific hi-
erarchy between the seven logical values, we stick to the view of logical consequence as
preserving the designated value.

12Priest mentions the possibility of four-valued facets or mūlabhaṅgi and a subsequent
15-valued logic in [15], in such a way that a sentence could be said to be either asserted
or denied, or both, or neither. Some other extensions of the basic predications have been
entertained in [2] for Jain logic, assuming it to be a positive counterpart of the catus. kot.i;
these yield an extension from 4- to 8- and 12-valued logics, where a given standpoint is
“more asserted (or not)” than another. But such a probabilistic extension misleadingly takes
the doctrine of relative truth for a logic of partial truth-values. Gokhale argues against this
reading, because “nayavāda, as has generally been held, gives us a class of ‘partial truths’,
whereas syādvāda gives us a class of whole truths (or the whole truth).” ([7], p. 74). In
other words, each sentence is plainly true (or not) from each given standpoint.

13Ganeri’s argument (see [6], p. 272) proceeds as follows: if avaktavyam means (4.2):
{T,F}, then the fifth and sixth predicates yield (5.2): {T,{T,F}} and (6.2): {F,{T,F}}, re-
spectively; now (5.2) and (6.2) are “logically equivalent” with {T,F}, given the trivially
twofold occurrence of T and F. Hence the adoption of (4.2) entails that (5) and (6) conflate
into (4), and the sevenfold predication is done. Ganeri’s mistake is due to his set-theoretical
equation between sets and subsets of elements in V: “this argument seems to rely upon a
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As a further argument for (4.3), Tripathi claimed that the incomplete inter-
pretation (4.1) cannot square with the a�rmative basis of the Jaina pred-
ications14. The latter means that any sentence can be made true from at
least one standpoint, so that no sentence can be said to be neither true nor
false. Assuming that “a�rmative basis” essentially refers to an act of asser-
tion (the second predication is a negative assertion), this implies that every
Jaina predication asserts something about a sentence and cannot amount to
a pure denial without assertive counterpart15.
Conversely, Priest quotes some sources in support of (4.2) and takes them

to mean a plausible admission of internal inconsistency16. The present pa-
per does not purport to have the final word, but to note two main properties
of J7 that are established in [18]17. On the one hand, the essential occur-

conflation of two distinct standpoints: to state that p is asserted from one standpoint and
both asserted and denied from another standpoint doesn’t entail that p is merely asserted
and denied, unless the crucial syād is suddenly removed from the meaning of a statement.
But it could not be so, and Ganeri unduly commits the following simplification: p � (p �
�p) � (p � �p).” ([18], pp. 63-4)

14“To say that a thing neither exists (asti) nor does not exist (nāsti) is sheer skepticism,
and the Jaina would never accept it as a bhaṅga (predicate), and as one of the mūlabhaṅgas
(primary predicates) at that. (� � �) What is worse, the interpretation of the avaktavya as
“neither” would make it indistinguishable from the fourth kot.i (alternative viewpoint) of
the Mādhyamika catus. kot.i, as also from the anirvanacanı̄ya (indescribable as either being
or not-being) of the Vedānta.” ([21], pp. 187-8). The argument is unconvincing, however,
given that the Mādhyamikas deny the “neither � � � nor”- position and don’t a�rm it (see
Section 5); no confusion should arise from (4.1), accordingly.

15It could be objected to the view of a pure denial that any first-order denial implicitly
contains a second-order assertion. Such an objection suggests that (4.3) includes a second-
order a�rmative basis (something like “arguably, I assert that I don’t assert anything about
p”); see Section 6 about this.

16Priest adduces his usual argument for dialetheism, according to which some (but not
every) contradictions are true: “What should seem to be meant by two things being contra-
dictory here is that they cannot obtain together. If [(4)] is both true and false, then [p] and
[�p] are precisely not contradictories in this sense.” ([14], pp. 271-2). Does this mean that
a di�erence should be made between possibly true and impossibly true contradictions? A
plea for possibly true contradictions has been made in [16], arguing that (4.1) could mean
that some standpoint a�ords an evidence both for and against the truth of p. But the latter
explanation does not seem to match with the definite value of a sentence in each standpoint,
according to Gokhale (see note 12 above). This is why the third interpretation (4.3) will be
favored in the following.

17A quantified epistemic interpretation of the standpoints has been suggested in [17]:
each standpoint stands for a single belief within a community of agents, so that each Jain
statement about � is translated as �xBx(�) and reminds us of Jaśkowski’s discussive logic
D2. Such a translation helps to explain the paraconsistent behavior of the Jains: a set of
inconsistent standpoints does not entail the truth of everything. Nevertheless, it doesn’t ac-
count for Jain realism (see note 6 above): a standpoint is not the mere epistemic expression
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rence of standpoints gives rise to a quasi-value-functional set of logical ma-
trices for J7 where the logical value of a complex sentence is partly deter-
mined by the value of its components18. On the other hand, the incomplete
or inconsistent interpretation of avaktavya makes J7 quasi-equivalent to
two famous many-valued systems: Kleene’s 3-valued logic K3 or Priest’s
3-valued Logic of Paradox LP, respectively. This can be stated by the two
following theorems:

THEOREM 1. J7 is a paranormal logic that is either paraconsistent or
paracomplete. That is: for some sentences �� � of � , either ���� ��� �
or ��� � does not entail ����. J7 is paracomplete and quasi-equivalent with
K3 if and only if (4) is interpreted incompletely, and J7 is paraconsistent
is quasi-equivalent with Priest’s 3-valued logic LP if and only if (4) is
interpreted inconsistently.

THEOREM 2. The matrices for the connectives � of J7 are invariant,
irrespective of the interpretation of (4). For every connective � � �, A(� �
�)icm � A(� � �)ics for every value of � and � including the incomplete
(icm) or inconsistent (ics) reading of #.

Apart from these technical results, it remains that no definite interpre-
tation of avaktavya occurs in the literature and thus leaves the Jaina set
of logical consequences indeterminate. The next point is to see whether
a meaningful interpretation can be given to the third interpretation (4.3):
what can be meant by avaktavya, if it is neither “both asserted and denied”
nor “neither asserted nor denied”? For even though such an alternative
reading prevents Jaina logic from reducing to what Matilal called a mere
“facile relativism”19, a formal approach hardly makes obvious any state-
ment beyond being either true, or false, or both true and false, or neither
true nor false.
For one thing, Bahm takes it (in [2]) to mean something like an incom-

plete thought: a sentence is non-assertible whenever no property P can be

of a belief or opinion, but the genuinely ontological expression of a facet of reality.
18Quasi-truth-functionality is due to the relative truth of standpoints. Two any sentences

� and � can be true from two di�erent standpoints; but there may be no standpoint from
which � and � should obtain at once, according to the existential translation of a standpoint
in [18]: v(�xBx(�)) � T and v(�xBx(�)) � T don’t entail v(�xBx(� � �)) � T, but v(�xBx(�
� �)) � T or F. On the origins of quasi-truth-functionality, see [17].

19“It also amounts to a view which announces that all predicates are relative to a point
of view; no predicates can be absolutely true of a thing of a thing or an object in the sense
that it can be applied unconditionally at all times under any circumstances. Jainas in this
way becomes identified with a sort of facile relativism.” ([12], p. 133). Again, the crucial
role of standpoints clearly points out that the Jain logic is not a real challenge to PNC.
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completely predicated of S. But this is the essential feature of anekāntavāda,
the partial truth for every standpoint of the Jaina nayavāda: the cornerstone
of their pluralist metaphysics is that reality is an indefinite collection of
incomplete perspectives. Assertion and denial are not categorical or one-
sided speech-acts, therefore, and the essential incompleteness of any syād
is likely to undermine Bahm’s explanation.
Amore insightful reading seems to emerge in [23], where non-assertibility

is synonymous with non-distinction: a sentence is non-assertible whenever
its object S cannot be said to be properly P or not P. The di�erence is
thus made with the interpretation (4.2), in the sense that S is said to be
both P and not-P by including both opposite properties from one contra-
dictory standpoint. But again, Tripathi claims in [23] that the Jains fully
subscribed to the law of non-contradiction and would have refused any
self -contradictory statement20. A plausible account of being indistinguish-
able refers to the Hegelian view of an internal or inclusive contradiction
without exclusive opposition between its terms. In support of this awk-
ward view of contradiction, it is worthwhile to note that most of the Jaina
or Mādhyamika sentences are about such metaphysical subjects as ātman,
Brahman and their being existent. One may be hesitant about the logical
form of an expression like “ātman is self-existent”, where existence occurs
as a predicate; but a more charitable reading would be to the e�ect that the
subject-term S is elliptically said to exist or to be as falling under a certain
property P. Consequently, avaktavya might mean that S is not any more P
that non-P. But which sort of S could be so indistinguishable as not only
to cover both P and all its complementary properties, but also to cancel
any distinction between these properties? Tripathi mentions as a “non-
expressible” sentence that which can be thought but cannot be expressed
(for want of a distinguishable set of properties)21. Such a subject should be

20“No system of philosophy can a�ord to accept self-contradiction as valid, because
if self-contradiction is accepted as valid without any qualifications, then there remains
no weapon for criticism, anything which is said will have to be accepted, because even
self-contradictories is valid. It is certain that the Jaina does not take leave of logic and
consistency; he does criticize others by pointing out self-contradiction. Every system of
philosophy has its contradictory which is regarded as false. This is why when a system has
to accept a synthesis of contradictories as valid, it has to invent one device or another which
at least seems to take o� the edge from the contradictories.” ([21], p. 188).

21Bahm’s account must be distinguished from Meinong’s famous example of a “round
square”, which has frequently been mentioned as a case of impossible object and a chal-
lenge to PNC. A round square is an object that can be expressed (described) but cannot
be thought (imagined, or conceived mentally). To the contrary, the third interpretation of
avaktavya refers to something that can be thought but cannot be expressed. Is there such
a subject S that can fulfill this requirement? A Wittgensteinian reader would answer neg-
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kept silent, according to the Wittgensteinian stance that the limits of lan-
guage are the limits of thought. (But our former reference to Hegel should
give rise to a non-Wittgensteinian relationship between language and the
world.) While noting that Hegel’s philosophy supported a transcendental
idealism and clearly di�ers from the Jaina realism, a common point be-
tween Jainism and the Buddhist trend of Mādhyamikas seems to be their
common rejection of logical atomism: reality is not a whole whose parts
would be objects and their properties, or at least not for some extra-natural
entities that transcend the empirical level of illusory data (prātibhāsika).
This plausible account of (4.3) will be pursued in the next section, because
it might make sense of Nāgārjuna’s radical skepticism.
To conclude our discussion of Jaina logic, Priest uses in [15] an analogy

with the cube to make sense of complete truth: every facet of reality is a
side of a cube, and reality is the collection of every such facet. But Jaina
cubism is such that the indefinite number of facets turns the cube into a
polygon even more complex than Descartes’ chiliagon. Just as Picasso
wanted to catch a conceptual reality by pooling di�erent perspectives of a
character together in one and the same profile, the Jaina philosophy relies
upon a plurality of standpoints to grasp the essence of reality. A logical
translation of this view is given in [4]): plain truth amounts to a complete
knowledge (praman̄a) whose expression in a complete judgment consists
in the addition of the seven sorts of predication. Is this a right way to
describe the transition from partial to complete truth22?
An alternative account would be to state that a subject is completely de-

scribed when absolutely every particular standpoint is listed, rather than
just the seven kinds of argument from the nayavāda. Such an exhaustive
completion is impossible, given the infinite sort of standpoints that consti-

atively to this question, assuming that “whereof one cannot speak, thereof one must be
silent”.

22The following definition of plain truth is given in [4]: “An object X can be viewed from
any one of the seven standpoints. However, since the totality of all these seven possibilities
comprises the pramān. a-saptabhaṅgı̄ (complete judgment of the phenomenal world in terms
of seven possibilities), the disjunction, denoted by �, of these seven predications should
lead to a tautology.” ([4], p. 186). In algebraic terms, the Jains would thus assimilate one-
sided truth with logical tautology and define the latter as the union of the seven elements of
V . That is: � � ((1)�(2)�(3)�(4)�(5)�(6)�(7)). This definition of tautology clearly di�ers
from that of Priest’s in [15] or J7 in [18]: a sentence is a tautology if it is designated from
every standpoint. But this is a definition of tautology in the conventional sense of truth,
by contrast to the aforementioned absolute sense of truth that uniquely leads to a pramān. a.
One could wonder another thing, with respect to this definition of one-sided tautology:
does it correspond to the union of the seven kinds of standpoints or, rather, should it collect
the indefinitely many particular standpoints that are included in each of these seven kinds?
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tute the proper description of any object.
A natural translation of (4) within J7 might be taken to be the twofold

answer “yes and no” to the third basic question: a3(�) � �1� 0�. But it is not
so, given that this third question is positively answered if the corresponding
sentence is inexpressible. No yes-no answer occurs in the Jaina question-
answer game, consequently: two di�erent questions can result in the same
answer or not, but no single question can be answered oppositely by “yes”
and “no” at once23. This is the gist of self-contradiction, and even the third
basic predicate of inexpressibility does not state it because non-distinction
does not mean an internal coexistence of opposite properties. These cannot
coexist, by definition.
Whatever the final word may be about (4), we argue two things about

complete truth: it does not mean for a given sentence either to be assigned
a designated value (this is partial truth) or to be uniquely asserted and,
therefore, be given the logical value (1) in J724; partial truth is a su�cient
condition of truth-assignment for the Jains, while the skeptic Mādhyamikas
take complete truth to be a necessary condition for truth-assignment. Let
us now consider this skeptic logic within a question-answer game of QAS.

5 Nāgārjuna’s Principle of Four-Fold Negation

Nāgārjuna’s radical skepticism is summarized in his Mūlamadhyamaka-
kārikā, where the first verse includes four sentences (or lemmas) that are

23Three levels of inconsistency can be graded within the framework of QAS: light incon-
sistency, or inconsistency from two di�erent standpoints: {{T},{F}}, i.e. ai(�) � a j(��)
� 1 (where i � j); mild inconsistency, or inconsistency from one and the same standpoint:
{{T,F}}, i.e. ai(�) � ai(��) � 1; and strong inconsistency, or inconsistency in one and the
same answer: {{T,�T}}, i.e. ai(�) � ai(�) � {1,0}. The Jain anekāntavāda embodies a
logic of light inconsistency; Priest’s Logic of Paradox LP argues for a mild inconsistency
that corresponds to the inconsistent interpretation (4.1) of avaktavyam; but no counter-
part seems to occur for the strong inconsistency of self-contradiction, going beyond the
so-called “impossible” values of [20]. Indeed, strong inconsistency consists of non-empty
subsets including an element and its complement. Such a case is impossible even in a com-
binatorial approach of semantic values, insofar as Priest’s value {T,F} assumes that T and
F are not complementary to each other.

24Returning to the comparison with Jaśkowski’s Discussive logic D2, the Polish logician
rendered each standpoint by the modality of possibility, �. Accordingly, any sentence �
that is uniquely asserted (such that v(�) � (1)) is logically necessary because it is cannot
be but asserted, and it is not possible for it to be denied or taken to be non-assertible. Thus
v(�) � (1) means the same as �. This modal interpretation squares with the idea of one-
sidedness; however, the Jain view of pramān. a still goes beyond such a logical necessity
(see note 22 above).
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equally denied by means of stances (dr. s. t.is, or kot.i) and result in the the so-
called Principle of Four-Cornered Negation (thereafter: 4CN) or Tetralemma
(catus. kot.i). Thus:

(a) Does a thing or being come out itself? No.
(b) Does a thing or being come out the other? No.
(c) Does it come out of both itself and the other? No.
(d) Does it come out of neither? No.

How can Nāgārjuna consistently deny all the four questions at once?
While noting that their content refers to the Mādhyamika’s doctrine of
emptiness (sūnyavāda), a problem arises about the meaning of negation
in the four aforementioned answers. A tentative formalization of (a)-(d)
yields the following, where a is a predication of the form “S is P” (with S
for “thing” and P for “coming out iself”) and � is classical negation:

(a�) Not (S is P) � �(�)
(b�) Not (S is not P) � �(��)
(c�) Not (S is P and S is not P) � �(� � ��)
(d�) Not (neither S is P nor S is not P) � �(�(� � ��))

Assuming that negation is the relational paryudāsa pratis. edha, the set
of four negative statements is clearly inconsistent: (b�) is equivalent with
the a�rmation � (by double negation), and this is patently contradictory
with its negation in (a�). Even more than for the Jains, it is commonly
acknowledged that the Mādhyamikas unexceptionably subscribed to PNC
and cannot then accept both (a�) and (b�). Furthermore, (d�) occurs as a
denial of the denial of the Principle of Excluded Middle (PEM), according
to which every sentence or its negation is true. But it clearly appears that
the double denial arising in (d�) does not amount to an a�rmation of PEM,
since (a�) and (b�) already reject the a�rmation of both � and ��.
A way to avoid the contradiction (a�)-(b�) has been urged by Horn (in

[10]), who claimed that the negation of every sentential content should be
rendered as a predicate-term negation rather than a predicate negation25.

25Horn claims that “crucially, no distinction between contradictory and contrary negation
was regularly made within classical Indian logic.” ([10], p. 80) However, the contrary
or contradictory feature of a negation crucially depends upon the nature of the subject
in a predication: are the subjects of a Jain predication sometimes universal, sometimes
particular? No definite answer seems to be available to disentangle the meaning of 4CN;
it is only the later school of Navya-Nyāya that will deal with such equivocation cases. See
in this respect J. Ganeri: “Towards a formal regimentation of the Navya-Nyāya technical
language” (parts I,II), in Logic, Navya-Nyāya and Applications (Homage to Bimal Krishna
Matilal), M.K. Chakraborti and Löwe, B. and Mitra M.N. and Sarukkai S (eds.), College
Publications, London, 2008, pp. 105-121.
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The distinction between predicate-term and predicate negation cannot be
expressed in a modern or Fregean logic, where predicate-terms and predi-
cates are collapsed into a unique function. By using term logic, (b�) should
be read as “S is not-P”, the contrary opposite of (a�). The conjunction (a�)-
(b�) results in a stronger relation of incompatibles, and Horn is right to say
that two contraries can be consistently negated without entailing any self-
contradiction. In this respect, an application of intuitionistic negation (��
for “S is not-P”) should fill the bill and be preferred to the classical nega-
tion (�� for “S is not P”): �(��) becomes �(��), and the latter cannot be
reduced to a by the law of double negation.
Does this mean that intuitionistic logic should be seen as a proper logic

for 4CN? It is not, given that the last statement (d�) leads to another con-
tradiction. For since one of de Morgan’s laws states that (�� � �(��)) is
equivalent to �(� � ��)), how to claim with (a�)-(b�) that S is neither P nor
not-P: �(� � ��)) while denying it at the same time with (d�): �(�(� �
��))� (� � ��) ?
The whole result turns 4CN into a case for radical skepticism: not only

does the speaker Nāgārjuna ignore whether S is P or not, but he goes on
denying that he does ignore it. This troublesome stance has been noted by
Raju26 and accounts for the di�erence between Buddhism and nihilism, as
currently urged by a number of commentators: nihilism is the a�rmation
that nothing is real or can be known to be so; whereas Buddhism argues
for a mere denial without any positive counterpart. The positive basis of
each Jaina statement included a case of negative assertion, as witnessed by
the predication (2); but no such assertion arises in 4CN, where negation is
pure denial. Before answering to whether there can be a negation without
any positive counterpart, we suspect the core di�culty with 4CN to lie in
the meaning of its wide scope negation (the answer “No”): it is used to
produce a denial, and this no-answer should find a proper treatment within
the formal framework of QAS.
Unlike the Jaina statements, and following the connection established

between Mādhyamika skepticism and anti-realism, we assume that each
kot.i deals with the impossibility of knowledge: the human failure to catch
any absolute truth (paramārthasatya) about reality is a su�cient reason

26The alleged founder of 4CN, Sañjaya (� 6th century B.C.), would have influenced the
Greek philosopher Pyrrho in his radical skepticism; Raju states this point by claiming that
Pyrrho “maintained that ‘I am not only not certain of the knowledge of any object, but also
not certain that I am not certain of such a knowledge’ ” ([16], p. 695). It is worthwhile
to note that the Greek principle of indi�erence ou mallon (not any more than) strikingly
parallels 4CN.
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to deny any justifiable belief and thus any truth-assignment, according to
Nāgārjuna’s sūnyavāda. If so, we introduce a four-valued logic of accep-
tance and rejection for 4CN.

DEFINITION 4. A logic of acceptance and rejection is a model AR4 �

���A� upon a sentential language � and its set of logical connectives
� � ���������. It includes a logical matrix� � �Q; 4;D�, with :
- a function Q(�) � �q1(�)� q2(�)�;
- a set 4 of logical values;
- a subset of designated values D � 4, where D � ��1� 0�� �1� 1��.

Q(�) is an ordered set of n � 2 questions about the sentence �, with
q1: “is a justifiably be true?” and q2: “is a justifiably false?”27, and n
� 2 sorts of answers such that a(�) �� �0� 1�. It results in a set V of
mn � 22 � 4 logical values, each standing for an explicit belief-attitude
in 4 � ��1� 0�� �1� 1�� �0� 0�� �0� 1��. The di�erence with J7 is that no third
question q3 occurs here: avaktavya is not a Mādhyamika concept, so that
only two basic semantic predicates or muladr. s. t.is are required in 4CN. At
the same time, AR4 is a general logic of statements that could include the
Jaina stances as well: the Jaina value �a1(�)� a2(�)� a3(�)� can be equated
with the value Q(�) � �q1(�)� q2(�) of AR4 by canceling the third bhan̄ga
a3(�). Then �1� 0� � ��1� 0� 1�� �1� 0� 0��, �1� 1� � ��1� 1� 1�� �1� 1� 0��, and
�0� 1� � ��0� 1� 1�� �0� 1� 0��. A relevant exception concerns the third value
�0� 0� � ��0� 0� 1�� �0� 0� 0��, which includes the eighth forbidden value �0� 0� 0�
in J7. This forbidden value is our key to a better understanding of Nāgārjuna’s
four stances, with the following definition of negation and its distinction
with the speech-act of denial.

DEFINITION 5. For every sentence � such that A(�) � �a1(�)� a2(�)�:
A(��) � �a2(�)� a1(�)�.

The import of QAS is to bring an algebraic distinction between logical
negation and denial: contrary to the usual perplexing presentation of 4CN,
denial should not be rendered as a connective that is part of the sentential
content �; rather, a denial is a no-answer that does not stand for a function
but its resulting value. Correspondingly, a proper formalization of 4CN is
suggested in the following style:

(a��) a1(�) � 0
(b��) a1(��) � 0

27The second question “Is � justifiably false?” is equivalent with “Is �� justifiably
true?”. This results in the following equation for negation in AR4: a1(��) � a2(�), and
conversely.
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(c��) a1(� � ��) � 0
(d��) a1(�((� � ��)) � 0

Only one valuation of AR4 accounts for the consistency of (a��)-(d��),
namely: A(�) � �0� 0�, the forbidden value of Jaina logic. Following the
definition of conjunction and disjunction in AR4

28, (a��) and (b��) entail
that a2(�) � a1(�� ��) � a1(�(�� ��)) � a2(� � ��) � 0.
Once again, the usual perplexity caused by Nāgārjuna’s stance is due

to a confusion between the relational and non-relational reading of nega-
tion. The former negation (paryudāsa pratis. edha) is not an answer about
whether the sentence � is true or false, given that it occurs within its sen-
tential content in the whole expression ��; most importantly, it assumes
bivalence and entails that �� is false whenever � is true (and conversely).
Therefore, no sentence can be given a “gappy” value (neither true nor false)
with such a relational use of negation. Furthermore, introducing the intu-
itionistic negation � for this purpose is not the solution either: that � is said
to be neither true nor false cannot explain again why this gappy solution is
insu�cient to account for the fourth stance (d’). This leads to the conclu-
sion that Nāgārjuna’s denial should be strictly distinguished from assertive
negation and be equated with the “absolutely no”-answer �0� 0�.
Our point about logical values actually holds for every negation, in the

sense that there is no functional di�erence between classical and intuition-
istic negation AR4. For the di�erence between the two negations does not
lie in the definition of their mapping from � to V but, rather, in the domain
of values they range over. Given that classical negation assumes a one-one
correspondence theory of truth, this entails that a sentence cannot be said
to be either both true and false or neither true nor false; hence a restriction
of the range from V � 4 to V � 2 � ��1� 0�� �0� 1��. As to the intuitionistic
theory of truth as justifiable truth, no sentence can be said to be true unless
the justification is definite and this stringent view of justification implies
another restriction from V � 4 to V � 3 � ��1� 0�� �0� 0�� �0� 1��. The Jaina
case embodies a paraconsistent variant, where a sentence can be said to
be both true and false but excludes the possibility that it be none; hence a
corresponding restriction from V � 4 to V � 3 � ��1� 0�� �1� 1�� �0� 1��. The
relative truth of nayavāda also accounted for the combination of such basic

28A complete description of the semantics for AR4 is not required in the context of 4CN,
but it includes maximal and minimal functions (max,min) upon the values of V , given a total
ordering function � between these elements proceeds as follows: �0� 1� � �0� 0� � �1� 1� �
�1� 0�. Hence the following definition of the connectives of conjunction and disjunction:
v(� � �) � min(�� �), and v(� � �) � max(�� �).
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answers into new logical values in J7, unlike the non-relative, absolute or
one-sided view of truth in the Mādhyamika school.
But that is not the whole story of 4CN. Recalling a former quotation by

Raju, two problems remain to be solved. Firstly: does Nāgārjuna deny
absolutely everything, including his own denials? And secondly: is the
catus. kot.i a mere reversal of the saptabhaṅgı̄, i.e. the transformation of a
common set of positive statements into negative statements?

6 Two contrary logics?

Let us note about the first question that a distinction can be made between
two generic forms of skepticism, a moderate and a radical one. The former
is closer to what the Buddhists meant by nihilism and wanted to be strictly
distinguished from; it means that nothing can be known about reality, but
one least thing to be known is precisely that nothing mundane can be
known. In contrast to this, the radical version goes on denying any denial
about our knowledge about reality: ignorance is not asserted but doubted
itself. Whether or not such a distinction relates to the Greek schools of the
New Academy (Arcesilas, Carneades) and Pyrrhonism (Pyrrho, Timon of
Phlius) does not really matter in what follows. Rather, the point is whether
Nāgārjuna endorsed radical skepticism and what his rejection consisted
in. In the light of QAS, the complete denial of 4CN means that only no-
answers are given to preceding questions.
As to the second question, Bahm replies in [2] that the two Indian logics

cannot merely seen as mutual contraries: Jaina logic cannot be reduced
to a Principle of Four-Cornered A�rmation. QAS already brought this
point out by the cardinality of the sets of logical values, given the essential
occurrence of a third question (about avaktavya) in J7. Nevertheless, there
is a reason to claim that these philosophical schools are really opposite to
each other in some respect. The catus. kot.i can be taken to be a reversal of
saptabhaṅgı̄ only if the sentential content of a denial or an a�rmation is of
the first order, i.e. stands for a declarative sentence about reality; but the
same cannot be safely said for higher-order questions about the answerer’s
attitudes29.

29The order of attitudes and their statements can be reformulated in terms of iterated
modalities: the statement “�” is an a�rmation and correlated belief about �, B(�); the
statement “I a�rm that �” is an a�rmation and correlated belief about the a�rmation and
correlated belief about �, B(B�); and so on for any n-ordered statement as a sequence of
n beliefs: Bn(�). The di�erence between AR4 and modal logic is that iterated attitudes are
not rendered as modal operators but as logical values in the former semantics. See note 31
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Let us exemplify this symmetrical behavior by means of two Socratic
dialogues, where an initial question about the atomic sentence p is ac-
companied with a sequence of oratory questions (the questioner expects
to have a given answer) and answers. The answerer to a common ques-
tioner (the doctrinalist Aristotle) is a Jaina speaker (Vādiveda Sūri) and a
Mādhyamika speaker (Nāgārjuna), respectively. It clearly appears that the
resulting dialogues are radically opposed to each other, and we bring this
out by formalizing them in terms of QAS.

DIALOGUE 1: ARISTOTLE VS. VĀDIVEDA SŪRI

1. Q: Do you accept p?

[a1(p) � 1?]

2. A: Yes, I accept p.

[a1(p) � 1]

3. Q: Therefore you reject �p?

[a2(p) � 0 ?]

4. A: No, I do not reject �p.

[a2(p) � 0]

5. Q: Does it mean that you also accept �p?

[a2(p) � 1 ?]

6. A: Yes, I also accept �p.

[a2(p) � 1]

7. Q: Therefore you accept p and �p?

[a1(p � �p) � 1 ?]

8. A: Yes, I accept both.

[a1(p � �p) � 1]

9. Q: Therefore you reject �(p � �p)?

[a2(p � �p) � 0 ?]

below.
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10. A: No, I don’t reject �(p � �p).
[a2(p � �p) � 0]

11. Q: Does it mean that you also accept �(p � �p)?

[a2(p � �p) � 1 ?]

12. A: Yes, I also accept �(p � �p).
[a2(p � �p) � 1]

13. Q: Therefore you reject �((p � �p) � �(p � �p))?

[a2(((p � �p) � �(p � �p))) � 0 ?]

14. A: No, I don’t reject �((p � �p) � �(p � �p)).
[a2(((p � �p) � �(p � �p))) � 0]

15. Q: Therefore you also accept �((p � �p) � �(p � �p))?

[a1(�((p � �p) � �(p � �p))) � 1?]

16. A: Yes, I also accept �((p � �p) � �(p � �p))
[a1(�((p � �p) � �(p � �p))) � 1]

� � �

It emerges from this abortive maieutic that the doctrinalist questioner
fails to make the answerer his own reason: the whole answers are perfectly
rational albeit inconsistent, in the light of AR4 and its non-classical logical
values that are exclusively positive or negative30.

THEOREM 3. For every sentence � (including p, �p, p � �p, �(p � �p),
and so on), the answer of the Jaina in AR4 is A(�) � �1� 1�.

Proof : Let us assume that a1(p � �p) � 1; then a1(p) � a1(�p) � a2(p) �
30The semantics forAR4 can be said to be bivalent in this respect: for every answer given

to question qi about the sentence �, the corresponding answer is either positive (ai(�) � 1)
or negative (ai(�) � 0). Tertium non datur. Concerning any positive and negative answer
to one and the same question, it has been argued earlier (see note 23) that it is equally
impossible in the pluralist approach of the Jains. Hence the ensuing di�erence between two
grades of inconsistency in AR4: a given answer A(�) is externally inconsistent if and only
if a1(�) � a2(�); it is internally inconsistent or incoherent if and only if, for any answer
x in {0,1}, ai(�) � x and ai(�) � x. Accordingly, there is a crucial di�erence between
sentential inconsistency and non-sentential inconsistency (incoherence): two sentences �
and �� can be mutually inconsistent while the answers A(�) and A(��) about them are
internally consistent (coherent).
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1. And if a1(�(p � �p)) � 1 then a2(p � �p) � 1, i.e. a2(p) � 1 or a1(�p)
� 1. Hence for every �� a1(�) � a2(�) � 1. Hence A(�) � �a1(�)� a2(�)� �
�1� 1�.

Let us now apply the same process to a dual dialogue between the dog-
matist questioner Aristotle and his skeptic answerer. This yields the exact
reversal of the preceding dialogue, given that each question about whether
a given sentence is accepted becomes a question about whether it is re-
jected.
DIALOGUE 2: ARISTOTLE VS. NĀGĀRJUNA

1. Q: Do you reject p?

[a1(p) � 0?]

2. A: Yes, I reject p.
[a1(p) � 0]

3. Q: Therefore you accept �p?

[a2(p) � 1 ?]

4. A: No, I do not accept �p.

[a2(p) � 1]

5. Q: Does it mean that you also reject �p?

[a2(p) � 0 ?]

6. A: Yes, I also reject �p.
[a2(p) � 0]

7. Q: Does it mean that you reject both p and �p?

[a1(p � �p) � 0?]

8. Yes, I reject both p and �p.

[a1(p � �p) � 0]

9. Q: Therefore you accept �(p � �p)?

[a2(p � �p) � 1 ?]

10. A: No, I do not accept �(p � �p).

[a2(p � �p) � 1]
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11. Does it mean that you reject both (p � �p) and �(p � �p)?

[a1(((p � �p) � �(p � �p))) � 0 ?]

12. A: Yes, I reject both (p � �p) and �(p � �p).
[a1(((p � �p) � �(p � �p))) � 0]

13. Q: Therefore you accept �((p � �p) � �(p � �p))?

[a2(((p � �p) � �(p � �p))) � 1?]

14. A: No, I don’t accept �((p � �p) � �(p � �p)).
[a2(((p � �p) � �(p � �p))) � 1]

15. Q: Therefore you also reject �((p � �p) � �(p � �p))?

[a2(((p � �p) � �(p � �p))) � 0?]

16. A: Yes, I also reject �((p � �p) � �(p � �p))
[a2(((p � �p) � �(p � �p))) � 0]

� � �

Again, the doctrinalist questioner failed to make the answerer his reason:
the whole is rational albeit incomplete, so long as the answerer refuses to
commit in the truth of any sentence.

THEOREM 4. For every sentence � (including p, �p, p � �p, �(p � �p),
and so on), the answer of the Mādhyamika in AR4 is A(�) � �0� 0�.
Proof : if a1(p � �p) � 0 then a1(p) � a1(�p) � a2(p) � 0. And if a1(�(p
� �p)) � 0 then a2(p � �p) � 0, i.e. a2(p) � 0 or a1(�p) � 0. Hence for
every �, a1(�) � a2(�) � 0. Hence A(�) � �a1(�)� a2(�)� � �0� 0�.

Just as the Jains refuse exclusive acts of positive assertion and contend
themselves with inconsistent a�rmations, the Mādhyamikas refuse exclu-
sive acts of negative assertion and contend themselves with incomplete
denials.
A parallel can be made here with da Costa paraconsistent logics C1-Cn:

these are non-truth-functional systems where contradictions are variably
a�rmed or denied according to the structural complexity of the contradic-
tory sentences (p and �p, in C0; (p � �p) and �(p � �p), in C1; and so on).
By the same way, a set of dual paraconsistent logics C�1-C

�

n can be devised
for the dialectical process of 4CN and states that alternatives are variably
a�rmed or denied according to the structural complexity of the alternative
sentences: (p or �p, in C�0; (p � �p) or �(p � �p), in C�1; and so on).
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But the parallel stops here, because the preceding dialogues have shown
that the structural complexity of a sentence does not change the attitude
of the answerer. In this respect, the Jains and Mādhyamikas are likely to
be considered as two contrary attitudes or judgments in the common logic
of statements AR4: the former a�rm everything whereas the latter deny
everything.
Returning to a preceding objection, it remains to consider to what extent

such radical speakers can be said to a�rm “everything” (doxastic eclecti-
cism) or deny “everything” (doxastic nihilism) in their dialectical games31.
While the concerned texts mention dialectical games about first-order state-
ments only, it hardly makes sense to contend that Nāgārjuna would have
denied his own denials with respect to first-order statements.
Let us make a semantic ascent and consider the second-order statement
��: “I don’t a�rm that � (is true)”. A no-answer to the question q1(��): “is
�� justifiably true?” would mean that the answerer denies to have denied
(the truth of) �, while a yes-answer would entail that he a�rms to have
denied � (as he did). The same objection can be made to a universally
a�rmative stance in the Jains. Likewise, the Jain would hardly give an af-
firmative answer to �� without refusing the truth to � and thereby violating
his policy of non-one-sidedness32. Actually, the preceding dialogues have
already made clear that the Jain did deny three times (steps 4, 10 and 14)
while the Mādhyamika did a�rm five times (steps 2, 6, 8, 12, and 16).
If so, the radically opposed attitudes of the Jainas and Mādhyamikas

should find their own limits with the sort of sentences to be questioned:
denying and a�rming are about the nature of reality, rather than about
one’s own mental states. Such a limit of dialectic might be what Aristotle
had in mind, when he attempted to show the attitude of Heracliteus with
respect to the PNC is self-defeating. But he failed to make his point with
his elenctic strategy, locating the trouble in the propositions (a�rming �
and a�rming not-�) rather than his opponent’s propositional attitudes (af-

31Nāgārjuna’s following stance is the key to his allegedly radical skepticism: “If I had a
thesis, I would be wrong. But I have no thesis. Therefore there is nothing wrong with me.”
(“To keep one away from the vain discussions”, Number 29). What is the content of the
thesis at hand? It is likely to be a first-order thesis, i.e. a statement about any given state
of a�airs. Whether Nāgārjuna would have also claimed to have no thesis about his own
attitudes remains unclear, however.

32This leads to the reintroduction of the law of double negation in the form of an illocu-
tionary law of double denial: the denial of �� needn’t entail the a�rmation of �, given that
a1(�) � 0 needn’t entail that a2(�) � 1 (compare with A(�) � �0� 0�); on the other hand, the
denial of the denial of � entails the a�rmation of a, given that a1(�) � 0 does entail that
a1(�) � 1.



74 FABIEN SCHANG

firming � and not a�rming �). Admittedly, these Indian logics were much
more concerned with metaphysical topics and soteriological ends than hav-
ing the final word in every yes-no answer game.

7 Conclusion

We have proposed a reconstruction of the Jaina and Mādhyamika logics by
means of a question-answer semantics. The result of such an enterprise is
a rational reading of these Indian schools through modern logical glasses,
including the logical tool of many-valuedness that presented skepticism
and pluralism as radically opposed to each other and separated by a middle
view of judgment that is Aristotle’s bivalent way of doctrinalism. Many-
valuedness accounts for the seven judgments of Jaina saptabhaṅgı̄, while
a more general logic of attitudes displays Jaina and Nāgārjuna’s stances
within a four-valued semantics that characterizes both Mādhyamika skep-
ticism (the value �0� 0�) and Jaina pluralism (the value �1� 1�).
Above all, the main import of QAS is to pay attention to the dialecti-

cal role of questions and answers in the Indian approach of logic: just as
the Megarics emphasized the dialogical nature of philosophical investiga-
tion in contrast to the Aristotelian monological view of truth and falsity as
transcendental values, we want to keep in mind that the Indian logicians
introduced their statements in the form of answers to speculative ques-
tions. Jaina metaphysical pluralism also made sense of their inconsistent
judgments, while the skeptic flavor of Nāgārjuna’s philosophy explains his
systematic denial to any question about the nature of reality.
Last, but not least: one of the most intriguing case studies has concerned

the meaning of avaktavya (non-assertibility), the third basic judgment of
Jaina logic. This predicate should not be confused with common self-
contradiction, where a sentence and its negation are said to be both true
at once and in the same respect. The commentators frequently claimed
that the Jainas subscribed to PNC in their various reasonings: so non-
assertibility refers to another, milder view of contradiction than coexistence
of incompatible properties in the same subject. Rather, we support Tri-
pathi’s interpretation of avaktavya in the sense of non-distinction: the Jaina
third judgment might mean that some objects (S) cannot be predicated by
any property, that is, neither of one of them (P) or any of their complemen-
taries (not-P). Rather than a plea for self-contradiction, avaktavya seems
to argue for the impossibility to predicate anything of some such “absolute
subjects” as ātman or Brahman because these would stand beyond any set
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of definite properties. Such a tentative explanation would match with the
Hegelian alternative process of Aufhebung (or “sursumption”), in contrast
to the predicative process of subsumption that systematically describes a
subject S as falling under a given set of properties P33.
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[4] F. Bharucha and R. Kamat. "Syādvāda theory of Jainism in terms of deviant
logic". Indian Philosophical Quarterly, 9:181–7, 1984.
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Navya-Nyāya Logic
PRABAL K. SEN �and AMITA CHATTERJEE �

In short, the Nyāya strategy is to appeal to our intuitions about
knowledge, in order to learn something about reasoning and
not vice versa. Bimal Krishna Matilal 1

In its first meaning, a logic is a collection of closely related
artificial languages... In its second but older meaning, logic is
the study of rules of sound argument. Wilfrid Hodges 2

The expression ‘Navya-Nyāya’ literally means ‘the recent Nyāya’ or
‘the new Nyāya’, usually employed for indicating the later phase of the
Nyāya school of philosophy, as distinguished from its earlier phase, which
is commonly known as ‘Prācı̄na Nyāya’, i.e., ‘the earlier Nyāya’ or ‘the
old Nyāya’. Aks.apāda Gautama (c. 100 CE) is traditionally regarded as
the founder of the Nyāya school, and a set of aphorisms known as Nyāya-
ss̄tra-s that are ascribed to him happens to be the oldest available text of this
school. Quite a few commentaries and subcommentaries on these apho-
risms were written, many of which are now lost, and are known only from
references to them in later works. The available texts in this series of com-
mentarial literature are (i) Nyāyabhās.ya of Vātsyāyana (fourth century),
(ii) Nyāyavārttika of Uddyotakara (seventh century), (iii) Nyāyavārttika-
tātparya-tı̄kā of Vacaspati Miśra I (ninth century), (iv) in Nyāyavārttika-
tātparya-pariśuddhi of Udayana (tenth century). The independent works
like (i) Nyāyasāra (with the autocommentary Nyāyabhs̄s.an. a) by Bhāsarva-
jña (tenth century) and Nyāyamañjarı̄by Jayanta Bhatta (ninth century) are
also important texts that belongs to this phase of Nyāya philosophy. Ac-
cording to the tradition, Udayana’s works formed the watershed between
the Old and the Navya-Nyāya, which in the process of defending and ex-
plicating the Nyāya tenets also anticipated many theses and approaches of

�Professor of Philosophy, University of Calcutta
�Vice Chancellor, Presidency University, Kolkata
1Matilal (1986) p. 126
2‘Classical logic I: First Order Logic’ Lou Goble (2001)
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the later Naiyāyikas. Indian theory of inference forms part of Indian episte-
mology (pramān. avāda) and is intimately connected with the ontology of a
system. We, therefore, begin our explorations in Navya-Nyāya logic with a
brief account of the metaphysical basis of the system. The Nyāya school of
philosophy upholds direct realism and pluralism; and it shares this outlook
in common with the Vaiśes.ika school, which is traditionally maintained
to be founded by Kan. āda (second century CE). The Vaiśes.ika system has
been described as ‘a synthesis between philosophy of nature, ethics and
soteriology’ 3, and this is also true of the Nyāya school, though here we
find in addition a lot of emphasis on epistemology and the rules that should
be observed in philosophical debates.
The doctrines of Nyāya philosophy were severely criticised by a num-

ber of opponents, the principal among them being the Buddhists of the
Mādhyamika, Yogācāra and Svatantra-Yogācāra sects. For the Naiyāyika-
s, the world contains innumerable entities that are in principle knowable
and nameable. Each such entity, whether external, like a pot, or internal,
like a cognitive state, is real, and has an intrinsic nature (svabhāva). Many
of these entities are eternal, and even those that are non-eternal, are sta-
ble, i.e., non-momentary (aks.an. ika). Many of these entities are mutually
related, and these relations, which are as real as their relata, are of various
kinds. The relation that links most of these existent objects is the relation
between (i) the entities that are located (ādheya), and (ii) the entities where
these entities are located (ādhāra). This relation between location and lo-
catee is known as dharma-dharmı̄-bhāva. This general relation may again
obtain through some specific relations. For example, when we cognize a
man as characterized by a stick, the relation between the man and the stick
is that of contact (sam. yoga). Again when we cognize an animal as a white
cow, the relation of the animal with white colour and the universal, viz.,
cowness is that of inherence (samavāya). None of these claims would be
admitted by the Buddhists. For the Mādhyamika Buddhists, the objects of
our experience are devoid of nature (nih. svabhāva); for the Buddhists of the
early Yogācāra school, pure consciousness (vijñaptimātra) is the sole real-
ity, there being thus no external objects; and according to the Svatantra
Yogācāra school, whatever is real is also momentary, which e�ectively
precludes the possibility of such things being either located in, or related
with anything else. Each entity, they maintain, is unique (svalaks.an. a) and
unrelated. The commentaries and subcommentaries that grew around the
Nyāyasūtra-s tried to defend the Nyāya doctrines by rejecting the Buddhist

3Partha Ghosh (2010) p. 258
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views. Navya-Nyāya philosophers did not forget these issues when they
developed their language and logic.
One of the favourite strategies of the Buddhists was to show that the enti-

ties admitted by the Naiyāyika-s cannot be properly defined, and they tried
to establish this by pointing out defects in such definitions proposed in the
Nyāya texts. Another strategy was to point out that the Nyāya doctrines
were beset with logical di�culties like self-dependence, mutual depen-
dence, infinite regress, etc. The Buddhists also tried to show that in many
cases what was regarded as a single or unitary entity by the Naiyāyika-
s could not be so, since each of them harboured mutually incompatible
properties. The adherents of the Nyāya school were hard-pressed to find
out some way for answering such criticisms, and this more or less com-
pelled them to find out some techniques for formulating precise and im-
maculate definitions; and also for answering the dialectical arguments of
the Buddhists. In some cases, minor modifications in the earlier doctrines
were also made, though the basic doctrines and the commitment to realism
and pluralism were not compromised in any way.

II

By combining the Nyāya epistemology with the Vaiśes.ika ontology, philoso-
phers like Śaśadhara, Manikan. t.haMiśra, Taran. ı̄Miśra, Sondad. a Upādhyāya
and others initiated a new trend of philosophizing in Mithila – a region in
northeastern India. It is, however, Gaṅgeśa (thirteenth century) who inte-
grated and popularized the technique of subtle argumentation in his mag-
num opus Tattvacintāman. i (TCM) and is regarded as the founder of the
Navya-Nyāya tradition. The tradition was carried forward in Mithila by
Vardhamāna Upādhyāya (fourteenth century), Yajñapati Upādhyāya (fif-
teenth century), and Paks.adhara Miśra (fifteenth century), among others.
The novelty and originality of the Navya Nyāya school is found not so
much in introducing new topics of philosophical discussion but in the met-
hod employed, in devising a precise technical language suitable for ex-
pressing all forms of cognition. By the time the Navya-Nyāya language
was devised, Buddhism, the principal opponent of Old Nyāya had become
almost extinct in India. Navya-Nyāya philosophers had the Mı̄mām. saka-s
as their chief adversary, but their language was strong enough to withstand
attacks from both Buddhism and Vedānta.
From Mithila, Navya-Nyāya travelled to Navadvı̄pa, in Bengal. Pra-

galbha Miśra, Narahari Viśārada and Vāsudeva Sārvabhauma are the no-
table early exponents of Navya-Nyāya in Navadvı̄pa. The unorthodox lo-
gician, Raghunātha Śiroman. i (sixteenth century), who was a disciple of
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Vāsudeva Sārvabhauma wrote a commentary on TCM entitled Dı̄dhiti,
in which he went far beyond Gaṅgeśa by introducing changes in Navya-
Nyāya metasphysics and epistemology. Subsequent prominent proponents
of Navya-Nyāya in Bengal – including Bhavānanda Siddhāntavāgı̄śa, Math-
urānātha Tarkavāgı̄śa, Jagadı̄śa Tarkālam. kāra, and Gadādhara Bhat.t.ācāryya
– wrote sub-commentaries on Dı̄dhiti, which contributed to the fullest de-
velopment of Gaṅgeśa’s technique of reasoning. The fame of Navadvı̄pa
Naiyāyikas spread all over India, and scholars from other schools too adopt-
ed the Navya-Nyāya language. This highly technical language became the
medium for all serious philosophical discussion by the sixteenth century,
irrespective of the ontological, epistemological, and moral commitments
of the discussants. However, one must remember that though the Navya-
Nyāya language can be successfully dissociated from its context, Navya-
Nyāya was developed as a complete system of philosophy with its episte-
mology, logic, ontology and soteriology.
‘Navya-Nyāya logic’, writes Sibajiban Bhattacharya, ‘is mainly a logic

of cognitions’. 4 A piece of cognition has at least three elements – viśes.ya
(qualificandum), prakāra or viśes.an. a (qualifier), and sam. sarga or the qual-
ification relation between them. If, for example, one’s cognitive content is
a-R-b, i.e., b is located in a by the relation R, then says the Naiyāyika, one
is directly aware of a, b, and R where a and b are things in the real world
and not mere representations of things and the relation R actually obtains
between a and b. So a cognitive content a-R-b is true if and only if b is lo-
cated in a by the relation R. So, when one cognizes a man with a stick, the
man is the qualificandum, the stick is the qualifier and the relation between
the man and the stick, in this case, is contact or sam. yoga. This piece of
cognition will be true (pramā) if and only if the man being perceived has
contact with a stick.
It is, therefore, obvious that the Navya-Naiyāyika-s are in favour of giv-

ing a de re reading of a cognitive content. This situation, when viewed
in terms of locus-located relation is: b is located in a or a superstratum
(ādheya) of a in the relation R in a-R-b, and a is the locus or the substra-
tum (ādhāra) of b in the relation R in a-R-b. Generally speaking, according
to Navya-Nyāya, the basic combination which expresses a cognitive con-
tent is a locus-locatee combination of the form ‘a has f-ness’ � ‘(there is)
f-ness in a’ (‘the lotus has redness’� ‘(there is) redness in lotus’, which is
expressed in ordinary language as ‘the lotus is red’. ). In a perspicuous
account of a cognitive content, the Navya-Naiyāyika would like to make

4Haaparanta (2009) p.963
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explicit the connection between the lotus and its colour in consonance with
their own categorical framework.
It is evident from the above analysis that relations play a crucial role

in the Navya-Nyāya concept of a cognitive content. Over and above the
two relations of contact and inherence admitted by the Vaiśes.ika-s, Navya-
Naiyāyika-s define many new relations for precisifying our cognitive con-
tent. A standard definition of relation in terms of subjuncts�superstratum
(anuyogı̄) and adjuncts�substratum (pratiyogı̄) given by Gadādhara is as
follows.

When xRy is a cognitive content, R is a relation of x to y i� x
is the adjunct of R (one which is related) and y is the subjunct
(to which x is related) of R.

The Navya-Nyāya way of expressing a relation is always as xRy, where
the entity to the left of R is the adjunct and the entity to the right of R is the
subjunct. The Navya-Naiyāyikas admit two types of relation, occurrence-
exacting (vr.tti-niyāmaka) and non-occurrence-exacting (vr.tti-aniyāmaka).
An occurrence-exacting relation always gives the impression that one en-
tity is located in another entity, while a non-occurrence-exacting relation
does not do so. The latter only makes us aware that the two terms are re-
lated. It is easier to identify the adjunct and subjunct of a relation of the
former type; the adjunct is that which is located and the subjunct is that
where the adjunct is located but in the second type adjunct and subjunct
are identified depending on the fiat of the cogniser. The Navya-Naiyāyikas
mainly use four types of direct relation: (1) contact (sam. yoga); (2) inher-
ence (samavāya); (3) svarūpa 5; and (4) identity (tādātmya). Of these, the
first two are occurrence-exacting, svarūpa is sometimes so, and identity
is not. They admitted some indirect relations (paramparā sambandha) too,
e.g., the colour of a cloth’s thread resides in the cloth by an indirect relation
composed out of inherence and its inverse, viz., sva-samavāyi-samavetatva.
According to the Nyāya school all these relations, direct and indirect, are
binary relations.
It is now time to give a minimal account of the Navya-Nyāya language,

which is a higher-order technical language but, strictly speaking, is not a
formal languguage.
The primitive terms of the language are the nouns or nominal stems like

ghat.a (pot), dhūma (smoke), vr.ks.a (tree), kapi (monkey), etc. By adding
5Svarūpa will be left untranslated because any English term is bound to distort its mean-

ing; it is identical with either one or both the relata.
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the simple su�x ‘tva’ or tā’, many new abstract terms are generated. For
example, by adding ‘tva’ to dhūma, abstract terms like dhūmatva (smo-
keness or smokehood), which is a universal (jāti), can be generated. The
su�x ‘tā’ is used to generate relational abstract expressions such as cause-
hood (kāran. atā), locushood (ādhāratā), and their corresponding inverse re-
lational expressions such as e�ecthood (kāryatā), located-hood or super-
stratumhood (ādheyatā�vr.ttitā). Navya-Nyāya also uses a possessive su�x
‘mat’ (or its grammatical variant ‘vat’) meaning ‘possessing’ to generate
new concrete terms as in ‘vahnimat’ or fire-possessing.
There is an operator known as the determiner-determined-relation (nirūpya-

nirūpaka-bhāva) which obtains between correlatives like locushood and
locatedhood, causehood and e�ecthood, motherhood and sonhood, etc.
To explain, when a is the locus of b, the relational abstract locushood
(ādhāratā) resides in a and its correlative locatedhood (ādheyatā) resides
in b. The property of locushood residing in a determines or is determined
by the locatedhood residing in b, depending on the direction of the rela-
tion. This determining relation guarantees exact description of the content
of cognition. Suppose, one sees that there is a plum in a bowl and a book on
the table. In terms of locus-locatee these two facts can be described as fol-
lows. The plum has a locatedhood determined by the bowl and the book has
the locatedhood determined by the table. Similarly, the bowl has the locus-
hood determined by the plum and the table has the locushood determined
by the book. As the locatedhood of one entails the locushood of the other
and vice versa, there exists a determiner-determined relation between lo-
catedhood and the locushood. Hence the cognitive content, viz.,‘the plum
is in the bowl’ can be rephrased as the plum possesses a locatedhood that is
determined by the correlative locushood residing in the cup (kun.d. anis.t.ha-
ādhāratā-nirūpitā-ādheytāvat-vadaram) and ‘the cup has a plum in it’ can
be explained as the cup possesses a locushood that is determined by the cor-
relative locatedhood residing in the plum (vadaranis.t.ha-ādheyatā-nirūpitā-
ādhāratāvat-kun.d. am).
Another very important operator is avaccehadakatā, or limitorhood. This

operator performs multiple functions in a cognitive situation. (1) It states
explicitly the mode of presentation of an object, (2) it acts as a quantifier in
a content-expressing sentence, and (3) it helps us to determine which pair
of sentences is contradictory.
The first operation of a delimitor can be explained with the simple ex-

ample of ‘the floor is with a pot’. When we cognize something, some
qualifiers are expressed in the first order language and some are merely un-
derstood. The qualifiers which are merely understood are called the ‘delim-
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itors’. So in the above example, the floor is the qualificandum and the pot
is the qualifier, both of which have been mentioned. But there are two other
unmentioned qualifiers, viz., potness and floorness qualifying respectively
pot and floor and hence are the delimitors. A full account of the content
undoubtedly requires these delimitors and if the mode of presentation or
the delimitor is properly specified, we can set aside all confusions. Besides
the delimitors of the qualificandum and the qualifier, there exists a delim-
iting relation too, which in this context is contact. So, fully spelt out, the
sentence ‘the floor is with a pot’ (ghat.avat bhūtalam) turns out to be: the
floor delimited by floorness possesses a locushood that is determined by
the correlative locatedhood residing in the pot delimited by potness in the
delimiting relation of contact (sam. yogasambandha-avacchinna-ghat.atva-
avacchinna-ghat.anis.t.ha-ādheyatā-nirūpita-bhūtalatva-avacchinna-ādhāratā-
vat-bhūtalam). The situation mentioned above is being represented by a
diagramme 6.

Figure 1: Ghat.avat bhūtalam (The floor has a pot on it)

To understand how the Naiyāyika -s use ‘delimitor’ to state the quantity
of the cognised structure, we may consider two interesting examples given
by Maheśa Chandra Nyāyaratna 7. When the content-expressing sentence
is: ‘A person having brahminhood is scholarly’, it does not signify that all
brahmins are scholarly. Rather this means that the property of being brah-
min and scholarship are sometimes found in the same locus, i.e., ‘Some
brahmins are scholarly’. On the other hand, when the content expressing

6All the diagrammes is the text have been adapted from Ramesh Chandra Das (2006)
7Mahesa Chandra Nyāyaratna (1973)
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sentence is: ‘Men are mortal’, the qualifier mortality pervades the delim-
itor of the qualificandum, i.e., humanity. Hence, the sentence should be
construed as universally quantified. The general rule is: when the chief
qualifier is just co-resident (samānādhikaran. a) with the property of being
the qualificandum, the content-expressing sentence should be taken as par-
ticular but when the chief qualifier is delimited by the delimitor of the qual-
ificandum (viśes.yatāvacchadakāvacchinna), the sentence is to be construed
as universal.
To find out how delimitorhood helps us determine contradiction in a pair

of cognitive content or sentences, let us consider the following example.
When a strong breeze blows over a tree, the leaves and the branches of
the tree are seen to tremble. The roots and the trunk of the tree do not,
however, tremble. Thus it may be said that the tree is characterized both by
trembling (sakampatva) and absence of trembling (akampatva), which are
opposed to each other. Using the delimiting operator, the Navya-Naiyāyika
would show that though trembling and the absence of trembling are present
in the tree, that does not a�ect the unity of the tree; nor does it amount to the
assertion of a contradiction that the same tree is both trembling and non-
trembling at the same time. He would rather say that the tree in respect of
its branches (śākhāvacchedena) is the locus of trembling, whereas the same
tree, in respect of its root (mūlāvacchedena) is the locus of the absence of
trembling. In like manner, when a monkey sits on a tree, the tree may
very well have contact with that monkey in respect of one of its branches;
while the same tree in respect of its roots may simultaneously harbour the
absence of that contact. In such cases, the locushood resident in the tree is
said to be delimited (avacchinna) by di�erent delimitors (avacchedaka) –
the tree, as delimited by its branch is the locus of contact with monkey, and
this is in no way opposed to the fact that the same tree, as delimited by its
roots, is the locus of the absence of contact. There would be a contradiction
if the tree would have been a location of a contact and the absence of that
contact with respect to the same delimitor.
In this connection, it must be mentioned that the presence or absence of

a certain thing in a certain locus is always through some specific relation.
Thus, a pot may be present on the floor of a room through the relation
known as contact, and at the same time, present in its own constituent parts
through the relation of inherence. The pot, however, is not located in the
floor through inherence, or in its own parts through contact. But this does
not lead to any contradiction.
A logical language remains incomplete without an account of negation.

To understand the Navya-Nyāya concept of negation we need to understand
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their ontology of absence. Absence, they point out, is not merely a logical
or linguistic operator, it is as objectively real as a positive entity is. Four
types of absence are admitted in the system: (1) mutual absence or di�er-
ence (anyonyābhāva), e.g., a jar is not a pen and vice versa; (2) absence
of not-yet type (prāgabhāva), e.g., absence of a bread in flour before it is
baked; (3) absence of no-more type (dhvam. sābhāva),e.g., absence of a vase
in its broken pieces and (4) absolute absence (atyantābhāva), e.g., absence
of colour in air. So an absence is always of something and that something
is called the counterpositive or the negatum (pratiyogı̄) of that absence.
Consider the absence of smoke in a lake. Smoke is the counterpositive
(pratiyogı̄) of the absence of smoke and pratiyogitā or the relation of coun-
terpositiveness is the relation between an absence and its counterpositive.
Here, the lake is the locus (anuyogı̄) of the absence. Hence, anuyogitā
connects the absence in question with its locus. Here absence is that of
smoke in general (dhūma-sāmānya) and not this or that particular smoke,
hence it is called dhūma-sāmānyābhāva. Next, let us explain the notion of
a delimitor and the delimiting relation in the context of an absence. When
x is in y, x is related to y in a particular relation and that relation is the
delimiting relation. Similarly, when there is an absence of x in y, a coun-
terpositiveness must be there in x and there must be a relation to delimit
that counterpositiveness. Suppose there is smoke on a mountain. Here the
delimiting relation is contact (sam. yoga). There is at the same time ab-
sence of smoke on the same mountain by the relation of inherence because
smoke never resides in a mountain by the relation of inherence. Again,
smoke is absent on the mountain by the relation of identity or tādātmya,
since smoke and mountain cannot be identical. So counterpositiveness in
the first case is delimited by the relation of inherence whereas in the second
case the delimiting relation is identity. At the same time counterpositive-
ness so related determines (nirūpaka) the said absence. Thus the first ab-
sence is determined by the counterpositiveness residing in smoke delimited
by the relation of inherence (samavāyasambandhāvacchinna-pratiyogitā-
nirūpita-dhūma-sāmānyābhāva) and the second absence is determined by
the counter-positive-ness residing in smoke limited by the relation of iden-
tity (tādātmyasambandhāvacchinna-pratiyogitā-nirūpita-dhūma-sāmānyābhāva).

III

Navya- Naiyāyika-s, like the Buddhists and the Old Naiyāyika-s divide
inference broadly into two types. Svārthānumāna (SA) or inference-for-
oneself deals with the psychological conditions, i.e., causally connected
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Figure 2: Bhūtale ghat.ābhāva (absence of pot on the floor)

cognitive states leading to one’s own inferential cognition, while Parārthānu-
māna (PA) or inference-for-others essentially deals with the proper linguis-
tic expression of this inference with a view to communicating it to others.
SA which is a process of mental reasoning par excellence consists of

four steps, each of which is a state of cognition causally connected with
the immediately preceding state. The process can be best explained with
their typical example. A person first sees that (a) the hill (paks.a� the locus
of inference) possesses smoke (hetu�the ground of inference�probans). This
is perceptual cognition which reminds him that (b) wherever there is smoke
there is fire (sādhya�the provable�probandum) as he has always observed in
a kitchen. The first step is technically called paks.adharmatājñāna, meaning
the probans is known to be present in the locus of reasoning. The second
step (known as vyāptijñāna) is memory or a recollective cognitive state of
the universal concomitance between smoke and fire. Then (a) and (b) are
combined to produce a complex form of cognition called ‘parāmarśa’ or
‘consideration’ of the form (c) the hill possesses smoke pervaded by fire
and then follows the conclusion (d) Therefore, the hill possesses the fire.
PA has five constituents arranged in the order pratijnā or assertion, hetu

or reason, udāharan. a or example, upanaya or application and nigamana or
conclusion. The typical example of a fully fledged parārthānumāna is the
following.

Pratijñā: The hill possesses fire. (stating what is to be proved)

Hetu: The reason is smoke (stating the ground of inference)

Udāharan. a with vyāpti: Wherever there is smoke, there is fire
as in a kitchen
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Upanaya: The hill is similar (in possessing smoke)

Nigamana: Hence, the hill possesses fire.

Though the conclusion of a PA appears to be the same as the first step,
these two perform two di�erent tasks. The first step just asserts the thesis
while the conclusion declares that what is to be proved has been proved.
According to the tradition, the first step is said to be generated by verbal
cognition, the second is established by inference, in the third step, example
is acquired through perception and the fourth step is based on cognition of
similarity. Since these four steps are established by four sources of true
cognition admitted in the Nyāya school, the Naiyāyika considers this five-
membered argument as the demonstration par excellence (parama-nyāya).
Gaṅgeśa in the Vyāptivāda of TCM has rejected many definitions of per-

vasion (vyāpti) given by the opponents of which only the first will be anal-
ysed here. Simply stated, the definition runs thus: Pervasion or vyāpti is the
absence of occurrence of the hetu in every locus of absence of the sādhya.8

This definition, however, has been amended quite a number of times to
free it from the charges of over-coverage (ativyāpti) and under-coverage
(avyāpti). A ramified version of the definition, though it is not the final
version, is:
The hetu is pervaded by the sādhya if the hetu is in no way occurrent by

the relation of hetutāvacchedaka in any locus of the absence of the sādhya
which is characterized by the sādhyatāvacchedakadharma and also by the
sādhyatāvacchedakasambandha. 9

We have said before that pervasion is the relation of invariable con-
comitance of the ground of an inference (hetu) and the thing to be in-
ferred (sādhya). Without the knowledge of this relation it is not possible
to infer. In a valid inference, ‘The hill has fire because it has smoke’,
the sādhya is fire, the hetu is smoke and paks.a or the locus is the hill.
Sādhyatāvacchedaka-sambandha is the relation in which the sādhya resides
in the paks.a. As fire resides in the hill by the relation of contact (sam. yoga),
the limiting relation is contact. The property which is the delimitor of the
sādhya in this case is fireness (vahnitva) and not the property of producing
burns (dāhajanakatva). Similarly by hetutāvacchadkasambandha is meant
the relation in which the hetu resides in the paks.a. In the given instance,
that relation is also contact, as smoke too resides in the hill by contact. This

8sādhyābhāvavadvr.ttitvam
9sādhyatāvacchedakasambandhāvacchinna-sadhyatāvacchedakadharmāvacchinna-

sādhyatāvacchedakāvacchinna-pratiyogitāka-sādhyābhāvādhikaran. anirūpita-
hetutāvacchedakasambandhāvacchinna-vr.ttitāsāmānyābhāvo vyaptih. .
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absence of occurrence of smoke is again absence of occurrence of smoke in
general and not of any particular smoke. So there is the relation of perva-
sion between the hetu smoke and the sādhya fire as there is general absence
of occurrence of the hetu smoke by the delimiting relation of contact, de-
termined by every locus of absence of the sādhya fire, counterpositiveness
of which is delimited by the relation of contact and the attributive delimi-
tor firehood. Plainly speaking, fire pervades smoke because no smoke ever
resides by way of contact in a lake or anywhere else, which is the locus
of absence fire qua fire. While exploring the psychology of reasoning, the
Naiyāyika-s have also specified three pre-conditions of the possibility of
engaging in a reasoning. The reasoning process cannot even take o� if
these pre-conditions are not fulfilled. Reasoning process begins

1. if the reasoner is not aware that there is fire on the hill, i.e., that the
probandum is present in the locus. Of course, if the reasoner desires
to reason to the e�ect that there is fire on the hill even after being
sure of the fact, he may indulge in reasoning;

2. if the reasoner does not believe that there is absence of fire on the
hill, i.e., the probandum is absent in the locus; and

3. if the reasoner does not believe or doubt that the hill is characterised
by some property which is concomitant with the absence of fire, i.e.,
the locus is characterised by some probans, which is invariably con-
comitant with the absence of the probandum.

The second and the third pre-condition require ascription of minimal ra-
tionality to the reasoner in the sense that the person naturally avoids the
alternatives that lead to contradiction. Next, the Naiyāyika-s discuss in
details how a reasoner can be sure that SA will lead to a sound conclu-
sion. According to them, the psycho-cognitive states previously specified
ensure the truth of the conclusion provided the probans, which serves as
the ground of reasoning is legitimate. A probans is legitimate if and only
if it possesses five features, viz.,

a It is present in the locus of reasoning (paks.a-sattva);

b It is present in a similar location (sapaks.a-sattva);

c It is not present in any dissimilar location (vipaks.a-asattva);

d It is not associated with the contradictory of the probandum in the
locus (abādhitatva);
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e If another probans tending to prove the contradictory of the proban-
dum is not present in the locus (asatpratipaks.itatva)

These five features provide the truth conditions of the cognitive states in-
volved in SA; a) is the truth condition of paks.adharmatājñāna, b) and c) are
the truth conditions of vyāptijñāna disjunctively and thus become the truth
condition of parāmarśajñāna too; d) and e) have a direct relevance to the
truth of the conclusion. The violation of these conditions leads to the types
of defective probans known as asiddha (unestablished), viruddha (hostile),
savybhicāra (deviating), bādhita (contradictory) and satpratipaks.a (coun-
terbalanced) respectively. All these defects of probans can be present in
one non-veridical inference, e.g., ‘the lake has fire because it has potness’.
In this example, the lake is the inference-locus, fire is the probandum and
potness is the probans. It violates the first condition because the probans
potness is not present in the locus of reasoning, the lake. It goes against
the second condition because potness is present only in pots but absent in
various loci of fire, hence the probans is opposed or hostile. A more fa-
miliar example of this type of fault is: sound is eternal as it is an e�ect.
The inference under discussion is also vitiated by the defect due to a devi-
ating probans. Here the probans potness which is present only in pots can
easily reside in a locus which is characterised by the absence of fire. That
shows that potness is not invariably concomitant with fire, the probandum.
In this example, the probans potness becomes contradictory and hence il-
legitimate, if the lake does not possess fire. Again, it is easy to show the
possibility of the existence of an alternative probans, say, water, capable
of proving the absence of fire in the lake, thus counterbalancing the force
of the original probans and preventing the conclusion. All these defective
probans are faulty because they somehow block the conclusion of the in-
ference. Thus, it is obvious that the psychological conditions of SA are
related to the conditions of validity of it in such a way that the fulfilment of
the former guarantees the fulfilment of the latter. Having shown this in the
context of SA, the Navya-Naiyāyika-s work out what role these conditions
play in PA, the full-fledged explicit form of reasoning employed primar-
ily for convincing others. As the theory of PA became more and more
developed, many structural and transformation rules of reasoning were ab-
stracted. These truth-preserving rules enabled the reasoners who had ac-
cess to the same set of premises to arrive at the same conclusion. Thus the
theory of reasoning which began as a description of psychology of proof
as well as a way of knowing was transformed into a logical theory, not as
a formal rule-driven axiomatic theory but as a model-theory.
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One area where the adherents of Navya-Nyāya added a novel feature of
philosophical discussion was the formulation of anugama (i.e., consecutive
or uniform character). It is often found that the same term is applied to
indicate a number of entities, even though at first sight, no common feature
can be found in them. Normally, one would expect that application of the
same word to a number of things depends on the apprehension of some
common feature in them; and if such apprehension is to be veridical, then
some such common feature should actually be present in those entities.
The problem is to find out some such common properties. The relation of
pervasion that justifies the inference of sādhya (S) from hetu (H) may be
apprehended in two ways:

1. Wherever H is present, S is also present; and

2. Wherever S is absent, H is also absent.

The first of these is known as anvaya-vyāpti, while the second is known
as vyatireka-vyāpti. It may be noted here that (i) and (ii) are not inter-
changeable, because if no vipaks.a can be found, then formulation of (ii)
cannot be admitted; wheras if no sapaks.a is available, then (i) cannot be
admitted . Both these are, however, regarded as cases of vyāpti. Both these
types of vyāpti have, however, one property in common – viz., the prop-
erty of being an object of the cognition which is contradictory to the cog-
nition of deviation (vyabhicāra), which would ensue if there is any locus
where H is present along with the absence of S. Thus, the property of being
the object of knowledge which is opposed to the knowledge of deviation
(vyabhicāradhı̄virodhijñānavis.ayatva) is the common feature (anugama)
that characterizes anvaya-vyāpti as well as vyatireka-vyāpti. We have dis-
cussed above the five types of ‘defective reasons’ (hetvābhāsa). Here again,
the same term is being applied to di�erent things that have apparently no
common feature. Nevertheless, three definitions that are applicable to each
of the hetvābhāsa-s have been formulated by Gaṅgeśa; one of them being
as follows: If X is such that a veridical cognition of X prevents either an
inference (anumāna) A or some cause of inference A, then X would be a
hetvābhāsa with respect to A. 10

These three definitions provide us with alternative anugama-s of the five
types of hetvābhāsa. The Naiyāyika-s maintain that if the presence of the
property S has already been ascertained in the locus P, then even if we are

10Yadvisayakatvena jñānasya anumiti-tatkāran. a-anyatara-virodhitvam, tattvam.
hetvābhāsatvam
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aware of the presence of some property H that is pervaded by S in P, no
inference of the form ‘P has S’ or ‘S is present in P’ will take place, unless
we have a strong desire for inferring the presence of S in P. In accordance
with this, the earlier Naiyāyika-s maintained that prior doubt regarding the
presence of S in P, which they call paks.atā, is a pre-condition of the in-
ferential cognition ‘P has S’ or ‘S is in P’ Now such a doubt may assume
various forms, e.g., (i) ‘Does P possess S or not?’ (ii) ‘Is S present in P or
not?’, (iii) ‘Is S counterpositive of an absence located in P or not?’ and so
on.Unless we can find here a common feature, it will be extremely di�cult
to express the causal connection between such a doubt and the said infer-
ential cognition; because only any one, but not all of such doubts can be
present before that inferential cognition.Here, again, Raghunātha Śiroman. i
has said that all such doubts are such that they are prevented from occurring
by a cognition where the presence of S in P is ascertained 11. Similar prob-
lems may also be raised about the avayava-s (components of inference).12

Having thus discussed generally the Navya-Nyāya theory of inference, we
show in the following figure no. 3 all the properties and relations that ob-
tain in their prototypical sound inference ‘the hill has fire as it has smoke
on it’. In fact, there are six generated properties all related by di�erent de-
termining relations (nirūpya-nirūpaka-bhāva), shown in the figure no. 3 by
(1) ..(6): (i) dhūmatva-nis.t.ha-avacchedakatā, (ii) dhūma-nis.t.ha-hetutā, (iii)
vahnitva-nis.t.ha-avacchedakatā, (iv) vahni-nis.t.ha-sādhyatā, (v) parvatatva-
nis.t.ha-avacchedakatā, (vi) parvata-nis.t.ha-paks.atā. In an unsound infer-
ence, because of a defect in the probans, some of these relations are blocked
(pratibaddha).

IV

Navya-Nyāya logic is a logic of terms and relations. There have been
several partial attempts to symbolize Navya-Nyāya logic by using first
order language (Bhattacharyya Sibajiban (1987), Ingalls (1951), Matilal
(1968) Staal (1962), etc.). But these have neither increased the perspicu-
ity of Navya-Nyāya language nor enhanced the power of Navya-Nyāya
logic. We too are contributing our bit with the hope of getting a better
understanding of the apparently formidable texts of Navya-Nyāya logic.
Our endeavour, to begin with, is to glean the syntax of the Navya-Nyāya
language from the brief overview mentioned above.

11yatra sādhyasya yādr.śasambandhāvagāhi-nirn. ayanivartyah. yah. sam. śayah. sa
tādr.śasambandhena sādhyānimitau paks.atā

12For an in-depth discussion of this technique of anugama and its logical aspects, see
B.K. Matilal (1968), pp. 83-86, and D. C. Guha (1968), pp. 281-293.
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Figure 3: Parvato vahnimān dhūmāt (The hill has fire because it has smoke
on it)

Navya-Nyaya syntax comprises the following.

Primitive terms: a,b,c, ... �, �, �, ... ��1, ��1, ��1, ...

Abstraction functors: Tv, Tā – such that if b is a term, then
Tvb is also a term;

If � is a term, then Tā�Tva � is a term too.

Explanation: a, b, c, etc., stand for noun stems like ghat.a (pot), vr.ks.a
(tree), kapi (monkey). �, �, �, ... stand for relational abstract expressions
like kāran. a (cause), ādhāra (locus), and ��1, ��1, ��1, .....stand for inverse
of them like kārya (e�ect), ādheya � vr.tti (located). Since ghat.a (pot) is a
term, ghat.atva (pothood) is also a term; and since ādhāra (locus) ia term,
so too is ādhāratā (locushood).
Formally, there is no need of introducing two sorts of primitive terms, yet

we have taken two sorts simply to retain the intuitive di�erence between
thing words and relational abstract expressions.
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Complex term-forming operators: There are a number of 2-place op-
erators used to form complex terms � sentence-surrogates, viz., L, D, A,
C, P. Navya-Nyāya philosophers bring all of them under the category of
‘sambandha’ (relations). It will be obvious from the explanation given be-
low that L, D, C, A, P are semantically distinct, and we are not o�ering
any formal ditinguishing criterion. Besides these, there are standard logi-
cal particles – negation (N) conjunction ( � ) and disjunction (�) . These
logical particles too occur between two terms.

1. L such that a L b, � L a, � -1 L b
Explanation: L is the locus-located relation (ādhāra-ādheya-bhāva),
when a is located in b implying that locatedhood is in a and locus-
hood is in b. For example, plum-in-a-cup should be understood as
there is locatedhood-in- the- plum and locushood- in-the-cup.

2. D indicates the determiner-determined relation (nirūpya-nirūpaka-
bhāva). D is such that � D �, while D -1 is � D -1 � . For example,
while locushood determines locatedhood, locatedhood is determined
by locushood and vice versa.

3. A is delimitation (avacchedaka-avacchinna-bhāva) such that � A a
where � is an unmentioned qualifier. � A a can be embedded in
a larger term, viz., � A a L �Ab. For example, pot-delimited-by-
pothood-located-in-the-floor- delimited-by-floorhood. A more com-
plex term can be of the form Tv � A L -1 Tā � D Tā � -1L Tv � A b
meaning the locatedhood-in-the-pot-delimited-by-potness-determining-
the-locusness- in-floor-delimited-by-floorness.

4. Another relational operator is C or colocation (sāmānādhikaran.ya) is
such that a C b when a and b L d or � C � when � and � L a. These
two sentence- surrogates a C b and � C � are taken as particular, e.g.,
‘some Brahmins are wise’.

5. P or pervasion (vyāpti) is considered to be the most important rela-
tional operator which is directly related to the process of inference
and hence plays a significant role in determing the characteristic fea-
tures of the consequence relation a la Navya-Nyāya and in laying
down the conditions of universal quantification. However, all ac-
cepted definitions of pervasion discussed by Gaṅgeśa are in terms
of negation. So, we need to discuss first the constraints and rules
concerning negation.
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Negation :
Negation in Navya-Nyāya has been construed as term negation. Barring

a few cases, sentential negation has always been transformed into term-
negation or absence. There are mainly two types of absences – one denying
the occurrence of something in a locus and in the other the identity between
two negata are denied, i.e., their di�erence is highlighted. An absence, we
have seen is always of something in some place in a specific relation, e.g.,
absence of pot on a table by the relation of contact. Here, the pot is the
negatum or the counterpositive (henceforth CP), the table is the locus of the
absence, the delimiting attribute or counterpositiveness is potness and the
delimiting relation is contact, since the pot, when present, is on the table by
the relation of contact. The relation between absence of pot and the table
is known as the abhāvı̄ya-svarūpa relation (henceforth AS). Symbolically
expressed,

Absence of a � Na, CP(Na) � a, locus of � LC
The relation between the locus and CP � LCa R a
The delimiting relation of CPness of Na � LCa Ra � R1Na
The AS of Na � R2Na � LC Na R Na.
LCa � LC Na by R1Na, viz., LC1 Na; L Na � LCa by R2Na,
viz., LC2 Na.

Constraints on CP:

a A global or maximal property (kevalānvayı̄-dharma) which is present
in every locus cannot be the CP of any absence because the locus of
such absence is non-existent (aprasiddha).

b A purely fictitious property (alı̄ka-dharma) is unnegatable because it
does not exist in any locus.

Corollaries:

1. In LCa R a, if R is contact or inherence, a is always a positive entity,
i.e., R2Na cannot be identical with contact or inherence.

2. In LCa R a, if R is a temporal relation, a is always a non-eternal
created entity.

3. LC2 Na � N LC1a

Explanation: Suppose, a � potness, then LCa � pot, LCa R a � inher-
ence, LC1 Na � pot, LC2 Na � N LC1 a � non-pot.. When LCa R Na is
identity (a case of di�erence), LC1 Na � potness, LC2 Na � non-potness.
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Laws governing Double Negation:

1. If LCNNa � LCa, when LCa is determined by R1Na, then NNa � a
(bhāvarūpa-samaniyata). This clause has been contested by Raghunātha
who upheld that that there may be extensional equivalence between
NNa and a, yet intensionally these two are to be distinguished. He,
however, had no problem in admitting extensional equivalence be-
tween NNNa and Na.

2. If the first negation is a relational absence and the second one is
di�erence, the NNa � a-ness. However, we must remember that
Navya- Naiyāyika-s are not unanimous on this point.

These two are the most basic rules governing double negation. Navya-
Nyāya logicians have shown great ingenuity in handling di�erent varieties
of double negation resulting from combination of di�erent types of ab-
sences.

Rules for conjunction (samuccaya):
� � �La
�La and �La

Rules for Disjunction

1. Rule for sam. śaya:
�v�La
�La or �La

2. Rule for anyataratva:
�v�La

�La or �La or � � �La

Now we are in a position to go back to the relation of pervasion.The
relational operator P holds between concrete as well as abstract properties.
So both a P b and � P � are admissible terms in Navya-Nyāya. a P b holds
if for any locus, LCNa � LCNb. In case of inference, pervasion holds
between the probans and the probandum of the inference. An inference
is sound if this pervasion relation holds. In fact, a place that contains the
absence of fire (probandum) must be the locus of the absence of smoke
(probans). Wherever � P � obtains, the corresponding sentence-surrogate
is universally quantified. For example, Tv m P Tā h, i.e., mortality pervades
humanity and so it is to be interpreted as ‘all men are mortal’.
Navya-Nyāya logic has received various semantic interpretations in the

hands of modern interpreters. Matilal (1998) had suggested a Boolean se-
mantics for some fragments of Navya-Nyāya. Ganeri (2004) has o�ered a
graph-theoretic semantice and Ganeri (2008) has developed a set-theoretic
semantics.Without committing ourselves to any of these semantics, we
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only point out that simple terms denote simple objects and complex terms
denote complex objects. That is, the meaning of sentence-surrogates are
not propositions but complex objects.
Now, we shall try to define the consequence relation in this logic of

property-projection relying on the already given definitions of negation and
pervasion. Their real concern had always been to select the right sort of
projection-base and to frame appropriate rules for distinguishing between
projectable and non-projectable properties13. Unlike Ganeri, while deriv-
ing the rules of negation we are not following the footsteps of Raghunātha,
which is a minority view. So we retain all three rules of negation as pro-
posed in Ganeri (2004). Besides, we are confining ourselves only to the
propositional part of Navya-Nyāya Logic.
Let T � mean ‘ � is true’. Then,

R1 If NT � , then TN � [Rule for Absence]

R2 TNN � i� NTN � [Rule for Absence of absence]

R3 If TN � , then NT � [Exclusion Principle]

R3 might have created problems in case of partially locatable properties
(avāpyavr.tti-dharma), hadn’t there been the operator of delimitation. By
delimiting the loci of partially locatable properties, simultaneous predica-
tion of � and N � in respect of the same thing can be avoided. As Mati-
lal (1998) writes, ‘Thus a device is used to reparse the partially locatable
property as wholly locatable, so that the standard notion of negation is not
“mutilated” in this system.’ 14

We have already mentioned that the soundness of an inference, accord-
ing to Navya-Nyāya, depends on the relation of pervasion and the relation
of pervasion, again, depends at least on satisfying the three conditions of
paks.a-sattva, sapaks.a-sattva and vipaks.a-asattva. Let us, therefore, formu-
late the properties of the consequence relation ‘ �� ’ as follows.
Let � be ‘the probans m is located in x’ and � be ‘the probandum p is

located in x’, then

� �� � i� p pervades m.

The rules of pervasion then warrants the following:

13Sarkar (1997)
14P.144
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� �� � i� T�

i� for any assignment of values to x, T�� T�

i� for any assignment of values to x, TN�� TN�

However, we must remember that ‘ �� ’ holds under the above-mentioned
three conditions only in one particular world, i.e., in a specific model.
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Banarasidass Publishers Private Limited, Delhi.
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Shri Shankar Ram Shastri, Chowkhamba Sanskrit Pratisthan, Delhi.





A Brief History of Chinese Logic
FENRONG LIU � and WUJING YANG �

1 Introduction

Chinese logic was born in the 6th to 3rd centuries B.C., an era of great
cultural and intellectual expansion in Chinese history. The period was
well-known for its various schools that held di�erent thoughts and ideas,
competing freely with each other, the so-called “contention of a hundred
schools”. The situation was described by the famous historian Sima Tan
(died in 110 B.C.) in his book On the Main Ideas of the Six Schools (lun
liujia zhaozhi,�����), in which the six schools and their ideas were
first presented and summarized. They are the Schools of Yin-Yang, Con-
fucianism, Moism, Names, Legalism and Taoism. Four more schools were
added later by Ban Gu (32–92 A.D.) in his book The History of the Former
Han Dynasty (hanshu,��), viz. the Schools of Agriculture, Diplomacy,
“Minor-Talks”, and theMiscellaneous School. One can imagine from these
names how schools interacted with each other, while at the same time de-
veloping their own theories. Among them, according to Han Feizi (280–
233 B.C.), Confucianism and Moism were the most popular and dominant
ones.
Logical themes occur in many philosophical works in Ancient China,

such as the oldest text the Book of Changes (yijing,��), the Art of War
(sunzi bingfa, ����), and works by the Confucians. But perhaps the
greatest relevance and significance to logic is found in the School of Mo-
ism and the School of Names. The former is famous for its contributions to
argumentation theory, Bianxue in Chinese. And the latter made fundamen-
tal contributions to the theory of names, Mingxue in Chinese.1 Scholars of
the Confucian School also proposed their own theories of names. Ming-
bainxue is a combination of these two theories, and it is considered to be
Chinese logic.

�Department of Philosophy, School of Humanities and Social Sciences,Tsinghua Uni-
versity, Beijing, China.

�Department of Philosophy, Renming University of China, Beijing.
1“Bian” in Chinese means “argumentation”, “Xue” studies, and “Ming” “names”.
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The School of Moism was founded by Master Mozi (��), who lived
during the fifth century B.C.. Mozi was the first to challenge Confucian-
ism by making reasoning the core of intellectual inquiry. As opposed to
Confucian view that one should follow the fixed meaning of names and act
on it, the Moists emphasize that one should define notions according to the
actual situation. They are also in favor of approaching truth by argumen-
tation: the term Bianxue reflects this point. The term Mozi is also used
to refer to all works written by anonymous members of the Moist school.
These texts cover a great variety of topics: epistemology, geometry, optics,
economics, and so on.2 Among them, there are six chapters of special log-
ical interest, Jing Shang (��), Jing Xia (��), Jing Shuo Shang (��
�), Jing Shuo Xia (���), Daqu (��) and Xiaoqu (��). The collec-
tion of these six texts is usually called The Moist Canons (’The Canons’,
for simplicity). Jing Shuo Shang is an explanation to Jing Shang, the same
with Jing Shuo Xia and Jing Xia. It is believed that Daqu was devoted to
ethical issues, though there are major textual di�culties in understanding
it. In this regard, Xiaoqu is much less problematic. It contains lots of log-
ical topics, coherent and well-structured. We will introduce these topics
soon in this paper.
The School of Names was founded by Deng Xi (560–501 B.C.), and both

Hui Shi and Gongsun Long belong to this school.3 Literally, this school
is known for its theory of names. In particular, they had the following
view of the relationship between names (ming, �) and objects (shi, �).
Names are used to denote objects, so they must conform to the objects. If
objects have changed, names must change too. Moreover, names cannot
exist without referring to some objects, but objects can exist without nec-
essarily having names. Similar to the sophists in the ancient Greece, this
school was also famous for proposing strange propositions or paradoxes.
For instance, Gongsun Long was famous for his statement and argument
for “A white horse is not horse”. His main point is that the notion of white
horse comes from something white which describes color, and horse which
describes shape, which is not the same as the notion which only describes
shape. There are also other famous paradoxical propositions, for instance,
“chicken have three feet” and “eggs have feathers”. For “chicken have
three feet”, they claim that in addition to the left and right foot, there is
an independent notion of ‘chicken foot’, so there are in fact three feet to

2For a new attempt of re-translation of Mozi, see I. Johnston, The Mozi. A Complete
Translation, Hong Kong: The Chinese University Press, 2010.

3For a general introduction to this school of thought, see the Item ”School of Names” in
the Stanford Encyclopedia of Philosophy. http:��plato.stanford.edu�entries�school-names�
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a chicken. Also, common sense tells us that eggs have no feathers, but
since one can get chicken from eggs, one can say that eggs have potential
feathers. All these examples somehow go against our ordinary intuitions,
so they triggered hot debates among di�erent schools. But that is precisely
why the School of Names used them, to expose problems in people’s think-
ing and language use.
The School of Confucianism was founded by Confucius (551–479 B.C.).

Its guiding idea is that ‘rectification of names’ is the first thing needed
to achieve a harmonious society. They believe that chaos in real life is
caused by wrong usage of names. Here is a famous conversation between
Confucius and his student Zilu:

“If names are not correct, language is not in accordance with
the truth of things. If language is not in accordance with the
truth of things, a�airs cannot be carried on to success. When
a�airs cannot be carried on to success, proprieties and music
will not flourish. When proprieties and music do not flour-
ish, punishments will not be properly awarded. When punish-
ments are not properly awarded, the people do not know how
to move their hand or foot. Therefore a superior man (junzi)
considers it necessary that the names he uses may be spoken
appropriately and also that what he speaks may be carried out
appropriately. What the superior man requires is just that in
his words there may be nothing incorrect.”4

Confucians hold that clearly identifying the intention and extension of a
name is the precondition of correct acting. Once the system of names is
fixed, the society and people know what is allowed to do and what is for-
bidden. “There is government, when the prince is prince, and the minister
is minister; when the father is father, and the son is son.”5 Xunzi (313–238
B.C.), a follower of Confucius, was one of the early leaders in the consol-
idation of what came to be thought of as the Confucian tradition. Xunzi is
also used to refer to his collected works, which address many topics rang-
ing from economic and military policy to philosophy of language. In this
paper, we will look especially at his theory of names.
The aim of this paper is to explain logic issues that were discussed by

the above schools in the earlier period. In addition, we show how some of
4See the chapter Zilu from The Analects (lunyu��). The translation is from the online

Chinese Text Project: http:��ctext.org�analects.
5Sishu zhangju jizhu������, xinbian zhuzi jicheng, Beijing: Zhonghua Shuju,

1983.
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those ideas developed over time in Chinese history. The paper is organized
as follows: In Section 2, we start with the main theories of Mingbianxue
in Pre-Qin Period. From the Han Dynasty onward, the School of Confu-
cianism became dominant. We will see how logic issues were taken up
and developed in later dynasties in Section 3, with a focus on contributions
made in the Han, Wei-Jin and Song dynasties. In Section 4, we move to the
20th century and discuss some recent developments, highlighting compar-
ative studies of Chinese logic, Indian and Western logic. Finally, we draw
some conclusions.

2 Mingbianxue

2.1 Names

Names come together with objects, and relations between names and ob-
jects were a main concern for many schools. In the Canons, it says that

“��������������������” (A81)

What something is called by is its ‘name’. What is so called is the ‘ob-
ject’. The mating of ‘name’ and ‘object’ is ‘relating’.6 Similar ideas were
expressed in “Yiming jushi”(����), 7 which says “one uses names to
refer to objects”. To give a name to some object, there are two basic things
to consider, namely, “like” (ruo,�) and “so” (ran,�). These two things
determine a “standard”, called fa �, namely, “that in being like which
something is so”.8 So, in order to use one name consistently, we must fol-
low fa. E.g., the name of “circle” can be applied to the compass, too, since
it fits the same standard.9

Names can be of di�erent kinds, as stated in “There are three kinds of
names: unrestricted names, classifying names and private names” (ming.
da, lei, si. �������� ).10 For instance, “thing” is “unrestricted”,
as any object necessarily requires this name. “Horse” is a “classifying”
name, for anything that is “like the object” we necessarily use this name.

6NO 11. In this paper we follow Graham’s numbering of the Canons. He made a hybrid
text fromXiaoqu and parts of Daqu under the title “Names and Objects”(abbreviated “NO”)
and most of the remainder of Daqu as “Expounding the Canons”(“EC”, for short). “TC”
and “HC” abbreviate Daqu and Xiaoqu, respectively. We will make some revisions of
Graham’s translation where necessary.

7NO 6 (HC 6A�9-6B�1).
8A 70.
9Ibid.
10A 78.
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The name “Jack” is a “private” name, since the name stays confined to this
single object.
Similarly, Xunzi divided names into four kinds in his chapter “rectifi-

cation of names” in Xunzi: Da gongming (���), Gongming (��),
Bieming (��) and Da bieming (���). Da gongming are names with
the biggest extension, for instance, “human being” or “thing”. Gongming
are names with smaller extensions than those of Da gongming. Da bieming
are the names with the smallest extension, for instance, the name “Confu-
cius”, or “Jack”. Bieming are names with larger extension than those of
Da bieming. In fact, Da gongming are similar to unrestricted names, and
Da bieming are similar to private names in the Canons.
Both classifications of names presented here are made from an exten-

sional point of view. Classifying names, Gongming or Bieming are what
we would nowadays call generic names, while private names or Da biem-
ing are simply proper names.
Most importantly, the Moists proposed principles regarding the distinc-

tion between any two classifying names. In fact, this follows from the
notion of “standard”. They say that proposing a “standard” is not arbitrary;
we have to pick those properties which one object has and the other lacks.
This view on the correct use of classifying predicates is elaborated below:

“By referring arbitrarily one cannot know di�erences. Ex-
plained by: what they have. Although oxen are di�erent from
horses, it is inadmissible to use oxen having incisors and horses
having tails as proof that oxen are not horses; these are things
which they both have, not things which one has and the other
lacks.”11

To distinguish oxen from horses, having incisors and having tails are
not the properties one should take. We will come back to this issue when
discussing kind-based reasoning in Section 2.4. This is similar to “genus
and di�erentia” as proposed by Aristotle. The genus is the kind under
which the species falls, and the di�erentia states what characterizes the
species within that genus. It is species that have essences which should be
the basis of a correct definition. The notion of essence is similar to fa in
Moist logic. Oxen and horses belong to the same kind “animal”, and one
should find a fa for each species that di�erentiates it from others within
the same kind. We can fairly say that the theory of classifying names in

11B 66.
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Ancient China had the same spirit as Aristotle’s account of “genus and
di�erentia”.12

Concerning the relationship between names and objects, the Moists ob-
serve that di�erent names can be used for the same kind of objects, and
di�erent objects can share the same name. An example for the former is
that a kind of dogs has two di�erent names, quan (�) and gou (�), they
are both names for dogs. For the latter, according to a given standard, ob-
jects sharing the same name are not necessarily alike except in the respects
covered by the standard. For example, pieces of stone and of wood, both of
which fit the standard for “square”, share the name “square”, but are very
di�erent otherwise. Thus, the Moists were aware of the complex relations
between syntactic names and semantical objects.

2.2 Kind (Lei): Tong and Yi

Kind (Lei) is one of the core concepts in the Moist Canons. As we have
seen, classifying names are supposed to apply to kinds. We discussed not
only rules of correctly using classifying names, but also principles govern-
ing the distinction between any two classifying names. Recall our example:
“horse” is a “classifying” name, for anything “like the object” we necessar-
ily use this name. More generally, the following view underlies the Moist
account:

(a) For each kind, there are objects which belong to it, and in virtue of
this, they are similar or the same.

(b) With each kind, there are some properties which are essential, being
common to all the objects of that kind.

The similarity between objects of the same kind is called “the sameness
of the kind” (leitong, ��). Many di�erent sorts of similarity are dis-
cussed in the Canons, but the sameness of the kind is clearly distinguished
from other sorts, witness the text below:

“Tong (same). Identical, as unites, as together, of a kind. There
being two names but one object is the sameness of ‘identity’.

12A more concrete comparison can be found in Zhang Jialong and Liu Fenrong 2007,
“Some thoughts on Mohist logic”. In J. van Benthem, S. Ju and F. Veltman, eds., AMeeting
of the Minds–Proceedings of the Workshop on Logic, Rationality and Interaction, Beijing,
2007.
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Not being outside the total is sameness ‘as units’. Both occu-
pying the room is the sameness of being ‘together’. Being the
same in some respect is sameness in being ‘of a kind’.”13

Objects of the same kind have common essential properties, called “leitong”.
In addition, the Canons also discusses di�erence in kinds. Again, there are
many sorts of di�erence, but “di�erence in kinds (leiyi,��)” is the one
that is relevant to our discussion here. It says:

“Yi (di�erent). Two, not units, not together, not of a kind.
The objects if the names are two necessarily being di�erent
is being ‘two’. Not connected or attached is ‘not units’. Not
in the same place is ‘not together’. Not the same in a certain
respect is ‘not of a kind’.”14

Thus, what matters to a kind are its essential properties. They are the
criterion by which a kind is identified. Moreover, according to these prop-
erties, we can determine whether an object is of that kind or not. It will
become clear how this view is exploited concretely when we turn to the
logical study of reasoning patterns. Lei (Kind), as the core notion in Moist
logic, serves as a basis for much logical reasoning. Together with “reason
(gu�)” and “general law(li�)”, it forms the three basic components of a
piece of reasoning.

2.3 Propositions and Logical Constants

As expressed in the Moist dictum “yichi shuyi (����)”15, proposi-
tions are used to elucidate ideas.16 We express our ideas by means of
various types of proposition. We now turn to the structure of logically
complex propositions in Moist logic. The Canons discussed di�erent types
of proposition involving logical constructions like quantifiers, conditionals
and modalities. Since there is no systematic categorical classification of
propositions in the Canons, in what follows we are going to review it from
a modern perspective. Along the way, we will pay attention to how Moists
perceived di�erences between the propositional types, and especially, how
they use logical constants to indicate these types in the language.

13A 86.
14A 87.
15NO 11.
16The translation by Graham was “propositions are used to dredge out ideas”.
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Quantifiers: all and some The universal quantifier is mainly expressed
by the word “all (jin, �)”. As explained in “all is none not being so.”
(jin, moburan ye. ������� )17 Written in a logical formula, it
is � x � ���x. Notice that here jin is defined in terms of “none (mo,
�)” which is taken as a primitive; and thus, the universal quantifier is
defined by a double negation. Besides jin, other words, like ju �, zhou
�, ying�, bian�, are also used to express the universal quantifier, they
all mean “all”. One can easily find propositions containing such words in
the Canons. The negation of the universal quantifier is defined as well: in
“some is not all.” (huoyezhe, bujin ye. �������� )18 Put again
in a logical formula, we get �x � ��x. This is not really what existential
quantifiers mean nowadays ( �x � ���x.). Probably the Moist text is not
a definition, but it wants to make the point that “some” (viewed as a part)
di�ers from “all” (as the whole).

Disjunctions, conjunctions and conditionals The expressions “either...
or... (huo... huo...�...�...)” are used to express disjunction in theCanons.
Of the many examples in the texts, we only give the following two for the
purpose of illustration: “either call it ox, or call it non-ox”19, and “either
its body is gone or it is still here.”20

Concerning conjunctions, there is no clear independent expression for
this in the language, but the Canons have many propositions which ex-
press the idea that several things should hold at the same time. Probably,
juxtaposition was seen as implicit conjunction.21

The conditional is defined in “the loan-named is not now so” (jiazhe, jin
buran ye.�������22). Conditions or causes that lead to some phe-
nomenon are called “reason (gu, �)”. There are two types of gu, “major
reason (da gu,��)” and “minor reason (xiao gu,��)”. The distinction
between them is illustrated in the following text:

“The gu of something is what it must get before it will come
out. Minor reason: having this, it will not necessarily be so;
lacking this, necessarily it will not be so. It is the unit, like

17A 43.
18NO 5 HC 6B�3-5.
19A 74.
20A 46.
21It has been proposed that� (which really means “all”) can be seen as a conjunction

sign. See Zhou Yunzhi. History of Chinese Logic. Shanxi Education Press, 2002.
22NO 5 HC 6B�3-5.



A Brief History of Chinese Logic 109

having a starting-point. Major reason: having this, it will nec-
essarily be so; lacking this, necessarily it will not be so. Like
the appearing bringing about the seeing.”23

According to this explanation, major reason and minor reason are what
we would nowadays call “su�cient and necessary condition” and “nec-
essary condition”, respectively. In the Moist texts, “if...then...” (ruo...ze,
�...�...) are often used to express conditionals24.

Modalities Interestingly, modalities are considered in the Canons too.
First, the word “bi �” is used to express necessity. For instance, “There
necessarily exists a winner in a disputation.” (wei bian wusheng, bi budang.
��������� 25) Several tensed modalities are also considered.
The word qie � is used to express the future tense. E.g., in “Going out
in the future is not going out now.” (qie chumen, fei chumen ye. ����
����� ), we can see two states of going out in the future or going
out now clearly distinguished. Likewise, “yi�” is used to denote the past
tense. As is clear from these examples, modalities are explicitly recognized
as such in the text of the Canons.

Complex propositions One striking phenomenon is that the Canons are
replete with complex propositions such as “riding a white horse is riding
a horse”, “killing a thief is not killing a man”, etc. These are not simply
constructed from basic propositions by means of the logical constants we
have seen so far. In addition, they have rich variations in complex predi-
cates. To conclude, we mention one logical issue here relevant to complex
propositions, namely, extension of predicates, which is the basis of all cor-
rect reasoning with complex propositions26. To illustrate this, consider the
following example from the Canons:

“He loves people” requires him to love all people without ex-
ception, only then is he deemed to love people. “He does not
love people” does not require that he loves no people at all;
he does not love all without exception, and by this criterion
is deemed not to love people. ... These are cases in which

23A 1.
24Sometimes “ruo” is omitted when it is clear from the context.
25B 35.
26See an analysis in Liu Fenrong and Zhang Jialong 2010, “New perspectives on Moist

logic”, Journal of Chinese Philosophy, to appear.
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something “applies without exception in one case but not in
the other”.27

This text shows that studying the correct application of certain predi-
cates is exactly to spell out their extensions. This is a crucial topic in both
classical and modern logic.

Remark The diversity of propositions considered by theMoists is marked
by di�erent indicators in the language, e.g. “huo... huo...” for disjunc-
tions. The clear identification of these structuring expressions suggests
that the Moists realized the distinction between logical and non-logical
expressions. The former are the protagonists of modern logic, and they
determine logical structures in general. Consider two examples we have
seen: “huo weizhiniu, huo weizhi feiniu. (����������)”, and
“qiti huoqu huocun (������)”. They have the same logical form
“huo..., huo...”, but are about di�erent subject matters.

We hope to have shown that the exploration of the meanings of logical
constants by the Moists was innovative. In terms of related traditions, one
might say that Moist logic seems closer in spirit to Stoic logic than to
Aristotle’s syllogistic.

2.4 Kind-based Inference Patterns

It was commonly held across di�erent schools that one should infer from
what one knows to what one does not know, to get new knowledge. The
general term to denote this process is “shuo (�)”, reasoning or providing
proofs, as in “by means of inference bring out reasons” (yishuo chugu,�
���28). First, we would like to briefly address the sources of knowledge
discussed in the Canons. It is said that “There are three di�erent ways
to get knowledge: viz. learning from others, reasoning from what one
knows already, and consulting one’s own experience.” (zhi: wen, shuo,
qin. �������� )29 This clearly identifies the di�erent ways of
getting knowledge and besides, a nice example is also given to show these
di�erent sources plus their interplay. It goes as follows:

Imagine that someone, say Jack, is standing outside of a room,
and he sees an object which is white. From the very beginning

27NO 17.
28NO 11.
29A 80.



A Brief History of Chinese Logic 111

then, he knows from his own observation that “the object out-
side of the room is white”. But now, there is another object,
inside the room, of a yet unknown color. Now Jack is told
that the object in the room has the same color as the one out-
side. Now he knows that “the object in the room has the same
color as the one outside”, by learning from others. Finally he
also knows that “the object in the room is white”, via his own
reasoning based on what he knows. This example illustrates
exactly how shuo works for us when we acquire knowledge.

Now we get to a theme that modern logicians will recognize as being
closest to their subject. To get to know something by means of shuo, we
can appeal to many di�erent kinds of reasoning. The remainder of this
section is about reasoning patterns in the Moist texts. Our focus are the
characteristics of these patterns and their validity. We will start with a
simple pattern called Xiao, as explained in the following text from Xiaoqu:

“The xiao consists of setting up the fa (standard). That which
things are modeled after is that which is to be set up as the
fa. When it conforms to the xiao, it is right. When it does not
conform to the xiao, it is wrong.”30

The name used for the reasoning here is called Xiao (�) which means
“to imitate”. The above text explained how the reasoning of Xiao is carried
out. First, a general standard fa (�) is set up, which gives us general prin-
ciples to follow in the inference. Next, according to the standard, we infer
whether specific things conform to this standard or not. Thus, this reason-
ing goes from a general rule or standard to specific cases. It is similar to the
following example which we are all familiar with: “All human beings are
mortal, Socrates is a human being, so Socrates is mortal”. In this example,
the standard is “All human beings are mortal”, and we infer that a specific
human being Socrates conforms to this standard. In this sense, Xiao can be
thought of as deduction.
We now continue with a few further central patterns in the Xiaoqu: “Il-

lustrating (pi,�)”, “Adducing (yuan,�)”, and “Inferring (tui,�)”. There
is also a pattern of “parallelizing (mou, �)”, but we do not address this
complex issue in this paper.31 We explain the reasoning by concrete exam-
ples, and then try to analyze it in terms of logical rules.

30NO 5.
31For a recent study on Moist reasoning with complex propositions, we refer to Liu and

Zhang 2010, “New perspectives on Moist logic,” Journal of Chinese Philosophy, to appear.
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Illustrating (pi) “Illustrating is that, in order to make someone else know
one thing, you refer to a di�erent thing known by him already.” (piyezhe,
jutawu yi mingzhi ye. �������������)32

This pattern of reasoning is found in works much earlier than the Canons,
like the Book of Odes around 1000 B.C.. The well-known sophist Hui Shi
(380–305 B.C.) was famous for his talent in using this sort of reasoning
in his arguments. The feature of illustrating is that two di�erent things A
and A’ are used in the reasoning. The reason why one can get to know A
by appealing to a di�erent A’ lies in the similarity between A and A’, as
introduced in the above.
To be more specific, consider an example from the book Gongshu (�
�) of Mozi. Mozi met the King of the State Chu. In order to convince
the King that it is not right for the rich Chu to invade the poor State Song,
he used a more obvious example. Namely, it is not right for rich people
to leave their property behind and go robbing poor people. Since the King
sees the injustice of the latter, he realizes that of the former, too. Clearly,
in this example, (a) the wealthy State invading the poor State, and (a’) the
rich people robbing the poor, are of the same kind. As it is easy to see the
injustice of (a’), one can then infer the injustice of (a) too. Notice that the
purpose of illustrating is to make someone else know, not to make oneself
know. In this sense, it is more like the process of explanation– and as
such, it is a typical illustration of the interactive argumentative slant of the
Canons.

Adducing (yuan) “Adducing means: if it is so in your case, why may
it not be so in mine too?” (yuanyezhe, yue: ziran woxidu bukeyiran ye?
����������������?)33 Adducing is carried out in
the following steps: one first quotes an opinion that the opponent accepts,
then one argues that the opponent’s opinion and one’s own are the same
or belong to the same kind. Then, it naturally follows that one’s opinion
should be accepted as well, if the opponent insists on his opinion. We men-
tioned one example in Section 2, when Gongsun Long defended his thesis
“a white horse is not a horse”. The argument used there is “Adducing”. He
asked why it would be a problem for him to say “a white horse is not a
horse” if we accepted what Confucius said: “Chu’s man is not a man”.
Again, the basis of adducing is the earlier-discussed notion of kind. In

the above example, “Chu’s man is not a man” and “a white horse is not a

32NO 11.
33Ibid.
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horse” are of the same kind, and so, if one of them true, the other should
be true as well. In fact, both illustrating and adducing can be formalized
into the following schema

(i) Object or statement A and A’ are of the same kind (i.e. A has the
kind-defining property P i� A’ has that property P),

(ii) A has the property P,

(iii) Therefore, A’ has the property P.

As we can see from the above examples, premise (i) is often omitted
from the reasoning as being common knowledge. What is left then is a
transition from some property of one object to another object or statement
that is of the same kind. But of course, establishing the sameness in kind
is an essential feature in practice.

Inferring (tui) “Inferring is using what is the same in that which he re-
fuses to accept and that which he does accept in order to propose the for-
mer.” (tuiyezhe, yiqi suobuqu zhitongyu qisuoquzhe, yuzhiye. �����
����������������)34

Consider the following scenario. If someone proposes a statement you
disagree with, what you need to do is choose a statement that belongs to
the same kind as what he proposed (and which he should therefore accept),
but in fact he cannot accept it. In that case, he has to give up his initial
statement. This describes precisely how inferring proceeds. Let us look
at an example in the book Gongmeng (��) of Mozi. Gongmengzi does
not think gods or ghosts exists, but nevertheless, he claims that junzi (�
�) should learn how to pray. Mozi then says: “What Gongmengzi said is
just like saying you have to learn how to treat your guests well, but there is
no guest at all. This is also like having to make a fish net, but there is no
fish.” The absurdity of the last two cases is clear, so we conclude that what
Gongmengzi said was wrong.
In this example, what Gongmengzi said about gods and what Mozi said

about guests or fish are of the same kind. Clearly, Gongmengzi would not
agree with the statement about guests and fish, so his statement about gods
can also be rejected. The logical reasoning pattern here is this:

(i) Object or statement A and A’ are of the same kind (i.e. A has prop-
erty P i� A’ has property P),

34Ibid.
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(ii) A’ does not have the property P,

(iii) Therefore, A does not have the property P.

This refutational style of reasoning is very common in practice if one
wants to reject some statement proposed by others.

So far, we have seen that in illustrating, adducing and inferring, by com-
paring two objects or statements of the same kind, we infer that one has
(or lacks) some property from the fact that the other object has (or lacks)
that property. This sort of reasoning is often called “analogical inference”
(leibi tuili, ����). Kind-based analogical inference is the main rea-
soning pattern in Chinese logic, it was used widely in philosophical ar-
gumentation. We will see in Section 3 how it was developed further by
later scholars. In the Western logical tradition, analogical reasoning is con-
sidered di�erent from deductive and inductive inference. But for Chinese
logic, the situation with analogical inference is more complex. Its view
of reasoning patterns contains both deductive and inductive reasoning. In
terms of applications, some patterns, e.g. Abducing and Inferring, are more
often seen in refusing some claims, while Illustrating and Paralleling are
used to infer positive conclusions. Also, what Chinese logic considers fun-
damental behind all reasoning is the notion of ‘kind’: all inferences are
based on sameness and di�erence in kinds.

2.5 Argumentation

Both Xunzi and Mozi emphasized that to distinguish truth from falsehood,
besides considering sameness and di�erence in kinds, we should also pro-
vide su�cient arguments. Xunzi says, “����, bianzejingu”35, in argu-
mentation one should list all the reasons, and “����, yishuo chugu”36,
by means of inference bring out reasons. As we have seen in Section 2.3,
these include “major reason (da gu,��)” and “minor reason (xiao gu,�
�)”.
Just as in Ancient Greece or Rome, disputation was popular during the

Warring States period. The di�erent schools criticized each other, trying
to convince their King with new proposals. The Moists were not only
concerned with this practice of disputation, but also with its meta-theory.
We can find many illuminating discussions of this topic in the Canons.
For instance, here is how they define a disputation: “disputation means

35Cf. the chapter of Zhengming in Xunzi.
36NO 6.
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contending over claims which are the contradictory of one another” (bian,
zhengbi ye. ������)37 To show what such contradictory claims are,
one simple example is:

“One calling it ‘ox’(P) and the other ‘non-ox’(�P) is contending over
claims which are contradictories of each other” (weizhiniu, huo weizhifeiniu,
shi zhengbi ye. ���������������)38

Furthermore, the Canons propose basic principles regulating disputa-
tions. The first says that of two contradictory propositions, one must be
false, they cannot be true at the same time. (shi bujudang, bujudang bi huo
budang.�������������)39 This is clearly the logical Law
of Non-Contradiction. Next, the Canons say that two contradictory propo-
sitions cannot be both false, one of them must be true (weibian wusheng, bi
budang, shuo zai bian. �������������)40 This, of course,
is the Law of Excluded Middle. There seems to be a consensus nowadays
that the Moists explicitly proposed these two basic logical laws, though
there are dissenting views.41 Interestingly, it is the discourse function of
logical laws, rather than their theoretical function, that is emphasized by
the Moists.
The Moists also discussed the broader purpose of disputation in general.

We conclude by citing their comprehensive and yet highly concise descrip-
tion in the following text:

“The purpose of disputation is (1) by clarifying the portions of
“is-this” and “is-not”, to inquire into the principle of order and
misrule; (2) by clarifying points of sameness and di�erence, to
discern the patterns of names and of objects; (3) by settling the
beneficial and the harmful, to resolve confusions and doubts.
Only after that, one may by description summarize what is so
of the myriad things, and by asserting seek out comparables in
the multitude of sayings.”42

Passages like this from the founding period of logic are intriguing, as
modern logicians are becoming more interested in regaining argumentative

37A 74.
38Ibid.
39Ibid.
40B 35.
41D. Leslie. Argument by contradiction in pre-Buddhist Chinese reasoning, Australian

National University, Canberra, 1964.
42NO 6 (HC 6A�9-6B�1).



116 FENRONG LIU ANDWUJING YANG

multi-agent perspectives on logic, in addition to the dominant paradigm of
reasoning as single-agent mathematical proof.43

2.6 Paradox

Finally, we mention one more striking analogy betweenMoist Logic and its
counterparts elsewhere, in the form of two illustrations. Many paradoxes
are discussed in the Canons - and these, of course, almost seem a hallmark
of the profession of logic. This interest in paradoxes may lie in its direct
connection to the earlier central concern with disputations, where one has
to avoid being self-contradictory. Let us start with the first example, which
is stated below:

“To claim that all saying contradicts itself is self-contradictory.
Explained by: what he says himself.” (yi yan wei jinbei, bei.
shuo zai qiyan.�������������)44

Here is the implicit argument. Assume that “all saying contradicts”, then
the sentence “all saying contradicts” is false itself. What this means is that
some statements are not contradictory. Thus, the Moists were aware of the
phenomenon of self-reference, and its logical consequence of self-refuting
statements. Clearly, this example is close to the paradox ascribed to the
Cretan philosopher Epimenides in the sixth century B.C., who asserted that
“Cretans are always liars.” While this is not quite the famous Liar Paradox,
which is contradictory whichever way one looks at it, it comes close.
We conclude with a secondMoist paradox, which seems original without

an obvious Western counterpart. It says:

“That it is useful to learn. Explained by: the objector.” (xuezhiyi
ye, shuo zai feizhe. ����������)45

This paradox seems to mix self-reference with pragmatics of speech acts.
Paradoxes have contributed greatly to the progress of logic. In this re-

spect, too, the Moist logicians were on to something crucial, at the same
time as their counterparts worldwide.

43Cf. R.Stalnaker. “Knowledge, belief and counterfactual reasoning in games,” Eco-
nomics and Philosophy, 12(2):133-16, 1996, R.H. Johnson, H.J. Ohlbach, Dov M. Gabbay,
and J. Woods, editors. Handbook of the Logic of Argument and Inference: The Turn To-
ward the Practical. Amsterdam: North-Holland, 2002. J. van Benthem. Logic Dynamics
of Information and Interaction. Cambridge University Press, 2010.

44B 71.
45B 77. It has been claimed that this passage is directed against Taosim as teaching that

all intellectual endeavour is useless.
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Remark Compared with Western logic,Mingbianxue is more concerned
with practical issues. The main purpose of Confucian’s “rectification of
names” is to serve the government, and even with the School of Names
and the Moists, their view on disputation is practical. This may has some-
thing to do with the social situation at that time, di�erent states fight against
each other, and schools must come up with good theories to help their king
to win. So not surprisingly, pure scientific exploration is often mixed with
concerns about practical matters –somewhat ominous for the fate of the
Mingbianxue. After the unification of China by the state of Qin, in order
to unify all thought and political opinion, the Emperor Qin Shihuang or-
dered a burning of all historical books except the history of Qin, and schol-
ars were suppressed as well. Thus the Hundred Schools of Thought were
marginalized except for the school of Legalism. Later on, in the Han dy-
nasty, the Emperor Wu espoused Confucianism as the orthodox state ideol-
ogy, proscribing all non-Confucian schools of thought. Even so, though the
political environment remained unfavourable to the logic-oriented Moist
School ever since, many of its ideas survived under later dynasties. We
will see how in the next section.

3 Later Development of Chinese Logic

The main development of Chinese logic in more recent times took place in
four periods: the Han, Wei-Jin, Song and Qing Dynasties. In what follows,
we discuss a few representative scholars or works from each.
In the Han Dynasty, the mainstream of intellectual activities was reflec-

tion on and synthesis of di�erent earlier schools. The Masters of Huan-
nai (huannanzi, ���) was one, edited by the King of Huainan Liu An
(179–122 B.C.). The book consists of 21 chapters, with ideas from many
schools. As far as logic is concerned, it further developed the theory of
analogical reasoning. The main ideas are the following. To carry out an
analogical inference correctly, one must first “know the kinds (zhilei, �
�).” To know the kinds means to know the sameness and di�erence of
the kinds. After one knows the kinds, one can reason on the basis of it
(yileituizhi, ����). The book presents many examples to show when
one can infer with kinds, and when one cannot (lei buke bixu, ����
�). Here is an example. A small horse with big eyes cannot be called a
big horse, but a big horse with blind eyes can be called a blind horse. Here
big eyes with a small horse do not a�ect its physical capacity, so we cannot
add ‘big’ to horse. By contrast, blind eyes do a�ect the physical capacity
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of a horse, so we can call the horse a blind horse. The two situations look
similar, but are essentially di�erent. Here is one more example in the book.
One may die because of a small injury in one’s fingers, but one may survive
even if one’s arm was cut. So one cannot simple conclude that big injury
leads to death, and one can survive all small injuries. The book advocates
care in analogical reasoning. It also lists mistakes in analogical inference
and analyzes possible reasons for such errors. Again the point stressed is
the importance of Zhilei: one has to recognize the essential properties of
kinds, and the necessary relations between di�erent kinds.
Like the Pre-Qin period, Wei-Jin (220–420 A.D.) is one more era in Chi-

nese history known for its free intellectual atmosphere. Ji Kang (224-263
A.D.), Wang Bi (226-249 A.D.) and Ouyang Jian (267–300 A.D.) were
prominent scholars. The relation between names, language and objects was
a core issue that was extensively discussed. Wang Bi’s view is called “�
��� yan bujinyi”, language is not adequate to express meaning – and
in complete contrast to this, Ouyang Jian argued for “��� yan jinyi”,
language is adequate to express meaning. These discussions extended the
tradition of the School of Names. But the theory of argumentation was
taken further, too. Ji Kang stated explicitly that the purpose of a dispu-
tation is to find the natural rule of things. One has to think carefully and
distinguish what is right from what is wrong, and one cannot rely on what
was said before. Ji Kang proposed several concrete strategies for disputa-
tion, such as trying to avoid a�rming two contradictory statements. One
should take all the cases of the issue under discussion into account, not
only one or the other. In particular, to reject an opponent’s claim, he pro-
posed a method very similar to “reduction to absurdity”. These strategies
abound in his works Essay on Nourishing Life (yangsheng lun, ���)
and On the Absence of Sentiments in Music (shengwu aile lun, ����
�).
As for the Moist Canons, a very important contribution was Annotated

Moist Canons (mobian zhu,���) of Lu Sheng46. For unknown reasons,
this book got lost. What is available is its preface, which was found in The
History of Jin (jinshu, ��)47. The preface contains only 294 Chinese
characters, but it summarized the main lines of Mingbianxue. In the pref-
ace, for the first time, Lusheng mentioned the textual organization of the
Canons, and he proposed reading them according to the following rule:

46It is commonly believed that he lived between the 3th century and the first part of the
4th century.

47This is about the history of West Jin (265–316) and East Jin (316–420), with 21 schol-
ars involved.
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for each section, one uses Shuo to interpret Jing (yinshuo jiujing, gefu
qizhang, ���������). To understand the importance of this
contribution, one has to know a bit about the Chinese history of printing.
The Canons were first printed on bamboo slips (zhujian, ��), but later
they were copied on silk (boshu, ��). With the bamboo slips, for each
section, Shuo comes after each Jing, and thus it was naturally divided into
two bamboo slips bound together, that can be read from right to left. In
the transition from bamboo slips to silk printing, the texts in Jing and in
Shuo were mixed up, so that people could no longer understand them when
copied on silk. This observation by Lu Sheng turned out extremely helpful
to later researchers in understanding the Canons.
In the Song Dynasty, Chinese philosophy reached its peak. The domi-

nant philosophy was called Lixue (Studies on Li): the main concern of the
philosophy was to find Li for everything. Many works of the period con-
tained discussions of logical issues. We only give a few examples. Based
on iconographic and cosmological concepts, Shao Yong (1011–1077) took
an “image-number study” approach to study the Book of Changes. He
wrote an influential article on cosmogony, Book of Supreme World Order-
ing Principles (huangji jingshi,����), to argue that numbers are the
origin of the universe, and everything else can be derived from them. In
particular, he placed the Hexagrams of the Book of Changes into a binary
order (the Fu Hsi Ordering). These ideas reached Europe in the 18th cen-
tury. Leibnitz was deeply impressed when he saw them in 1701, and his
views on a universal language and binary arithmetic were influenced by
it. One more example is logical inference. Besides Li, “gewu zhizhi (�
���)” was another core notion to Lixue, which means “to study the
phenomena of nature in order to acquire knowledge”. When explaining
Gewu zhizhi, Zhu Xi (1130–1200) talked about inductive and deductive
inference:

“There are two ways of getting knowledge, one is to explore
from the bottom to the top, the other is to explore from the
top to the bottom � � � Gewu is to study many things to get gen-
eral knowledge, Zhizhi is to infer from general knowledge to
concrete things.”48

The method from top to bottom is what we would call deduction, and that
from bottom to top induction. Li often acted as a general rule of deduction
to understand things in the world.

48Zhuzi Yulu, edited by Li Jingde, appeared in 1270. It is a collection of conversation
between Zhu Xi and his decedents, a valuable resource to understand the ideas of Lixue.
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Moving one more historical period, at the end of Ming Dynasty, the
philosopher Fu Shan (1607–1684) started annotating the chapter Daqu in
the Canons – a starting point of a di�erent approach to their study. The
Qian-Jia Textual Research School of Thought in the Qing Dynasty (1644–
1911) followed Fu Shan’s ideas, and systematically went back to the clas-
sic works from the Pre-Qin period. The Canons received unprecedented
attention. Most of these works are purely textual studies, trying to restore
the original text of the classics. Zhang Huiyan (1761–1802) re-arranged
the four chapters of the Canons: For each section Shuo follows Jing, as
Lu Sheng had suggested. Building on this, Wang Niansun (1744–1832),
Wang Yinzi (1766–1834)49 and Sun Yirang (1848-1908) began to study
the Canons text very carefully, proof-reading and annotating every sen-
tence. Sun Yirang wrote a book Mozi Jiangu (����) after 30 years’
e�ort. The book immediately became the most important reference in the
research of the Canons even since it appeared in 1898. After that, most of
the logic texts of the Moists became accessible.
One point to realize here is that key works of Indian and Western logic

had been introduced to China by that time.50 Sun Yirang points out in
his book that there are principles in the Canons that are similar to Aristo-
tle’s deductive reasoning, Bacon’s induction, and Indian Hetuvidyā, which
paved the way for the comparative studies carried out by Liang Qichao
and Zhang Taiyan in the early 20th century. We will see these in the next
section.

Looking back along this long history, although Mingbianxue was not a
popular subject after the ancient unification of China, its logical themes
were develop steadily by many scholars, and logical skills were explicitly
discussed in the philosophical literature. Of course, we only gave a glimpse
of this long period, and a more systematic study is urgently needed.

49Wang Niansun and Wang Yinzhi are father and son.
50Hetuvidyā was first introduced to China in the 6th century. It became very popular

in the Tang Dynasty and expanded its influence to other Asian countries, e.g. Japan and
Korea. However, there was little development during the Song, Yuan and Ming Dynasties.
Only in the late Qing Dynasty, several scholars got interested in Yogācāra, and studies on
Hetuvidyā were resumed.
The first translation of Euclides’ Elements of Geometry by the Jesuit Matteo Ricci and a
Chinese scientist Xu Guangqi appeared in 1607. In the early 20th centuries, further logic
textbooks were translated. The Chinese version of Mill’s A System of Logic appeared in
1905, and of Jevons’ Elementary Lessons on Logic in 1907. For more details, cf. Song
Wenjian, Introduction and Studies of Logics (luojixue de chuanru yu yanjiu������
���), Fuzhou: Fujian Renmin Press, 2005.
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4 Logic Studies in the Early 20th Century

After the introduction of Indian logic, and especially Western logic at the
end of the 19th and beginning of the 20th century, Chinese logic attracted
more and more attention. In this concluding section, we briefly look at
what happened in the early 20th century.
Liang Qichao (1873–1929) published an article on Lunlixue of Mozi (�
����)51 in 1904, where he took notions from Western logic to inter-
pret the Moist Canons. He said “what is called logic in the West is what is
called bian by the Moists” and “The notions of ming, ci and shuo are con-
cepts, propositions and inference in Western logic”. Concerning reasoning
patterns, Liang Qichao observed that Aristotle’s syllogism consists of three
parts, a major premise, a minor premise and a conclusion. The situation in
Indian logic is similar, there are three parts, too, called pratijnã, (the propo-
sition or conclusion), hetu (the reason), and udãharana (the example). In
Chinese logic, the three parts are ci (the proposition), gu (the reason) and
lei (the kind). On the basis of his comparative studies, Liang claimed there
is Chinese logic.52

In 1917, Hu Shi finished his dissertation The Development of the Logical
Method in Ancient China (xianqin mingxueshi, �����), which ex-
plored the logic of several schools in the Pre-Qin period. In particular, he
used the three categories “gu, lei and fa” to understand logical inference in
Chinese logic. Hu’s work was influential in the West, many scholars first
learnt about Chinese logic from it.
Zhang Taiyan (1869–1936) compared the three logics in a more sophis-

ticated way. He agreed with Liang that logical inference in all three tradi-
tions consists of three steps. But he pointed out that what is di�erent is the
order of the steps. In Western logic, the proposition comes first, then the
reason, finally the example. In Indian logic, the example and the reason
come before we get to the conclusion. In Chinese logic, reason and propo-
sition come first, then the conclusion. Take a classical example we used
before, in Aristotle’s logic we have:

All human beings are mortal,
Socrates is a human being,
So Socrates is mortal.

51“Lunlixue” was the Chinese term being used to translate “logic”. This translation was
adopted in Japan first.

52The issue of whether there is a Chinese logic in a technical sense is still controversial
nowadays, with answers heavily depending on authors’ own notion of logic.
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In Indian logic, one would have the following:

Socrates is mortal,
Socrates is a human being,
So all human beings are mortal.

In Chinese logic, it would go as follows:

Socrates is a human being,
All human beings are mortal,
So Socrates is mortal.

According to Zhang Taiyan, these di�erent orders reflect di�erent ways
of thinking. He also discussed the di�erence in the context of argumenta-
tion. He found that the Indian style of inference best serves the purpose of
real argumentation, as a combination of induction and deduction. Judging
logics by their application in argumentation influenced later research.
Other scholars in the early 20th century, like Tan Jiefu (1887–1974) also

contributed to comparative studies. While parts of these early works were
rigid and unimaginative by today’s standards, this comparative phase has
proved very fruitful, becoming a powerful stream of work by logicians in
mainland China and worldwide.53 We hope to review these achievements
in detail on some other occasion.

53Here are some works in this line: Angus. C. Graham. Later Moist Logic, Ethics
and Science. The Chinese University Press, 1978. Chad Hansen, Language and Logic in
Ancient China (Ann Arbor: University of Michigan Press, 1983). Christoph Harbsmeier,
“Language and Logic, ” in Science and Civilization in China, vol.7, ed. Joseph Need-
ham (Cambridge: Cambridge University Press, 1998). Cheng Chung-ying, “Inquiries Into
classical Chinese Logic,” Philosophy East and West 15, no. 3�4 (1965): 195–216; “Logic
and language in Chinese thought,” in Contemporary Philosophy: A Survey, ed. Raymond
Klibansky (Florence: Institute Internationale di Philosophia, 1969, 325–347); “Kung-Sun
Lung: White horse and other issues,” Philosophy East and West 33, no. 4 (1983): 341–354.
Zhang Chunbo and Zhang Jialong, “Logic and language in Chinese philosophy,” in Brian
Carr, editor, Companion Encyclopedia of Asian Philosophy. London: Routledge, 1997,
620–635. Zhang Jialong, editor, History of Chinese Logical Thought, Changsha: Hunan
Education Press, 2004. Zhou Yunzhi, History of Chinese Logic. Taiyuan: Shanxi Ed-
ucation Press, 2002. Cui Qingtian, Comparative Studies on Moist Logic and Aristotle’s
Logic, Beijing: Renmin Press, 2004. Sun Zhongyuan, Studies on Chinese Logic. Beijing:
Shangwu Yinshuguan, 2006.
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What we want to emphasize at this point is the broader significance of the
comparative studies made by the early pioneers that we discussed. They
crossed between cultures, and while misunderstandings did occur, the re-
sult was a meeting of traditions.54

5 Conclusion

In this paper we have walked, lightly, from the 6th century B.C. all the
way to the 20th century. First, we explained the main theories of Chinese
logic in its golden age of the Pre-Qin period. We then sketched how these
thoughts (especially, theory of names and kind-based reasoning) developed
later on, with a focus on the Han, Wei-Jin, Song and Qing Dynasties –
though a more systematic investigation is called for. Finally, we briefly
looked at the first serious meeting of traditions: the comparative studies on
Chinese logic facing its Indian and Western counterparts in the early 20th
century, an encounter that was crucial to modern Chinese logic.

Acknowledgement We thank the guest editors for their e�ort in putting
together this volume. We thank Jeremy Seligman and Johan van Benthem
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54This theme of history of logic and cultural communication will be the sub-
ject of an upcoming workshop in Amsterdam on “History of Logic in China”:
http:��www.sciencehistory.asia�history-logic-china
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Model Theory
ANAND PILLAY ��

1 Introduction

Contemporary or modern (mathematical) logic was born at the end of the
19th century. Its origin is connected with mathematics rather than philos-
ophy, and my article will likewise be informed by a mathematical culture
although I will try make connections with philosophy and the philosophy
of mathematics. Although mathematical logic emanates from a so-called
Western intellectual tradition, it is now, like mathematics as a whole, a
world subject with no essential national or cultural distinguishing marks.
Unfortunately I am not knowledgeable about philosophical and (early)

mathematical traditions in the Indian subcontinent, so will not be able to
make any serious comparative analyses. Also I am not trying here to give a
proper history of model theory with appropriate references, bibliography,
credits etc., but rather a description of how I see the subject now, with some
minor commentary on historical developments. Also I will only be able to
give a hint of the main technical notions and definitions in the subject. So
I will point the reader towards a few basic texts, reviews, and historical
accounts of the subject, where more details and as well as a detailed bib-
liography can be found, such as Hodges’ textbook and history [3], [4] and
Marker’s textbook [5]. Another survey [7] by myself contains more techni-
cal details than the current article, and my book [6] from 1996 contains an
exhaustive technical treatment of some of the themes I will discuss, but as-
suming a prior acquaintance with model theory. The volume [2] is a good
reflection of the state of model theory around the beginning of the modern
era (1971). It also contains an informative historical article by Vaught on
model theory up to 1945. Finally the book [1] gives a readable account of
some of the machinery behind one of the major modern successes of the
applications of model theory (mentioned at the end of Section 6).

�University of Leeds
�Supported by EPSRC grant EP�F009712�1, and also by a Visiting Professorship at the

University of Paris-Sud in March-April 2010.
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Among the strands in the early history of logic were identifications of
correct standard forms of argument (the syllogisms) but also, with Got-
tfried Leibniz, the rather bold idea that one might in principle be able to
settle all disputes by mechanical logical means. These were complemented
by considerations of the nature of mathematical truths compared to empir-
ical truths (e.g. Kant), as well as the beginnings of the mathematicization
of logic (e.g. Boole).
So “logic" here is supposed to refer to intrinsic reasoning or truths, inde-

pendent of experience. For example the statement that a thing is equal to
itself is a truth of logic rather than experience, although philosophers such
as Hegel (and also I guess many Indian philosophers) have commented on
the vacuity and even conditionality of such truths. Likewise the fact that
from “P implies Q", and P, we can deduce Q, is supposed to be valid on
purely logical grounds, independent of which statements P and Q denote.
Rather than try to base all knowledge on logic, Frege and Russell, among

others, attempted to show that all or at least major parts of mathematical
knowledge can be founded on logic. Once one starts to investigate seri-
ously such claims, one is forced to define one’s terms, and find a formal
framework within which to carry out the project. And this, in a sense, was
behind the birth of modern logic. But another crucial factor was that dom-
inant mathematicians of the time, such as Hilbert and Poincaré, were very
caught up in “foundational" problems, not only around whether mathemat-
ics could be reduced to logic, but also about the justifications of the use
of “infinitistic" methods and objects, outside the scope of normal intuition.
As it turned out Gödel’s work in the 1930’s showed that not only the Frege-
Russell-Whitehead project, but also a “second level" program of Hilbert to
“reduce" infinitistic to finitistic methods, were doomed.
In spite of this failure of the logicist and Hilbert programs, the e�orts

of these late 19th and early 20th century logicians left a lasting impact on
mathematics (and also philosophy). Firstly set theory as a universal lan-
guage for mathematics was largely accepted (even though not all mathe-
matical truths could be settled on the basis of accepted axioms about sets),
and this contributed towards the possibility of mathematicians from dif-
ferent subdisciplines being able, at least in principle, to communicate in a
precise and e�ective manner with each other. And of course the search for
additional axioms for sets led to the rich subject of contemporary set theory.
Moreover the “defining of one’s terms" issue mentioned above led to pre-
cise mathematical treatments of notions such as truth, proof, and algorithm.
It is interesting that model theory (truth), proof theory (proof) and recur-
sion theory (algorithm), together with set theory, remain the four principal
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and distinct areas of contemporary mathematical logic. In any case mod-
ern mathematics, its language, and unity, are closely bound up with logic,
although paradoxically logic has been somewhat marginalized within con-
temporary mathematics. Nevertheless, mathematical logic is now undoubt-
edly regarded as a bona fide part of mathematics and the various areas and
subareas have their own internal programs and aims, which are continually
being modified. But one can ask to what extent these investigations can
have impacts on mathematics as a whole, as was the case at the beginning
of the 20th century. I will try to convey something both of the “inner move-
ment" of model theory, as well as its actual and potential wider impacts. To
read this article profitably will require some mathematical background, but
as mentioned above I will try to comment on the “philosophical" content
and impact too.

2 Truth

The notion truth in a structure is at the centre of model theory. This is
often credited to Tarski under the name “Tarski’s theory of truth". But
this “relative", rather than absolute, notion of truth was, as I understand it,
already something known, used, and discussed. In any case, faced with the
expression “truth in a structure" there are two elements to be grasped. Truth
of what? And what precisely is a structure? An illuminating historical
example concerns the independence of Euclid’s “axiom of parallels" from
his other axioms. A statement equivalent to this axiom of parallels is
(AP): given any line � and point p not on � there is exactly one line

through p which is parallel to (does not intersect) �.
The independence statement is that (AP) is not a logical consequence

of a certain collection � of other axioms involving points and lines (such
as that any two distinct points lie on a unique line). This was shown by
finding a “model" of the set� of axioms in which moreover the statement
(AP) is false. The kinds of things here that are (or are not) true are state-
ments such as (AP) or the statements (axioms) from �. And the relevant
structure or “model" consists of one collection P of objects which we call
“points", another collection L of objects, called “lines", and a relation I of
“incidence" between points and lines, thought of as saying that p lies on
�. Note that (AP) can be expressed, in a somewhat convoluted manner, as
follows:
(*) for any p and for any � such that not pI�, [there is �� such that (pI��

and it is not the case that there exists p� such that p�I� and p�I��) and for
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any ��� such that pI��� and it is not the case that there exists p� such that
p�I��� and p�I���, ��� � ��].
So the structure constructed (a model of non Euclidean geometry) was

one where the statements in� are true and the above statement (*) is false.
Already there is a considerable degree of abstraction in my presentation.

The intuitive geometric notions of point and line are replaced by purely for-
mal sets and relations. This is a typical example of a structure in the sense
of model theory, logic, or universal algebra (or even Bourbaki), namely a
universe of objects, together with certain relations between them. In the
example the objects come in two sorts, “points" and “lines" and the only
relation is I. Moreover statements such as (*) above, have a rather definite
logical form. They involve the basic “variables" p, �, as well as expressions
(logical connectives) such as “and", “not", “for all", “there exists", as well
as “equality". To check the truth or falsity of such an axiom in a structure,
the “for all" and “there exists" connectives should range over objects in the
structure at hand, and it is this kind of proviso which typifies “truth in a
structure" as opposed to “absolute truth".
So at the basic level, model theory is concerned with two kinds of things,

structures and formal sentences (or statements), as well as the relation
(truth or falsity of a sentence in a structure) between them. Traditionally
the expressions syntax (for formal statements) and semantics (for the in-
terpretation of sentences in structures) were a popular way of describing
model theory. The formal sentences in the example above belong to what
is called first order logic, because the for all, and there exists expressions
(or quantifiers) range over objects or elements of the underlying set of the
structure (rather than subsets of the underlying sets for example). Higher
order and�or infinitary logic involve quantifying over subsets or subsets of
the set of subsets etc, and�or infinitely long sentences or expressions. There
are also other variants, involving cardinality or probability quantifiers for
example. These higher order or infinitary logics were extremely popular
in the 1960’s and 1970’s, and are still the subject of substantial research.
However we will, in this article, concentrate on the first order case.
So, summarizing, a structure M is a set X equipped with some distin-

guished family � of relations on X, namely subsets of X� X � X, X � X � X
etc. We also allow a family � of distinguished functions from X�X�����X
to X. There are two typical kinds of examples. First of a combinatorial na-
ture such as graphs. A graph is a set X (of “vertices") equipped with a
binary relation R � X�X, representing adjacency. Secondly, the structures
of algebra, such as groups, rings, fields etc. For example a group is a set
X equipped with a function m : X � X � X satisfying the group axioms
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(associativity, and existence of an identity and inverses). Corresponding to
a structure M is a formal first order language L(M) within which one can
express properties which may or may not be true in the structure M. For
example, in the case of graphs the property that every element is adjacent
to another element can be expressed by:

for all x there is y di�erent from x such that R(x� y),

or more formally

�x�y(x � y � R(x� y))

Likewise in the case of groups the basic group axioms can be expressed in
a first order manner, and by definition a group is a structure (with a single
distinguished binary function) in which these axioms are true.

Commonly the notion that a (formal) sentence � is true in a structure
M, is also expressed by saying that M is a model of �, as discussed at the
beginning of this section. The formal notation is M �� �.

What is called a theory in logic is some collection of sentences belonging
to some first order language. An example of such is Th(M) for M a given
structure, namely the collection of all sentences in L(M) which are true in
the model M.

If M and N are structures for a common first order language (for example
M�N are both graphs) it makes sense to ask whether M and N are isomor-
phic, meaning that there is a bijection between the underlying sets X�Y say
of these structures which interchanges the distinguished relations. Being
isomorphic means being the same to all intents and purposes. A weaker
notion is elementarily equivalence meaning that any first order sentence
true in M is true in N (and vice versa). The question of when elementar-
ily equivalent implies isomorphic is a pervasive problem in model theory
which will be discussed subsequently.

I mentioned at the beginning of this paragraph the idea that “truth in a
structure" is a kind of relative rather than absolute truth. However I should
make it clear that this is neither a notion of “truth in a possible world",
nor “truth relative to a point of view", nor “approximate truth", although
model-theoretic tools have been used to explore these latter notions.
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3 Decidability

I want to distinguish at the beginning between those first order theories
which I will call foundational and those which I will call tame. The foun-
dational theories (such as the accepted axioms of set theory in the language
with a “membership relation") are those which purport to describe all or
large chunks of mathematics, and are connected to the origin of modern
logic as described in section 1. Gödel proved that in general such foun-
dational theories are undecidable. Namely there is no algorithm to decide
whether or not a given (formal) statement, is or is not a consequence of the
axioms. Among the important foundational theories is Th(�) where the
structure � consists of the set of natural numbers equipped with addition
and multiplication. Undecidability of Th(�) amounts to there being no
algorithm or e�ective method for deciding which (first order) statements
about � are true. The proof of this rests on Gödel’s insight that arithmetic,
namely the structure �, is rich enough to represent reasoning and compu-
tation in a “first order" manner. So for example any e�ective procedure for
deciding which first order statements or sentences are true in�would yield
an e�ective procedure for deciding whether or not for any given computing
device and any given input, there is a well-define output (which is known
to be impossible). At the opposite end of the spectrum are the “tame" the-
ories and�or structures, which are as a rule decidable. A typical example is
real plane geometry. The real plane P � �2 is just a flat surface, as usually
understood, stretching to infinity in all directions. The relevant structure
has two sorts of objects, the set P of points of the plane, and the set L of
straight lines in P, equipped with a single relation I(p� �) expressing that
the point p is on the line �. It is a fact that the structure M � (P� L� I)
is decidable. Already one sees a distinction between “geometry", repre-
sented by the structure M, and arithmetic, represented by the structure �.
In addition to the real numbers there are other number systems which be-
long to geometry, such as the complex numbers and the p-adic numbers.
And again the number systems themselves (fields), or plane geometry over
those number fields, are decidable structures.

The distinction between “foundational" and “tame" theories is heuristic
rather than mathematically precise. But model theory does have a number
of precise notions other than decidability, which separate these classes of
theories, and more generally provide other meaningful dividing lines be-
tween classes of first order theories and structures. Contemporary model
theory has tended to concentrate on the tame region of mathematics, al-
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though exploration of the borderline or middle ground between tame and
foundational is a fascinating topic.

4 Foundations revisited

As mentioned in the introduction the two main programs to build math-
ematics on, or recover mathematics from, logic, namely axiomatic or set-
theoretic (Frege, Russell, Whitehead), and proof-theoretic (Hilbert), failed.
But as one might expect, these programs have been preserved or resur-
rected in more modest fashions. The proof theory�set theory�recursion the-
ory nexus has been the main environment for such endeavours. One of the
popular programs is what is called “reverse mathematics", developed by
Harvey Friedman and Steve Simpson among others. To go into detail here
would be be too technical for the mature of this article. But briefly the idea
is to recover certain parts of mathematics from certain parts of logic (and
vice versa) at the level of theorems and axioms. The logical environment
here is what is called second order arithmetic, although it is actually a first
order theory. The kind of axioms considered are set existence axioms of
a logical nature. It was recognized rather early that theorems of mathe-
matics, such as the existence of solutions of di�erential equations, depend
on such logical axioms of various levels of strength. The point of reverse
mathematics is that often one can in turn derive the logical axiom from
the mathematical theorem. So here the strength or content of an axiom
of logic is expressed by an accepted theorem of mathematics. This gives
a new sense in which logic explains mathematics, mathematics is recov-
ered from logic, or even logic is recovered from mathematics. This subject
of reverse mathematics has not been uncontroversial, but nevertheless the
subject has had a pervasive influence around the proofs�sets�computability
side of mathematical logic. One of the things I want to discuss is a kind of
reverse mathematics at the level rather of logical properties and mathemat-
ical objects. The logical properties will come from model theory, and the
mathematical objects from some basic kinds of geometry. The whole re-
lationship will exist within “tame" mathematics, far from the foundational
theories discussed earlier. This “model-theoretic" reverse mathematics was
the creation of Boris Zilber. But there are a couple of provisos. First the re-
lationships between logical properties and geometry, were just conjectural.
Secondly these conjectured relationships turned out to be false. In the next
section I will describe this model-theoretic reverse mathematics.
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5 Categoricity

A natural property of a structure M for a first order language L is cate-
goricity, which means that whenever N is elementarily equivalent to M
then in fact N is isomorphic to M. Namely M is completely determined
by the first order sentences which are true in M. Unfortunately (or fortu-
nately) because of the compactness theorem of first order logic, a structure
M will be categorical if and only if it (or rather its underlying set) is finite.
(The compactness theorem states that a set � of first order sentences has
a model if and only if every finite subset of � has a model.) As model
theory typically deals with infinite structures, the next best thing is the
notion of categoricity with respect to a cardinal number. So here some ac-
quaintance with basic set theory, cardinal numbers and ordinal numbers, is
required. The smallest infinite cardinal is �0 the cardinality of the set of
natural numbers. The next bigger after that is �1. The cardinal numbers are
all of the form �� for some ordinal �. As soon as M is infinite, there will
(by the compactness theorem) be structures elementarily equivalent to M
of any infinite cardinality. For � an (infinite) cardinal, we will say that the
structure M is �-categorical if whenever M1�M2 are structures elementar-
ily equivalent to M, both of cardinality �, then M1 and M2 are isomorphic.
By definition the property that M is �-categorical, is a property of the first
order theory Th(M) of M.
It turns out that the case when � � �0 is very special and in some sense

a “singularity". The study of �0-categorical structures is equivalent (by
considering automorphism groups) to the study of a certain class of infinite
permutation groups, often called “oligomorphic" permutation groups. The
model-theoretically more interesting notion is �-categoricity, for uncount-
able �, namely � � �0 (or � � �� for � � 0). In this context we have the
celebrated theorem of Michael Morley that a structure M is �-categorical
for some uncountable � just if M is �-categorical for any uncountable �.
Bearing in mind Morley’s Theorem we use the expression M is uncount-
ably categorical for “M is �-categorical for some uncountable �".
One of the key “number systems" in mathematics is the field � of com-

plex numbers. We view this as a structure (�����) namely � equipped
with addition and multiplication as distinguished functions. For di�erent
reasons related to definabilitywhich will be discussed later, this structure is
sometimes identified with the subject algebraic geometry, the study of sets
of solutions of systems of polynomial equations. What is relevant to our
current discussion is that (�����) is an uncountably categorical structure:
any structure elementarily equivalent to it will be an algebraically closed
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field of characteristic 0, (F����), the isomorphism type of which is deter-
mined by its transcendence degree, which coincides with its cardinality if
F is uncountable.
Another basic example of an uncountably categorical structure is a vector

space V over a countable field F. The structure is (V��� � fr : r � F�) where
fr : V � V is scalar multiplication by r. The structures elementarily
equivalent to this are precisely the vector spaces over F, each of which is
determined by its F-dimensions, which again agrees with its cardinality in
the uncountable case. Again for definability reasons, this structure (or class
of structures) is sometimes identified with linear geometry over F (sets of
solutions of linear equations).
A third basic example is the set � of integers (positive AND negative)

equipped with the successor function f which takes x to x � 1. Th(�� f )
contains the information that the underlying set is infinite and that f is
a bijection such that for each n f n(x) � x for all x (where f n denotes f
iterated n times). We leave it to the reader to check that again this structure
is uncountably categorical. One can not really see any natural geometry
attached to this structure.
The thrust of what came to be called Zilber’s conjecture was that, in a

technical sense which I do not want to go in to now, the above three struc-
tures (or rather their theories) are the only examples of uncountably cate-
gorical structures. So Zilber’s conjecture was saying that some very fun-
damental structures of mathematics can be characterized by logic, namely
through the notion of uncountable categoricity of their first order theory,
and so in a sense this class of structures is “implicitly defined" by logic.
This conjecture and in fact the general point of view giving rise to it,
presents another possible fundamental relationship between logic and math-
ematics.
Zilber’s conjecture turned out to be false. Ehud Hrushovski, in the late

1980’s, found a combinatorial method for constructing new uncountably
categorical structures which do not fit into the three cases described above.
For now let us say that the first example above (the complex field) has
a model-theoretic property called nonmodularity, the second example has
a property modularity and nontriviality and the third a property triviality.
What Hrushovski’s examples gave were nonmodular structures which were
not “essentially" algebraically closed fields. Zilber has since attempted
to preserve at least the spirit of his original conjecture by trying to show
that these new examples of Hrushovski also have a geometric origin and
correspond to some classical mathematical objects. But what for me is
more interesting is the fact that the original Zilber conjecture is valid in a
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range of very interesting and rich contexts, and carries with it new insights
as well as analogies between di�erent parts of mathematics. Some such
examples will be discussed below.

6 Definable sets

An interest in the definable sets in a structure M has always been present in
model theory. But since the 1980’s the study of definable sets has moved
to centre stage in the subject. In section 2, I introduced and discussed the
notion � is true in M, notationally, M �� �, where M is a structure for a
language L and � is a first order sentence of that language. In particular I
mentioned the sentence

�x�y(x � y � R(x� y))

in the language of graphs expressing that every element is “adjacent" to
another element. However consider the expression

�y(x � y � R(x� y))

which I will denote �(x). It does not really make sense to ask whether this
expression is true or false in a structure M � (X�R), because it depends
on what x refers to. But it does make sense to ask, given a structure M
together with an element a � X, if �(x) is true of a in M, which in this
specific case means to ask whether a is adjacent to some other element in
M. We write M �� �(a) to mean that �(x) is true of a in M. The set of
such a, is a typical example of a definable set in M. The expression �(x)
above is called a first order formula, and x is called a free variable in the
expression, because it is not controlled or quantified by a “for all" or “there
exists". Likewise we can speak of formulas �(x1� x2� ��� xn) of a first order
language L, in any number of free variables. If M is a structure for such as
language, then the set defined by � in M is, by definition:

�(a1� ��� an) � Mn : M �� �(a1� ��� an)�

Sets as above, which are collections of finite tuples of the underlying set of
the structure M, are precisely what we call definable sets in the structure
M. There is a natural way of saying that a map (or function) between two
definable sets is definable. Hence from a structure M we obtain a category
De f (M), the category of definable sets in M.
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It has become useful to think of definability in a “geometric" rather than
“combinatorial" way. For example consider the circle with centre (0� 0)
and radius 1 in the real plane. It is defined in the structure (������ 0� 1) by
the formula

�(x1� x2) : x21 � x22 � 1

Note that the formula �(x1� x2) does not contain any “for all" or “there
exists". It is a quantifier-free formula. On the other hand the formula

�(x) : (�y)(x � y2)

does have a quantifier, and moreover defines, in (������ 0� 1) the set of
nonnegative elements of �.
Many structuresM of a “tame" nature often have a “quantifier-elimination"

property that definable sets in the structure can be defined by formulas with
not so many quantifiers (“for all", “exists"). This enables one to get a han-
dle on De f (M). In the case of (������ 0� 1) there is a full quantifier elim-
ination, in the sense that all definable sets are defined without quantifiers.
The consequence is that De f ((������ 0� 1)) is “essentially" the category
of “complex algebraic varieties". In the case of (������ 0� 1) there is a
relative quantifier elimination yielding that the category of definable sets
is precisely the category of “semialgebraic" sets. Each of these categories
(algebraic varieties, semialgebraic varieties) corresponds to a whole sub-
ject area of mathematics. These quantifier elimination results are associ-
ated with Abraham Robinson and Alfred Tarski. Moreover in the case of
(������ 0� 1) the relative quantifier elimination result lies at the founda-
tions of semialgebraic geometry.
The (so far undefined) properties of nonmodularity, triviality, etc. from

section 5, can be expressed or seen in the behaviour of definable families
of definable sets. For example nonmodularity of (�����) is seen via the
2-dimensional family of lines in ��� (a 2-dimensional definable family of
definable 1-dimensional subsets of � � C). Among other rich mathemati-
cal structures M where De f (M) is tractable, are di�erentially closed fields,
and compact complex manifolds (proved by Robinson, and Zilber, respec-
tively) The mathematical sophistication increases here. But in both these
cases the Zilber conjecture from section 5 is true, in suitable senses. More-
over, without going into definitions and extreme technicalities, the property
of “nonmodularity" has definite mathematical meaning and consequences
in these examples. Di�erentially closed fields are “tame" structures ap-
propriate for or relevant to the study of ordinary di�erential equations in
regions in the complex plane. Definable sets are essentially solution sets of
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di�erential equations. And the property of nonmodularity (of a definable
set) is related to the complete integrability of the corresponding di�erential
equation. For compact complex manifolds, a definable set is essentially a
compact complex analytic variety, and nonmodularity is related to it being
“algebraic" (biholomorphic to a complex algebraic variety).
Among the celebrated applications of model theory to other parts of

mathematics is Hrushovski’s proof of a certain “number theoretic-algebraic
geometric" conjecture, the Mordell-Lang conjecture for function fields of
positive characteristic, which makes essential use of the validity of the Zil-
ber conjecture in “separably closed fields" (as well as using other model-
theoretic techniques).

7 Miscellanea

What I have given so far is a discussion of a few themes in contemporary
model theory, influenced by my own preoccupations. Here I will attempt
to rectify the balance, mentioning other trends and themes (some of which
are also close to my own work and interests).
Well into the 1970’s it was a pretty common belief within the mathemati-

cal logic community that model theory consisted essentially of a collection
of tools and techniques related to the fundamental notions of semantics and
syntax, possibly enhanced by a few basic theorems. (This may also be sug-
gested by the previous sections of the present paper.) In spite of the strength
of logic and model theory in the Soviet Union, Poland, and other countries
in Eastern andWestern Europe, it must be said that in the 1950’s and 1960’s
the (emerging) subject was dominated by two schools, one around Alfred
Tarski in Berkeley, and the other one around Abraham Robinson in Yale.
Both stressed the potential applications of model theory within other parts
of mathematics (although we should note that already in 1940 the Soviet
logician Malt’sev was applying the compactness theorem to obtain results
in group theory). In the case of Robinson the intention was very clearly
reflected in his pioneering work around nonstandard analysis, the theory
of model companions, and applications to complex analysis, among other
things. It was a little less clear what Tarski had in mind, in spite of his early
and fundamental work on definable sets in the field of reals. But undoubt-
edly the group around Tarski, including Vaught, Morley and Keisler, set
the stage for later developments in “pure" model theory. The 1960’s and
1970’s also saw a close relationship developing between model theory and
set theory, with for example an intense investigation of infinitary and�or
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non first order logics, where Tarski and his group had a major influence. In
fact around this time the conventional wisdom was that the future of model
theory lay in its connection with set theory, in spite of Morley’s work on
categoricity (from the mid 1960’s). It was Saharon Shelah who, building
on the work of Morley, showed that (first order) model theory could be a
subject with its own coherent and internal program. With the benefit of
hindsight I would say that he raised the question of whether there could be
a meaningful classification of first order theories (not explicitly involving
decidability properties). Shelah tended to look for dividing lines among
first order theories, as well as “test questions" which would be answered
one way on one side of the dividing line and another way on the other side.
The test questions which Shelah asked typically had a strong set-theoretic
content, possibly resulting from the surrounding mathematical culture and
influences (such as Tarski). One such test question, coming naturally out
of Morley’s work, was, for a given theory T , what could be the function
I(T��) which for a cardinal � gives the number of models of T of cardi-
nality �, up to isomorphism. Shelah’s investigation (and solution) of this
problem involved a series of dividing lines among first order theories, the
first of which was “stable versus unstable". The property of “stability" for
a first order theory T (or structure M) vastly generalizes the property of
uncountable categoricity from section 5. A rough definition of stability of
T is that no linear ordering is definable on any infinite set in a model of the
theory T (so the real field (�����) is unstable). Shelah and other model
theorists developed a considerable machinery for constructing structures,
classifying structures, and also studying and classifying definable sets in
structures, under a general assumption of stability. This is called stabil-
ity theory. Although Zilber’s conjectures were not originally formulated
within the generality of stable theories, it is stable theories that provide
the right environment for these notions. The integration of these di�erent
points of view is often called geometric stability theory (or even geometric
model theory).
There are two conclusions to this part of the story. Firstly, that in spite

of the heavily set theoretic appearance of Shelah’s work in model theory
(up to and including the present) it actually has a strong geometric content
with amazing mathematical insights. Secondly, it is now uncontroversial
that model theory exists as a subject in and for itself, and part and parcel
of the subject is its strong connections to other parts of mathematics.
An important and respected tradition in model theory, to which both

Robinson and Tarski contributed seriously, and which is already referred
to above, is the model-theoretic and logical analysis of specific concrete
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structures and theories. But the issue is which notions or “bits of theory"
are guiding the analysis. Decidability and quantifier elimination were his-
torically major such notions. Valued fields have been studied logically for
a long time. Again the mathematical sophistication increases here, but I
just want to comment that fields equipped with a valuation are another
context in which“infinitesimals" appear in mathematics. The work of Ax-
Kochen-Ershov on the first order theory of Henselian valued fields (late
60’s), followed by Macintyre’s quantifier elimination theorem for the field
�p of p-adic numbers (mid 70’s) represented and led to another major
interaction of model theory with algebraic geometry and number theory.
More recently, this logical analysis of valued fields has been increasingly
informed by notions from stability theory, even though the structures under
discussion are unstable.
In the early to mid 1980’s, several model theorists (including myself)

tried to develop a theory, analogous to stability theory, based on abstracting
definability properties in the unstable structure (�����). This came to
be called o-minimality. This has been another successful area with close
contacts to real analytic geometry. But even here, the connection with
stability theory has recently turned out to be much more than an “analogy".
I have restricted myself in the bulk of this article to first order logic and

model theory, where the syntax is of a restricted form. But more general
logics, involving infinitely long expressions, and�or quantifiers other than
“there exists" and “for all", continue to be investigated. At the same time,
“finite model theory", the study of the connection between semantics and
syntax when we restrict ourselves to finite structures, has seen a fast devel-
opment and is now integrated into computer science.
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1 Introduction

Originally set theory was a theory of infinity, an attempt to understand in-
finity in exact terms. Later it became a universal language for mathematics
and an attempt to give a foundation for all of mathematics, and thereby to
all sciences that are based on mathematics. So what is set theory?
Set theory is a very general but still entirely exact theory of objects called

sets. It is useful in a number of fields of philosophy, like logic, semantics,
philosophy of mathematics, philosophy of language and probably several
others, but it is also useful in mathematics, computer science, cognitive
science, linguistics, and even in the theory of music. It can be used any-
where where one needs an exact mathematical approach to objects that can
be thought of as collections of something.
Even high school mathematics includes simple operations on sets, like

union and intersection. College mathematics usually includes set theoret-
ical concepts like ordered pair, cartesian product, relation, function, and
so on. Elementary logic courses include such set theoretical concepts as
finite sequence and relation. All the concepts mentioned so far are very
useful for any philosophy student. Why? Because all these basic mathe-
matical concepts can be given a uniform exact account. In this account any
true properties of those concepts can be proved with a simple argument
involving only a few lines.
The remarkable thing about set theory is that not only basic mathemat-

ics but indeed all mathematics can be represented as properties of sets.
Thus we can define in set theory the natural numbers, the real numbers,
the complex numbers, the Euclidean spaces �n, the Hilbert space, all the
familiar Banach spaces, etc. Moreover, everything mathematicians prove
about these objects can be proved from a few relatively simple axioms
concerning sets. Therefore it is said that set theory can serve as a universal
language of mathematics, indeed a foundation of mathematics. This gives
set theory a special place in the philosophy of mathematics.
Of course, a representation of all mathematics in set theory is meant to

be taken only as a representation. The fact that real numbers can be defined
as sets does not mean that real numbers are sets. The point is that it is in
principle possible to think of real numbers as sets. It is important to note
that the goal of set theorists is not to convince other mathematicians that
what mathematicians are doing is really set theory. The point of set theory
as a universal language of mathematics is that set theory o�ers a common
ground where any unclear argument can be scrutinized. If some argument
in mathematics seems to use something that has not been stated, we can
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start the process of reducing the argument to the first principles in set the-
ory. If this process is successful, then the argument can be considered valid
without question. In this process it becomes clear whether, for example, the
Axiom of Choice, a very powerful construction principle for abstract ob-
jects, is used. Also, some mathematical results depend on principles, such
as the Continuum Hypothesis, that go beyond what is usually considered a
priori true. Then the mathematical result can be stated as an implication: if
the Continuum Hypothesis is assumed then this or that holds.

2 Elementary set theory

In this section sets are just collections of objects. We shall later define more
exactly what this means. We use lower case letters a� b� c� ��� to denote
sets. Since sets are collections, they have elements i.e. members of the
collection in question. If a is a set and b is an element of a, then we write
b � a and read this “b is an element of a" or “b is in a”. Two sets are
equal if they have the same elements. A set a is a subset of another set
b, in symbols a � b if all elements of a are also in b. The simplest sets
the singleton set �a� which has a as its only element, the unordered pair
�a� b� which has a and b and nothing else as its elements, and the empty
set �, which has no elements whatsoever. Note that �a� b� � �b� a� and that
there is only one empty set, because any two sets without elements have
the same elements and are therefore equal.
The most important non-trivial sets are: (1) The set �0� 1� 2� ���� of natural

numbers, denoted�, (2) the set of rational numbers, denoted�, and (3) the
set of real numbers, denoted �. When we proceed deeper into set theory
below we can actually define these sets, but let us take them for the moment
as given.
We can form new sets from the ones we already know by means of set

theoretic operations like the union a � b, intersection a � b, and power set
�(a) � �b : b � a�. There are a couple of others, and when one learns to
use ordinals, there are the transfinite operations on sets.
Already with the simple operations � and � we get the following impor-

tant concept: Let X be any set. Then obviously �(X) is closed under � and
�. Also, we can form the complement �a � �x � X : x � a� of any subset
a of X. Finally, let us denote � by 0 and X by 1. We have arrived at the
structure

(�(X)������� 0� 1)

which is a familiar algebraic structure, namely a Boolean algebra, because
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it satisfies the identities

a � (b � c) � (a � b) � c Associativity law
a � (b � c) � (a � b) � c
a � (b � c) � (a � b) � (a � c) Distributivity law
a � (b � c) � (a � b) � (a � c)
a � b � b � a Commutativity law
a � b � b � a
a � �a � 1 Law of complements
a � �a � 0
a � (a � b) � a Absorption law
a � (a � b) � a
�(a � b) � �a � �b De Morgan law
�(a � b) � �a � �b

These are all easy to prove, even by just looking at a picture, as in Fig-
ure 1.

Figure 1: a � (b � c) � (a � b) � (a � c).

An important role in applications of set theory is played by the concept
of a an ordered pair (a� b) of two sets a and b. The characteristic property
of ordered pairs is: (a0� a1) � (b0� b1) if and only if a0 � b0 and a1 � b1.
The cartesian product of two sets a and b is a � b � �(x� y) : x � a� y � b��
It is the idea of set theory that everything is defined in terms of the sole
primitive symbol �. This is by no means necessary but since it is possible
it is tempting and is usually done. The most common definition for the
ordered pair (x� y) in terms of � is ��x�� �x� y��.
A function from a set a to another set b is any subset f of a � b such

that for each x � a there is exactly one y � b such that (x� y) � f . Then
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we write f : a � b and y � f (x). In this definition of the concept of
a function one notices a characteristic feature of set theory: the concept
of a function is extremely general. We do not require that there is some
“rule" which tells us how to compute f (x) for a given x. All we require
is that exactly one y such that (x� y) � f exists. Set theory uses classical
logic so for a y such that (x� y) � f to exist it su�ces that non-existence
leads to a contradiction. There is also constructive set theory (see below)
where intuitionistic logic is used and existence means more than deriving
contradiction from non-existence.
A set a is finite if it is of the form �a0� ���� an�1� for some natural number

n. This means that the set a has at most n elements. A set which is not
finite is infinite. Finite sets have the following properties: � is finite. If a
and b are finite, then so is a�b. If a is finite and b � a, then also b is finite.
If a and b are finite, then so is a � b. If a is finite, then so is �(a).
With the above concepts one can already develop a lot of mathematics.

One can define the integers as ordered pairs (n�m) of natural numbers with
the intuitive meaning that (n�m) denotes the integer n � m. One can define
the rationals as ordered pairs (r� q) of integers with the intuitive meaning
that (r� q) denotes the rational r�q. One can define the reals as sets a of ra-
tionals, bounded from above, with the intuitive meaning that a � � denotes
the real sup(a).

3 Cardinal and ordinal numbers

A set is infinite if it is not of the form �a1� ���� an� for any natural number n.
Set theory was developed to deal with problems of infinite sets and indeed
there are some paradoxical phenomena related to infinite sets. A famous
anecdotal example is Hilbert’s Hotel: Imagine a hotel the rooms of which
are numbered by all natural numbers. Suppose the hotel is full but a tourist
comes in and asks for a free room. The reception can ask the person in
room 0 to move to room 1, the person in room 1 to move to room 2, ...,
the person in room n to move to room n � 1, etc. This process leaves room
0 empty and the tourist can take it. There are many further variations of
this anecdote. For example, one can fit infinitely many new tourists into
a hotel which is already full. A vast extension of this idea, coupled with
the so called Axiom of Choice, is the Banach-Tarski Paradox: The unit
sphere in three-dimensional space can be split into five pieces so that if the
pieces are rigidly moved and rotated they suddenly form two spheres of
the original size (see Picture 2). The trick is that the splitting exists only in
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the abstract world of mathematics and can never actually materialize in the
physical world. Conclusion: infinite abstract objects do not obey the rules
we are used to among finite concrete objects. This is like the situation with
sub-atomic elementary particles, where counter-intuitive phenomena, such
as entanglement, occur.

Figure 2: The Banach-Tarski Paradox.

3.1 Equipollence

Equipollence of two sets means the existence of a bijection between the
sets. A bijection is a mapping which is both one-to-one and onto. In other
words, a bijection between two sets a and b is a function f : a � b so
that for every y � b there is a unique x � a such that f (a) � b. Still in
other words the equipollence of a and b means the existence of functions
f : a � b and g : b � a such that for all x � a we have g( f (x)) � x and
for all y � b we have f (g(y)) � y. In set theory it is thought that if two
sets are equipollent, then they have the same number of elements. Because
the sets may be infinite, it is not a priori clear what it means to say that
the sets have the same number of elements. However, if there is a bijection
between the sets, it is quite credible to argue that whatever we mean by the
number of elements of an infinite set, equipollent sets should get the same
number.
For finite sets equipollence means indeed that the sets have the same

number of elements. For infinite sets we have to give up the idea that the
part is smaller than the whole, since for example the set of natural numbers
�0� 1� 2� ���� is equipollent with its proper part �1� 2� 3� ����, as the bijection
n �� n � 1 demonstrates. The part may not be smaller than the whole but
at least it cannot be greater than the whole. And in some cases the part is
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smaller than the whole. Cantor proved that the set � of natural numbers is
not equipollent with the set � of real numbers. This can be seen as follows:
Suppose there were a bijection f : � � �. Then there is an onto function
g : � � [0� 1]. Let us construct a real number on [0� 1] as follows. The
number is 0�d1d2d3��� where di � 1 if the real number g(i) has the decimal
expansion 0�e1e2e3���, where ei � 1. Otherwise di � 0. In this way we
obtain a real number r � [0� 1]. Since g is onto, there is n � � such that
g(n) � r. Let us look at dn. We have dn � 1 if and only if dn � 1, a
contradiction. Hence no such f can exist. So � is less than the whole �
in harmony with our intuition. This result is due to Cantor. He went on
to prove that the set � of all rational numbers is equipollent with � and
hence not equipollent with �. Moreover, he showed that the set � of all al-
gebraic numbers is also equipollent with � and hence not equipollent with
�. We get the surprising conclusion that there are fewer algebraic numbers
than real numbers, hence many (if not most) of the real numbers must be
transcendental. This was a remarkable conclusion by Cantor because at
the time when the observation was made, very few transcendental numbers
were known. Thus by purely abstract set theoretic methods Cantor had
proved the existence of many many transcendental numbers.
Technically speaking, a bijection between two sets a and b is a function

f : a � b which is one-one i.e. �x � a�y � a( f (x) � f (y) � x � y) and
onto i.e. �y � b�x � a( f (a) � b). With this definition, sets a and b are
equipollent, a � b, if there is a bijection f : a � b. Then f �1 : b � a
is a bijection and b � a follows. The composition of two bijections is a
bijection, whence

a � b � c �� a � v�

Thus � divides sets into equivalence classes. Each equivalence class has
a canonical representative (a cardinal number, see Subsection “Cardinals"
below) which is called the cardinality of (each of) the sets in the class. The
cardinality of a is denoted by �a� and accordingly a � b is often written
�a� � �b�� One of the basic properties of equipollence is that if

a � c� b � d and a � b � c � d � ��

then
a � b � c � d�

Indeed, if f : a � c is a bijection and g : b � d is a bijection, then
f � g : a � b � c � d is a bijection. If the assumption a � b � c � d � �
is dropped, the conclusion fails, of course, as we can have a � b � � and
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c � d. It is also interesting to note that even if a � b � c � d � �, the
assumption a � b � c � d does not imply b � d even if a � c is assumed:
Let a � �� b � �� c � �2n : n � �� and d � �2n � 1 : n � ��. However, for
finite sets this holds: if a�b is finite, a�b � c�d� a � c� a�b � a�d � �
then b � d. We can interpret this as follows: the cancellation law holds for
finite numbers but does not hold for cardinal numbers of infinite sets.
A basic fact about equipollence, and indeed the starting point of all of set

theory, is the result of Cantor that no set is equipollent with its power set.
Let us see why this is so. Suppose a set a is equipollent with �(a). Thus
there is a bijection f : a� �(a). Let b � �x � a : x � f (x)�. Then b � �(a)
so there is some x � a such that b � f (x). Is x in b or not? If x � b, then
x � f (x), a contradiction, since f (x) � b. Therefore we must conclude
x � b. But then x � f (x), whence x � b, a contradiction again. So no such
f can exist. It is remarkable that with this simple short argument one can
make the far-reaching conclusion that there are an unending sequence of
greater and greater cardinalities, namely one needs only follow the sets �,
�(�), �(�(�)), �(�(�(�))),...
There are many more interesting and non-trivial properties of equipol-

lence that we cannot enter into here. For example the Schröder-Bernstein
Theorem1: If a � b and b � c � a, then a � c.

3.2 Countable sets

Countable sets are the most accessible infinite sets. They are the infinite
sets that we can actually list, or rather, we can start listing a countable set
and if we lived forever, we would list the entire set. So this is in sharp
contrast to sets like �, the set of all reals. Even if one lived forever, one
could not list all real numbers. The quintessential example of a countable
set is the set� of all natural numbers. Any set that is indexed by the natural
numbers as �an : n � �� is likewise called countable. And now we have
already exhausted the class of countable sets! There are no others.
Countable sets already manifest the paradoxical feature of infinity that

the part need not be less than the whole, for even the simplest countable set
�0� 1� 2� ���� is equipollent with its proper subset �1� 2� 3� ���� via the bijection
n �� n� 1. By considering the bijection n �� 2n we can see that �0� 1� 2� ����
is equipollent with the set of even numbers �0� 2� 4� 6� ����. In fact, all infinite
countable sets are equipollent: Suppose A � �an : n � �� and B � �bn : n �
�� are two infinite sets. Let f (a0) � b0. If f (an) � B has been defined, let

1The original formulation says: If there is a one-one function a� b and another b� a
there is a bijection a� b, see e.g. [12, p. 27].
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f (an�1) be bm with the smallest m such that bm � � f (a0)� ���� f (an)�. Since
B is infinite, such an m must always exist. Moreover, every bm gets chosen
at some point, for obviously bm � � f (a0)� ���� f (am)�.
Intuitively there are much more rational numbers than integers. There-

fore it is a bit surprising that the set of all rational numbers is actually
countable. Let us see how we can arrive at this conclusion. We can identify
the rational number n�m (in lowest terms) with the ordered pair (n�m) of
natural numbers. So let us first show that if a and b are countable, then so is
a�b. If either set is empty, the cartesian product is empty. So let us assume
the sets are both non-empty. Suppose a � �a0� a1� ���� and b � �b0� b1� ����.
Let

cn �
�

(ai� b j)� if n � 2i3 j

(a0� b0)� otherwise.

Now a � b � �cn : n � ��, whence a � b is countable. So if we identify
a rational number n�m (in lowest terms) with the pair (n�m), then there is
some k such that (n�m) � ck, and we have identified the set of all (non-
negative) rational numbers with an infinite subset of �, so in particular it
is countable.
We showed above that the cartesian product of two countable sets if

countable. A similar, and very useful fact is the following: a countable
union of countable sets is countable. The empty sets do not contribute any-
thing to the union, so let us assume all the sets in our countable family are
non-empty. Suppose An is countable for each n � �, say, An � �anm : m �
�� (we use here the Axiom of Choice to choose an enumeration for each
An). Let B �

�
n an. We want to represent B in the form �bn : n � ��. If n is

given, we consider two cases: If n is 2i3 j for some i and j, we let bn � aij.
Otherwise we let bn � a00. Now indeed B � �bn : n � ��.
One of the reasons why countable sets are so important is that sets de-

fined by induction are usually countable. Examples of such sets are abun-
dant in logic, most notably the set of terms and and the set of formulas in
a countable vocabulary. Any formal language based on a countable vocab-
ulary generates a countable set of expressions. More generally, in a count-
able vocabulary the set of all strings of symbols of a fixed finite length is
countable, and hence so is the set of all finite strings of symbols, as it is the
union of a countable family of countable sets.
A powerful application of the above idea is the Löwenheim-Skolem The-

orem of first order logic: Every countable first order theory has a count-
able model. There are reasons to believe—although this view is also con-
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tested2—that first order theories represent the best axiomatizations that we
can ever get. Thus we are stuck with countable models whether we want it
or not. For set theory this is called Skolem’s Paradox. The paradox is that
we can prove in set theory that the set of all reals is uncountable, but still
set theory itself has countable models. That is the paradox. The solution
of the paradox is that what seems countable from outside may not seem
countable inside. More exactly, if we have a countable model of set theory,
we can be sure that the mapping from the natural numbers onto the model
is not an element of the model. This is a rough awakening to the reality
that everything in set theory is relative. There are no signs that this would
be the fault of set theory. It is even true of number theory vis a vis Gödel’s
Incompleteness Theorem.

3.3 Ordinals

The ordinal numbers introduced by Cantor are a marvelous general theory
of measuring the potentially infinite on the one hand, and the actually infin-
ity on the other hand. They are intimately related to inductive definitions
and occur therefore widely in logic. It is easiest to understand ordinals in
the context of games, although this was not Cantor’s way. Suppose we have
a game with two players I and II. It does not matter what the game is, but it
could be something like chess. If II can force a win in n moves we say that
the game has rank n. Suppose then II cannot force a win in n moves for
any n, but after she has seen the first move of I, she can fix a number n and
say that she can force a win in n moves. This situation is clearly di�erent
from being able to say in advance what n is. So we invent a symbol � for
the rank of this game. In a clear sense � is greater than each n but there
does not seem to be any possible rank between all the finite numbers n and
�. We can think of � as an infinite number. However, there is nothing
metaphysical about the infiniteness of �. It just has infinitely many prede-
cessors. We can think of � as a tree T� with a root and a separate branch
of length n for each n above the root as in the tree on the left in Figure 3.
Suppose then II is not able to declare after the first move how many

moves she needs to beat I, but she knows how to play her first move in
such a way that after I has played his second move, she can declare that
she can win in n moves. We say that the game has rank � � 1 and agree
that this is greater than � but there is no rank between them. We can think
of � � 1 as the tree which has a root and then above the root the tree T�,

2See e.g. [19].
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Figure 3: T� and T��1.

as in the tree on the right in Figure 3. We can go on like this and define the
ranks � � n for all n.
Suppose now the rank of the game is not any of the above ranks � � n,

but still II can make an interesting declaration: she says that after the first
move of I she can declare a number m so that after m moves she declares
another number n and then in n moves she can force a win. We would say
that the rank of the game is � � �. We can continue in this way defining
ranks of games that are always finite but potentially infinite. These ranks
are what set theorists call ordinals.

3.4 Cardinals

Historically cardinals (or more exactly cardinal numbers) are just repre-
sentatives of equivalence classes of equipollence. Thus there is a cardinal
number for countable sets, denoted �0, a cardinal number for the set of
all reals, denoted �, and so on. There is some question as to what exactly
are these cardinal numbers. The Axiom of Choice o�ers an easy answer,
which is the prevailing one, as it says that every set can be well-ordered.
Then we can let the cardinal number of a set be the order type of the small-
est well-order equipollent with the set. Equivalently, the cardinal number
of a set is the smallest ordinal equipollent with the set. If we leave aside
the Axiom of Choice, some sets need not have have a cardinal number.
However, as is customary in current set theory, let us indeed assume the
Axiom of Choice. Then every set has a cardinal number and the cardinal
numbers are ordinals, hence well-ordered. The �th infinite cardinal num-
ber is denoted ��. Thus �1 is the next in order of magnitude from �0. The
famous Continuum Hypothesis is the statement that �1 � �. Equivalently,
for every set A of reals, either A is countable of the cardinal number of A is
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�. For Borel3 sets of real numbers it is true that there is no cardinality be-
tween �1 and �. If we assume large cardinals4, it is even true that for sets of
reals definable with real parameters there is no cardinality between �1 and
�. So it is not so far-fetched to suggest that maybe the same holds for all
sets of reals. On the other hand, the tenet of set theory is that properties of
definable sets are di�erent from the properties of arbitrary sets. So maybe
indeed the “regular" sets of reals—for some sense of “regular"—obey the
Continuum Hypothesis but when we enter the absurd and unintuitive world
of totally undefinable—arbitrary—sets of reals, the Continuum Hypothesis
fails.

4 Axiomatic set theory

After the above tour of basic concepts of set theory we can return to the be-
ginning and ask what is it that we are doing. This is all the more important
because, as we have indicated, a lot of mathematics can be developed in set
theory, if not all of mathematics. So the philosophical question arises, what
is set theory based on? The most commonly held view is that set theory is
the most fundamental theory in mathematics and it is not possible to base
set theory on anything even more primitive.
So how do we really know what is true of sets and what is not? This

question is crucially important also because most of the sets we encounter
in set theory are infinite and unquestionably abstract. They seem to exist
only in their own abstract world which cannot be seen by eyes, binoculars
or microscopes, cannot be touched by hand, and cannot be observed by
listening, tasting or smelling. It is often said that we can observe sets only
by thinking of them, but this seems an inadequate answer. The most com-
monly held view is that we simply accept certain simple facts about sets as
axioms and then use rules of logic to derive more complicated facts. The
axioms are accepted because of their intuitive appeal and because of their
usefulness. From the axioms that we present below one can derive virtu-
ally all of mathematics, and that is ultimately the most important reason
for accepting them. They simply seem to give a “house" for mathematics
to live in.

3The class of Borel sets is the smallest class of sets containing the open sets and closed
under complements and countable unions, see [12, p. 132].

4Large cardinals are “large" cardinals that have special properties that are used in proofs.
Their existence cannot be proved, so they have to be just assumed. However, they seem
quite necessary in modern set theory, see e.g. [12, p. 275]
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Technically speaking, the axioms are first order sentences in a vocabulary
which has just one binary predicate symbol � in addition to identity.
The simple idea of sets as collections of objects is too loose in a closer

analysis. This can be seen from the many paradoxes it has led to. The
most important is Russell’s Paradox: Consider the set R of sets that are not
elements of themselves. If R � R, then R � R, and if R � R, then R � R.
This paradox shows that we cannot allow just any collection to be a set.
Current thinking is that sets are in a sense “small" enough collections to
be considered as sets. According to this thinking, arbitrary collections are
called classes. A class that is not a set is called a proper class.
In the axiomatic approach paradoxes like Russell’s Paradox are avoided

because sets and proper classes are kept away from each other. Techni-
cally speaking, objects in the axiomatic approach, that is, the range of all
quantifiers, is sets. Classes are treated via formulas. A formula �(x), with
perhaps parameters, is identified with the class �a : �(a)� of sets that satisfy
�(x). So even if we think of our formulas as talking only about sets, we
can talk about classes by talking about formulas defining the classes.
There is an intuitive model of set theory which goes beyond the simple

idea that sets are “collections" of objects. According to this intuition sets
have been created in stages. Elements of a set are, or have been, created
before the set itself. This intuition does not mean that sets have really
been created by someone, it is just a metaphor. The concept of an ordinal
can be used to make the intuitive idea of stages more exact. The more
exact version is called the cumulative hierarchy of sets. For this end, let
V0 � �, V��1 � �(V�) and V� �

�
��� V� if � is a limit ordinal. Finally,

let V �
�
� V�. This is the intuitive model of set theory. Strictly speaking,

it is not model in the sense of model theory because its domain is a proper
class.
Now we present the axioms of set theory. They are called the Zermelo-

Fraenkel axioms, denoted ZFC. When we discuss the axioms it is good to
keep in mind the intuitive model o�ered by the cumulative hierarchy.

1. Axiom of Extensionality: Sets which have the same elements are
equal i.e.

�x�y(�z(z � x� z � y)� x � y)�

This axiom seems obvious but it is actually a deep axiom. It demon-
strates that we do not want there to be anything else about sets than
their elements. The elements form an aggregate we call a “set" but
we do not care what it is that pulls these elements together. The op-
posite attitude would be to think that there is much more to a set than
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its elements, e.g. the way, whatever it means, how the elements are
connected together into a set.

2. Axiom of Pair: From any two sets a and b we can form a new set
�a� b� which has exactly a and b as elements i.e.

�x�y�z�u(u � z� (u � x � u � y))�

Note that �a� b� is not the union of a and b - however big sets a and
b are the set �a� b� has at most two elements, so in particular it is
always finite. It is perfectly possible that a � b and then �a� b� � �a�.
We can form sets like �����, ��� and �������. Such sets are not
particularly common or useful, but their existence in set theory is a
manifestation of the basic tenet: whenever we have a set, we consider
it as a “completed" totality, something we can use to build new sets.

3. Axiom of Union: For any set a we can form the union
�

a of a,
which consists of all sets which are elements of elements of a i.e

�x�y�z(z � y� �u(u � x � z � u))�

Often sets are given in the form a � �ai : i � I�, that is, a is the range
of the function i �� ai. Then

�
a is the set

�
i�I ai. This is a basic

operation in mathematics and many applications of set theory.

4. Axiom of Power set: For any set a we can form the power set �(a)
of a which consists of all sets which are subsets of a i.e

�x�y�z(z � y� �u(u � z� u � x))�

One often hears criticism of this axiom but often also for a wrong
reason. The problem with this axiom is not that it says that “all"
subsets of a, whatever that means, exist. It says that those subsets
which do exist can be collected together. The opposite of this axiom
would be to think that some power sets are so large that they are
proper classes. For example, we could think that, opposite to what
the power set axioms says, the set of all reals, which is essentially
the power set of �, is a proper class. This is a coherent idea, but it
does not mean that we have missed some subsets. We have all the
subsets that we have, but we just cannot pull all of them together into
a set. A smooth theory of the reals seems to require the power set
axiom, but there are also alternative approaches.
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5. Axiom Schema of Subsets: For any set a we can form a new set by
taking the intersection of a and any class. In particular we can form
new sets of the form �x � a : �(x)� where �(x) is any formula. More
exactly, for any formula �(x��y) we have the following axiom:

�x�x1����xn�y�z(z � y� (z � x � �(z� �x)))�

Sets of the form �x � a : �(x)� are very common in mathematics,
for example a � b � �x � a : x � b�. Combined with the axioms
of pair, union and power set, the Axiom of Subsets is very powerful
indeed. This axiom has the impredicative element that the formula
�(x) in �x � a : �(x)� can have quantifiers and because these quanti-
fiers range over the entire universe of sets the set �x � a : �(x)� itself
is also in the range of the quantifiers. We can remove this impredica-
tivity by requiring that all quantifiers in �(x) are bounded i.e. of the
form �y � z or �y � z. However, this limits the applicability of the
axiom seriously and leads to completely di�erent kind of set theory,
the so called Kripke-Platek set theory (see [4]).

6. Axiom Schema of Replacement: Suppose a is a set. If there is a
way to associate to every element i of a a new set ai, then we can
form a new set �ai : i � a�, that is, a set which has all the ai, where
i � a, as elements, and nothing else. More exactly, for any formula
�(x� �y) we have the following axiom:

�x�x1����xn(�u�z�z�((u � x � �(u� z� �x) � �(u� z�� �x))� z � z�)
� �y�z(z � y� �u(u � x � �(u� z� �x))))�

This axiom introduced by Fraenkel is needed e.g. in transfinite re-
cursion.

7. Axiom of Infinity: This axiom simply says that there is an infinite
set. More exactly,

�x(�y(y � x � �z�(z � y)) � �y(y � x� �z(y � z � z � x)))�

There are many ways to write this axiom, all equivalent, given the
other axioms. The particular formulation here yields the set A �
��� ���� ������ ����. It is easy to see on the basis of the Axiom of Exten-
sionality that all elements of this set A are di�erent.

8. Axiom of Foundation: This axiom says that every set has an ele-
ment which is minimal with respect to �, that is

�x�y(x � y � �)�
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This is the most useless axiom (of set theory) that anyone ever in-
vented. In fact there are reasons to claim that no-one ever used this
axiom! However, since the intuitive idea of sets is that they were
“created" in stages, with elements of a set having been created be-
fore the set itself, then of course every set has an �-minimal element,
namely the one that was ‘created first". Since we do not really think
sets were created—creation being a mere metaphor—there is hardly
any mathematical example where this axioms turns up. Set theo-
rists count it in for their internal aesthetic reasons. Its usefulness is
not based in what it gives but rather in that we can live without the
circular sets it excludes.

5 Axiom of Choice

The Axiom of Choice is one of the axioms of set theory but we treat it here
separately from the others because it is of a slightly di�erent character. The
Axiom of Choice states that if a set a of non-empty sets is given, then there
is a function f such that f (x) � x for all x � a. That is, the function f
picks one element from each of those non-empty sets. There are so many
equivalent formulations of this axiom that books have been written about
it. The most notable is theWell-Ordering Principle: every set is equipollent
with an ordinal (see e.g. [12, p. 45]).
The Axiom of Choice is the only axiom of ZFC which brings arbitrari-

ness or abstractness into set theory, often with examples that can be jus-
tifiably called pathological, like the Banach-Tarski Paradox (see above).
Every other axiom states the existence of some set and specifies what the
set is. The Axiom of Union says the new set is the union

�
i�A Bi, the Ax-

iom of Power Set says the new set is the powerset �B : B � A�, the Axiom
of Subsets states that the new set is of the form �b � a : �(b)�.
Because of the abstractness brought about by the Axiom of Choice it has

received criticism and some authors always mention explicitly if they use it
in their work. The main problem in working without the Axiom of Choice
is that there is no clear alternative and just leaving it out leaves many areas
of mathematics, like measure theory, without proper foundation.
A basic problem with an axiom like the Axiom of Choice is that it has

a formulations which are rather obvious, like the formulation above, and
equivalent formulations which are completely unbelievable, like the Well-
Ordering Principle. If one thinks of formulations that make it look obvious,
one would like to accept it, but when one looks at the unbelievable conse-
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quences one would like to reject it. So which way to go?
It is sometimes wrongly believed that the problem of the Axiom of Choice

is in that no-one knows which element to choose from each non-empty set.
This is not the point. If a set a is non-empty, i.e. it is not the case that every
set is not in a, then by the laws of logic there must be a set in a. This does
not require the Axiom of Choice as it is simply a consequence of provabil-
ity of ��x�A � �xA. The problem is how to make infinitely many such
choices.

6 Independence results

In set theory it is relatively easy to formulate questions that have turned out
to be impossible to decide on the basis of the axioms. The most famous of
these is the Continuum Hypothesis, already proposed by Cantor. The Con-
tinuum Hypothesis claims that every uncountable set of reals is equipollent
with the entire set of reals � (see discussion on Continuum Hypothesis in
Section 3.4).
The undecidability of a sentence on the basis of any axioms, set theory or

not, can be proved by producing two models of the axioms, one where the
sentence is true and another where it is false. In the case of the Continuum
Hypothesis such two models have indeed been produced (see e.g. [12,
chapters 13 and 14]). The two models, one due to Kurt Gödel and the
other due to Paul Cohen, have led to an extensive study of models of set
theory, and a profusion of di�erent kinds of models have been uncovered.
Most of these models are constructed by a method called forcing. This
highly interesting method has turned out to be of relevance also outside set
theory.
The basic idea of forcing is that instead of trying to build directly a model

where something we are interested in is true, we settle with something less.
We settle with contemplating what finite pieces of information, called con-
ditions, “force" to be true, if ever a model based on them was constructed.
For example, if we have a name Ȧ for a set of natural numbers, then the
condition �0 � Ȧ� 1 � Ȧ� forces Ȧ to contain 0 but not 1, and this condition
leaves it open whether e.g. 2 is in Ȧ or not. We form a particular infinite
sequence of conditions called a generic sequence and build a model, called
a generic model from that sequence. Remarkably, a sentence is true in the
generic model if and only if some condition in the generic sequence forces
it to be true. This can be done in such a manner that the Continuum Hy-
pothesis is forced to be true or false in the generic model according to our
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will. If we want the Continuum Hypothesis to be true we use one kind of
condition and if we want it to be false we use another kind of condition.
For more on forcing see [12, Chapter 14] and [15, Chapter VII].
Forcing has turned out to have a connection to both modal and intuition-

istic logic. This connection arises from the fact that we can think of the
set of forcing conditions as the frame of a Kripke structure. For example,
a condition p is said to force �� if and only if no extension of p forces �.
This is exactly the same as the definition of the truth of a negated sentence
of intuitionistic logic at a node of a Kripke structure.
The philosophical importance of forcing is manifold. It represents a use-

ful weak truth definition, and as such one which can be used in di�erent
parts of philosophical logic. It uncovers a huge gap in what the axioms
of set theory decide leading to the philosophical question, whether there
is ultimately any true universe of mathematical objects. Skeptics say that
Gödel’s Incompleteness Theorem casts a doubt on the existence of math-
ematical objects, and Cohen’s forcing, especially the independence of the
Continuum Hypothesis, was the last blow which to many people totally
shattered the idea of a platonist reality of mathematics. The opposite view
is that mathematical objects form a definite unique reality of their own
and the results of Gödel and Cohen merely manifest an inherent underde-
termination of the axioms of set theory in uncovering what is true in this
invisible world and what is not.

7 Some recent work

7.1 Descriptive Set Theory

A set A is said to be definable if there is a formula �(x) such that A is
the set of sets b that satisfy �(x). Since there are only countably many
formulas there can be only countably many definable sets. However, if we
allow parameters, we get more definable sets. Typical parameters that are
sometimes allowed are on the one hand ordinal numbers and on the other
hand real numbers. Descriptive Set Theory is an important sector of set
theory which concentrates on sets that are definable with real parameters.
The basic ideology is that the arbitrariness or pathology brought by the
Axiom of Choice is only manifested in the realm of undefinable sets. The
sets we actually work with are a fortiori definable—otherwise we could
not talk about them! Seminal results of Martin-Steel-Woodin ([17]) show
that assuming so called large cardinals, phenomena like the Banach-Tarski
Paradox do not occur among definable sets. In other words, large cardinals
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remove the negative e�ect of arbitrariness that the Axiom of Choice brings
to set theory. The abstract arbitrary sets are there, and are needed for the
general theory, but they do not disturb the world of definable sets with
their paradoxical counter-intuitive properties. Current work in Descriptive
Set Theory further emphasizes this and at the same time brings set theory
closer and closer to classical analysis, topology and measure theory (see
e.g., the paper [5]).

7.2 Non well-founded set theory

The Non-well-founded set theory of Peter Aczel ([2]) takes on the empir-
ical fact that the Axiom of Foundation is not really a necessary axiom.
So non-well-founded set theory replaces the Axiom of Foundation with its
ultimate strongest possible denial: any combination of circularity in the
�-relation is manifested by some sets. Circularity comes up naturally in
computer science: the state of a program may very well come back to it-
self. Of course, the common sense view is that then the program is in a
loop and can be “dismissed" as a program with a bug. However, another
common sense view is that most programs can enter a loop, and some pro-
grams, like operating systems, are even expected to come back to the same
state time after time. It has turned out that non-well-founded set theory can
be used to model conveniently processes in computer science (see e.g., the
paper [3]).

7.3 Constructive set theory

Constructive set theory drops classical logic from set theory. As a result,
��x��(x) is not anymore a guarantee for �x�(x). For us to assert �x�(x)
we have to have a construction of an x and a proof that �(x). At first sight
this seems to have devastating consequences for set theory. However, if
we just adopt constructive logic but do not change the axioms we do not
gain much ([11]). To really make a di�erence in the direction of construc-
tive mathematics, one has to rethink the axioms. One approach gaining
popularity is the Constructive Zermelo Fraenkel Set Theory CZF (see [1]).
The goal of CZF is to o�er a simple intuitive foundation for constructive
mathematics in the same way as ZFC o�ers one for classical mathematics.
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8 Historical Remarks and Further Reading

Set theory was launched by Georg Cantor (see [6] and [7]) in 1874. There
are many elementary books providing an introduction to set theory, for ex-
ample [8], [9], [18], [16]. Textbooks covering a wide spectrum of modern
set theory are [13] and [14]. A colossal recent source of advanced set the-
ory is [10].
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Abstract

The philosophy of mathematics has long been concerned with
determining the means that are appropriate for justifying claims of
mathematical knowledge, and the metaphysical considerations that
render them so. But, as of late, many philosophers have called at-
tention to the fact that a much broader range of normative judg-
ments arise in ordinary mathematical practice; for example, ques-
tions can be interesting, theorems important, proofs explanatory,
concepts powerful, and so on. The associated values are often loosely
classified as aspects of “mathematical understanding.”

Meanwhile, in a branch of computer science known as “formal
verification,” the practice of interactive theorem proving has given
rise to software tools and systems designed to support the develop-
ment of complex formal axiomatic proofs. Such e�orts require one
to develop models of mathematical language and inference that are
more robust than the the simple foundational models of the last cen-
tury. This essay explores some of the insights that emerge from this
work, and some of the ways that these insights can inform, and be
informed by, philosophical theories of mathematical understanding.
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1 Introduction

Since Plato and Aristotle, the philosophy of mathematics has been con-
cerned with clarifying the nature of mathematical objects, and determining
the appropriate means of justifying claims of mathematical knowledge. But
in our daily mathematical practice, we often employ normative judgments
that go beyond assessments of justification and correctness. For exam-
ple, mathematical questions can be interesting, or not; questions can be
natural; concepts can be fruitful or powerful; some proofs provide bet-
ter explanations than others; some historical developments are important;
and some observations are insightful. Even though our ways of expressing
these judgments are often vague and imprecise, the evaluations matter to
us a great deal. They bear on the kinds of mathematics we decide to do
and they way we go about doing it, they way we teach and communicate
mathematics, and the kinds of mathematics we praise and support. In other
words, such judgments amount to normative assessments in one of our core
scientific practices, and so deserve philosophical attention.
Intuitively, what unifies these kinds of judgments is that they evaluate the

extent to which pieces of mathematics—concepts, proofs, questions, con-
jectures, theories, and so on—contribute to our understanding. This last
word is often used to invoke an aura of mystery and ine�ability, suggesting
that once we look beyond well-worn questions of justification our modes
of hard-nosed philosophical analysis break down entirely, leaving us with
nothing to do but shake our heads in wonder. The point of this essay is
to argue to the contrary. Specifically, I will consider some recent scientific
advances in the formal modeling of mathematical reasoning and proof, and
argue that these advances give us some leverage in making sense of such
normative assessments.
The outline of this paper is as follows. In Section 2, I briefly explore

some of our (vague) intuitions as to what we are talking about when we
talk about mathematical understanding. In Section 3, I shift gears and dis-
cuss some technical developments in a branch of computer science known
as “formal verification.” More specifically, I will discuss e�orts in inter-
active theorem proving, which involves the use of computational proof as-
sistants to construct complex mathematical proofs. I will describe some
of the ways the field has been forced to model mathematical language and
inference and, in each case, I will consider what these e�orts have to tell us
about mathematical understanding. Finally, in Section 4, I will try to bring
the vague intuitions and the technical work closer together, and explore
some of the ways that philosophical work can inform, and be informed by,
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the technical developments. In particular, I will consider the ways that bet-
ter a philosophical understanding of mathematical methods and abilities,
mathematical concepts, and mathematical ease and di�culty can both help
us come to terms with the kinds of evaluations expressed above, and sup-
port scientific work in fields that rely implicitly on notions of mathematical
understanding.
I am by no means the only one now trying to make sense of normative

assessments in ordinary mathematical practice; see, for example, the col-
lection of essays The Philosophy of Mathematical Practice [21] and the ref-
erences there for an overview of some of the recent work in the area. This
essay draws on and expands prior writings of my own, including [2, 3].

2 Understanding

Section 1 drew a distinction between traditional philosophical concerns
regarding correctness and justification on the one hand, and a broader class
of normative assessments on the other. I will now pose two philosophical
“problems” that help make some of the issues salient. The first, which I
will call “the problem of multiple proofs,” goes like this. On the standard
account, the value of a mathematical proof is that it warrants the truth of
the resulting theorem. Why, then, is it often the case that a new proof
of a theorem is often highly valued? For example, Furstenberg’s ergodic-
theoretic proof [8] of Szemerédi’s theorem [29] is recognized as a seminal
element of ergodic Ramsey theory, and Tao [30] notes that a host of proofs
of the theorem have been published since then, each one providing new
insights. Clearly the proof of a theorem does somethingmore than establish
that the final result is true; can we say, in precise terms, what that something
is?1

The second philosophical problem, which I will call “the problem of
conceptual possibility,” is as follows. It is often said that some mathe-
matical advance was “made possible” by a prior conceptual development.
For example, Riemann’s introduction of the complex zeta function and the
use of complex analysis made it possible for Hadamard and de la Vallée
Poussin to prove the prime number theorem in 1896. What is the sense of

1The question may bring to mind Georg Kreisel’s “unwinding program,” which involves
the use of formal methods to extract additional information frommathematical proofs. This
has become a fruitful and active branch of proof theory, which now generally goes by the
name of “proof mining” (see [6, 19]). With regard to the evaluation of informal proofs,
information that is “implicit” in such proofs is certainly an important part of the story; see,
for example, the discussion in [2].
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“possibility” here? It is certainly not physical possibility, that is, the claim
that someone like Chebyshev was physically incapable of writing down a
proof in 1850. And it is not hard to make the case that nor is it a matter of
logical possibility, that is, the fact that Chebyshev’s axioms and principles
of inference were not strong enough to entail the desired conclusion (see,
for example, [1]). An intuitive answer is that Chebyshev did not have the
right definitions in place, but that just pushes the problem back to explain-
ing why he could not have written down those definitions. In other words,
answering the question requires us to adopt a viewpoint in which writing
down a good definition can be a hard thing to do.
In both cases, the answer seems to have something to do with under-

standing: new proofs provide us with a better understanding of the theorem
they prove, as well as the surrounding mathematics; and historical devel-
opments provide us with understanding that supports further advances. In-
deed, informal talk about mathematical understanding arises in a number
of scientific and academic pursuits. Educational research aims to deter-
mine the ways of communicating understanding to students e�ciently and
e�ectively; psychology and cognitive science aim to explain how subjects
acquire mathematical understanding; the history of mathematics focuses
on events that have have furthered our understanding; in formal verifica-
tion and automated reasoning, one tries to get computers to understand the
mathematics we give them.
The purpose of this essay is to explore the prospect of developing a philo-

sophical theory that can help us come to terms with these various notions of
understanding. In order to avoid misunderstandings, I would like to make
three points clear.
First, I am not claiming originality or priority in raising these issues. For

example, one can find the problem of multiple proofs neatly expressed in
the writings of Wittgenstein [37, III–60]:

It might be said: “—that every proof, even of a proposition
which has already been proved, is a contribution to mathemat-
ics”. But why is it a contribution if its only point was to prove
the proposition? Well, one can say: “the new proof shews (or
makes) a new connexion”

A number of people working in the philosophy of mathematics today have
come at these issues in various ways, and it is not possible for me to pro-
vide an adequate survey of such work here. For further reading, see the
suggestion at the end of Section 1.
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Second, I would like to emphasize that the “problems” I have raised are
not great mysteries, set out only for us to marvel at how deeply inscrutable
mathematical understanding is. On the contrary, we have a lot of good
intuitions to start with, and it is easy to begin enumerating reasons why
we might prefer one proof to another, or why we might value a historical
development. The point is simply that, until recently, these issues have
not received serious philosophical attention, and so the language we use to
discuss them is still vague and imprecise. The challenge is to sharpen our
intuitions so that they can better support rational discussion and scientific
inquiry.
Finally, let us not get too hung up on the word “understanding.” In ordi-

nary usage, the word has social and even moral connotations; for example,
we praise children for understanding and hold criminals liable only insofar
as they have understood the consequences of their actions. Here I am only
concerned with much more focused issues having to do with the method-
ology of mathematics. I have invoked the word “understanding” because
it is often used in our informal talk about these issues, but what I am ar-
guing for is the importance and promise of a certain type of philosophical
analysis, rather than an exhaustive and univocal analysis of the notion of
understanding as it applies in every domain. I do not mind if you prefer
to characterize the project I am describing here as developing a theory of
“mathematical values,” “mathematical competence,” “mathematical abil-
ity,” or something of that sort. In short, I wish to focus on the phenomena,
not the word.
Let us begin with some straightforward observations. Mathematics is

hard; mathematical solutions, proofs, and calculations involve long se-
quences of steps, that have to be chosen and composed in precise ways. The
problem is not that there are too few options, but too many. For example, at
each stage in a deduction or calculation there are arbitrarily many facts we
can interpolate from our background knowledge (2�2 � 4, 4�4 � 8, . . . ),
most of which will be no help at all. From among all the options available
to us, we have to settle one initial step that may plausibly take us closer to
our goal, and then another, and then another. To compound matters, even
the best among us have limited cognitive capacities; we can only keep so
many pieces of information in mind at one time, and anticipate only a small
number of consequences of the definitions and facts before us. It should
strike you as something of a miracle that we are able to do mathematics at
all. And yet, somehow, we are; being mathematically competent means be-
ing able to proceed reasonably, if imperfectly, under these circumstances.
What I would like to understand are the complex mechanisms that make it
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possible for us to do so.
One way of posing the challenge is to note that whereas logic and tradi-

tional foundational research aims to determine what is allowed in a mathe-
matical argument or calculation, this falls short of determining which steps
are appropriate, or likely to be fruitful, in a given situation. This distinc-
tion was neatly expressed by Poincaré in 1908, in Science et méthod [24,
Book II, Chapter II]2:

Logic teaches us that on such and such a road we are sure of
not meeting an obstacle; it does not tell us which is the road
that leads to the desired end.

In other words, logic tells us how to verify that a proof of a given theo-
rem or the solution to a given problem is correct, but it does not tell us
how to find such a solution or proof in the first place. Something more is
needed to explain how we find manage to select a fruitful path from among
a bewildering array of useless options:

Discovery consists precisely in not constructing useless com-
binations, but in constructing those that are useful, which are
an infinitely small minority. Discovery is discernment, selec-
tion.

While the image of finding a selecting a path towards our goals provides
a helpful metaphor, I find literary metaphors helpful as well. For example,
Herman Melville’s Moby Dick is largely a story of humankind’s attempts
to come to terms with a chaotic and indi�erent universe; this image ac-
cords well with mathematics since, after all, mathematics doesn’t really
care whether we understand it or not. One of the most di�cult aspects of
doing mathematics is sitting down to a blank sheet of paper, and trying to
figure out where to begin. Blankness, as a metaphor, comes up often in
Moby Dick; for example, in the final pages, the great white whale presents
a “blank forehead” to the ship. The following passage is taken from an
entire chapter, Chapter 42, devoted to a discussion of the color white.

But not yet have we solved the incantation of this whiteness,
and learned why it appeals with such power to the soul; and
more strange and far more portentous. . . and yet should be as
it is, the intensifying agent in things the most appalling to
mankind.

2The next two passages are also quoted in [3].
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Is it that by its indefiniteness it shadows forth the heartless
voids and immensities of the universe, and thus stabs us from
behind with the thought of annihilation, when beholding the
white depths of the milky way? Or is it, that as in essence
whiteness is not so much a colour as the visible absence of
colour; and at the same time the concrete of all colours; is
it for these reasons that there is such a dumb blankness, full
of meaning, in a wide landscape of snows–a colourless, all-
colour of atheism from which we shrink?

Melville also o�ers us a grand and eloquent account of what happens when
we get an unfiltered glimpse of the infinity of possibilities before us, with
the story of Pip, one of the ship’s deck hands, who falls overboard while
his fellow shipmates sail o� in chase of a whale.

The sea had jeeringly kept his finite body up, but drowned
the infinite of his soul. Not drowned entirely, though. Rather
carried down alive to wondrous depths, where strange shapes
of the unwarped primal world glided to and fro before his
passive eyes; and the miser-merman, Wisdom, revealed his
hoarded heaps; and among the joyous, heartless, ever-juvenile
eternities, Pip saw the multitudinous, God-omnipresent, coral
insects, that out of the firmament of waters heaved the colos-
sal orbs. He saw God’s foot upon the treadle of the loom,
and spoke it; and therefore his shipmates called him mad. So
man’s insanity is heaven’s sense; and wandering from all mor-
tal reason, man comes at last to that celestial thought, which,
to reason, is absurd and frantic; and weal or woe, feels then
uncompromised, indi�erent as his God.

These passages give us a good sense of what we are up against. Vast and
complex, mathematics o�ers us great riches, but, at the same time, threat-
ens to overwhelm us. A theory of mathematical understanding should ex-
plain how we cope with the complexity and maintain our sanity while ex-
ploring the wonders before us.

3 Formal verification

The phrase “formal verification” refers to a branch of computer science
which uses formal methods to verify correctness. This can mean verifying
the correctness of hardware and software design, for example, to ensure
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that a circuit description, an algorithm, or a network or security protocol
meets its specification. But it can also mean verifying that a proof of a
mathematical theorem is correct. There is a lot of overlap between these
two pursuits, but also a number of di�erences in emphasis. Here I will
focus on the latter type of verification.
“Interactive theorem proving” provides on important approach. Working

with an interactive proof assistant, users enter enough information for the
system to confirm that there is a formal axiomatic proof of the theorem
that the user has asserted. In fact, many systems enable one to extract a
formal proof object—a complex piece of data representing a fully detailed
axiomatic proof—which can be manipulated and verified independently of
the system that constructed it.
There are a number of such systems currently in use; those in which

substantial portions of mathematics have been formalized include Mizar,
HOL, HOL light, Isabelle, Coq, and ACL2 (see [35] for an overview). The
technology is still young, and it will be a while before such systems are
commonly used in mathematical circles. But initial achievements make
it clear that the potential is there. Notable theorems of mathematics that
have been formalized to date include the four-color theorem [10], the prime
number theorem [5, 16], Dirchlet’s theorem on primes in an arithmetic pro-
gression [15], and the Jordan curve theorem [13]. At the time of writing of
this article, two very ambitious projects are well underway: Thomas Hales
is heading a project [14] to verify a proof of the Kepler conjecture, which
asserts that there is no way of filling space with spheres that can beat the
density of the familiar lattice packing; and Georges Gonthier is heading
a similar project [12] to verify the Feit-Thompson theorem, which asserts
that every finite group of odd order is solvable. Once again, I do not have
su�cient space to provide an adequate overview of the field and its history;
a good starting point for that is the December 2008 issue of the Notices of
the American Mathematical Society, a special issue on formal proof, with
articles by Hales, Freek Wiedijk, John Harrison, and Gonthier. My goal
here is to consider some of the issues that arise with respect to formal ver-
ification, and what they have to tell us about mathematical understanding.

3.1 Understanding mathematical language

To start with, an interactive proof system relies on an underlying formal
framework, which specifies a language in which assertions are to be ex-
pressed and the admissible rules of inference. There are a number of
frameworks currently in use. Zermelo-Fraenkel set theory has long been
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recognized as a powerful foundational framework for mathematics, and,
for example, the Mizar system uses a variant thereof. In the language of set
theory, everything is a set; but one introduces definitions that allow one to
recognize some sets as being natural numbers, some as being real numbers,
some as being functions from the natural numbers to the reals, and so on.
Other proof systems, in contrast, use frameworks that take such “typing”
information to be built into the basic language. For example, HOL, HOL
light, and Isabelle use a formulation of higher-order logic in Church’s sim-
ple type theory, in which every term is assigned such a type. What makes
simple type theory “simple” is that the type of a variable cannot depend on
a parameter. On the other hand, in many mathematical contexts, it is nat-
ural to let a variable x stand for an element of the vector space �n, where
n is another variable ranging over the natural numbers. Some systems,
like Coq, use a more elaborate type theory, where �n can be represented
as a type. Adding rules to manipulate these more elaborate complicates
the underlying logical framework. But, as we will see below, this kind
of information is fundamental to mathematical reasoning, and making it
part of the underlying logical framework means that one can build general-
purpose mechanisms to handle such information into the core of the system
itself. (Coq is moreover based on a constructive logic, and computational
aspects of the mathematics in question play a central role in the formaliza-
tion process.)
As an example of how mathematics is expressed in such systems, here is

Hales’ statement of the Jordan curve theorem in HOL light:

��� ������������������� ���� � ���

��� �� ���� � �� ���� � ��

��������� ���� � �� ��������� ���� � ��

��� � ������ �� ��� � ������ ��

�� ����� � � ������ �� �� ����� � � ������ ��

�� ����� � � ������ ��

�� ����� � ����� � � ������ ��

Here, the exclamation point denotes a universal quantifier, and the ques-
tion mark denotes an existential quantifier. The predicate “top2” denotes
the standard topology on the Euclidean plane. In ordinary mathematical
language, the expression above asserts that if C is a simple closed curve in
the Euclidean plane, then the entire plane can be written as a disjoint union
A � B �C, where A and B are connected open sets.
While one can get used to such typography and notation, it is less pleas-

ant than reading ordinary mathematical text. As part of his MS thesis work
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at Carnegie Mellon, Steve Kie�er implemented a parser for an extension
of set theory designed by Harvey Friedman, and entered hundreds of def-
initions from Suppes’ Set theory and Munkres’ Topology (see [18]). For
example, here is his rendering of Munkres’ definition of the topology X
generated by a basis �:

���������� ������������� ����� �������� ������������

�� ����������������������� ����

�������������������������� ������

������������� ��������� ��������

�������� � ��������� ���� ��� ����������� ����

�������� � ��� ���������� � ��� �������������

� ��� � ������ � ��������� �����

And here is his definition of a certain topology, the K-topology, on the
real numbers:

���������� ��������������� ����� �������� ���������

�������� ������ ������������

��������������� ����

�� ��������� ���������� �

�������� � ��� �����������������

� � � ����� �������������������� �

� ��� �������������� ������������

These may not look like much, but they do come close to the structure of
ordinary mathematical language. To make this point, Kie�er added a fea-
ture which allows the user to specify natural-language equivalents for the
symbols in the language, and implemented a simple heuristic to determine
when to use symbols or the expanded language. With these in place, the
definitions above were rendered as follows:

Definition: If � is a basis for a topology on X then the topology on X
generated by � is the unique � � �(X) such that for every U � X, U � �

if and only if for every x � U, there exists B �� with x � B and B � U.

Definition: The K-topology on � is the topology on � generated by the
standard basis for a topology on � union the set of V � � such that there
exists W in the standard basis for a topology on � such that V � W �
�1�n : n � ��.
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The prose is not literary and tends to have a run-on feel, but it is not
terribly far from ordinary mathematical text. What this seems to suggest
is that our conventional modeling of mathematical language is on the right
track. And insofar as this modeling captures the structure of mathematical
language, it follows that when we read and write mathematical assertions,
we are implicitly able to recognize and make use of this structure. Thus:

Understanding mathematical language, involves, in part, be-
ing able to identify the fundamental logical and mathematical
structure of an assertion, that is, recognize logical connectives
and quantifiers, function application, predication, and so on.

3.2 Understanding mathematical proof

Those who work in interactive theorem proving are attuned to the fact that
representing mathematical arguments requires not only an “assertion lan-
guage,” but a “proof language” as well. This fact is often glossed over
in conventional logic texts, where a formal mathematical proof typically
amounts to little more than a sequence of assertions. But ordinary text-
book proofs have a lot more structure than that. It is sometimes helpful to
think of ordinary mathematical proofs as being higher-level descriptions of
low-level formal axiomatic proofs, or recipes for constructing such proofs.
In fact, in the field of interactive theorem proving, it is common to refer to
the user’s input as “code.”
For example, here is a formal proof, in the Isabelle proof assistant, of the

statement that if n is any natural number not equal to 1, then n is divisible
by a prime.

����� ����������������� �� �� �������� ���

�� �� ����� � � � ��� ��

����� ������� � ����� ����������������

����� ��������� �� � ���

����� ���������������� ����� �����

����� ��������� ������ ���

����� �����

����� ������������ �� � ���

����� ������ ��� ����������������������

����� ����� ������ �������� ����������

����

The first line contains a statement of the lemma to be proved. This state-
ment becomes the current goal; subsequent lines then apply formal rules
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and procedures that reduce the goal to simpler ones. For example, the first
line applies a form of induction, which then requires the user to prove the
statement for a given natural number, n, assuming that it holds of smaller
ones. The second line splits on cases, depending on whether n is 0 or not;
the first case is easy dispensed with using the previously established fact
that 2 is prime. (The procedure “blast” is a generic automated routine that
fills in the details.) If n is not 0, the fact that it is not 1 implies that it is
greater than 1, in which case on applies the previously established fact that
any number greater than 1 that is not prime can be written as a product
of two strictly smaller numbers, at which point the inductive hypothesis
applies.
What makes this “proof script” hard to read is that the text only gives the

instructions that are used to act on the current goals; one has to “replay” the
proof with the assistant to see the goals evolve. Fortunately, Isabelle also
allows one to use a proof language called Isar [34] (modeled after Mizar’s
proof language [27]), which makes intermediate goals explicit. Here is a
proof of the same lemma in Isar:
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�� �����

���� �� � � � �� ���� ������� �� ���� �

���������� ���� ������� �� �����

���

Other proof languages are designed with di�erent desiderata in mind.
For example, here is a proof written in a language called Ssreflect [11],
which is designed to be used with the Coq proof assistant. In the following
theorem, known as the Burnside normal complement theorem, p denotes
a prime number and S is assumed to be a Sylow p-subgroup of G. I have
only shown the first few lines of the proof.
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The language is not for the faint-hearted. It is, however, remarkably
e�cient for writing proofs, allowing one to combine a number of small
steps naturally into one line of code.
While there are striking di�erences between these various proof lan-

guages, there are also many features in common. Ordinary mathemati-
cal proofs call upon us to perform many di�erent types of reasoning. At
any point in a proof, we may be unwrapping hypotheses or establishing
small facts that set the context for the subsequent proof; we may be ap-
plying previous lemmas or theorems and checking that the side conditions
are satisfied; we may be unfolding a definition, or naming an object as-
serted to exist; we may be carrying out a calculation; and so on. Any proof
language that aims to capture ordinary mathematical argumentation has to
have mechanisms that allow one to carry out these steps, and, conversely,
the formal mechanisms that are designed to allow one to do this e�ciently
helps shed light on what is necessary to read and write ordinary mathemat-
ical proofs.
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Understanding mathematical proof involves, in part, being able
to recognize contextual cues, explicit or implicit reliance on
local assumptions, background knowledge, recently established
facts, and so on; and to determine whether inferences are a
matter of calculation, unwrapping definitions, applying a lemma,
etc.

3.3 Understanding mathematical domains and structures

Let us engage in with a little exercise. Suppose we know that z be a com-
plex number satisfying �z� � 1, and we want to bound the absolute value of
ez. We might start expanding ez as a Taylor series as follows:

�ez� �

�������

��

i�0

zi

i!

�������
� 1 � �z� �

�������

��

i�2

zi

i!

�������
� � � �

In this expression, what type of object is i? zi? 1? What does the division
symbol denote? The symbol �? The summation symbol?
On inspection, we see that the variable i indexes a sum, so it ranges over

the nonnegative integers. Since z is a complex number, so is zi. We then
divide zi by the integer i!; this is possible because i!, an integer, can also
be viewed as a complex number, and we can divide complex numbers.
But taking the absolute value returns a real number; thus the symbol “1”
here denotes the corresponding real number. Indeed, The ordering rela-
tion doesn’t make sense on the complex numbers; so � has to be viewed
as a comparison between real numbers. As far as the summation symbol
is concerned, keep in mind that in the expression

��
i�0

zi
i! , i is a dummy

variable, which is to say, writing
��

j�0
z j
j! does not change the value of the

expression. One way to analyze the notation is to view the inner expression
as denoting the function which maps any integer, i, to zi

i! . Summation then
becomes a higher-order operator, which takes a function as an argument.
What is interesting is that we are typically not mindful of these sub-

tle issues when reading and working with expressions like the one above.
Mathematical competence involves being able to recognize these facts im-
plicitly and use that information in appropriate ways. When it comes to
formalizing such proofs, it turns out to be remarkably di�cult to spell out
such details precisely. For example, one can take integers to be a di�erent
sort of object than complex numbers, in which case one has make use of
the standard embedding of the integers in the complex numbers to make
sense of the expression; or one can take integers to be complex numbers
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satisfying the additional property of being integral, in which case, one has
to rely on closure properties of operations like addition and multiplication
to keep track of which objects in an expression have this property.
A good deal of technology has been borrowed from the theory of pro-

gramming languages and the theory of automated reasoning to cope with
this. For example, type inference involves determining, in a given context,
what type of object a given expression denotes. Overloading is the act of
using the same symbol for more than one purpose, such as using � as the
multiplication symbol in more than one group, or using � for the natural
numbers and the reals. Polymorphism and type classes provide means of
making use of the fact that operations like addition have common proper-
ties (like x� y � y� x) in di�erent instantiations. A coercion is a means of
casting of a value of one type to another, for example, viewing an integer
i as a real number in contexts where the latter is expected. Implicit argu-
ments provide ways of systematically leaving out information when it can
be inferred from the context, for example, writing g � h for multiplication
in a group when the appropriate instance of group multiplication can be
inferred. Coercions and implicit arguments are often insert automatically
using unification and matching algorithms, which find ways of instantiat-
ing variables to get two terms to agree.
The kinds of algebraic reasoning that require such inferences are ubiq-

uitous in mathematics. For example, when manipulating an expression�
i�n ai, it may not matter whether the summation symbol is taken to mean

addition in the integers, the complex numbers, or an abelian group. All the
following laws hold in any commutative monoid:

�

i�n�1

ai �

�
������
�

i�n

ai

�
������ � an

�

i�S�T

ai �
�

i�S

ai �
�

i�T

ai if S � T � �

�

i�S

(ai � bi) �
�

i�S

ai �
�

i�S

bi

Also,

c �
�

i�S

ai �
�

i�S

c � ai

holds if � distributes over �. In fact, these laws still hold when the summa-
tion operator is instantiated not only by summation in the integers or com-
plex numbers, but also as various types of products (

�
i�S ai), boolean op-

erations or meets and joins in a lattice (
�

i�S ai�
�

i�S ai), the minimum and
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maximum operations on the natural numbers (mini�S ai�maxi�S ai), unions
and intersections of sets (

�
i�S ai�

�
i�S ai), or the least common multiple or

greatest common divisor functions on the integers (lcmi�S ai� gcdi�S ai).
Moreover, algebraic reasoning often requires us to view the same object

in multiple ways. For example, if F is a field with a subfield E, then F can
simultaneously be viewed as a field, a vector space over E, and an algebra
over E. If H and K are subsets of a groupG that are closed under the group
operations, then H and K are also groups in their own right. An expression
like H�K can therefore be viewed as describing the intersection of the two
sets, so that an element g is in H � K if and only if g is in both H and K.
But H � K is also a group, containing the identity of G and having group
operations that arise by restricting those of G. Proof assistants need to be
able to handle these multiple views, just as we do when we do mathematics.
Indeed, that ability is a fundamental part of mathematical competence:

Understanding mathematical conventions regarding domains
and types involves being able to resolve ambiguities and in-
fer type information from the context; being able to recognize
concrete domains as implicitly embedded in other domains;
being able to recognize concrete and abstract structures as in-
stances of more general classes of structures; and so on.

3.4 Understanding mathematical inference

So far, we have considered only some of the most basic aspects of math-
ematical competence, namely, the ability to parse and understand general
mathematical language, and keep track of the kinds of objects at play in a
mathematical proof. We have not even begun to consider even the mildest
forms of mathematical reasoning proper.
Spelling out every textbook inference in terms of elementary logical

steps is tedious and di�cult, and most interactive proof assistants employ
various methods to fill in small gaps automatically. One can get a sense
of such methods from the two-volume Handbook of Automated Reasoning
[26], or John Harrison’s excellent introductory textbook Practical Logic
and Automated Reasoning [17]. Once again, here I only have space to of-
fer a cursory glance at the field. Some broad categorizations can be used
to characterize di�erent approaches to the problem. To start with, one can
distinguish between decision procedures and search procedures. The for-
mer are algorithms that are guaranteed (at least, in principle) to terminate
when called on a class of inferences, and determine whether or not the in-
ference is valid (ideally, with some kind of formal certificate or proof of
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validity when the answer is positive). Alas, thanks to Gödel, we know that
many classes of inferences are undecidable; to handle such inferences, we
can design procedures which search for a proof that an inference is valid,
but may not halt if not. One can also distinguish between methods that
are domain-general—that is, generic strategies that are designed to work
in a wide-range of contexts—and methods that are domain-specific, that is,
targeted toward very particular kinds of inferences. Finally, one can distin-
guish between “principled” search methods, which, for example, guaran-
tee completeness and rely on fundamental theoretical considerations, and
“heuristic” methods, that is, algorithms which one has tinkered with and
modified to ensure that they work will in practice, often at the expense of
having a clean theoretical characterization of their behavior.
When it comes to domain-general methods, one finds systems designed

for propositional theorem proving; first-order theorem proving; higher-
order theorem proving; and equality reasoning, among others. Each of
these is a vast industry, and the references above provide a good entry
to the literature. As of late, there has also been interesting research on
general ways of combining di�erent procedures in e�ective ways, such
as including some domain specific procedures in general frameworks for
proof search. “Nelson-Oppen” methods, which provide ways of combin-
ing decision procedures for domains with restricted overlap, represent one
important approach.
Research in domain-specific methods is equally active. For example,

linear arithmetic packages can determine the solvability of linear equal-
ities and inequalities in the reals, integers, or combinations of these do-
mains. Problems involving nonlinear inequalities are much more di�cult,
but there has been a lot of work on handling manageable fragments of the
theory of real closed fields, or reasoning in the presence of transcenden-
tal functions. Interactive proof assistants have also begun to incorporate
techniques from computer algebra systems; for example, methods based
on Buchberger’s method of Groebner bases can be used to solve a number
of algebraic problems.
This barely scratches the surface. Automated reasoning is a vibrant field,

and despite the great progress that has been made in recent years, there is
still a lot we do not understand. When it comes to ordinary mathematical
reasoning, one can summarize the state of a�airs by saying that automated
methods do especially well on large, homogeneous problems, where the
search space can be kept under control and the inferences reduced to large
but relatively straightforward calculations; but we are still unable to capture
straightforward mathematical inferences that chain heterogeneous bits of
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background knowledge together in various ways. The ability to do so is an
important part of our mathematical competence:

Understanding mathematics involves being able to carry out
straightforward mathematical inferences in specific mathemat-
ical domains, even when those inferences are di�cult to spell
out in formal axiomatic terms.

3.5 Understanding mathematical diagrams

Finally, let us briefly consider diagrammatic reasoning, which plays an
important role in mathematics. Since the end of the nineteenth century, di-
agrams have been used only sparingly in professional mathematical texts,
and conventional attitudes hold that all rigorous mathematical content should
be borne by the text. Nonetheless, diagrams are often used to accompany
and illustrate a mathematical argument, and some arguments can be nearly
unintelligible until one has drawn a good diagram. Moreover, a good dia-
gram can help guide the writing of a proof, and sometimes a diagram can
be entirely convincing in and of itself.
Until recently, it has been common for philosophers of mathematics to

dismiss diagrammatic reasoning as being merely a heuristic, psychological
artifact of mathematical practice, outside the philosopher’s purview. But
as of late, a number of philosophers have begun to take visualization and
diagrammatic reasoning more seriously [9, 22, 31]. And, it turns out, dia-
gram use if often governed by implicit norms and conventions that can be
studied and analyzed.
Consider, for example, Proposition 16 in Euclid’s Elements.

Proposition I.16. In any triangle, if one of the sides be produced, then the
exterior angle is greater than either of the interior and opposite angles.

A F

E

D

C

G

B

Proof Let ABC be a triangle, and let one side of it BC be produced to D.
I say that the exterior angle ACD is greater than either of the interior and
opposite angles CBA, BAC.
Let AC be bisected at E, and let BE be joined and produced in a straight

line to F. Let EF be made equal to BE, let FC be joined, and let AC be
drawn through to G.
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Then, since AE is equal to EC, and BE to EF, the two sides AE, EB
are equal the two sides CE, EF respectively; and the angle AEB is equal
to the angle FEC, for they are vertical angles. Therefore the base AB
is equal to the base FC, the triangle ABE is equal to the triangle CFE,
and the remaining angles equal the remaining angles respectively, namely
those which the equal sides subtend; therefore the angle BAE is equal to
the angle ECF.
But the angle ECD is greater than the angle ECF; therefore the angle

ACD is greater than the angle BAE. Similarly also, if BC be bisected, the
angle BCG, that is, the angle ACD, can be proved greater than the angle
ABC as well. Therefore etc. Q.E.D. �

Later in the Elements (Proposition 32 of Book I), Euclid shows that in
fact the external angle is equal to the sum of the internal angles, but that
depends on facts about parallel lines that are established with the help of
Proposition 16. Notice that the last paragraph of the proof simply asserts
that angle ECD is greater than angle ECF, presumably because the latter
is properly contained in the former. But what justifies this last claim? The
diagram “makes it clear,” but it is just such “intuitive” uses of the diagram
that were called into question during the nineteenth century, with the rise
of the axiomatic method.
With some e�ort, we can show that the desired conclusion is, indeed,

warranted by diagrammatic information that is set forth in the proof. For
example, points E and F are on the same side of line CD since B is on
both lines and, by the construction, E is between B and F. Similarly, we
can show that D and F must be on the same side of line CA, since they are
both opposite from point B. But these two facts essentially say that F is
“inside” the angle formed byCD andCA, which is implies that angle ECF
is properly contained in angle ECD.
What is interesting about the Elements is that such arguments are never

carried out, whereas other inferences are spelled out in great detail. Ken
Manders has observed [22] that in a Euclidean proof, topological facts (the
inclusion of one angle in another, the intersection of lines, the fact that
one point lies between two others along a line, and so on) are often “read
o� from the diagram,” whereas metric facts, such as the congruence of
angles are segments, are always justified explicitly in the text. Inspired by
his analysis, Ed Dean, John Mumma, and I [4] designed a formal system
that exhibits these features, and hence is capable of representing Euclid’s
arguments more faithfully. Our project involved, in particular, undertaking
a careful study of the diagrammatic inferences that occur in the first four
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books of the Elements, and characterizing the norms and conventions that
determine the kinds of information that one is able to read o� from the
diagram in a Euclidean proof. Understanding Euclidean geometry means,
in part, being able to distinguish the valid diagrammatic inferences from
invalid ones. More generally:

Understanding mathematical diagram use involves being able
to represent information in a diagram appropriately, and draw
valid inferences from the information so represented.

4 The philosophy of mathematics

At this stage, it would be reasonable for you to ask, “what does all this
have to do with the philosophy of mathematics?”
To answer this question in a constructive way, it will be helpful to set

some ground rules. The question is not meant to spark a turf war, with
mathematicians, computer scientists, and philosophers squabbling over who
is allowed to make pronouncements over mathematical understanding. Nor
is asking whether issues in formal verification have any role in philosophy
a matter of passing value judgment on the former; mathematical logic and
computer science are important fields of inquiry in their own right, inde-
pendent of their interaction with philosophy. Rather, let us take the ques-
tion above to ask what role distinctly philosophical methods can play in
relation to the methods of mathematical logic and computer science, and
the extent to which philosophical inquiry can inform, and be informed by,
work in mathematical logic and software engineering. Towards the end of
The Problems of Philosophy [28], Bertrand Russell highlighted the role of
philosophy in sharpening concepts and clarifying vague intuitions in or-
der to make further scientific inquiry possible. Here I will argue that the
philosophy of mathematics can play just such a role here, in helping us
come to terms with what exactly we are talking about when we try to talk
about mathematical understanding in various scientific contexts. In other
words, I am claiming that a better philosophical framework for reasoning
about mathematical understanding can support such scientific work, as well
as address the kinds of philosophical “problems” that I described in Sec-
tion 2. The next three sections suggest three ways that such a philosophical
framework would be useful.
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4.1 Mathematical methods and abilities

Take another look at the pronouncements on understanding that I used to
summarize the conclusions of each subsection of Section 3. What do they
have in common?
You will notice that the phrase “being able to” occurs in each; in other

words, in each case I have characterized an aspect of mathematical under-
standing in terms of “being able to” perform certain tasks. Informally, we
often explain our ascriptions of understanding by describing the associated
abilities. For example, if I tell you that my calculus students don’t un-
derstand integration by parts and you ask me what I mean, I am likely to
respond by giving examples of what they can and cannot do.
This provides a helpful way of thinking about mathematics. On tradi-

tional foundational accounts, mathematical knowledge is viewed as a col-
lection of propositions. In the context of a formal background theory, we
formulate definitions and prove theorems; our knowledge then amounts
to knowing that our terms have been defined in thus-and-such a way, and
knowing that thus-and-such a theorem is a consequence. But once we have
fixed our definitions and axiomatic framework, all the consequences are
determined, and the growth of mathematical knowledge is then simply a
matter of cranking out these consequences. If we think of mathematical
understanding, more broadly, in terms of a body of methods and abilities,
new modes of analysis are opened up to us. Rather than a collection of
facts, mathematics becomes something much richer and more interesting,
namely, a way of thinking and confronting the mathematical challenges we
face. It is not just a matter of knowing that certain statements are true, but,
rather, a matter of knowing how to proceed appropriately in mathematical
contexts.
Providing a theory of mathematical understanding then amounts to giv-

ing an account of the relevant methods and abilities. Such an account can
be used to address the philosophical problems raised in Section 2, provid-
ing us with better means to explain what we obtain from di�erent proofs
of a theorem and why certain historical developments are so important.
There is a straightforward model that can be invoked. Doing mathemat-

ics means undertaking various tasks, such as solving problems, proving
theorems, verifying inferences, developing theories, forming conjectures,
and so on. “Reasoning” involves a passage though various epistemic states
en route to our goals. “Understanding” then consists of the methods, tech-
niques, procedures, protocols, tactics, and strategies that make this passage
possible. As Section 3 suggests, this involves all of the following:
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� being able to recognize the nature of the objects and
questions before us
� being able to marshal the relevant background knowl-
edge and information
� being able to traverse the space of possibilities before us
in a fruitful way
� being able to identify features of the context that help us
cut down complexity

Emphasizing the word “method” means focusing on the procedures that
carry us from one state to another; emphasizing the word “ability” means
focusing on the net result of the transformation.
But we face a number of problems when we try to fill out the details and

develop ways of talking about “methods” and “abilities” in more scientific
terms. The notion of a “method” has the connotations of an algorithm,
which is to say, a specific way of going about something. But often we only
care about what it is that the method accomplishes, and not the particular
details of how it is accomplished. That is, di�erent methods can give rise
to the same ability; you and I may multiply three-digit numbers in di�erent
ways, and, in some contexts, it might only matter that we can both carry
out the multiplication. On the other hand, there is a compositional aspect
to our mathematical abilities, in that some abilities can be explained in
terms of others. For example, my ability to solve a problem may depend
on my ability to apply a certain lemma, which may in turn depend on my
ability to expand a definition appropriately. Or my ability to carry out a
calculation may depend on the ability to recognize that certain background
conditions obtain. These features then push us to think of methods in terms
of algorithms and subroutines, which, again, may push us to overly specific
descriptions of what they are doing.
There are other features of mathematical abilities and methods that pose

challenges. For example, the identity criteria are murky; when should we
take two descriptions of a method or an ability to denote the same object?
Moreover, methods are inherently fallible. For example: one can show that
a subgroup H of G is normal in G by showing that it is a characteristic
subgroup of another normal subgroup of G; but this is not the only way
to show that H is normal in G, and not every normal subgroup can be
identified in this way. Thus we need a way of describing methods that are
appropriate, though at the same time imperfect, in a given context.
In sum, the challenge is to develop a language for talking about math-

ematical methods and abilities that is well-suited to studying the issues
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raised in Sections 2 and 3. The computational models employed in the
field of formal verification provide a good starting point, but, ultimately,
we need to focus on the features of mathematics that render it intelligible,
rather than proof assistants and their implementation. The goal, then, is to
find a level abstraction that is appropriate for talking about mathematical
understanding.

4.2 Mathematical concepts

Developing a better language for talking about mathematical methods and
abilities may have some side benefits as well. Consider, for example, the
notion of a mathematical concept. Conventional psychological approaches
to the notion of concept, involving prototypes and exemplars, don’t do a
good job of characterizing mathematical concepts and the role the play
in mature mathematical reasoning. For example, some objects may fall
more distinctly under the concept of “table” than others, and among various
tables, some are more prototypical than others. In contrast, mathematical
concepts can have sharp boundaries. There is a precise modern definition
of what it means to be a “group,” and any particular mathematical object
either is or is not an instance of the group concept. To be sure, there are
more natural or common instances of groups; but that naturality does not
make them any more group-ish than contrived examples.

Yet mathematical concepts have a number of properties that make it hard
to pin them down. For example, mathematical concepts, like the group
concept, can evolve over time. Moreover, understanding a concept admits
degrees: an undergraduate understanding of the group concept is di�erent
from that of a graduate student working in group theory, which, in turn,
di�ers from that of the leading experts in the field. Various things “im-
prove our understanding” of a concept, and not just seeing more of them.
For example, representation theory, the method of representing elements
of groups as linear transformations of vector spaces, gives us a better un-
derstanding of groups. When we consider the historical record, we often
recognize “implicit uses of a concept” in the forerunners of our modern
theories. For example, Euler’s work on power residues (and, particularly,
residues modulo a prime) provides a good example of an implicit use of the
group concept years before the concept had been defined or axiomatized.

Can we come up with precise ways of thinking and talking about math-
ematical concepts that accord with these informal observations? One so-
lution may be to think of mathematical concepts as collections of abilities
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bundled around a central token (see footnote 18 of [3]). Surely one im-
portant ability that can be associated with any mathematical concept is the
ability to state the corresponding definition and apply it correctly. As a
result, we can still follow the traditional Fregean route by saying that an
object “falls under a concept” if it satisfies the associated definition. But
now we can analyze the notion of “understanding a concept” more gener-
ally as possessing the associated abilities. For example, understanding the
group concept involves knowing the definition of a group; knowing com-
mon examples of groups, and being able to recognize implicit group struc-
tures when it is fruitful to do so; knowing how to construct groups from
other groups or other structures, in fruitful ways; recognizing that there are
di�erent kinds of groups (abelian, nilponent, solvable, finite vs. infinite,
continuous vs. discrete) and being able and prone to make these distinc-
tions; knowing various theorems about groups, and when and how to apply
them; and so on.

You can check that this way of thinking about mathematical concepts
jibes well with the observations in the previous paragraph. For example,
concepts evolve as the ways and contexts we use them expand, and us-
ing a concept “implicitly” can mean employing an instance of a method
associated to the concept without identifying it as such. To be sure, this
makes mathematical concepts somewhat vague and open-ended. But the
point is, our talk of mathematical concepts does treat them as vague and
open-ended; and this analysis makes them vague and open-ended in just
the right away.

It may be helpful to compare this to the more traditional view of mathe-
matical concepts, which treats them as static and unchanging entities. On
the Fregean view, the analysis of a concept amounts to fixing the proper
definition, which, in a sense, determines everything there is to say about
the concept. The stark di�erence between the two views is tempered by
the fact that Frege was more specifically focused on the problem of justi-
fication of mathematical knowledge. When it comes to accounting for the
normative rules for mathematical justification, Frege’s account fares rather
well. There are at least three senses, however, in which a Fregean analysis
comes up short.

The first is foundational. In the early twentieth century, mathematical
logic was able to reduce much of mathematical reasoning to a few basic
concepts and axioms; Zermelo-Fraenkel set theory, for example, provides
a foundation for mathematics based on a small list of assumptions about
the universe of sets. But one is still left with the question as to what justi-
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fies those. Most philosophers of mathematics take logicism to have failed,
in the sense that doing mathematics requires commitments to entities and
principles that cannot be accounted for by logic alone. But attempts to find
compelling extralogical principles that can provide us with perfect knowl-
edge of abstract mathematical objects have largely stalled. In other words,
we have swept all our dust into one neat little pile and invested a good
deal of e�ort in moving the pile of dust around, but it never really goes
away. It seems likely that if one is aiming to justify one’s axioms and ba-
sic concepts on broader grounds, one will ultimately have to attend to the
roles they play in organizing our mathematical knowledge, and the role that
knowledge plays in organizing and structuring our scientific experiences.
(Maddy [20] urges something like this approach.) A more robust notion of
concept can help in that regard, by giving us a richer vocabulary to explain
why certain ways of organizing and structuring our knowledge are better
than others.

A second sense in which the Fregean analysis falls short is that it fails to
account for the kind of mathematical reasoning that often takes place in the
absence of a clear foundational framework. For example, in the eighteenth
century Euler employed a number of novel and striking arguments involv-
ing infinite sequences and series which were not made rigorous, according
to the modern understanding of that term, until much later; sometimes not
even until the twentieth century (see [33]). Mark Wilson’s engaging and
thorough exploration of concepts [36] o�ers a number of similar examples
in applied mathematics and physics, as does Urquhart [32]. The work on
Euclidean geometry described in Section 3.5 shows that the geometry in
Euclid’s Elements is also governed by precise norms, once again in the
absence of a Fregean foundation. Once again, a more robust notion of
concept may be able to help explain the way informal concepts guide our
reasoning, even in the absence of precise definitions.

Finally, Frege’s analysis was simply not designed to account for the kinds
of normative evaluations discussed in Section 2. As Poincaré observed,
telling us how we are allowed to use our mathematical concepts is a far cry
from telling us how we ought to use them. Thus we can view the Fregean
analysis as more specifically trying to provide an idealized account of the
normative rules of justification in situations where our concepts can be
clearly defined. When it comes to justification in the broader sense of
using mathematical notions fruitfully and appropriately, once again, we
should be prepared to look beyond the Fregean framework.
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4.3 Mathematical ease and di�culty

There are other ways that the issues raised in Sections 2 and 3 push us to
look beyond traditional foundational analysis. The problem is simply that
foundational reduction washes out many important nuances. For example,
from a set-theoretic standpoint, there is only one type of mathematical ob-
ject (set); there is only one fundamental relationship between mathematical
objects (the binary element-of relation); and one only needs one “method”
to verify inferences, that is, systematic search for a proof from the axioms
of set theory. From this standpoint, it is hard to recognize di�erences be-
tween algebraic and geometric methods; di�erent styles of proof; or the
value of a good definition.
What makes foundational reduction an oversimplification in such con-

texts are issues of complexity. Knowing that, in principle, definitions and
theorems can be unpacked until we get to set-theoretic primitives does not
help us reason about them pragmatically. Di�erences in the way we orga-
nize our mathematical knowledge and express our mathematical ideas mat-
ter precisely because we have limited time, energy, memory, and reasoning
capacities. Part of understanding why we value certain mathematical de-
velopments involves understanding how the right concepts and methods
simplify the mathematical tasks before us.
But how shall we measure complexity? As philosophers, we won’t be

the first to grapple with the issue; “complexity” is a term of art in a number
of applied disciplines. In computer science, one measures the complexity
of problems in terms of asymptotic bounds on the time and space needed
to compute solutions in a fixed machine model. In logic, one can measure
the complexity of definitions, say, by the number (and type) of quantifiers
they employ; and one can measure the complexity of proofs by the number
of symbols they contain. Psychologists measure the complexity of basic
cognitive tasks in terms of the amount of time it takes to carry them out, or
the stage of our development at which we are capable of doing so.
For example, the field of proof complexity [25] provides a number of in-

teresting “speedup results,” which show how expanding the language and
conceptual resources of a mathematical theory, even conservatively, can
serve to shorten the lengths of proofs dramatically. With some cleverness,
one can find explicit combinatorial theorems that exemplify this behavior
(see [7, 23]). This may seem to o�er good explanations as to how a careful
choice of language and concepts serves to reduce complexity. But such
results do not tell the whole story. First, “length of proof” is a count of
the number of symbols in proofs in a formal axiomatic system. Such a
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measure depends very much on how the system is formulated; although
such measures tend to be stable, up to a polynomial, across reasonable
systems, that says nothing about the length of the proof of a single theo-
rem. Second, ordinary textbook proofs are much higher-level objects than
formal axiomatic derivations, and, as I argue elsewhere [2], the kinds of
normative assessments that we are interested in here do not accord well
with the low-level modeling. Third, the combinatorial examples are some-
what contrived, cooked up by logicians to serve as counterexamples, and
the speedup vanishes when one replaces the systems in question with ones
only slightly stronger. Indeed, ordinary mathematical theorems that skirt
unprovability using ordinary mathematical methods are surprisingly hard
to come by; most mathematics can be carried out in fairly weak theories,
where the obvious reflection principles that can shorten a proof are uncon-
troversial (see [1]). Moreover, length of proof is a measure of the formal
object, not the ease or di�culty we encounter in trying to find, remem-
ber, or reconstruct it; it is a measure of “syntactic complexity” rather than
“di�culty.” Finally, speedup results are overly dramatic. A definition that
makes it possible to carry out our reasoning more cleanly and e�ciently,
and thereby reduce the length of a journal article by a third, is clearly a
good definition. What we really care about are the subtle ways that good
definitions streamline our ordinary mathematical experiences, not the dra-
matic and clever ways we can abuse a formal axiomatic system.
One can raise similar objections to other complexity measures on o�er.

We might try to classify the di�culty of common mathematical tasks in
terms of their computational complexity, but this is an asymptotic model;
what we often care about are the complexity of individual tasks, or, for ex-
ample, a class of tasks where the parameter in question can reasonably be
taken to be bounded by a constant (say a trillion). This objection isn’t just
pedantic; at small sizes, the particular choice of machine model can make
a huge di�erence. Turing machines are not good models for the kinds of
things that we find it easy to do, nor are they good models for the kinds
of tasks that take place against richly structured background knowledge.
Finally, computational complexity is best at modeling deterministic algo-
rithms; in mathematics, we often employ heuristic methods that tend to do
well in the kinds of situations that arise in ordinary mathematical practice.
What is missing is an informative theoretical characterization of what it
means to “do well in the kinds of situations that arise in ordinary mathe-
matical practice.” Computational complexity was simply not designed for
this purpose.
Psychological measures of di�culty go too far to the other extreme. For
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one thing, we only have clean experimental results for very basic cognitive
tasks. Moreover, this shifts our focus to “incidental” features of our cogni-
tive abilities, rather than the “essential” features of the mathematics we are
trying to model. What we want is an account of how mathematics helps
us take advantage of the distinctly mathematical features of a problem at
hand and tame a combinatorial explosion of possibilities, one that is not
overly sensitive to the number of digits we are capable of holding in our
short-term memory.
But it is important to keep in mind that saying that the measures of com-

plexity we have considered are not quite right does not mean that they are
entirely wrong. Certainly the lengths of proofs and calculations and our
cognitive limitations have a lot to do with what makes a piece of mathe-
matics hard or easy. Conventional complexity measures therefore provide
a good starting point. What we need now are ways of talking about com-
plexity that are suitable for analyzing the features of the mathematics that
extend the capacity and reach of our thought.
Once again, getting a better grip on mathematical ease and di�culty may

have broader philosophical implications. I began this essay by describ-
ing recent e�orts to come to terms with the various values that one comes
across in ordinary mathematical discourse. Such explorations have given
rise to methodological concerns. It is all well and good to make lists of
theoretical virtues; but what, exactly, endows them with normative force?
Mathematics is ultimately a matter of getting at the truth; isn’t everything
else incidental? Aren’t all the other judgments merely subjective and prag-
matic, falling outside the proper scope of philosophy? Tappenden [31]
raises such concerns as follows:

[J]udgements of “naturalness” and the like are reasoned. It
is not just some brute aesthetic response or sudden, irrational
“aha!” reaction that brings about the judgement that — for ex-
ample — “the scheme is the more natural setting for many ge-
ometric arguments”. . . Quite the contrary: elaborate reasons
can be and are given for and against these choices. One job
facing the methodologist of mathematics is to better under-
stand the variety of reasons that can be given, and how such
reasons inform mathematical practice.

The factual observation should be beyond controversy: rea-
soned judgements about the “proper” way to represent and
prove a theorem inform mathematical practice. I have found
that more contention is generated by the disciplinary classi-
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fication of the study of these judgements and the principles
informing them: is this philosophy, or something else, like
cognitive psychology?

At issue is not whether we can clarify and explain our mathematical as-
sessments; instead, the question is whether we can find any “objective”
sense in which they should be taken to be normative, rather than reflec-
tions of personal preference, historical accident, or incidental features of
our biological makeup. In other words, what is lacking is a sense in which
our mathematical values are mathematically valuable.
Such concerns are not limited to mathematics; they apply just as well

to questions concerning the objectivity of ethical and aesthetic judgments.
But when it comes to mathematics, a suitable theory of ease and di�culty
may provide an informative way of addressing these concerns. Insofar as
we can develop appropriate idealizations of our cognitive capacities and
limitations, there is a sense in which we can determine some of our value
judgments to be objective; that is, we can show how our various machina-
tions and stratagems serve to extend the capacities for the use and discov-
ery of mathematical knowledge in any beings with cognitive constraints
roughly like ours. This may not put all our concerns about normativity
and objectivity to rest, but it provides a sense in which clear philosophical
progress can be made.

5 Conclusions

Encouraged by these musings, you may find yourself tempted to get right
to work and start defining basic terms like “understanding,” “ability,” and
“concept.” Resist that temptation! Before we begin to construct an over-
arching theory, we have to start coming to terms with some of the basic
data. It therefore makes sense to begin with more focused questions, ones
for which satisfying answers are within reach. To that end, it is also help-
ful to look to domains of application, among those fields that explicitly or
implicitly depend on notions related to mathematical understanding: fields
such as formal verification and automated reasoning; mathematical ped-
agogy and cognitive science; history (and historiography) of mathemat-
ics; and mathematics itself. In other words, we should begin by trying to
clarify specific aspects of mathematical understanding, and the roles that
our conceptions of mathematical understanding play in particular scien-
tific practices. Over time, the data we accumulate from such smaller and
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more focused studies should come together to provide us with a coherent,
comprehensive picture.
But what if they don’t? It is conceivable that our disparate attempts to get

at mathematical understanding will take us down divergent paths. We may
decide, in the end, that notions of understanding that arise in automated
reasoning have nothing to do with notions of understanding that arise in
cognitive science, which, in turn, tell us nothing about the methods and
goals of working mathematicians. What then?
Well, in that case, our work will have merely contributed to the con-

ceptual foundations of automated reasoning, cognitive science, pedagogy,
history of science, and so on; and taught us some interesting things about
mathematics as well. Surely we could do a lot worse.
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Computability Theory
S. BARRY COOPER�

Nature was computing long before humans started. It is the algorithmic
content of the universe makes it an environment we can survive in. On
the other hand, computation has been basic to civilisation from the earliest
times. But computability? Computability theory is computation with con-
sciousness, and entails the huge step from doing computation to observing
and analysing the activity, and understanding something about what we
can and cannot compute. And then — using the knowledge acquired as a
stepping stone to a better understanding of the world we live in, and to new
and previously unexpected computational strategies.
It is relatively recently that computability graduated from being an essen-

tial element of our daily lives to being a concept one could talk about with
precision. Computability as a theory originated with the work of Gödel,
Turing, Church and others in the 1930s. The idea that reasoning might be
essentially algorithmic goes back to Gottfried Leibniz — as he says in The
Art of Discovery (1685), [24, p.51]:

The only way to rectify our reasonings is to make them as tan-
gible as those of the Mathematicians, so that we can find our
error at a glance, and when there are disputes among persons,
we can simply say: Let us calculate, without further ado, to
see who is right.

It was Gödel’s reduction of the first-order theory of Peano arithmetic to
recursive arithmetic which gave a first formal expression to this idea. Since
then, we have seen what it means to be computable captured in diverse
models, invariably equivalent to the standard Turing machine model from
1936 of Alan Turing.
Ironically, just when the mathematical models gave new clarity to ba-

sic questions about the nature of real-world computability, and the specu-
lations of Leibniz and others, the mathematicians and philosophers went
their di�erent ways. And, growing out of the theoretical construct of the
Universal Turing Machine, the 1940s and 50s saw the development of the

�University of Leeds, Leeds LS2 9JT, U.K.

199



200 S. BARRY COOPER

stored-program computer and a third and dominant stream of research —
theoretical computer science. While philosophers continued to think about
the nature of computability, mathematical logicians became preoccupied
with the esoteric technical questions of what came to be called recursion
theory. And theoretical computer scientists mined the seemingly inex-
haustible riches of the Turing model of computation — which would have
been no surprise to Turing himself, who is frequently quoted: “Machines
take me by surprise with great frequency".
Nowadays, computability as a field is still broadly defined by the work

and research interests of Alan Turing. The reputation of Turing himself
continues to grow, and he has been variously adopted by mathematicians,
computer scientists, biologists, cryptologists and philosophers. Most of
Turing’s various research interests are still key ones today. And there is a
new coming together of people working in di�erent areas and approaching
basic questions from di�erent directions.
In mathematics there is a new awareness of how technical work related to

incomputability has real-world consequences. In computer science there is
a growing dissatisfaction with the constraints of the standard Turing model
of computation, the development of computational paradigms derived from
nature — biological, quantum and connectionist models — and a readiness
to apply logic and mathematical structures. The continued importance of
the Turing Test for those trying to build intelligent machines reminds us
of how bereft we are of adequate models of human intelligence (see [3]).
While philosophers variously call on sources from di�erent areas of sci-
ence and the humanities, examining the computational significance of such
natural phenomena as quantum randomness and emergence, in an e�ort to
pin down the extent to which nature computes, and what computability is
in the real world.

1 The Origins of Computability Theory

So, for the beginnings of computability theory, we need to go back to the
year 1936. The scientific developments of the decade 1927-36, such as the
development of quantummechanics, Gödel’s incompleteness theorems, the
discovery of the Universal Turing machine, had an e�ect that would not
have been obvious to those reading the newspaper headlines of that year,
concerned with such things as the civil war in Spain, economic recession,
and the Berlin Olympics. The end of that decade saw the publication of a
thirty-six page paper [21] by a young mathematician, Alan Turing, claim-
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ing to solve a longstanding problem of the distinguished German mathe-
matician David Hilbert — see Hodges [11] for biographical background.
A byproduct of that solution was the first machine-based model of what
it means for a number-theoretic function to be computable, and the de-
scription of what we now call a Universal Turing Machine. At a practical
level, as Martin Davis describes in his 2000 book [5] The Universal Com-
puter: The Road from Leibniz to Turing, the logic underlying such work
became closely connected with the later development of real-life comput-
ers. The stored program computer on ones desk is a descendant of that
first universal machine. What is less often remembered is Turing’s theoret-
ical contribution to the understanding of the limitations on what computers
can do. There are quite easily described arithmetical functions which are
not computable by any computer, however powerful. And — as shown by
David Deutsch [6] in 1985 — the advent of quantum computers will not
change this.
Before computers, computer programs used to be called algorithms. Al-

gorithms were just a finite set of rules, expressed in everyday language, for
performing some general task. What is special about an algorithm is that
its rules can be applied in a potentially unlimited number instances of a
particular situation. We talk about the algorithmic content of Nature when
we recognise patterns in natural phenomena which appear to follow gen-
eral rules. One of the main tasks of science, at least since the time of Isaac
Newton, is to make mathematically explicit the algorithmic content of the
world about us. A more recent task is to come to terms with, and analyse,
the theoretical obstacles to the scientific approach. This is where the dis-
covery of incomputability, and the theory which flows from that discovery,
play such an important role.
But it was David Hilbert’s famous address to the 1900 International

Congress of Mathematicians in Paris, which set out a mathematical agenda
which turned out to be of fundamental importance to the history of com-
putability. Many of the twenty-three problems he posed have been solved.
But a main theme running through them still preoccupies us, although
in ways very di�erent to what Hilbert would have expected. Essentially,
Hilbert hoped to reduce a wide spectrum of familiar problems to compu-
tation. For instance, Hilbert’s tenth problem, asked for an algorithm for
locating solutions to Diophantine equations. Another, leading to Turing’s
seminal 1936 paper, was the question (Hilbert’s ‘Entscheidungsproblem’)
of whether there is an algorithm for deciding of a given sentence whether it
is logically valid or not. More generally, he raised the question of whether
there exist unsolvable problems in mathematics. Or whether there exist
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computational tasks for which there is no valid program. Hilbert believed
there were no unsolvable problems, famously declaring in Königsberg in
September 1930:

For the mathematician there is no Ignorabimus, and, in my
opinion, not at all for natural science either. . . . The true reason
why [no one] has succeeded in finding an unsolvable problem
is, in my opinion, that there is no unsolvable problem.

The capturing of the notion of computability via abstract mathematical
models led to a very di�erent view.

2 The Standard Model of Computability

Coincidentally, just the day before Hilbert’s declaration quoted above, what
became known as Gödel’s Incompleteness Theorem was being quietly an-
nounced by the young Kurt Gödel at another meeting in the same city. An
important technical feature of the proof of the theorem was the first formal-
isation of the notion of a computable function, enabling us to talk about
computability from the outside. It was not long before there were a num-
ber of formalisations, or models, of computability, such as the recursive
functions; the �-computable functions; the Turing computable functions;
Markov Algorithms; and unlimited register machines (URMs).
All of these frameworks enable one to e�ectively list all possible algo-

rithms of that kind, and to use the list to devise a problem which cannot
be solved by such an algorithm. This is essentially what Turing did in
constructing a universal Turing machine, and hence finding a problem un-
solvable by such a machine. By arguing convincingly that any algorithm
could be performed by a suitable Turing machine, he was able to conclude
that there existed problems that were unsolvable by any algorithm. Church,
also in 1936, did something similar using �-computability instead. For fur-
ther details see, for example, [1] or [20].
An important fact is that however di�erent these notions appear to be,

they all lead to the same class of functions. Even more remarkable is that
computability appears to exist independently of any language used to de-
scribe it. Any su�ciently general model gives the same class of functions
— this assertion is captured in the Church-Turing Thesis, and has stood the
test of time.
Of course, all these notions of computability deal with discrete data. This

does reflect everyday practice, in that scientific measurements can only be
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made to a given level of exactness, and this is reflected in the sort of data
can computers work with. However, themathematics of the real world does
sometimes require us to say something about computations over continu-
ous data, that is data described by real numbers, and this requires extended
models, as we shall see below. Turing himself [21] introduced the concept
of a computable real number.
Notice that it does not change our thesis to allow in our computations

non-deterministic steps, wherein we are allowed free choice between a list
of computational actions. For instance, any function computable by a non-
determistic Turing machine can also be computed by a deterministic one.
But the picture changes radically, as we see in the next section, if we com-
pute relative to incomplete information. And the jury is still out on what
happens when we work with time or space bounds on our computations.
For instance, in the context of polynomial time bounds, the fundamental
open question P �?NP asks whether there are functions computable in
polynomial time using non-deterministic Turing machines which are not
so computable with deterministic ones.
In recent years, the reducibility of computation in real environments to

the standard Turing model has been brought increasingly into question. At
one time it would have been heretical to suggest that there is any computa-
tional model ‘breaking the Turing barrier’ of relevance outside mathemat-
ics. And the popular ‘reverse mathematics’ project has as one of its aims
the reinstatement of a partial version of Hilbert’s programme, by showing
that all everyday mathematics — that is, mathematics done by real math-
ematicians, not logicians! — is derivable in quite weak axiomatic theo-
ries. But the attack on the standard model comes from many directions,
and there is the distinct impression of an uncompleted Kuhnian paradigm
change in progress.

3 The Role of Incomputability

From a modern perspective, incomputability is an emergent phenomenon.
As such, it parallels phenomena in nature which challenge our computa-
tional capabilities, and points to something more than complexity at work
in the real world (see [2]).
Turing machines can become data for other Turing machines to com-

pute with. This observation enabled the design of a Universal Turing Ma-
chine which could be used to simulate computations of any other machine.
The key technical idea here is to code information, such as machines or
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their computations, as machine-friendly data, such as numbers or binary
sequences. This is the theoretical basis for modern computers, which treat
programs as data, to be stored and used as needed.
Having theoretically captured computers, it is a short step to finding quite

natural problems which are beyond the grasp of any computer, however
large or e�cient. For instance, there are all sorts of general questions about
how a given Turing machine computes which cannot be answered by any
computer program. The best known of these is the so-called Halting Prob-
lem, which is that of determining of an arbitrary Turing machine whether it
will successfully compute – that is, halt and give an output – for arbitrary
input data.
So incomputability emerges at the edge of computability. Its origins are

mathematically uncomplicated enough to produce this complex and inti-
mate relationship. And just as the non-computable universe is woven from
the algorithmic fabric of everyday life, so the structures on which we base
its analysis are derived from appropriate computable relationships on in-
formation content — itself abstracted from the way science describes the
material universe. The standard model of computationally complex envi-
ronments first appeared in a di�cult and still slightly mysterious paper [22]
of Turing’s from 1939. The Turing universe is a structuring of the binary
real numbers based on the notion of an oracle Turing machine, which mod-
els what we can mathematically map of algorithmic interactions between
data — coded as reals — which may or may not be algorithmic in origin.
Of course, binary reals are mathematically interchangeable with sets of

natural numbers. If you are familiar with the standard definition of a Turing
machine, where a Turing program consisting of a finite set of instructions
for performing very basic computational actions, you can obtain the notion
of an oracle Turing machine �T by allowing some instructions to be ones
which require the machine to ask questions about membership in a set A,
where A is an oracle which may be far from computable. An oracle ma-
chine �T computes in the usual way from input n, except that when it applies
an oracle-asking instruction it reads o� a number (say p) from its memory
in some unambiguous way, and asks the oracle A “Is p � A?" — where
the program will dictate a di�erent course for the subsequent computation
according as the answer is “yes" or “no".
Then B is said to be A-Turing computable — or Turing reducible to A

— if the characteristic function �B of B is A-Turing computable. We often
write B �T A for “B is Turing computable from A".
Oracle Turing machines also allow us to compare the solvability of dif-

ferent mathematical problems, which is why Emil Post called the mathe-
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matical structure degrees of unsolvability — today more usually called the
Turing degrees, denoted by���. The Turing degrees consist of equivalence
classes of binary reals under the equivalence relation of being Turing com-
putable from each other. See [1] for a more detailed description of the
Turing degrees and their properties.
This model can be refined in various ways to take account of constraints

of time or space imposed on computations. Just as Turing machines pro-
vide a useful basis on which to base the study of complexity of compu-
tations, so oracle Turing machines provide degree structures relevant to
complexity-theoretic questions.
Actually, there is a more general model based on non-deterministic Tur-

ing machines, which is applicable to computations relative to partial infor-
mation, or equivalently, relative to data which is enumerated in real-time
rather than being available as required.
What makes computation relative to partial information di�erent is that

we cannot computably tell whether our oracle is going to answer or not. In
the new model, there is not just one computation dependent on guaranteed
oracle responses to our queries. It is more like real life where our search for
useful knowledge is only partially rewarded and new information emanates
from our environment in a fairly surprising and unpredictable way.
This gives rise to one slightly di�erent way of looking at things, based

on looking what we do — how we guess and pursue di�erent alternative
computations. This leads to nondeterministic Turing machines, with cor-
responding reducibility A �NT B.
Another viewpoint emphasises how knowledge is delivered to us by our

source of outside information — in a sense enumerated, and according to a
timetable not under our own control. This leads to a notion of enumeration
reducibility. Formally, we define B �e A to mean we can computably
enumerate the members of B from an enumeration of the members of A—
where this enumeration of B does not depend on the order in which A is
enumerated.
We have in mind here the real world where we make scientific calcula-

tions according to the available data, but where the eventual answers we
get do not depend on the order of discovery of these data.
These two viewpoints appear to gives us two models, though it can be

easily proved that both are equivalent. Another important fact is that for
computations relative to total functions, the computational models based
on deterministic or non-deterministic machines are the same, so there is
a natural embedding of the structure ��� of the Turing degrees within the
extended enumeration degree structure ���e. There are a number of deep



206 S. BARRY COOPER

and intractable open problems concerning the relationship between these
two structures.
Of course, there are underlying philosophical questions here concerning

incomputability in mathematics and real life: How rich a variety of unsolv-
able problems is there? Does incomputability impinge on everyday life?
And if so, can we find an informative theory of incomputability?
There are various ways in which incomputability, and its corresponding

mathematical structures, may impinge on the real world. And ways in
which incomputability, even if present in everyday phenomena, may not
be very relevant to our understanding of what we can compute.
For instance, it is well-known that there are what seem to be computa-

tionally insurmountable obstacles to the prediction of the weather, even a
few days ahead. It might be useful to know the seriousness of those ob-
stacles. But is it useful to know that weather is actually mathematically
incomputable, as opposed to in-principle computable, but computationally
complex enough for it to be practically incomputable? Presumably, the an-
swer is “no", unless there is something di�erent about the mathematics of
the incomputable which distinguishes it from that of the computationally
computable, but complex. Two important considerations here are: Firstly,
that a scientific world in which causality is basic gives rise to the mathemat-
ics of reducibilities, with a very rich theory; and secondly, computability
theory tells us that the mathematics of di�erent reducibilities can be very
di�erent — and, in fact, di�erent reducibilities (which are not clearly no-
tational variants of each other) invariably give rise to mathematical struc-
tures with very di�erent characteristics. So the mathematics of causality—
which is what computability theory is at the level of reality we comfortably
inhabit — gives rise to an underlying structure which may (or may not) be
very important to an understanding of the world we live in.
Anyway, the above questions can be seen to underlie many bitter debates

in science and mathematics, and prominent figures can be found ranged
on both sides of this controversy. It has to be said that there are as yet
no generally agreed answers to these questions, but quite a lot of pointers
to positive ones. But there exist fascinating discussions concerning exten-
sions of the Church–Turing Thesis to the material Universe (see Section
I.8 of Volume I of Odifreddi’s book [15] on Classical Recursion Theory)
and of incomputability in Nature (see, for example, Roger Penrose’s The
Emperor’s New Mind, [17]).
Even more divisive is the debate as to how the human mind relates to

practical incomputability. The unavoidable limitations on computers sug-
gest that mathematics — and life in general — may be an essentially cre-
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ative activity which transcends what computers do.
The basic inspiration for Alan Turing’s computing machines was, of

course, the human mind, with things like “states of mind" feeding into
the way he described the way his machines worked. Turing made clear in
a number of places which side of the argument he was on. On the other,
we feel subjectively that our mental processes are not entirely mechanical,
in the sense that a Turing machine is. And various people have explicated
these feelings to a point where it can be argued convincingly that these
feelings have more than purely subjective content. For instance, there is
the famous and influential book [10] of Jacques Hadamard on The Psy-
chology of Invention in the Mathematical Field, or the philosophically re-
markable Proofs and Refutations: The Logic of Mathematical Discovery
[13] by Imre Lakatos. In science, Karl Popper e�ectively demolished the
inductive model of scientific discovery — as was accomplished, more de-
batably, by Thomas Kuhn [12] at the social level. This raises the question
of how to model the way theories are hypothesised, via a process which
seems neither random nor simply mechanical.
A purely mathematical answer to the question is very di�cult. Roger

Penrose (in his Shadows of the Mind, [18]) has argued (unsuccessfully it
seems) that the overview we have of Gödel’s Incompleteness Theorem for
axiomatic arithmetic shows that the human mind is not constrained by that
theorem. But it is hard to be clear what it is that the human mind may be do-
ing that Turing machines are incapable of. Obviously it will help to know
more about both the physical and the logical structures involved. What
is really needed is an alternative mathematical model to that of the Turing
machine, and providing this must be one of the main aims of computability
theory. Some speculations in this direction are provided in the 2003 paper
[4] by myself and George Odifreddi on Incomputability in Nature.
A large part of the scientific enterprise is bringing plausible descriptions

of reality within practical computational frameworks. As we have seen, it
is easy to describe classically incomputable objects from algorithmic ingre-
dients, raising the question of to what extent this is mirrored in real-world.
It is also the case that in mathematics, the links between computability
and descriptions in natural languages is an intimate one which has been
extensively mapped out.
Descriptions in natural languages give rise to various hierarchies. At a

very basic level, one can build the arithmetical hierarchy by starting with
computable relations on numbers — essentially, general statements about
numbers which do not involve quantifiers — and adding existential and
universal quantifiers. There are other hierarchies which mix language and
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computational elements. Degree structures and hierarchies are two com-
plementary ways of looking more closely at the universe of incomputable
— or computable — objects.
We are all familiar with the hierarchical structure of science itself. Within

the life sciences, say, we have the fragmented focus on the quantum level,
on atoms, on molecules, on cells, on multicellular organisms, on social
structures. Within this descriptive framework the dynamic relationships at
each level have to be investigated within the local constraints operating at
each level. From a basic mathematical perspective, we find di�erent levels
of the arithmetical hierarchy reveal an analogous dynamic infrastructure—
its analysis based on a detailed examination of algorithmic relationships.

4 The Turing Universe

Degree structures and hierarchies provide two complementary ways of
looking more closely at the universe of incomputable — or computable
— objects.
The former is useful in that is built upon and models the basic causal

structure of the the natural world via reducibilities; while the second is
important in that it can capture higher levels of algorithmic content, that
with a non-local dimension, typically associated with descriptions in nat-
ural language rather than with purely algorithmic relationships. The most
important reducibility, the one which is su�cient to model basic scientific
relationships, such as those underlying Newtonian mechanics, is Turing
reducibility, giving us the structure of the Turing universe over the reals.
As described above, Post’s mathematically useful first step was to gather

together binary reals which are computationally indistinguishable from
each other, in the sense that they are mutually Turing computable from
each other. This delivered the familiar upper semi-lattice of the Turing de-
grees. This provides us with a a mathematical framework for the causal
structures arising from the natural world. And an investigation of the prop-
erties of this structure enables us to achieve a mathematically informative
view of global aspects of our natural environment, one which is only hinted
at by standard physical theories, with all their arbitrary and ad hoc ingre-
dients. When we look at the mysterious emergence of structure in nature,
either subatomic laws, or the richness of life forms, or large-scale galactic
or super-galactic structures, we are not just looking at information, but at
expressions of patterns of a universal nature. And patterns the origins of
which science is as yet unable to explain.
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When we inspect the intricacies of the Cat’s Eye Nebula, say, as revealed
by the Hubble Space Telescope, we feel we should be able to explain the re-
markable complexity observed on the basis of our understanding of the lo-
cal physics. The intuition is that it should be possible to describe global re-
lations in terms of local structure, so capturing the emergence of large-scale
structure. The mathematics pertaining to any particular example should be
framed in terms of the specific interactive structure on which it is based.
But if one wants to reveal general characteristics, and approach deep prob-
lems around the emergence of physical laws and constants, which current
theory fails to do, one needs something more fundamental. This is where
the computability theorist can contribute a basic understanding, in the same
way that Turing gave the early developers of the stored-program computer
a consciousness of what they were doing via the concept of the universal
Turing machine.
We describe some basic properties of the Turing universe as structured

by Post. Within the Turing degrees, one has the degree 0 of the computable
reals, and then the degree 0� of familiar unsolvable problems such as the
Halting Problem. We call 0� the Turing jump of 0. In fact, given a Turing
degree a and a set A � a, one can relativise the halting problem by consid-
ering it for a universal Turing machine U with oracle A. This will give us
a halting set A� of inputs for which U computes, its Turing degree a� being
the Turing jump of a. Of course, one can apply this jump operation to 0�
and get 0��, 0���, � � � , 0(n), � � � etc.
The nice thing is it turns out that the Turing jump is closely related to how

one uses the language of simple high-school arithmetic, codified within the
arithmetical hierarchy. This is the basis of Post’s Theorem, which relates
statements in first-order arithmetic to iterations of the Turing jump. For
instance, if one wanted to test arbitrary Turing machines to see if they
were defined on every input, one would have to decide a statement which
involved a universal quantifier followed by an existential quantifier, and
this would require an oracle at the 0�� level.
Particular interest attaches to sets of numbers which can be computably

enumerated. This is because many naturally occurring mathematical prob-
lems seem to involve such sets, including the Halting Problem. And in
the context of the arithmetical hierarchy, they are the sets definable from a
computable relation using just one existential quantifier, and are called �01
sets — where the subscript tells us there is just one quantifier, and the su-
perscript tells us it is just number variables we are quantifying over. There
are many unsolved problems relating to its degree structure ���.
Many naturally occurring incomputable sets turn out to be computably
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enumerable. A basic question motivating research since the earliest days
is: Just how rich is the Turing structure of the computably enumerable
sets?
There are very di�erent ways of looking at this question, each with its

own strengths and technical beauties. An intuitively satisfying approach—
first tried by Emil Post — is to look for links between natural information
content and relations on ���. Another is to delve into the intricacies of ���
by directly constructing interesting features of the Turing universe. It is
the relationship between these approaches which seems to have a special
potential for modelling aspects of the material Universe. This is an area in
which the techniques are quite hard to handle even at the classical level —
and it is not surprising that their wider potential is largely unrealised.
One approach involves the search for richness of information correspond-

ing to local degree theoretic structure. Ideally we would like something
corresponding to the arithmetical hierarchy below ��. One can use jump
inversion to bring aspects of that very natural hierarchy down to the local
level. The resulting high�low hierarchy provides an invaluable frame of
reference at the local level. But it is hard to characterise in terms of natural
information content, or to describe in the local structure of���.
(1) The high�low hierarchy is defined by

Highn � �a � 0� � a(n) � 0(n�1)�� Lown � �a � 0� � a(n) � 0(n)��

for each n � 1.
(2) If deg(A) � Highn we say A and deg(A) are highn. We similarly

define the lown sets and degrees. For n � 1 we often drop the subscript —
A and deg(A) are low if A� � 0�, and high if A� � 0��.

Intuitively, a is highn or lown according as a(n) takes its greatest or least
possible value.
If the high�low hierarchy is thought of as defining a horizontal stratifica-

tion of��� below 0�, there is another very important hierarchy whose e�ect
is vertical. The n-c.e. hierarchy — independently devised by Putnam and
Gold around 1965 — inductively builds on the way we can form new sets
using boolean combinations of c.e. sets. We get d.c.e. sets — or equiva-
lently 2-c.e. sets — from the c.e. sets by forming di�erences A � B of c.e.
sets. More generally, an n-c.e. set is got via boolean operations on c.e. sets
allowing up to n di�erences. Another way of looking at this generalisation
of the notion of computably enumerable is that the n provides a bound on
the number of mistakes one is allowed to make in computing the status of
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potential members of the set. So for a c.e. set A we can make just one mis-
take, deciding on at most one occasion to change the status of a number
from being not in A to being in A.

A degree a is d.c.e. if it contains a d.c.e. set. And for each n � 2 we write
Dn for the nth level of the corresponding n-c.e. hierarchy of n-c.e. degrees.

This is the local framework we get from these two basic hierarchies:

0�

0

���

���

Highn

Lown

Dn �

the n-c.e. degrees

One should not be misled by the diagram into thinking that either of
the hierarchies eventually includes all of the Turing universe below 0�. Far
from it. This can only be achieved by extending the levels of the hierarchies
into the transfinite, as was done by Yuri Ershov [8], using the constructive
ordinals to notate the di�erent levels, in a sequence of three papers in the
period 1968–70.

There are other hierarchies based on notions of randomness, forcing, etc.,
though the local significance of these is limited or unclear. Randomness-
related notions have led to some surprising refinements of the low and high
degrees. Further information on these can be found in two comprehen-
sive books on computability and randomness, one by Rodney Downey and
Denis Hirschfeld [7], and another by André Nies [14].
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5 Post’s Programme

As we have seen, basic to the relevance of computability theory is the in-
vestigation of the extent to which it explains and structures naturally arising
information, initially within the mathematical context. We now have some
fine hierarchies which provide invaluable landmarks in this exploration.
The programme of mapping out the various links between information

and computability-theoretic structure can be traced back to the seminal
1944 Bulletin of the AmericanMathematical Society paper of Emil Post (in
[19]). It was Post — before anyone had discovered the local hierarchies —
who pointed the way. Post’s work is still important to us, and his approach
is relevant to basic science. And certain di�cult technical problems in
computability theory promise to have far-reaching implications.
Primary ingredients of science include firstly observation — that is, our

experience of interacting with the Universe. And then mathematical de-
scriptions, or information content, pinning down plausible relationships on
the Universe in a widely communicable form. Computability is intrinsic to
both, and at the same time stands outside, the theory providing a level of
meta-science.
Process, causality, algorithmic content — all basic aspects – perhaps the

most basic aspect of the real world of observation. And it is computability
theory— suitably fleshing out and qualifying the Church–Turing Thesis—
which mathematically models this. But this is not the only such modelling
process. Science routinely builds much more specific mathematical mod-
els of natural phenomena, codifying all sorts of observed data into general
laws. What is di�erent about computability is that it also has something
to say about this extraction of information content as an aspect of the real
world. It has the potential to explain how this information content — nat-
ural laws — relates to the basic algorithmic content of the Universe.
The technical expression of this relationship is the notion of Turing defin-

ability. It is basic to understanding how the beautiful descriptions science
gives us of the real world actually derive their material substance.
Definability in a structure is a key mathematical concept, and not widely

understood. It is easy to give an intuitive idea of what definability is and
how it relates to another useful notion, that of invariance. This is not nec-
essarily because the notions are very simple ones, but because they do cor-
respond to phenomena in the real world which we already, at some level,
are very familiar with.
As one observes a rushing stream, one is aware that the dynamics of the

individual units of flow are well understood. But the relationship between
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this and the continually evolving forms manifest in the streams surface is
not just too complex to analyse — it seems to depend on globally emerg-
ing relationships not derivable from the local analysis. The form of the
changing surface of the stream appears to constrain the movements of the
molecules of water, while at the same time being traceable back to those
same movements. The mathematical counterpart is the relationship be-
tween familiar operations and relations on structures, and globally arising
new properties based on those locally encountered ones. The emergence
of form from chaos, of global relations within turbulent environments, is a
particularly vivid metaphor for the assertion of definability, or invariance.
Let us take a simple mathematical example from arithmetic.
Given the usual operation � of addition on the set � of integers, it is easy

to see that the set Ev of even integers is describable from � within � via
the formula

x � Ev �� (�y)(y � y � x)�

So all we mean by a relation being definable from some other relations
and�or functions on a given domain is that it can be described in terms
of those relations and�or functions in some agreed standard language. Of
course, there are languages of varying power we can decide on. In the
above example, we have used very basic first order language, with finitary
quantification over individual elements — we say that Ev is first order de-
finable from � over �. What has happened is that we started o�with just an
arithmetical operation on � but have found it distinguishes certain subsets
of � from all its other subsets. Intuitively, we first focused on a dynamic
flow within the structure given locally by applications of the form n � m
to arbitrary integers m� n. But then, standing back from the structure, we
observed something global — � seemed to fall into two distinct parts, with
flow relative to even integers constrained entirely within Ev, and flow from
outside Ev being directed into Ev—with Ev being a maximal such subset
of �. From within the structure, � is observable and can be algorithmically
captured. Further than that, we are dealing with “laws" which cannot be re-
lated to the local without some higher analysis. This feature of the integers
is not, of course, a deep one, but it does act as a basic metaphor for other
ways in which more or less unexpected global characteristics of structures
emerge quite deterministically from local infrastructure.
For the following definition, the first order language for ��� is one with

just the basic variables, brackets, quantifiers and logical connectives, and
one 2-place symbol for the ordering �.

(1) Let R(x1� � � � � xk) be a relation on���.
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We say that R is Turing definable—or definable in���— if there is some
first order formula �(x1� � � � � xk) in the language for ��� such that for all
a1� � � � � ak � ��� R(a1� � � � � ak) holds if and only if the formula �(a1� � � � � ak)
holds in���.

(2) If� is some family of sets, we say� is Turing definable if the set of
all Turing degrees of members of� is Turing definable.

As a simple example, notice that 0 is Turing in��� via the formula

�(x) �� defn(�y) [ x � y ]�

One can, of course, talk about definability in other structures. For in-
stance, 0e is definable in���e, and 0� is definable in ���.
The notion of invariance gives a useful, if slightly more abstract, way

of looking at definability. Being able to uniquely describe a feature of a
structure is a measure of its uniqueness. But some feature of a structure
may be quite unique, without one being able to describe that uniqueness in
everyday language. Mathematically, we use the notion of automorphism to
capture the idea of a reorganisation of a structure which does not change
any of its properties. A feature of that structure is invariant if it is left
fixed by any automorphism of the structure. Obviously if one can uniquely
describe such a feature, it must be invariant, but not necessarily conversely.
(1) Let R(x1� � � � � xk) be a relation on���.

Then R is Turing invariant if for every automorphism � : ��� � ��� and
every a1� � � � � ak � ��� we have R(a1� � � � � ak) holds if and only if we have
R(�(a1)� � � � � �(ak)) holds in���.

(2) If� is some family of sets, we say� is Turing invariant if the set of
all Turing degrees of members of� is Turing invariant.

Only in recent years have we become aware that much of the past fifty
years’ research into computability has actually been about Turing defin-
ability and invariance. Current research focuses on getting optimal Tur-
ing definitions of the various levels of the n-c.e. hierarchies we have been
looking at. There are also deep questions concerning the nature of the au-
tomorphism groups pertaining to di�erent degree structures.
For more background information the joint article [4] by myself and

George Odifreddi is an approachable source. For more technical material
try volume II of Odifreddi’s mammoth Classical Recursion Theory, [15].
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6 Definability, Invariance and the Real World

What is far from clear is the extent to which the hierarchies and fine-
structure theories built from simple computational ingredients are mirrored
in the material world. On the other hand, the recognition of the real-world
computational content of definability does seem to o�er a widely applica-
ble explanatory potential.
It is not surprising that attention has turned to Turing’s universe of com-

putably related reals as providing a model for scientific descriptions of a
computationally complex real universe.
Let us now return to what the Turing model can do. Let us try to be

more clear about how, from very simple beginnings, we can get from the
basic fact of existence to what is for us an even greater puzzle — because
we have to take what is happening under the umbrella of su�cient reason
— the quite amazing emergence of individual entities. From this point of
view, it is not quantum ambiguity which is surprising, but the existence of
the well-defined world of our everyday experience.
More generally, we have the problem that even though we have natural

laws to help us understand much of what happens in the universe, we have
no idea where those laws themselves come from. Their apparent arbitrari-
ness lies at the root of the present day confusion of speculative science,
verging on the metaphysical.
For Alan Guth [9] in 1997, the problem is:

“ If the creation of the universe can be described as a quantum
process, we would be left with one deep mystery of existence: What
is it that determined the laws of physics? "
While in 1987 Roger Penrose [16] asks for a strong determinism, accord-

ing to which:
“ . . . all the complication, variety and apparent randomness that

we see all about us, as well as the precise physical laws, are all exact
and unambiguous consequences of one single coherent mathemati-
cal structure."
The match between mathematics and experience has become much more

all-embracing, with string theory perhaps the most ambitious of the at-
tempts to unify the two. The Turing model may be as yet very far from
clarifying the specific details of relativity or quantum theory, but it does
promise a release from the arbitrariness to which all less basic theories —
superstring theory, M-theory, inflation, decoherence, the pilot wave, gauge
theory, etc. — are subject, and is based almost entirely upon experience.
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What the Turing model primarily tells us about is not an emergence of
particular events from events, but of natural laws from the structure of in-
formation content.
What does the Turing model suggest regarding the basic structure of mat-

ter and the laws governing it?
What we know of the Turing universe is consistent with the possibility

that the information content or level of interactivity of a given entity may
be insu�cient to guarantee it a unique relationship to the global structure.
This is what one might expect to apply at an early stage in the develop-
ment of the universe, or at levels where there is not a su�ciently density
of interactions to give information a global role. A number of classic ex-
periments on subatomic particles confirm such a prediction. On the other
hand, mathematically entangling such low level information content, per-
haps with content at levels of the Turing universe at which rigidity sets in,
will inevitably produce new content corresponding to a Turing invariant
real. The prediction is that there is a level of material existence which does
not display such ambiguity as seen at the quantum level, and whose inter-
actions with the quantum level have the e�ect of removing such ambiguity
— confirmed by our everyday experience of a classical level of reality, and
by the familiar ‘collapse of the wave function’ associated with observa-
tion of quantum phenomena. Since there is no obvious mathematical rea-
son why quantum ambiguity should remain locally constrained, there may
be an apparent non-locality attached to the collapse. Such a non-locality
was first suggested by the well-known Einstein-Podolsky-Rosen thought
experiment, and, again, has been confirmed by observation. The way in
which definability asserts itself in the Turing universe is not known to be
computable, which would explain the di�culties in predicting exactly how
such a collapse might materialise in practice, and the apparent randomness
involved.
As we have already mentioned, the Turing model may have implications

for how the laws of nature immanently arise. And also how they collapse
near the big bang ‘singularity’, and the occurrence or otherwise of such
a singularity. What we have in the Turing universe are not just invari-
ant individuals, but a rich infrastructure of more general Turing definable
relations. These relations grow out of the structure, and constrain it, in
much the same sort of organic way observable in familiar emergent con-
texts. These relations operate at a universal level. The prediction is that
a Universe with su�ciently developed information content to replicate the
defining content of the Turing universe will manifest corresponding ma-
terial relations. The existence of such relations one would expect to be
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susceptible to observation, these observations in turn suggesting regulari-
ties capable of mathematical description. And this is what the history of
science confirms. The conjecture is that there is a corresponding parallel
between natural laws and relations which are definable in an appropriate
fragment of the Turing universe.

The early Universe one would not expect to replicate such a fragment.
The homogenisation and randomisation of information content consequent
on the extreme interconnectivity of matter would militate against higher
order structure. The manifest fragment of the Turing universe, based on
random reals, might still contain high information content, but content dis-
persed and made largely inaccessible to the sort of Turing definitions pre-
dicted by the theory. Projected singularities, such as within black holes or
associated with boundary states of the Universe, depend on a constancy of
the known laws of physics. But immanently originating laws must be of
global extraction. This means that their detailed manifestations may vary
with global change, and disappear even.

Notice the di�erence here between what we are saying, and what the up-
holders of the various versions of Everett’s many worlds scenario are. On
the one hand, we have an application of the principle of su�cient reason
to the world as we know it, which gives a plausible explanation of quan-
tum ambiguity, the dichotomy between quantum and classical reality, and
promises some sort of reconciliation between science, the humanities, and
our post-modern everyday world. On the other we have something more
like metaphysics.

The Turing model, and its connections with emergence, also lead us to
expect the familiar fragmentation of science, and human knowledge in gen-
eral. As we know from computability theory, a Turing definition of a given
relation does not necessarily yield a computable relationship with the defin-
ing information content. But working within the relations at a given level,
there may well be computable relationships emerging, which may become
the basis for a new area of scientific investigation. For instance research
concerning the cells of a living organism may not be usefully reduced to
atomic physics, but deals with a higher level of directly observed regulari-
ties. Sociologically, one studies the interactions governing groups of peo-
ple with only an indirect reference to psychological or biological factors.
Entire relations upon cells (humans) defined in some imperfectly under-
stood way by the evolutionary process provide the raw material underlying
the new discipline, which seeks to identify a still further additional level of
algorithmic content.



218 S. BARRY COOPER

There are questions about the range of possibilities embodied in such
things as quantum ambiguity: Going from the uniqueness of a defined
phenomenon to — what? Are there any overall constraints apart from
those imposed by the mathematics specific to the emergent structures?
There seems to be one unavoidable rule — obvious when it is pointed out
— which is that each superimposed alternative must be viable by itself.
Which, in addition to the specifics, demands that the information content
develops within the rules experience and the computability theory lead us
to expect. In particular, there can be at most countably many such alterna-
tives. The existence of at most coumtably many Turing automorphisms is
already known.
For a more detailed review of the deep and fundamental computability-

theoretic problems reviewed here see [4].
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Algebraic Logic
HIROAKIRA ONO�

1 Introduction

Algebraic methods have been important tools in the study of nonclassical
logics, in particular propositional logics. In the present paper, we will
explain what algebraic approaches are, where their special features lie, and
how e�ectively they are applied, touching on basic concepts in algebraic
logic and universal algebra. In the last section we mention briefly a recent
development of substructural logics, where algebraic methods have made a
remarkable success. Topics taken up in the following are roughly ordered
in a chronological way.1

2 Algebras as models of logic

In this section, we will explain what is an algebraic approach to logic at
all, by considering three important logics, i.e., classical, intuitionistic and
Łukasiewicz’s many-valued logics.

2.1 Boolean algebras for classical logic

A standard way of introducing a logic is to give it through a formal system
(or a calculus) for it. A formal system consists usually of axioms and rules
of inference, and the provability of formulas in the system is determined
by them. There are many di�erent types of formal systems, e.g. Hilbert-
style formal systems, natural deductions, and sequent systems. Classical
logic can be introduced not only by these syntactical ways but also by
semantical ways. The most popular way among them is to understand it
as the set of all tautologies. Here, a tautology is a propositional formula
which always takes the value 1 (which denotes the truth) always for every

�Research Center for Integrated Science, Japan Advanced Inst. of Sc. and Technology
1The author would like to thank Johan van Benthem for his valuable suggestions, and

also Leonardo Cabrer, José Gil-Férez and Norbert Preining for their helpful comments.
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valuation (or truth assignment) of propositional variables appearing in it.
Here, a valuation is a mapping from the set of propositional variables to the
set �0� 1� of truth values, where 0 denotes the falsehood. The truth table of
each logical connective, which is given below, determines how to extend a
valuation to a mapping from the set of formulas to the set �0� 1�.

a � b � min�a� b�, a � b � max�a� b�, �a � 1 � a,

a � b � max�1 � a� b� (� 1 if a � 0 or b � 1, and � 0
otherwise).

For instance, the formula p � �p is a tautology, since for every valuation
f the value f (p) � � f (p) is equal to max� f (p)� 1 � f (p)�, which is always
1, while the formula (p � q) � p is not a tautology, as it takes th value 0
by such a valuation g that g(p) � 0 and g(q) � 1. The following complete-
ness says that a given formal system of classical logic can capture exactly
tautologies by the provability in it.

Theorem 2.1. The following are mutually equivalent for each proposi-
tional formula �.
1. � is provable in classical logic.
2. � is a tautology.

We call the above structure consisting of the set �0� 1� with the truth ta-
ble, B2, which gives us a miniature of algebraic models for classical logic.
Algebraic models for classical logic in general are called Boolean alge-
bras. In particular, B2 is called the 2-valued Boolean algebra. Formally
speaking, a Boolean algebra is a structure A � �A������� 0� 1� such that
�A����� is a distributive lattice satisfying that for any a � A

a � �a � 0� a � �a � 1� a � 0 � 0 and a � 1 � 1�

In each Boolean algebra, 0 and 1 are shown to be the least and the greatest
elements, respectively, with respect to the partial order � induced by the
lattice operations. We define a � b by �a � b. By using the distributivity
we can show the following law of residuation;

a � b � c if and only if a � b� c.

It is easy to see that �a � a � 0, �0 � 1 and ��a � a. For more
information on lattices and Boolean algebras, see [5].

For a given Boolean algebra A, we can generalize the notion of valua-
tions over it as follows. A valuation over A is a mapping from the set of
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all propositional variables to A. Then each valuation can be extended to a
mapping from the set of all formulas to A by interpreting each logical con-
nective by the corresponding algebraic operation. We say that a formula
� is valid in a Boolean algebra when f (�) � 1 for every valuation f over
it. Clearly, a formula is a tautology if and only if it is valid in the Boolean
algebra B2. Now Theorem 2.1 can be strengthened into the following.

Theorem 2.2. The following are mutually equivalent for each proposi-
tional formula �.
1. � is provable in classical logic.
2. � is valid in every Boolean algebra.
3. � is a tautology.

By the definition, every Boolean algebra contains 0 and 1 as its elements.
Therefore, the Boolean algebra B2 is the simplest one among Boolean al-
gebras in which 0 � 1 holds. In algebraic terms we say that B2 is a subalge-
bra of every Boolean algebra in which 0 � 1 holds. It is interesting to see
that there are many Boolean algebras, and thus there are many algebraic
models of classical logic. For instance, the powerset �(X) of any given set
X with set-theoretic operations forms a Boolean algebra, called a field of
sets. (When X is a singleton set the field of sets becomes isomorphic to
B2.) The set of all finite subsets together with all cofinite subsets (i.e., sub-
sets whose complement is finite) of a set X forms another Boolean algebra,
called a finite-cofinite algebra. Note that the cardinality of any field of sets
is either finite or uncountable, while a finite-cofinite algebra of a countable
set X is countable. In fact, a finite-cofinite algebra of an infinite set X has
the same cardinality as X. Thus, there exists a Boolean algebra with an
arbitrary infinite cardinality.

But one may ask why we need to consider such big Boolean algebras,
since Theorem 2.2 tells us that we can get nothing new by considering
various Boolean algebras as concerns the validity of formulas. As a matter
of fact, once we consider extensions of classical propositional logic, e.g.
algebraic models of modal logics on classical logic, these Boolean algebras
of di�erent types will play an essential role. Also, the way of introducing
algebraic models of classical logic gives us a prototype when we consider
algebraic models of other logics. As shown in the next subsection, the
argument goes similarly but there exists a clear di�erence in the case of
intuitionistic logic. (Compare Theorem 2.3 with Theorem 2.2.)
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2.2 Heyting algebras for intuitionistic logic

Algebraic considerations made in the previous subsection can be applied
to other logics. We will discuss them here for intuitionistic logic, which
is the logic of constructive reasoning by L.E.J. Brouwer and whose for-
mal system was introduced around 1930. It is a sublogic of classical logic.
According to the constructive reasoning, the truth of formulas must be es-
tablished by a proof. For instance, a proof of the disjunctive formula � � �
is obtained by giving a proof of either � or � and showing which one holds.
Thus, the axiom of excluded middle � � �� of classical logic is not prov-
able in intuitionistic logic. Similarly, the axiom of the double negation
���� � is rejected. For information on intuitionistic logic and its formal
systems, see [4].
The constructive feature of intuitionistic logic mentioned above is re-

flected as the disjunction property of the logic. That is, if a formula � � �
is provable in intuitionistic logic then either � or � is provable in it. Note
that classical logic does not have it, since p � �p is provable in classical
logic while neither p nor �p is provable in it for any variable p.

Algebraic models for intuitionistic logic are Heyting algebras. A Heyt-
ing algebra is a structure A � �A������� 0� 1� such that �A����� is a
lattice satisfying that

1) a � 0 � 0 and a � 1 � 1, for all a � A

2) a � b � c if and only if a � b� c, for all a� b� c � A

As a matter of fact, when A is a Heyting algebra, �A����� is a distributive
lattice. This is shown by using the condition 2). We define �a by a � 0.
Then a��a � 0 holds but a��a � 1 does not hold in general. To see this,
let us consider the partially ordered set �0� c� 1� satisfying 0 � c � 1. We
define x� y � min�x� y�, x� y � max�x� y�, and x� y � 1 if x � y and � y
otherwise. Then, we can show that this structure, called H3, is a Heyting
algebra. Since �c � 0, c � �c � c � 1. We can see that Boolean algebras
are Heyting algebras that satisfy a � �a � 1. The validity of formulas
in Heyting algebras is defined in the same way as the validity in Boolean
algebras.

Let A be any linearly ordered set with the least element 0 and the greatest
element 1. Then it forms a Heyting algebra by defining ��� and � in
the same way as those in H3. It is easy to see that the formula (p �
q) � (q� p) is valid in every such linearly ordered Heyting algebra, since
either f (p) � f (q) or f (q) � f (p) holds always. On the other hand there
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exist Heyting algebras in which (p � q) � (q � p) is not valid. Similarly
to Theorem 2.2, we can show the following.

Theorem 2.3. The following are mutually equivalent for each proposi-
tional formula �.
1. � is provable in intuitionistic logic.
2. � is valid in every Heyting algebra.
3. � is valid in every finite Heyting algebra.

Condition 1 implies 2, which implies 3. But the converse directions are
not so trivial. The proof that Condition 1 follows from 2, which is called
completeness of intuitionistic logic with respect to the class of Heyting
algebras, is given below.

Lindenbaum-Tarski algebra – a universal way of
showing completeness

There is a standard technique of showing algebraic completeness of a given
logic which uses Lindenbaum-Tarski algebra. We will give a brief outline
of it for the case of intuitionistic logic. Let � be the set of all formulas.
We define a binary relation � on �, putting � � � if the formulas � � �
and � � � are both provable in intuitionistic logic. When � � � holds,
we say that � and � are logically equivalent (in intuitionistic logic). We
can show that the relation � is an equivalence relation on �. In fact, it
is a congruence relation, i.e., an equivalence relation which is compatible
with all logical connectives, and moreover it has the following property: if
� � � then �(�) � �(�) for any substitution �. Roughly speaking, logical
equivalence of two formulas � and � means that they are indistinguishable
in intuitionistic logic, and hence any replacement of one by the other is
harmless.
These facts enable us to get an algebra C whose underlying set is the

set of all equivalence classes with respect to �, on which algebraic opera-
tions can be defined in a consistent way, since � is a congruence relation.
(That is, C is obtained from � by identifying indistinguishable formulas.)
An important point here is that the element 1 of the Heyting algebra C is
the equivalence class whose members are exactly formulas provable in in-
tuitionistic logic. Now, to show that Condition 2 implies 1 by taking the
contraposition, we assume that a formula � is not provable in intuitionis-
tic logic. Define a valuation g over C by g(p) � “the equivalence class
to which p belongs." By induction, we can show that for any formula �,
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g(�) � “the equivalence class to which � belongs." Then, in particular g(�)
cannot be the equivalence class 1. Therefore, � is not valid in the Heyting
algebra C.

The Heyting algebra C is known as the Lindenbaum-Tarski algebra of
intuitionistic logic. Though the above argument looks complicated at first
sight, it can be applied to a wide class of logics. It su�ces to replace
the logical equivalence in intuitionistic logic by the logical equivalence
in a given logic. In the case of classical logic, its Lindenbaum-Tarski al-
gebra becomes a Boolean algebra. In this way, once we know how to
use Lindenbaum-Tarski algebra, showing the algebraic completeness of a
propositional logic becomes a routine work in a most case.

From the construction of Lindenbaum-Tarski algebras, one may think
that they are simply shadows of the syntax on algebras. But this is not the
case. For example, it is known that one variable fragment of the Lindenbaum-
Tarski algebra of intuitionistic logic has a beautiful algebraic structure.

Finite countermodels for unprovable formulas
The equivalence of Condition 3 to Condition 1 in Theorem 2.3 means es-
sentially that if a formula � is not provable in intuitionistic logic then there
exists a finite Heyting algebra A which is a countermodel of �. A given
logic L is said to have the finite model property (FMP), when for any for-
mula �, if � is not provable in L then there exists a finite algebra A such
that � is not valid in it while all provable formulas in this logic are valid.
So, Theorem 2.3 says that intuitionistic logic has the FMP. A direct proof
of the equivalence of Conditions 1 and 3 is obtained by using the finite
embeddability property of the class of Heyting algebras.

The FMP of a logic L is used often to show the decidability of L. Here
we say that a logic L is decidable if there is an e�ective procedure of de-
ciding whether or not any given formula is provable in L. In fact, Harrop’s
Lemma says that a logicL is decidable if it is finitely axiomatizable and has
the FMP. Since intuitionistic logic is finitely axiomatizable, Theorem 2.3
implies the decidability of intuitionistic logic.

Di�erent from the case for classical logic where every non-provable for-
mula can be falsified in the finite Boolean algebra B2, it can be shown that
no single finite Heyting algebra can falsify all non-provable formulas in
intuitionistic logic.
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2.3 Łukasiewicz’s many-valued logics – from algebra to logic

Classical logic can be introduced syntactically by using a formal system,
and at the same time can be defined semantically as the set of tautologies.
Boolean algebras are algebraic structures which are obtained by general-
izing the truth tables of the truth values 0 and 1. Intuitionistic logic was
introduced firstly as a formal system but then Heyting algebras were intro-
duced as its algebraic models, similarly to Boolean algebras.
On the other hand, sometimes a logic is introduced semantically by using

special algebraic structures. Typical examples are Łukasiewicz’s many-
valued logics. By extending 2-valued truth definition of classical logic, in
the1920s J. Łukasiewicz introduced n � 1-valued logics (n � 0) with the
set of truth values �0� 1�n� 2�n� � � � � (n�1)�n� 1�, and also the infinite-valued
logic with the unit interval [0� 1] as the set of truth values. The truth table
of each logical connective is defined as follows:

a � b � min�a� b�, a � b � max�a� b�, �a � 1 � a,

a � b � min�1� 1 � a � b� (� 1 if a � b, and � 1 � a � b
otherwise).

In fact, when n � 1, these truth tables are equal to the truth tables of clas-
sical logic and hence 2-valued Łukasiewicz logic is nothing but classical
logic. Later, axiom systems of these many-valued logics were discovered.
Algebraic models of these logics, containing the above algebras as special
cases, are calledMV-algebras (many-valued algebras), though we omit the
detailed definition.

2.4 Towards a general study of logics

What we have discussed can be summerized briefly as follows. Usually a
logic is introduced as a formal system, in which the notion of provability
of formulas in that logic is defined syntactically. On the other hand, from
a semantical point of view the notion of validity of formulas in a given
algebra or algebraic structure is introduced, and then a suitable formal sys-
tem is devised for axiomatizing it, so that the set of all formulas provable
in the system is equal to the set of all valid formulas. This is the case for
Łukasiewicz’s many-valued logics, for instance.
This shows that we are mainly concerned with sets of formulas satisfying

certain conditions. In fact, for a given logic L algebraic models and alge-
braic completeness can be defined as follows. An algebraA is an algebraic
model of a logic L, if all formulas provable in a logic L are valid in it. A
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logic L is algebraically complete if and only if the set of formulas valid in
all algebraic models of L is equal to the set of formulas provable in L.

These considerations lead us a general notion of logics. We define a
logic to be a set of formulas satisfying some suitable conditions. As an
example, we will introduce superintuitionistic logics, or logics over intu-
itionistic logic, as follows. A set L of formulas is a superintuitionistic
logic, if L satisfies the following:

� L contains all formulas which are provable in intuitionistic logic,

� L is closed under modus ponens, i.e., if both � and �� � belong to
L then � belongs to L,

� L is closed under substitution, i.e., if � belongs to L then �(�) be-
longs to L for every substitution �.

Clearly, both classical logic and intuitionistic logic are superintuitionistic
logic. Also, for each Heyting algebra A, the set L(A) of all valid formulas
in A is a superintuitionistic logic. On the other hand, we can show that for
each superintuitionistic logic L there exists a Heyting algebra A such that
L � L(A). In fact, we can take the Lindenbaum-Tarski algebra of L for
this A.

In the same way, we can define logics over any given logic, like log-
ics over Łukasiewicz’s infinite-valued logic, by assuming some necessary
closure conditions in addition to the closure under modus ponens and sub-
stitution. Thus we have now many logics. In fact, there exist uncountably
many superintuitionistic logics. This implies that many superintuitionistic
logics cannot be finitely axiomatized.

Why so many logics?
A natural question may be posed here. Why do we consider so many log-
ics? Our initial motivation of studying logic must be to understand several
special logics like classical logic and intuitionistic logic, introduced by
clear and reasonable motivations, not to know such incomprehensible and
philosophically unmotivated logics.
Here I will try to defend such a study, comparing it with the situation in

algebra. Historically, arithmetic is one of main subjects in mathematics.
We want to know natural numbers, integers, are real numbers and so on,
and to understand mathematical structures with arithmetic operations as a
whole like the set of integers � and the set of real numbers �. But then
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in order to get a deeper understanding of these particular structures, it be-
comes essential to introduce general notions of algebraic structures, which
are obtained from these structures by extracting their essence, and discuss
these particular structures in relation to them. In this way, groups, rings,
fields, real closed fields and algebraically closed fields have been intro-
duced. As we know, this generalization turned out to be extremely useful
and successful.

Our logics in a general sense, sometimes collectively called nonclassi-
cal logics, are introduced by the same way of thinking. We want to get
an understanding of logics, say, of superintuitionistic logics as a whole.
For example, we know already that the disjunction property holds in intu-
itionistic logic but not in classical logic. When does a superintuitionistic
logic has the disjunction property. Is the disjunction property related to
some other properties? In general, what logical properties do they share in
common, and how is one property related to another? Do these two log-
ics occupy a special position among superintuitionisitic logics? These are
typical questions which we pose for our general and comparative study of
logics. Algebraic methods have turned out to be quite helpful in the study,
as we show later.

It is easy to see that the intersection of two superintuitionistic logics (as
sets of formulas) is also a superintuitionistic logic. In fact, this holds for
the intersection of arbitrary number of superintuitionistic logics. Therefore
the set of all superintuitionistic logics forms a complete lattice, a lattice
in which any subset (of superintuitionistic logics) has the meet and the
join. Then we want to understand what lattice structure it forms. Note that
the join of two superintuitionistic logics is not always equal to the union
of them (as sets of formulas). The greatest element of the lattice is the
inconsistent logic, which is the set of all formulas. The second greatest is
classical logic, and the least one is intuitionistic logic.

2.5 Historical notes

The notion of Boolean algebras is introduced and studied by G. Boole and
A. de Morgan in the middle of 19th century. In his Book “The Law of
Thought," Boole wrote as:

the laws of logic are in mathematical form and the logical
method should be analoguos to the method of mathematics.
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In modern terms, by mathematics he meant algebra, and his laws of logic
consist of some true basic equations, which can be regarded as axioms of
Boolean algebras in an equational theory.
From the beginning of the 1920s, algebraic study of logic has been devel-

oped mainly by Polish logicians, including A. Tarski, J. Łukasiewicz and
A. Lindenbaum. On the ground of this tradition, H. Rasiowa and R. Siko-
rski published a seminal book “The Mathematics of Metamathematics" on
algebraic logic in 1963 [12]. See also [11]. The book [10] will o�er an
elementary guide to the topic.
Nonclassical logics contain many other kinds of logics. Some are devel-

oped in the extended language other than the standard logical connectives.
One of important branches of them is modal logic, which usually contains
unary connectives � and � in the language. Temporal logic and epistemic
logic are extensions of modal logic, either of which is getting a quite ac-
tive, interdisciplinary research field with philosophy, computer science and
cognitive science. An accessible introduction to various nonclassical logics
from philosophical point of view is given in several chapters of [8].

3 Universal algebraic view of logic

As we have seen, for a given superintuitionistic logic L, there are many
algebraic models of L. To grasp the feature of the class of these algebraic
models and to attain high generality, we will introduce some of basic alge-
braic notions and results on universal algebra. Here we discuss algebras in
general, but one may consider them as Heyting algebras, for instance, to
facilitate the comprehension. For further information on universal algebra,
see [3].

3.1 Basics of universal algebra

An algebra is a set equipped with finitary operations. Usually, an algebra
A is expressed as A � �A� f1� � � � � fn� where A is a set called the universe
and f1 through fn are basic operations. The sequence �k1� � � � � kn� where ki
is the arity of the operation fi is called the type ofA. With a given algebraic
type we associate a first-order language having the identity as its single re-
lation symbol and also function symbols which correspond to operations of
the type. We consider only atomic statements, called equations, or identi-
ties, which are of the form s � t, where s and t are terms. A set of equations
� (in a given algebraic language) determines a class of algebras Mod(�),
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which consists of all models of �. A class � of algebras is called an equa-
tional class if there exists a set of equations � such that � � Mod(�), i.e.,
� is exactly the class of all algebras which are models of a set of equa-
tions �. It is known that monoids, lattices, Boolean algebras and Heyting
algebras are defined by some sets of equations. Therefore, each of these
classes forms an equational class. On the other hand, the class of fields is
not an equational class.

Recall that a mapping h : A �� B between universes of algebras of the
same type, is a homomorphism if it preserves operations, i.e., if for each
basic operation f , h( fA(a1� � � � � an)) � fB(h(a1)� � � � � h(an)), where fA and
fB mean the interpretation of f respectively in A and B. (We drop the
superscripts, when no confusions may occur.) An injective homomorphism
is called an embedding, and a bijective one an isomorphism.
We give three basic ways of obtaining new algebras from given one in

the following.

� Homomorphic images: An algebra A is a homomorphic image of B,
if there is a homomorphism from B onto A.

� Subalgebras: An algebra A is a subalgebra of B, which is denoted
by A � B, if A � B and the identity mapping on A is an embedding.

� Direct products: An algebra A is a direct product of the indexed
system (Ai : i � I) of algebras, written

�
i�I Ai, if the universe

A is the direct product
�

i�I Ai and the operations on A are defined
coordinatewise.

3.2 Varieties and equational classes

In the following, when we take a class of algebras, we always assume that
every algebra in � is of the same type. Now for a class � of algebras, we
define H(�), S (�) and P(�) to be the class of all homomorphic images
of algebras in � , the class of all subalgebras of algebras in � and the
class of all direct products of algebras in � , respectively. Since H, S and
P operate on classes of algebras they are called class operators. We can
show that each of the class operators H, S and P preserve equations, i.e.,
every equation valid in all algebras in a class� is also valid in all algebras
in any of H(�), S (�) and P(�).

A class� of algebras is a variety if and only if it is closed under H, S and
P. Clearly, the intersection of varieties is also a variety. Therefore, there
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exists the smallest variety V(�) containing a given class� of algebras. To
get V(�), it may be necessary to apply these class operators successively
to � . But as shown in the following Tarski’s Theorem, it is enough just to
take HSP, i.e., to apply P, S , and H to � only once in this order.

Theorem 3.1. For any class � of algebras, V(�) � HSP(�).

This V(�) is called the variety generated by � . Now let � be an equa-
tional class, i.e., a class determined by a set of equations. By the fact that
H, S and P preserve equations, V(�) � � holds and hence it is a vari-
ety. Moreover, the converse can be shown. Thus we have the following
Birkho�’s Theorem.

Theorem 3.2. A class of algebras is a variety if and only if it is an equa-
tional class.

This theorem shows that the syntactic notion of “equational classes" can
be characterized completely by a purely algebraic notion on closure under
natural operations. A consequence of this theorem is that if a class � of
algebras is not closed under one of H, S and P, � is never defined by a
set of equations. For instance, it is shown that the class of fields is not an
equational class. We know that both the class of all Boolean algebras �
and the class of all Heyting algebras� are equational classes and thus are
varieties. In this case the former is included in the latter. So we can say
that the variety � is a subvariety of the variety � . As a matter of fact, all
subvarieties of the variety� forms a complete lattice.

It is well-known that every natural number greater than 1 can be repre-
sented by the product of prime numbers. Similarly, every algebra can be
represented by the subdirect product of subdirectly irreducible algebras.
Here we say that A is a subdirect product of an indexed system (Ai : i � I),
if A �

�
i�I Ai and all the coordinate projections are onto (in other words,

eachAi is a homomorphic image ofA). In this case, we say that (Ai : i � I)
is a subdirect representation of A. This representation is not unique, since
A itself is always its own subdirect representation. But in some case, A
has only this trivial representation. Precisely speaking, A is subdirectly
irreducible if every subdirect representation (Ai : i � I) of A contains (an
isomorphic copy of) A as a factor. The following result was obtained by
G. Birkho�.

Theorem 3.3. Every algebra has a subdirect representation with subdi-
rectly irreducible factors.
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From the definition, we can see that A is a member of a variety� if and
only if every subdirectly irreducible factor of A is also a member of �.
Thus every variety is generated by its subdirectly irreducible members.

3.3 Logics and varieties

We have mentioned two notions of validity, i.e., the validity of equations of
the form s � t with terms s and t, and the validity of formulas. The first one
is defined formally as follows. An equation s � t is valid in an algebra A
if and only if f (s) � f (t) holds for each valuation f on A. But apparently,
they are closely related. For instance, let us consider the distributive law in
lattices. It is represented by a � (b � c) � (a � b) � (a � c), or equivalently
by a � (b � c) � (a � b) � (a � c) � 1 (in e.g. Heyting algebras) as an
equation, while it can be respresented by � � (� � �) � (� � �) � (� � �)
as a formula. Here, �� � is an abbreviation of (�� �) � (�� �).
By identifying terms and formulas we can see the following in general

in case of Heyting algebras. The validity of an equation s � t is equal to
that of the formula s� t and the validity of a formula � is equal to that of
the equation � � 1. Based on this fact, in the rest of the paper we identify
terms with formulas, which may not cause any confusion as we consider
only propositional formulas. Letters s, t, �, � etc. are used to denote both
terms and formulas.

We consider the class of all algebraic models of a given superintuitionis-
tic logic L. It is clear that the class of all algebraic models of intuitionistic
logic is the class of all Heyting algebras� . Let�L be the class of Heyting
algebras which are algebraic models of L, i.e., in which all formulas in L
are valid. Then, by Theorem 3.2,

for any superintuitionistic logic L,�L is a subvariety of� .

Conversely, for a given variety� of Heyting algebras let L� be the set of
all formulas � such that � is valid in every algebra in�. Then,

for any variety� of Heyting algebras, L� is a superintuition-
istic logic.

The mappings V : L ��� �L and L : � ��� L� are shown to be dual
lattice isomorphisms between the lattice of all superintuitionistic logics and
the lattice of all subvarieties of� .
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3.4 What follows from algebraic methods

Universal algebra takes a quite general perspective of algebras, and it can
shed a new light on logics. At the same time, surprisingly deep results are
sometimes obtained from it. In the following, we will give some logical
consequences obtained by these algebraic notions and tools.
From a logical point of view, we get the following from the above con-

siderations, by applying them to the case of Heyting algebras.

Lemma 3.4. If B is a homomorphic image (a subalgebra, respectively) of
A, L(A) � L(B) holds between logics L(A) and L(B). If A is a direct
product of the (Ai : i � I) then L(A) �

�
i L(Ai). Also, if (Ai : i � I) is a

subdirect representation of A then L(A) �
�

i L(Ai).

Subdirect irreducibility in Heyting algebras
In case of Heyting algebras, it can be shown that a Heyting algebra A is
subdirectly irreducible if and only if it has the second greatest element,
i.e., an element a such that a � 1 and moreover that b � a for any b � 1.
For example, a Heyting algebra H3 discussed in Section 2.2 is subdirectly
irreducible. Moreover, it is easy to see that every subdirectly irreducible
Heyting algebra except the 2 valued Boolean algebra B2 has a subalgebra
isomorphic to H3. From these observations, it follows:

Theorem 3.5. The logic L(H3) is shown to be the greatest among super-
intuitionistic logics smaller than classical logic.

From the above fact, it follows that the single subdirectly irreducible
Boolean algebra is B2. This gives us a proof of the equivalence of validity
in all Boolean algebras and tautolgy, in Theorem 2.2. For this it is enough
to show that L(A) � L(B2) for any Boolean algebra A such that 0 � 1. But
this follows from Lemma 3.4 and the fact that every subdirectly irreducible
Boolean algebra is isomorphic to B2.

Craig interpolation property
A logic L is said to have the Craig interpolation property (CIP) if and only
if the following holds:

for all formulas � and �, if � � � is in L then there exisits a
formula � which contains only propositional variables appear-
ing common in � and � such that both � � � and � � � are
in L.
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It can be shown (by a syntactical way, for example) that both classical logic
and intuitionistic logic have the CIP. A question is whether having the CIP
is a commonplace event or not. But when a given logic L does not have
the CIP, how can we show this?
There is a nice result on the relation between a superintuitionistic logic

L and a corresponding variety �L of Heyting algebras. That is, L has the
CIP if and only if �L has a property, called the amalgamation property.
By using this, L.L. Maksimova in 1977 showed the following surprising
result, which says that a superintuitionistic logic rarely has the CIP.

Theorem 3.6. Among uncountably many superintuitionistic logics, only 8
logics have the CIP.

Halldén Completeness
A superintuitionistic logic L is Halldén complete (HC), if for all formulas
� and � which have no variables in common, if � � � is in L then either �
or � is in L. Obviously the disjunction property implies the Halldén com-
pleteness, while it is shown that the converse does not hold for uncountably
many superintuitionistic logics.
A logic L is meet irreducible (in the lattice of all superintuitionistic log-

ics) if it is not an intersection of two incomparable logics, or equivalently,
if it is not a meet of strictly bigger logics. The following result is obtained
by combining results by E.J. Lemmon and A. Wroński.

Theorem 3.7. The following conditions are equivalent for every superin-
tuitionistic logic L.
1. L is Halldén complete,
2. L � L(A) for a subdirectly irreducible Heyting algebra A,
3. L is meet irreducible.

The importance of this theorem is that it states the equivalence of three
di�erent faces of logics. That is, Halldén completeness is a syntactic, local
property of a logic, the second condition is on algebraic characterization of
a logic, and the meet irreducibility is a global feature of a logic within the
lattice of all superintuitionistic logics. In this way, algebraic approach will
enable us to consider logics from a wide range of viewpoints.

3.5 Historical notes

Universal algebra is a general study of properties with which many alge-
braic structures share. The word “universal" means that it is not a study
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of particular algebraic structures, like group theory, ring theory and lattice
theory, but a study of properties common to them. In the 1930s, G. Birkho�
published papers in this direction, and later A. Tarski has developed it in the
1940s and 1950s. Around the same time, A.I. Mal’cev has made important
contributions to the topic.
One can see a strong similarity between the viewpoint of universal al-

gebra mentioned in the above and our attitude to a general study of non-
classical logics discussed in Section 2.4. This will explain the reason why
tools of universal algebra play an essential role in the study of nonclassical
logics.

4 Interlude – Rise of Kripke semantics

Till the beginning of the 1960s, semantics for nonclassical logics are mostly
limited to algebraic ones, including matrices that consist of algebras with
its designated subsets. But, after the introduction of relational semantics by
S. Kripke called Kripke semantics, relational semantics became the main
stream of semantics for nonclassical logics. They work particulary well for
modal logics and superintuitionistic logics. An apparent merit of Kripke
semantics lies in the facts that it is much more intuitively understandable
and philosophically persuasive than algebraic semantics, and also that it is
mathematically tractable since each Kripke frame consists of a quite simple
structure, i.e., a set (of possible worlds) with binary relations, called acces-
sibility relations. This became also a key for the driving force of a rapid
development of study of extensions and applications of modal logic, like
temporal logic and epistemic logic. While model theoretic approach based
on Kripke semantics has made important and quite successful progresses
in the latter half of the last century, algebraic approach had not drawn much
attention for a while. As for history of study of modal logic, see [9], and
for various approaches to modal logic, see e.g. [2].

We give a brief explanation on a connection between algebras and Kripke
frames, considering their semantics for intuitionistic logic, and also super-
intuitionistic logics in general. As we mentioned before, algebraic models
of these logics are given by Heyting algebras. On the other hand, Kripke
frames for them are given by partially ordered sets. Suppose that a partially
ordered set �S ��� is given. Take the set US of all upward-closed subsets of
S . Then, the structure US � �US ������� �� S � forms a Heyting algebra,
where � and � are set-theoretic intersection and union, respectively, and
X � Y is defined by �u � S : for all v � u� v � X implies v � Y� for all
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X�Y � US . Conversely, for a given Heyting algebra A � �A������� 0� 1�,
the set of all prime filters of A forms a partially ordered set �PA���. Here,
a non-empty subset F of A is a filter if and only if F is upward-closed and
a � b � F whenever a� b � F, and a filter F is prime if and only if for all
a� b � A, a � b � F implies either a � F or b � F. Moreover, the mapping
h from A to UPA defined by h(a) � �F � PA : a � F� is an embedding. The
algebra UPA is called the canonical extension of A. This argument is based
on Stone-type representation theorem for Heyting algebras.

When A is finite, its canonical extension is isomorphic to A. But, in
general, it is not always the case that the canonical extension does not be-
long to the variety generated by the singleton set �A�. In logical terms, it
may happen that the logic L(UPA) is properly included by the logic L(A).
For a given logic L, if the corresponding variety�L is closed under taking
canonical extensions, L is called canonical. Clearly ifL is canonical then it
is complete with respect to a class of Kripke frames (Kripke-completeness).
It is known that there exist uncountably many Kripke-incomplete superin-
tuitionistic logics. This shows a limitation of Kripke semantics.
Kripke semantics works quite well as long as a nice Stone-type repre-

sentation theorem holds, which is usually followed from the distributive
law. But Kripke semantics does not always work smoothly for substruc-
tural logics. This is one of the reasons why algebraic approaches to logics
have revived and have attracted a great deal of attention again from the
beginning of the 1990s, which is the moment when algebraic study of sub-
stractural logics has started. It is fair to say that algebraic semantics and
Kripke semantics play complementary roles to each other.

5 Algebraization

We have mentioned a close relation between logic and algebra in Section 3.
But this relationship can be extended to a higher level, the one between de-
ducibility and equational consequence. This fact is called algebraization
(in the sense of Blok-Pigozzi). The book [1] published in 1989 by Blok
and Pigozzi became a starting point of the area known as abstract alge-
braic logic. Abstract algebraic logic is a study which focuses on relations
between logic and algebra, in fact connections between deductive systems
and classes of algebraic structures. It discusses in a general setting what
is the algebraic counterpart of a given deductive system, how to get it and
moreover how logical properties are related to algebraic properties in this
connection. See [6] for the details. Abstract algebraic logic and universal
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algebra compose the core of algebraic logic today. This section is a short
introduction to abstract algebraic logic.

5.1 Deducibility and provability

We introduce a consequence relation for intuitionistic logic, which fits also
for all superintuitionistic logics. Suppose that a formal system � for intu-
itionistic logic is given. It is irrelevant here whether � is a Hilbert-style
system or a sequent system, or has some other formal system. For a set
of formulas � and a formula �, we write � �Int � whenever a formula �
is provable in the system which is obtained from � by adding all formulas
�, for � � �, as new axioms. We call this �Int the deducibility relation
associated with intuitionistic logic. This notion of deducibility can be nat-
urally extended to any superintuitionistic logic L. In this case, we write the
deducibility in L as �L.
Can the deducibility relation be reduced to the provability? For intu-

itionistic logic and in fact for any superintuitionistic logic, the answer is
yes, since the deducibility is finitary and the following deduction theorem
holds.

Theorem 5.1. For any set of formulas � and any formula �, � � ��� � � if
and only if � � (�� �).

Here is an outline of the proof (in case of intuitionistic logic). It is trivial
that the right-hand side implies the left-hand one. Suppose that the left-
hand side holds. We assume that the system � is formalized in a (standard)
Hilbert-style system. Take a proof of � from � � ���, which consists of
a sequence of formulas �1� � � � � �m such that (1) �m is equal to � and (2)
for each j � m, � j is either an axiom of �, or a member of � � ���, or a
consequence of modus ponens of two formulas �i and �k with i� k � j (that
is, �k is of the form �i � � j). Let �i be � � �i. Then the sequence of
formulas �1� � � � � �m (by inserting some necessary formulas between them)
gives a proof of � � � from �. This is assured by using the fact that all
formulas of the form � � �, � � (� � �) and (� � (� � �)) � ((� �
�)� (�� �)) are provable in intuitionistic logic.

On the other hand, as shown later, if one of these formulas is not provable
then the above argument may collapse and therefore the deduction theorem
may not hold in such a case.
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5.2 Equational consequence

A consequence relation among equations can be introduced by using equa-
tional calculus in the following way. Let � be an arbitrary class of alge-
bras. For any set of equations �ui � vi; i � I� � �s � t�, the equational
consequence ��� of � is defined as follows: �ui � vi; i � I� ��� s � t if
and only if

for each algebraA in� and each valuation f on A, f (s) � f (t)
holds whenever f (ui) � f (vi) holds for all i � I.

In particular when I is a finite set �i : 1 � i � m�, �ui � vi; 1 � i � m� ���
s � t becomes equivalent to the validity of the following quasi-equation in
every A in of � .

(u1 � v1 and � � � and um � vm) implies s � t.

5.3 Algebraization a la Blok-Pigozzi

The close relation mentioned in Section 3.3 between logics and varieties
can be extended to the one between deducibility and equational conse-
quence, as shown in the following.

Lemma 5.2. Let � be any subvariety of the variety of Heyting algebras.
For any set of equations E, E ��� s � t if and only if �u � v : u � v �
E� �L� s� t.

This lemma gives us a way of translating equations into formulas. It
turns out that the reverse translation is also possible.

Lemma 5.3. Let L be any superintuitionistic logic. For any set � of for-
mulas, � �L � if and only if �� � 1 : � � �� ���L � � 1.

What is more, these translations are mutually inverse. Each given for-
mula � is translated into an equation � � 1, which is translated back into
a formula � � 1. Conversely, if we start from an equation s � t then
it is translated into a formula s � t which is translated into an equation
(s � t) � 1. But in either case, the application of two translations pro-
duces the formula and the equation, respectively, equivalent to the original
ones, as the following shows.
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Lemma 5.4. For any formula � and any equation s � t,

� ��L � � 1

s � t ����� (s� t) � 1

where ��L and ����� mean that the respective relations hold both ways.

In terms of abstract algebraic logic, these three lemmas as a whole say the
algebraizability of the deducibility �L (in the sense of Blok-Pigozzi).

for each superintuitionistic logic L, �L is algebraizable and
�L is an equivalent algebraic semantics for it.

6 Substructural logics

We have discussed algebraic approaches to logics, by taking superintu-
itionistic logics as examples. As a matter of fact, they work well for a
much wider class of logics, in particular for substructural logics. Substruc-
tural logics include superintuitionistic logics, relevant logics, linear logic
and logics over Łulasiewicz’s infinite-valued logic.
In this section, we will introduce substructural logics and show how well

algebraic methods are applied to them.

6.1 What are substructural logics

Study of substructural logics can be regarded as an enterprise of under-
standing various nonclassical logics in an uniform framework. Here, by
nonclassical logics, roughly we mean logics weaker than classical logic.
Thus logics with additional connectives like modal connectives are ex-
cluded. As mentioned already, superintuitionistic logics, relevant logics,
linear logic and logics over Łulasiewicz’s infinite-valued logic will be in-
cluded. Here, relevant logics are logics of relevant implication, in which
neither of (� � ��) � � and � � (� � �) are rejected in general since
there may be no relevant connections between formulas � and �. On the
other hand, the implication in classical logic is material implication, i.e.,
the implication � � � is regarded as �� � �, and therefore both of them
are true formulas. Our attempt is to find something common to these logics
that are introduced and studied from di�erent backgroud and motivation.

But in retrospect, the study has developed in a di�erent way. Around the
middle of the 1980s, some people independently discussed logics which
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are formalized in Gentzen-type sequent systems, like commutative version
of Lambek calculus for categorial grammar, linear logic and logics lack-
ing the weakening rule. A common feature of them is that these sequent
systems lack some structural rules, which standard sequent system LK for
classical logic or LJ intuitionistic one have. Gradually it has been discov-
ered that many of nonclassical logics fall under this class. For instance,
relevant logics do not allow the axiom � � (� � �), which corresponds
to the (left) weakening rule in sequent systems, and Łukasiewicz’s many-
valued logics do not allow the axiom (� � (� � �)) � (� � �), which
corresponds to the contraction rule. Thus, the word “substructural log-
ics" is introduced as a generic term to denote logics that may lack some of
structural rules when formulated in sequent systems.

6.2 Sequent systems and structural rules

To explain structural rules in more details, we will give a brief explanation
on sequent systems. In sequent systems, sequents are basic syntactical
objects. We consider here sequents of the following form, where commas
and the arrow� are meta-logical symbols:

�1� � � � � �m � �� (1)

Such sequents are used in the system LJ for intuitionistic logic. Intuitively
the above sequent means that “� follows from assumptions from �1 to �m."
Sequent systems consist of initial sequents and rules. Intitial sequents cor-
respond to axioms in Hilbert-style formal systems, and usually sequents of
the form �� � are taken for initial sequents. Each rule in a sequent system
describes an inference of a new sequent from one or two given sequent(s).
Rules are divided into three classes: rules for each logical connectives, cut
rule and structural rules. Within the class of structural rules, there are three
types: exchange rule, contraction rule and left- and right-weakening rules.

(e) exchange rule :
�� �� ���� �
�� �� ���� �

(c) contraction rule :
�� �� ���� �
�� ���� �

(i) left weakening rule :
���� �
�� ���� �

(o) right weakening rule :
��
�� �
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Structural rules control roles of commas, as described below. The mean-
ing of commas will be changed if our system lacks some of them. The
exchange rule allows us to use assumptions in an arbitrary order. The con-
traction rule allows us to contract two assumptions of the same formula
into one. Hence, in the absence of the contraction rule each assumption is
consumed once it is used. The left-weakening rule allows us to add any
formula as an assumption. Thus, in the absence of the left-weakening no
redundant assumptions are admitted.
In the sequent system LJ for intuitionistic logic, it is shown that the

sequent (1) is provable if and only if the following sequent is provable.

�1 � � � � � �m � � (2)

It means that in LJ each comma of sequents is an external expression of
conjunction. But, in the proof of the above equivalence, we need to use
both the contraction and the left-weakening. In other words, we cannot
expect that commas are interpreted as conjunctions in weaker systems.
To supplement this weakness, we introduce a new logical connective fu-

sion (�, in symbol), which expresses each comma internally, by introducing
rules for fusion. Though we omit the details, we can show without us-
ing any structural rule that the sequent (1) is provable if and only if the
following sequent is provable.

�1 � � � � � �m � � (3)

6.3 Various logics

The basic sequent system for substructural logics is FL, Full Lambek Cal-
culus, which is obtained from LJ by deleting all of structural rules and by
adding rules for fusion. But in the following we take the sequent system
FLe, obtained from FL by adding the exchange rule, and consider mostly
substructural logics over FLe, in order to avoid some technical complica-
tions caused by the deletion of the exchange rule. (In fact, two kinds of
implication are introduced in logics without the exchange rule.) The fol-
lowing basic result holds in FLe, which says that implication is the residual
of fusion.

� � �� � is provable if and only if �� �� � is provable

Now we define substructural logics over FL (and FLe) to be axiomatic
extensions of FL (and FLe, respectively), i.e., systems obtained from FL
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(FLe) by adding a set of axiom schemes as additional initial sequents. As
shown below, many important classes of nonclassical logics are included
in substructural logics.

1) Lambek calculus: J. Lambek introduced it in 1958, as a calculus for cat-
egorial grammer, which is roughly equal to the logic FL without structural
rules.
2) Relevant logics: A common feature to various relevant logics is the

absence of the weakening rules.
3) Logics without the contraction rule: The paper by Ono and Komori in

1985 discussed logics in this class comprehensively. Łukasiewicz’s many-
valued logics are among them.
4) Linear logic: The logicMALL is introduced by J.-Y. Girard in 1987,

which is the extension of FLe with the law of double negation.
5) Johansson’s minimal logic: This is the logic without the rule of right-

weakening. Thus it rejects the principle that every formula follows from a
contradiction.

6.4 Substructural logics and residuated lattices

Algebraic models of substructural logics are given by residuated lattices.
We consider here only algebraic models of substructural logics over FLe
that are given by commutative residuated lattices. An algebraA � �A�����
�� �� 1� is a commutative residuated lattice if and only if �A����� is a lat-
tice, and �A� �� 1� is a commutative monoid satisfying the following law of
residuation;

a � b � c if and only if a � b� c, for all a� b� c � A.

The operation � is introduced to interpret the fusion, and also the meta-
logical symbol “commas" in sequents. An FLe-algebra is a commutative
residuated lattice with a fixed element 0. Using 0, negation is defined
by �x � x � 0. Heyting algebras are exactly FLe-algebras in which
a�b � a�b for all a� b and 0 is the least element. In models of Łukasiewicz’s
many-valued logics with the universe A, which is a subset of the interval
[0� 1], if we put a � b � max�0� a� b� 1� then �A� �� 1� forms a commutative
monoid which satisfies that a � b � c if and only if a � b� c, where b� c
is defined by min�1� 1 � b � c�. Thus, they are also FLe-algebras.

The class of FLe-algebras is shown to be defined by a set of equa-
tions, including the equation x � y � y � x which expresses the commu-
tativity. Similarly, other structural rules, i.e., the contraction, the left-
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and right-weakening rules, are expressed by equations x � x � x (square-
increasingness), x � 1 (integrality), and 0 � x (minimality of 0), respec-
tively. (Note that each inequality � is expressed as an equality, since we
have lattice operations in the language.)

As a consequence of Theorem 3.2, the class ��e of all FLe-algebras is
a variety, and clearly the classes of all Boolean algebras and of all Heyting
algebras are subvarieties. Similar correspondence to the one mentioned in
Section 3.3 holds between the lattice of all substructural logics over FLe
and the lattice of all subvarieties of ��e. In this connection, substructural
logics with the contraction rule (the weakening rules) correspond varieties
of FLe-algebras satisfying square-increasingness (integrality and minimal-
ity of 0, respectively). In an algebra A without the integrality, the element
1 may not be the greatest element. In such a case, we modify the definition
of the validity in such a way that a formula � is valid in A if and only if
f (�) � 1 for each valuation f , or equivalently f (�) � 1 � 1 for each f .
Algebraization result discussed in Section 5.3 can be extended to the

present case, but by the same reason as above, it is necessary to translate
each formula � into the equation � � 1 � 1. Then, we have:

for each substructural logic L over FLe, in fact for each sub-
structural logic L over FL, �L is algebraizable.

6.5 Deducibility revisited

Deduction theorem (Theorem 5.1) says that deducibility in intuitionistic
logic is reducible to provability in it. As the outline of the proof shows, the
theorem depends on the existence of structural rules, and the proof cannot
be applied to the case of FLe. But the following weak form of deduction
theorem, called local deduction theorem holds for FLe, and hence it holds
for all substructural logics over FLe.

Theorem 6.1. For any set of formulas � and any formula �, ����� �FLe �
if and only if � �FLe ((� � 1)m � �) for some m.

Here, �m means the formula � � � � � ��with � form times. Deduction theorem
of intuitionistic logic is obtained from this by applying the contraction and
the weakening rules. The above deduction theorem is said to be local, since
the number m in it cannot be determined in general, when �� �� � are given.

The deducibility relation for a logic L is decidable, if there is an e�ective
procedure of deciding whether or not � �L� holds for each finite set of
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formulas � and each formula �. The decidability of provability for a logic
L is defined by restricting to the case when � is empty. We can show the
following. The first is shown by a syntactic way (cut elimination of the
sequent system FLe) and the second was proved essentially by Lincoln,
Mitchell, Scedrov and Shankar in the 1990s.

Theorem 6.2. 1. The provability problem of FLe is decidable.
2. The deducibility problem of FLe is undecidable.

By using algebraization result and by translating logical relations into equa-
tional ones, we have the following algebraic results as an immediate con-
sequence of Theorem 6.2.

Theorem 6.3. 1. The equational theory of FLe-algebras is decidable.
2. The quasi-equational theory of FLe-algebras is undecidable.

6.6 Further notes

Study of substructural logics has opened a new branch in algebraic logic.
It will take a middle position between abstract algebraic logic and study
of individual nonclassical logics. The class of substructural logics is wide
enough to cover many nonclassical logics, and at the same time the study
has successfully o�ered interesting concrete examples to abstract algebraic
logic.
Residuation is a key notion in both substructural logics and residuated

lattices, by which the necessity of sequent formulation of substructural
logics can be clarified. Residuated lattices are not only algebraic mod-
els of substructural logics, but also form an important class in algebra. For
example, lattice-ordered groups are among them. Close relations between
logic and algebra, and even between proof-theoretic notions and algebraic
ones have been discovered in algebraic logic. For further information on
substructural logics, see [7].
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Temporal and Dynamic Logic
FRANKWOLTER ANDMICHAELWOOLDRIDGE�

Abstract

We present an introductory survey of temporal and dynamic log-
ics: logics for reasoning about how environments change over time,
and how processes change their environments. We begin by intro-
ducing the historical development of temporal and dynamic logic,
starting with the seminal work of Prior. This leads to a discussion
of the use of temporal and dynamic logic in computer science. We
describe three key formalisms used in computer science for reason-
ing about programs (LTL, CTL, and PDL), and illustrate how these
formalisms may be used in the formal specification and verification
of computer systems. We then discuss interval temporal logics. We
conclude with some pointers for further reading.

1 Introduction

Mathematical logic was originally developed with the goal of formalis-
ing mathematical reasoning – to formalise notions such as truth and proof.
One important property of mathematical expressions such as theorems and
their proofs is that they are inherently timeless: a result such as Fermat’s
Theorem is true now, always has been true, and always will be true – irre-
spective of when it was actually proved. In this sense, mathematical logic
was conceived with the goal of developing formal languages for represent-
ing a fixed, non-changing world, and the semantics of classical logic re-
flect this assumption. In the semantics of classical logic, it is assumed that
there is exactly one world (called a model), which satisfies or refutes any
given sentence. But this limits the applicability of such logics for reasoning
about dynamic domains of discourse, where the truth status of statements
can change over time.
It is of course possible to reason about time-varying domains using clas-

sical first-order logic. One obvious approach is to use a two-sorted lan-
guage, in which we have one sort for the domain of discourse, and a second
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sort for points in time. Variables t� t�� � � � are used to denote time points, and
a binary “earlier than” relation, “�” is used to capture the temporal ordering
of statements. Using this approach, for example, the English sentence “It
is never hot in Liverpool” might be translated into the following first-order
formula:

�t��Hot(Liverpool� t)

This approach is sometimes called the method of temporal arguments [35],
or simply the first-order approach [20]. The advantage of the approach is
that no extra logical apparatus must be introduced to deal with time: the en-
tire machinery of standard first-order logic can be brought to bear directly.
The obvious disadvantages are that the approach is unnatural and awkward
for humans to use. Formulae representing quite trivial temporal properties
become large, complicated, and hard to understand. For example, when
translated to first-order logic the English sentence “we are not friends until
you apologise” becomes something like the following:

�t�[(now � t) � Apologise(you� t)] �
�t��[(now � t� � t)� �Friends(us� t�)]�

The desire for logics that are capable of naturally and transparently cap-
turing the meaning of statements such as those above, in dynamic environ-
ments, led to the development of specialised temporal and dynamic logics.
This article is intended as a high-level survey of such logics. Contempo-
rary research in temporal and dynamic logics is a huge and very active en-
terprise, with participation from disciplines ranging from philosophy and
linguistics to computer science [24]. Within the latter, it is especially the
application of temporal and dynamic logics to verifying the correctness
of computer systems that had a huge impact on the field. In an amazing
example of technology transfer, this application has transformed purely
philosophical logics into industrial-strength software analysis tools [42].
Before taking a look at such recent developments, however, we reflect on

the origins of temporal logic, and in particular, the contributions of Arthur
Prior.

2 The Origins of Temporal Logic

As we noted in the introduction, in classical logic it is implicitly assumed
that formulae are interpreted with respect to a single model. But this in-
herently static view of logic and its subject matter makes it awkward to
apply classical logic to the analysis of everyday sentences such as “Barack
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Obama will win the election”, since this statement might be true if evalu-
ated now, but false if evaluated next week. It was concerns like this that
led Arthur Prior, a philosopher and logician born in New Zealand in 1914,
to start working on logics intended to facilitate reasoning about such state-
ments. In Prior’s words [34]: “Certainly there are unchanging truths, but
there are changing truths also, and it is a pity if logic ignores these, and
leaves it � � � to comparatively informal dialecticians to study the more dy-
namic aspects of reality.” Prior’s work, mainly carried out in the 1950s and
1960s, is regarded as the foundation of the area now called temporal and
dynamic logic [32, 33].
To analyse sentences such as “Barack Obama will win the election”,

Prior proposed the idea of regarding tense as a species ofmodality. He took
classical propositional logic with its connectives � (for “or”), � (“not”),
and � (“if � � �, then � � � ”) and extended it with modal tense operators, F
and P. In Prior’s notation, Fp stands for “it will be the case that p” and Pp
stands for “it was the case that p”. In a similar way as in classical logic, one
can define other basic tense operators as composed formulae. For exam-
ple, the expression Gp (read “generally, p”) is defined as �F�p (meaning
“p will always be the case”) and Hp (“heretofore, p”) is defined as �P�p
(meaning “p has always been the case”). Other temporal operators are also
sometimes used, such as �F�Fp (“p will be the case again and again”).
Given this set-up, in addition to classical tautologies, (sentences like p�

p, which are true independently of the model under consideration), one
should also consider temporal tautologies: formulae using tense operators
that are true independently from the truth of its propositional atoms. Priors
first axiomatization of temporal tautologies included formulae such as

FFp� Fp� and F(p � q)� (Fp � Fq)�

The first formula, for example, states “if it will be the case that it will be
the case that p, then it will be the case that p”. A less obvious candidate
for a temporal tautology is its “converse” Fp� FFp. A moment’s reflec-
tion should convince the reader that the truth of this formula depends on
precisely how Fp is interpreted. In other words, to decide whether this for-
mula is a temporal tautology one has to define a formal semantics for the
temporal language. Of course, one cannot interpret Prior’s formulae in the
static, non-changing models of classical logic. Instead one has to develop
models that capture the evolution of reality over time. Leaving aside the
question of how a physicist might answer this question, one obvious and
mathematically simple approach is to interpret time as a linear sequence of
time points: t0� t1� t2� � � � These time points can be naturally interpreted
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as, say, dates in a calendar. Mathematically, however, we can view the flow
of time as the natural numbers �, ordered by the usual “less than” relation,
“�”. Many other models of time are also possible, with correspondingly
di�erent properties.
Now, in contrast to classical logic, a formula can be true at one time

point, and false at another time point. Thus, we obtain a time-dependent
notion of truth: a formula might be true when evaluated at ti and false when
evaluated at ti�1. Formally, each time point ti comes with a truth assign-
ment stating which propositional atoms p are true at ti. The propositional
connectives are interpreted as in classical logic (for example � � � is true
at ti if, and only if, � and � are both true at ti). Finally,

Fp is true at ti if, and only if, there exists j � i such that p is true at t j;

Pp is true at ti if, and only if, there exists j � i such that p is true at t j.

Assuming, for example, that p is true at t100 and no other time point, then
Fp is true at t0. In fact, it is true at all time points between (and including)
t0 and t99, but not at t100 nor any time point after t100. Let us check that
FFp � Fp is true in every time point no matter at which points p is true.
To this end, assume that FFp is true at, say, tn. Then Fp is true at some
time point after tn, say tm. Similarly, this means that p is true at some time
point after tm, say tk. But then tk is a time point after tn and we obtain that
Fp is true at tn. We have shown that Fp is true at any given time point
if FFp is true at that time point. Thus, FFp � Fp is true at every time
point, independently from p. Note that what we have applied here is the
natural assumption that temporal precedence is transitive: if tk is after tm
and tm is after tn, then tk is after tn. In contrast, the truth of Fp � FFp
in this model of time depends on p. For example, assume that p is true at
t5 and no other time point. Then Fp is true at t4, but FFp is not true at
t4: it is not possible to find a time point after t4 that is before t5. In fact,
it is not di�cult to see that a time model (T� �) with set of time points T
and temporal precedence relation � validates Fp� FFp if, and only if, it
is dense: for any two time points t1 � t2 there is a time point t� such that
t1 � t� � t2. Thus, if we move from the discrete time model t0� t1� � � � to a
dense model of time that resembles the rational or real numbers, we obtain
new temporal tautologies (and loose others).
This small example illustrates one of the main distinctions between clas-

sical and temporal logics: even if the language is fixed and as simple as the
basic tense logic with operators F and P, there remains a number of choices
to be made with respect to the model used to represent time. Depending
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on the temporal domain and discourse of interest, one can choose between
flows of time that are discrete, dense, or continuous; time can be cyclic
or cycle-free; and time can be endless or start with a “big bang”. The are
many possibilities, and in the late 1960s and early 1970s it became some-
thing of an industry to axiomatize and analyse the temporal tautologies of
such time models.
In addition to varying the flow of time, also more tense operators were

introduced and investigated. Of particular interest are the binary operators
S (for since) and U (for until) whose semantics is defined as follows:

pUq is true in t if, and only if, there exists t� � t such that q is true
in t� and p is true in t�� for all t�� such that t � t�� � t�;

pS q is true in t if, and only if, there exists t� � t such that q is true in
t� and p is true in t�� for all t�� such that t� � t�� � t.

Note that Fp and Pp can be expressed using since and until as

Fp � �Up and Pp � �S p�

where � is a propositional constant standing for a propositional tautology.
For axiomatizations of temporal tautologies for languages with operators
F, P, S , and U for various time flows see [8].

3 Temporal versus Predicate Logic

In our introduction to Prior’s basic tense logic, we emphasised that the
main di�erence between classical and temporal logic is time-dependence:
in classical logic truth is time-independent, whereas in temporal logic it is
not. Under this view, temporal languages are extensions of propositional
logic by means of temporal operators. There is, however, a very di�er-
ent and equally important interpretation of temporal logic, namely as a
fragment of predicate logic (see [4] for a general discussion of these two
di�erent views in modal logic). To achieve this, propositional atoms are
identified with unary predicates and complex temporal formulae become
predicate logic sentences with exactly one free variable x that ranges over
time points. Consider, for example, the sentence “the mail will be deliv-
ered”. In Prior’s tense logic, this is formalised as Fp, where p stands for
“the mail is delivered”. In contrast, in predicate logic one introduces a
unary predicate P ranging over time points for “the mail is delivered” and
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the sentence is formalised as �y(x � y�P(y)), where � stands for temporal
precedence.
To make the connection between temporal and predicate logic precise,

consider a flow of time (T� �) which can be, for example, the discrete time
flow t0� t1� � � � or a copy of the rational or real numbers. A valuation v
determines at which time points t � T an atom p from a given set � of
propositional atoms is true. Equivalently, we can describe the resulting
model by identifying (T� �� v) with the first-order relational model

M � (T� �� (pM � p � �))�

where pM � T denotes the set of time points at which p is true. Thus, now
we regard the p � � as unary predicates that have as extensions a set of
time points. Inductively, we can translate every temporal logic formula �
in the language with, say, S and U, as a first-order predicate logic formula
p�(x), where x is a fixed individual variable:

p� � p(x)
(� � �)� � ��(x) � ��(x)

(��)� � ���(x)
(�S�)� � �y(y � x � ��(y) � �z((y � z � x)� ��(z)))
(�U�)� � �y(y � x � ��(y) � �z((x � z � y)� ��(z)))

where y� z are fresh individual variables and ��(y) and ��(z) are obtained
from ��(x) by replacing x with y and z, respectively (see [24] for details).
By definition of ��, we have that a temporal logic formula � is true at a

time point t in a model M if, and only if M �� ��[t], where �� is the standard
truth-relation of first-order predicate logic. Thus, modulo the translation
��, we can regard the temporal language with operators S and U as a frag-
ment of first-order predicate logic. The formulae obtained as translations
of temporal formulae are, of course, only a tiny subset of the set of all first-
order predicate logic formulae (even those with one free variable x using
only unary predicates p � � and the binary predicate �). Moreover, for
arbitrary time flows, there are many first-order predicate formulae of this
form that are not equivalent to any translation of a temporal formula. How-
ever, a fundamental result proved by Hans Kamp [25] established that, for
some important flows of time, every first-order predicate logic formula in
the language with unary predicates p � � and the binary predicate � and
having exactly one free variable is indeed equivalent to a temporal formula
using since and until. The precise formulation is as follows:
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Theorem 1 (Kamp). Let (T� �) be a flow of time consisting of the natural
or real numbers. Then one can construct for every first-order formula �(x)
using � and p � � and with one free variable x, a temporal formula �T

using the operators S and U such that the following holds for every model
M � (T� �� (pM � p � �)) and every t � T:

�T is true at t � M �� �[t]

Kamp’s theorem explains why there are only very few important distinct
temporal operators for linear time: any first-order definable temporal op-
erator can be expressed using just since and until. We would like to stress
here that it would be wrong to conclude from Kamp’s result that tempo-
ral logic has nothing useful to o�er compared to predicate logic. As we
pointed out in the introduction, the crucial di�erence between temporal
and predicate logic is that temporal logic is much closer to natural lan-
guage than predicate logic and, therefore, much easier for people to read
and understand. Thus, for the same reason that programming languages
such as C or JAVA are not useless just because any program in C or JAVA
is equivalent to a Turing Machine, temporal logics do not become useless
just because they have the same expressive power as first-order formulae.
Interestingly, the di�erence between temporal and first-order logic can

also be described in technical terms. The translation from first-order predi-
cate logic to temporal logic introduces temporal formulae of non-elementary
size (i.e., their size cannot be bounded by a tower of exponentials) [18] and
for standard linear time flows the satisfiability problem for temporal logic
with S and U is PSPACE-complete (and even coNP-complete with opera-
tors F and P only), but it is non-elementary for the corresponding fragment
of first-order predicate logic [18, 24, 27].
Kamp’s result was the beginning of a long and ongoing research tradi-

tion. Results such as Kamp’s are nowadays known as expressive complete-
ness results. A typical expressive completeness result states that a certain
temporal language is equivalent to (some fragment of) first-order predicate
logic over a certain class of time flows. For example, Prior’s original lan-
guage with the tense operators F and P only and without since and until
is expressively complete for the two-variable fragment of first-order pred-
icate logic (i.e., first-order predicate sentences using only two individual
variables) on arbitrary linear time flows [12, 28]. An overview of recent
extensions and variations of Kamp’s theorem is given in [24].
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4 Temporal Logic in Computer Science

At this point in our story, computer science enters the scene. A key research
topic in computer science is the correctness problem: crudely, the problem
of showing that computer programs operate correctly [6]. Two key issues
associated with correctness are the related problems of specification and
verification. A specification is an exact description of the behaviour that we
want a particular computer system to exhibit. Verification is the problem
of demonstrating that a particular program does or does not behave as a
particular specification says it should.
Temporal logic has proved to be an extremely valuable formalism for

the specification and verification of computer systems. This application of
temporal logic is largely due to the work of Amir Pnueli, an Israeli logician
born in 1941. In 1977, Pnueli was considering the problem of specifying
a class of computer programs known as reactive systems. A reactive sys-
tem is one that does not simply compute some function and terminate, but
rather has to maintain an ongoing interaction with its environment. Exam-
ples of reactive systems include computer operating systems and process
control systems. Typical properties that we might find in the specification
of a reactive system are liveness and safety properties. Intuitively, liveness
properties relate to programs correctly progressing, while safety properties
relate to programs avoiding undesirable situations. In a seminal paper [31],
Pnueli observed that temporal logics of the type introduced by Prior pro-
vide an elegant and natural formal framework with which to specify and
verify liveness and safety of reactive systems. For example, suppose p is
a predicate describing a particular undesirable property of a program (a
“system crash”, for example). Then the temporal formula G�p formally
expresses the requirement that the program does not crash – this is an ex-
ample of a safety property.
Thus, Pnueli’s idea was to formally specify the desirable behaviour of a

reactive computer system as a formula � of temporal logic. Such a formal
specification is valuable in its own right, as a precise, mathematical de-
scription of the intended behaviour of the program. But it also opens up the
possibility of formal verification, as follows. Suppose we are given a com-
puter program�, (written in a programming language such as PASCAL, C,
or JAVA), and a specification �, expressed as a formula of temporal logic.
Then the idea of deductive temporal verification is to first derive the tem-
poral theory Th(�) of �, i.e., a logical theory which expresses the actual
behaviour of �. The temporal theory Th(�) of the program � is derived
from the text of the program �. For example, for each program statement
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in �, there will typically be a collection of axioms in the temporal theory
Th(�), which collectively characterise the e�ect of that statement. To do
verification, we attempt to show that Th(�) � �. If we succeed, then we
say that � satisfies the specification �; it is correct with respect to �. In
this way, verification reduces to a proof problem in temporal logic.
Pnueli’s insight led to enormous interest in the use of temporal logic
in the formal specification and verification of reactive systems, and ulti-

mately, to software verification tools that are used in industry today. One
question that attracted considerable interest in the 1980s was that of ex-
actly what kind of temporal logic is best suited to program specification
and verification. Although one can use Prior’s logics for reasoning about
programs, they are not well suited to talking about the “fine structure” of
the state sequences generated by programs as they execute. For this rea-
son, a great many di�erent proposals were made with respect to temporal
logics for reasoning about programs (see, e.g., [26, 3, 37, 44, 1, 11]). In
the end, two key formalisms emerged from this debate: Linear Temporal
Logic (LTL) and Computation Tree Logic (CTL). These two formalisms
are intended to capture di�erent aspects of computation. LTL describes
properties of a single run of a reactive program. Hence it is interpreted
over a linear sequence of successive machine states. In contrast, CTL de-
scribes properties of the branching structure of the set of all possible runs
of the program.

4.1 From Programs to Flows of Time

Before presenting the semantics of LTL and CTL, let us pause to consider
in a little more detail exactly how computer programs give rise to flows
of time. Consider the following (admittedly rather pointless) computer
program, written in a PASCAL�C-like language.

� � � � �����

����� ������ ��

�� � �� ����� ����

� � �����

����

� � ������

�������

����������

Thus, this program manipulates two Boolean-valued program variables, �
and �; the variable � is initialised to the value ����, and then its value is
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Figure 1: A state transition graph.

subsequently flipped between the values ���� and �����. The variable �
is initialised to ���� and remains unchanged subsequently. Notice that the
program never terminates – it is an infinite loop. Now, we can understand
the behaviour of this program as a state transition system, as illustrated in
Figure 1. The state transition graph contains the possible states, or config-
urations, of the program; edges between states correspond to the execution
of individual program instructions. For the program above, there are just
two possible system states, labelled s0 and s1. The variables � and � are
both true in s0, while � is false and � is true in s1; the arrow to state s0
indicates that this is the initial state of the system. The other edges in the
graph indicate that, when the program is in state s0, then the only possible
next state of the system is s1, while when the program is in state s1, the
only possible next state of the system is s0. Now, if we want to reason
about the program given above, then we can focus on the state transition
graph: this graph completely captures the behaviour of the program.
A little more formally, a state transition system is a triple:

M � (S �R�V)

where:

� S is a non-empty set of states;

� R � S � S is a total1 binary relation on S , which we refer to as the
transition relation; and

� V : S � 2� labels each state with the set of propositional atoms true
in that state.

State transition systems are fundamental to the use of temporal logics
for reasoning about programs. To make the link to temporal logic, we need

1By totality we here mean the property that every state has a successor, i.e., for every
s � S there is a t � S such that (s� t) � R.
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a little more notation and terminology. A path, �, over M is an infinite
sequence of states � � s0� s1� � � � which must satisfy that (sn� sn�1) � R
for all natural numbers n. In the program given above, the state transition
system is completely deterministic, in the sense that there is only ever one
possible next state of the system, and so there is in fact only one path
possible through the transition system of the program:

� : s0� s1� s0� s1� � � �

However, in general, state transition systems are non-deterministic, in the
sense that, for any given state si in the state transition graph, there can be
multiple outgoing edges from si. This non-determinism can be thought of
as reflecting the choices available to the program itself, or as the program’s
environment (e.g., its user) interacting with the program. So, in general,
there may be more than one possible path through a transition system. The
set of all possible paths through a state transition system will completely
characterise the behaviour of the program: the paths in a transition sys-
tem are exactly the possible runs of the program. Figure 2 shows how
a transition system (Figure 2(a)) can be “unravelled” into a set of paths
(Figure 2(b)). Of course, we do not show all the paths of the transition sys-
tem in Figure 2 – the reader should be able to easily convince themselves
that there are an infinite number of such paths, and these paths are infinitely
long – even though the transition system that generates them is finite. Now,
going back to temporal logic, a path is simply a linear, discrete sequence of
time points (now called states), and we can think of such a path as a flow of
time, in exactly the way that we discussed earlier. Thus temporal formulae
of the kind studied by Prior’s logics can be used to express properties of
the runs of programs.
So far, we have three di�erent views of programs: (i) the original pro-

gram text, written in a programming language like PASCAL or C, above;
(ii) the state transition diagram of the program, as in Figure 1 and Fig-
ure 2(a); and (iii) the runs obtained from the state transition diagram by
“unravelling” it (Figure 2(b)). However, a third view is also possible:
we can unravel the transition system into a computation tree, as shown
in Figure 2(c). The key di�erence between the logics LTL and CTL is that
the language of LTL is intended for representing properties of individual
computation paths, while the language of CTL is intended for representing
properties of computation trees of the type shown in Figure 2(c).
In the following subsections, we will take a closer look at the technical

frameworks of LTL and CTL.
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Figure 2: A state transition diagram (a), can be “unravelled” into a set of
runs (b), or viewed as a tree-like branching model of time (c).

4.2 Linear Temporal Logic – LTL

In this section, we will present and investigate the framework of LTL in a
little more detail. In the particular version that we work with, we will only
consider temporal operators that refer to the future; it is also possible to
consider LTL operators that refer to the past, although we will not do so
here [9]. LTL extends classical propositional logic with the unary modal
operator X (“next”) and the binary operator U (“until”). Formally, starting
with a set � of propositional atoms, the syntax of LTL is defined by the
following grammar:

� ::� � � p � �� � � � � � X� � �U��
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where p � �. A model for LTL is a path � in a transition system M �
(S �R�V). If u � �, then we denote by �[u] the element indexed by u in
� (thus �[0] denotes the first element, �[1] the second, and so on). The
satisfaction relation “�� u �� �” between pairs �� u and LTL formulae �
formalises the condition “after u steps of the computation given by �, the
formula � holds” and is inductively defined via the following rules:

�� u �� �

�� u �� p i� p � V(�[u]) (where p � �)

�� u �� �� i� �� u ��� �

�� u �� � � � i� �� u �� � or �� u �� �

�� u �� X� i� �� u � 1 �� �

�� u �� �U� i� there exists v � u such that �� v �� � and for all w
such that u � w � v, we have ��w �� �.

(It is worth mentioning that the semantics of LTL can equivalently be de-
fined using a flow of time t1� t2� � � � and without introducing an underlying
transition systemM. This is the viewpoint taken in our discussion of Prior’s
temporal logics. The main purpose of introducing state transition systems
is to make explicit the computational interpretation of LTL and to enable
the comparison with CTL in the next section.)
The reader will have noticed that the temporal operator U has been given

a slightly di�erent interpretation here: previously we had the “strict” inter-
pretation of �U� according to which �U� is true at t if � is true some time
t� later than t and � is true at all time points properly between t and t�. This
interpretation is typically seen in philosophical temporal logic motivated
by capturing the semantics of natural language tense constructs. In con-
trast, in typical computer science temporal logic t� can be t itself or later.
The same applies to the definition of F and G in terms of U. As before we
define the temporal connectives F and G by setting

F� � �U� G� � �F���

As the truth condition of U has changed, so have the truth conditions of
F� and G�. G� means “either now or at some time later �” and G� means
“now and always in the future �”. In what follows these distinctions will
not play any important role.
Referring back to Figure 2(a), consider the path �0. The following tem-

poral properties may be seen to hold:
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� �0� 0 �� x � y

� �0� 0 �� X(y � �x)

� �0� 0 �� XXX(y � �x)

� �0� 1 �� y � �x

� �0� 0 �� F(y � �x)

� �0� 0 �� GF(x � y)

However, considering path �1, we have for example:

� �1� 0 �� X(y � �x)

� �1� 0 �� XXX(x � �y)

At this point, let us take a look at the types of properties that LTL may
be used to specify. As we noted above, it is generally accepted that such
properties fall into two categories: safety and liveness properties2. In-
formally, a safety property can be interpreted as saying that “something
bad won’t happen”. For obvious reasons, safety properties are sometimes
called invariance properties. The simplest kind of safety property is global
invariant, expressed by a formula of the form: G�. A mutual exclusion
property is a global invariant of the form: G

��n
i�1 �i � 1

�
. This formula

states that at most one of the properties �i � ��1� � � � � �n� should hold at
any one time. (The � notation is readily understood if one thinks of truth
being valued at 1, falsity at 0.) A local invariant, stating that whenever
� holds, � must hold also, is given by the following formula: G(� � �).
Where a system terminates, partial correctness may be specified in terms
of a precondition �, which must hold initially, a postcondition �, which
must hold on termination, and a condition �, which indicates when ter-
mination has been reached: � � G(� � �). A liveness property is one
that states that “something good will eventually happen”. The simplest
liveness properties have the form F�, stating that eventually, � will hold.
Termination is an example of liveness. The basic termination property is:
� � F� which states that every run which initially satisfied the property
� eventually satisfied the property �, where � is the property which holds
when a run has terminated. Another useful liveness property is temporal
implication: G(� � F�) which states that “every � is followed by a �”.
Responsiveness is a classic example of temporal implication: suppose �

2The material in this section has been adapted from [9, p1049–1054].
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Axioms:
(LAX1) propositional tautologies
(LAX2) �X�� X��
(LAX3) X(�� �)� (X�� X�)
(LAX4) G(�� �)� (G�� G�)
(LAX5) G�� (� � XG�)
(LAX6) G(�� X�)� (�� G�)
(LAX7) (�U�)� F�
(LAX8) (�U�)� (� � (� � X(�U�))

Inference Rules:
(LIR1) From � �� � and � � infer � �
(LIR2) From � � infer � G�

Table 1: A complete axiomatization for LTL.

represents a “request”, and � a “response”. The above temporal implica-
tion would then state that every request is followed by a response.
A great many technical results have been obtained with respect to LTL.

A complete axiomatization was given in [19], and several di�erent axioma-
tizations have subsequently been presented (see Table 1 for one). Tableau-
based proof methods for LTL were introduced by Wolper [45], and reso-
lution proof methods were developed by Fisher [15]. The computational
complexity of satisfiability checking for LTL was investigated by Sistla and
Clarke, who showed that the problem is PSPACE-complete [38].
One interesting aspect of temporal languages over the natural numbers

(and, in particular, LTL) which has turned out to be of great practical and
theoretical value in computer science, is the relationship to automata for
infinite words [30]. Of particular interest in temporal logic are a class of
automata known as Büchi automata. Büchi automata are those that can
recognise �-regular expressions: regular expressions that may contain in-
finite repetition. A fundamental result in temporal logic theory is that for
every LTL formula � one can construct a Büchi automaton A� that accepts
exactly the models of � (more precisely, the infinite words corresponding
to models of �). The technique for constructing A� from � is closely re-
lated to Wolper’s tableau proof method for temporal logic [45]. This result
yields a decision procedure for satisfability of LTL formulae: to deter-
mine whether a formula � is satisfiable, construct the automaton A� and
check whether this automaton accepts at least one word (the latter problem
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is well-understood and can be solved in polynomial time). We refer the
reader to [30] for an overview of automata-based techniques for temporal
reasoning.

4.3 Branching Temporal Logic – CTL

If we are interested in the branching structure of reactive programs and
their possible computations, then LTL does not seem a very appropriate
language. With linear time, there is just one path, so an event either hap-
pens or it doesn’t happen. But for a reactive program there may be multiple
possible computations, and an event may occur on some of these, but not
on others. How to capture this type of situation? The basic insight in CTL
is to talk about possible computations (or futures) by introducing two op-
erators “A” (“on all paths . . . ”) and “E” (“on some path . . . ”), called path
quantifiers, which can be prefixed to a temporal (LTL) formula. For exam-
ple, the CTL formula AFp says “on all possible futures, p will eventually
occur”, while the CTL formula EFq says “there is at least one possible fu-
ture on which q eventually occurs”. CTL imposes one important syntactic
restriction on the structure of formulae: a temporal (LTL) operator must
be prefixed by a path quantifier. The language without this restriction is
known as CTL* [11]: it is much more expressive than CTL, but also much
more complex. For simplicity, we will here stick with CTL.
Starting from a set� of propositional atoms, the syntax of CTL is defined

by the following grammar:

� ::� � � p � �� � � � � � EX� � E(�U�) � AX� � A(�U�)

where p � �. Given these operators, we can derive the remaining CTL
temporal operators as follows:

AF� � A(�U�) EF� � E(�U�)
AG� � �EF�� EG� � �AF��

As in the case of LTL, the semantics of CTL is defined with respect to
transition systems. For a state s in a transition system M � (S �R�V) we say
that a path � is a s-path if �[0] � s. Let paths(s) denote the set of s-paths
over M.
The satisfaction relation “M� s �� �” between pairs M� s and CTL for-

mulae � formalizes the condition “at state s in the transition system M the
formula � holds” and is inductively defined via the following rules:

M� s �� �
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M� s �� p i� p � V(s) (where p � �);

M� s �� �� i� M� s ��� �

M� s �� � � � i� M� s �� � or M� s �� �

M� s �� AX� i� �� � paths(s) : M� �[1] �� �

M� s �� EX� i� �� � paths(s) : M� �[1] �� �

M� s �� A(�U�) i� �� � paths(s)��u � �, s.t. M� �[u] �� � and
�v� (0 � v � u) : M� �[v] �� �

M� s �� E(�U�) i� �� � paths(s)��u � �, s.t. M� �[u] �� � and
�v� (0 � v � u) : M� �[v] �� �

Referring back to the branching time model given in Figure 2(c), we
leave the reader to verify that in the initial state, the following formulae are
satisfied:

� EXx

� �AXx

� AFy

� E(xUy)

At this point, it is a useful exercise to convince oneself that one cannot
interpret in any meaningful way LTL formulae in pairs M� s consisting of
a model and a state: a run is required to interpret pure temporal formulae
without prefixed path quantifiers. Conversely, one cannot interpret CTL
formulae in pairs �� u consisting of a run and a number: the whole transition
system is required to interpret path quantifiers.
As with LTL, many technical results have been obtained with respect to

CTL. A complete axiomatization is given in Table 2 (see [10]; for discus-
sion and further references, see [9, p.1040]). Satisfiability of CTL formulas
is harder than that of LTL: the problem is EXPTIME-complete [9, p.1037].
As with linear time temporal logic, the relationship to automata is funda-
mental for understanding the behaviour of CTL and other branching time
logics. Here one employs automata for infinite trees rather than infinite
words. We refer the reader to [30] for an overview.
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Axioms:
(BAX1) propositional tautologies
(BAX2) EF�� E(�U�)
(BAX2b) AG�� �EF��
(BAX3) AF�� A(�U�)
(BAX3b) EG�� �AF��
(BAX4) EX(� � �)� (EX� � EX�)
(BAX5) AX�� �EX��
(BAX6) E(�U�)� (� � (� � EXE(�U�)))
(BAX7) A(�U�)� (� � (� � AXA(�U�)))
(BAX8) EX� � AX�
(BAX9) AG(�� (�� � EX�))� (�� �A(�U�))
(BAX9b) AG(�� (�� � EX�))� (�� �AF�)
(BAX10) AG(�� (�� � (� � AX�)))� (�� �E(�U�))
(BAX10b) AG(�� (�� � AX�))� (�� �EF�)
(BAX11) AG(�� �)� (EX�� EX�)

Inference Rules:
(BIR1) From � � and � �� � infer � �
(BIR2) From � � infer � AG�

Table 2: A complete axiomatization for CTL.

5 Interval Temporal Logics

In all temporal logics we considered so far, temporal formulae were evalu-
ated at time points or states. An alternative, and typically more powerful,
way of evaluating formulae is in intervals, sets I of time points with the
property that if t1 � t2 � t3 and t1� t3 � I, then t2 � I. For example, the
sentence "Mary often visits her mother" can be true in a certain interval,
say from 2006 to 2008, but it does not make sense to say that it is true at
a certain time point or state. Many di�erent interval based temporal logics
have been introduced [22, 39, 29]. When designing such a language, the
first decision to take is the set of temporal operators. Between time points,
there are only three distinct qualitative relations: before, after, and equal.
This might be the reason that point-based temporal logics typically employ
(some subset) of the rather small set of operators discussed above (Kamp’s
Theorem provides another explanation). In contrast, there are thirteen dis-
tinct qualitative relations between time intervals, known as Allen’s rela-



Temporal and Dynamic Logic 267

tions [2]. To give just four obvious examples: interval I can be before
interval J (for all t � I� t� � J we have t � t�), I and J can overlap, I can
be during J, and I can finish J. The possible choices of temporal operators
for interval-based logics reflect these relations. For example, for the rela-
tion "before" one can introduce a temporal operator �before� whose truth
condition is as follows:

�before� � is true in interval I if, and only if, there exists an
interval J before I such that � is true in J.

Operators �overlap�, �during�, etc. can be introduced in the same way.
The resulting temporal language with operators for all 13 Allen relations
(or some subset thereof of equal expressivity) has been investigated ex-
tensively [22, 39]. In contrast to most point-based temporal logics, the
resulting temporal tautologies are typically undecidable. Often (e.g., for
the discrete time flow consisting of a copy of the natural numbers and for
the time flow consisting of the reals) they are even not recursively enu-
merable and, therefore, non-axiomatizable [22]. Such a negative result
can give rise to an interesting new research program: to classify the frag-
ments of the undecidable�non-axiomatizable logic into those that are decid-
able�axiomatizable and those that are still undecidable�non-axiomatizable.
The paradigmatic example of such a program is the undecidability of clas-
sical predicate logic that has transformed Hibert’s original Entscheidungs
problem into a classification problem asking which fragments of classical
predicate logic are decidable [5]. For interval temporal logics a similar (but
smaller scale) program has been launched. The recent state of the art for
the classification problem for interval temporal logics is described in [7].

From a philosophical as well as mathematical perspective it is also of
interest to regard intervals not as derived objects from time points but as
primitive objects [39]. The models in which temporal formulae are inter-
preted are then not collections of time points, but collections of intervals
with temporal relations between them. Typical temporal relations one can
consider are (subsets of) the set of thirteen Allen relations, however, now
one has to explicitly axiomatize their properties rather than derive them
from the underlying point based structure. This then opens the door for
representation theorems: when is an abstract structure of primitive intervals
representable as a concrete structure of intervals induced by time points?
Can one describe those structures axiomatically? We refer the reader to
[39, 40] for a discussion of this approach and results.
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6 Dynamic Logic

At about the same time that Pnueli was first investigating temporal logic,
a di�erent class of logics, also based on modal logic, were being devel-
oped for reasoning about actions in general, and computer programs in
particular. The starting point for this research is the following observa-
tion. Temporal logics allow us to describe the time-varying properties of
dynamic domains, but they have nothing to say about the actions that cause
these changes; that is, in the language, we have no direct way of expressing
things like “Michael turned the motor on”. Here “turning the motor on” is
an action, and the performance of this action changes the state of the world.
There are many situations, however, where it is desirable to be able to ex-
plicitly refer to actions and the e�ects that they have. One such domain
that is particularly well-suited for formal representation and reasoning is
computer programs. A computer program can be regarded as a list of ac-
tions which the computer must execute one after the other. Note that in
contrast to many other domains, there is little or no ambiguity about what
the actions are; the computer programming language makes the meaning
and e�ect of such actions precise, and this enables us to develop and use
formalisms for reasoning about them. Dynamic logics arose from the de-
sire to establish the correctness of computer programs using a logic that
explicitly refers to the actions the computer is executing.
An important question to ask about terminating programs is what prop-

erties they guarantee, i.e., what properties are guaranteed to hold after they
have finished executing. This type of reasoning can be captured using
modal operators: we might interpret the formula [�]� to mean that “af-
ter all possible terminating runs of the program �, the formula � holds”.
Given a conventional Kripke semantics, possible worlds are naturally inter-
preted as the states of a machine executing a program. However, this modal
treatment of programs has one key limitation. It treats programs as atomic,
whereas in reality, programs are highly structured, and this structure is cen-
tral to understanding their behaviour. So, rather than using a single modal
“box” operator, the idea in dynamic logic is to use a collection of operators
[�], one for each program �, where [�]� then means “on all terminating
executions of program �, the property � holds”. Crucially, � is allowed to
contain program constructs such as selection (“if”) statements, loops, and
the like; the overall behaviour of programs is derived from their compo-
nent programs. The resulting formalism is known as dynamic logic; it was
originally formulated by Vaughan Pratt in the late 1970s. Here, we will in-
troduce the best-known variant of dynamic logic, known as Propositional
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Dynamic Logic (PDL), introduced by Fischer and Ladner [14].
Formally, we define the syntax of programs � and formulae � with re-

spect to a set A of atomic actions and a set � of propositional atoms by
mutual induction through the following grammar:

� ::� � � �; � � �� � � � � � �?
� ::� p � �� � � � � � [�]�

where � � A and p � �.
The program constructs “;”, “�”, “��”, and “?” are known as sequence,

choice, iteration, and test, and closely reflect the basic constructs found in
programming languages:

�1; �2 means “execute program �1 and then execute program �2”;

�1 � �2 means “either execute program �1 or execute program �2”;

�� means “repeatedly execute � (an undetermined number of times)”;

and

�? means “only proceed if � is true.”

Let us see a few examples of PDL formulae, and the program properties
that they capture.

p� [�]q

This asserts that if p is true, then after we have executed program �, we are
guaranteed to have q true.

p� [�1 � �2]q

This asserts that if p is true, then no matter whether we execute program
�1 or program �2, � will be true.
The program constructs provided in PDL may seem rather strange to

those familiar with programming languages such as C, PASCAL, or JAVA.
In particular, we do not seem to have in PDL operators for ��. . .���� con-
structs, or the familiar loop constructs such as ����� and ������. How-
ever, this is not the case: they can be defined in terms of PDL constructs,
as follows. First, consider the following definition of an ��. . .���� con-
struction:

�� � ���� �1 ���� �2 � ((�?; �1) � (��?; �2))
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A ����� construct can be defined:

����� � �� � � ((�?; �)�;��?)

A ������ construct can be defined:

������ � ����� � � �; ����� �� �� �
� �; ((��?; �)�; �?)

We invite the reader to convince themselves that these definition do indeed
capture the meaning of these operators in C�JAVA-like languages.
The semantics of PDL are somewhat more involved than the logics we

have looked at previously. It is based on the semantics of normal modal
logic; we have a set S of states, and for each atomic action � we have a
relation R� � S � S , defining the behaviour of �, with the idea being that
(s� s�) � R� if state s� is one of the possible outcomes that could result from
performing action � in state s. Given these atomic relations, we can then
obtain accessibility relations for arbitrary programs �, as follows. Let the
composition of relations R1 and R2 be denoted by R1 �R2, and the reflexive
transitive closure (ancestral) of relation R by R�. Then the accessibility
relations for complex programs are defined [23]:

R�1;�2 � R�1� R�2
R�1��2 � R�1 � R�2

R�� � (R�)�

R�? � �(s� s) � M� s �� ���

Notice that the final clause refers to a satisfaction relation for PDL, ��,
which has not yet been defined. So let us define this relation. A model for
PDL is a structure:

M � �S � �R����A�V�

where:

� S is a set of states;

� �R����A is a collection of accessibility relations, one for each atomic
program � � A; and

� V : S � 2� gives the set of propositional atoms true in each state.

Given these definitions, the satisfaction relation �� for PDL holds between
pairs M� s and formulae:
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Axioms:
(PAX1) propositional tautologies
(PAX2) [�](�� �)� ([�]�� [�]�)
(PAX3) [�](� � �)� [�]� � [�]�
(PAX4) [�1 � �2]�� [�1]� � [�2]�
(PAX5) [�1; �2]�� [�1][�2]�
(PAX6) [�?]�� (�� �)
(PAX7) � � [�][��]�� [��]�
(PAX8) � � [��](�� [�]�)� [��]�

Inference Rules:
(PIR1) From � �� � and � � infer � �
(PIR2) From � � infer � [�]�

Table 3: A complete axiomatization for PDL.

M� s �� p i� p � V(s) (where p � �);

M� s �� �� i� not M� s �� �

M� s �� � � � i� M� s �� � or M� s �� �

M� s �� [�] i� �s� � S such that (s� s�) � R� we have M� s� �� �

A complete axiomatization of PDL was first given by Segerberg [36] – see
Table 3. The satisfiability problem for PDL is EXPTIME-complete [13].
Thus PDL has the same computational complexity as CTL. Numerous ex-
tensions of PDL with various additional program constructors such as loop,
intersection, and converse have been considered. For an overview, we refer
the reader to [23]. There also exist first-order versions of dynamic logics
in which the abstract atomic actions of PDL are replaced by “real” atomic
programs such as, for example, x :� x � 4 [23].

7 Further Reading

We emphasise that temporal and dynamic logics are major research areas,
with a vast literature behind them. In this short paper, we have been able
to do no more than sketch some of the major directions and developments.
For more reading, we recommend [43] as a gentle and short introduc-
tion to temporal logic, [21] as a mathematical introduction to temporal
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and dynamic logic, with particular emphasis on the use of such logics for
reasoning about programs, and [9] for an excellent technical introduction
to LTL and CTL. A recent collection of papers on temporal reasoning in
AI is [17]; a comprehensive overview article, providing many pointers to
further reading on temporal logic may be found in [16]. The debate on
the relative merits of linear versus branching time logics to a certain ex-
tent continues today; see, e.g., [41] for a relatively recent contribution to
the debate, with extensive references. The definitive reference to dynamic
logic is [23].
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Logic and Categories as Tools for Building
Theories

SAMSON ABRAMSKY�

1 Introduction

My aim in this short article is to provide an impression of some of the ideas
emerging at the interface of logic and computer science, in a form which I
hope will be accessible to philosophers.
Why is this even a good idea? Because there has been a huge interaction

of logic and computer science over the past half-century which has not only
played an important rôle in shaping Computer Science, but has also greatly
broadened the scope and enriched the content of logic itself.1

This huge e�ect of Computer Science on Logic over the past five decades
has several aspects: new ways of using logic, new attitudes to logic, new
questions and methods. These lead to new perspectives on the question:

What logic is — and should be!

Our main concern is with method and attitude rather than matter; never-
theless, we shall base the general points we wish to make on a case study:
Category theory. Many other examples could have been used to illustrate
our theme, but this will serve to illustrate some of the points we wish to
make.

2 Category Theory

Category theory is a vast subject. It has enormous potential for any serious
version of ‘formal philosophy’ — and yet this has hardly been realized.
We shall begin with introduction to some basic elements of category the-

ory, focussing on the fascinating conceptual issues which arise even at
�Oxford University Computing Laboratory
1This view is not universally held, either among Computer Scientists or logicians, but I

and many of my colleagues do believe it — and we are right!
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the most elementary level of the subject, and then discuss some its con-
sequences and philosophical ramifications.

2.1 Some Basic Notions of Category Theory

We briefly recall the basic definitions. A category has a collections of
objects A, B, C, . . . , and a collection of arrows (or morphisms) f , g h . . . .
Each arrow has specified objects as its domain and codomain.2 We write
f : A � B for an arrow with domain A and codomain B. For any triple
of objects A� B�C there is an operation of composition: given f : A � B
and g : B � C, we can form g � f : A � C. Note that the codomain of
f has to match with the domain of g. Moreover, for each object A, there
is an identity arrow idA : A � A. These data are subject to the following
axioms:

h � (g � f ) � (h � g) � f f � idA � f � idB � f

whenever the indicated compositions make sense, i.e. the domains and
codomains match appropriately.
These definitions appear at first sight fairly innocuous: some kind of al-

gebraic structure, reminiscent of monoids (groups without inverses), but
with the clumsy-looking apparatus of objects, domains and codomains re-
stricting the possibilities for composition of arrows. These first appear-
ances are deceptive, as we shall see, although in a few pages we can only
convey a glimpse of the richness of the notions which arise as the theory
unfolds.
Let us now see some first examples of categories.

� The most basic example of a category is Set: the objects are sets,
and the arrows are functions. Composition and identities have their
usual meaning for functions.

� Any kind of mathematical structure, together with structure preserv-
ing functions, forms a category. E.g.

– Mon (monoids and monoid homomorphisms)

– Grp (groups and group homomorphisms)

– Vectk (vector spaces over a field k, and linear maps)

– Pos (partially ordered sets and monotone functions)
2More formally, there are operations dom, cod from arrows to objects.
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– Top (topological spaces and continuous functions)

� Rel: objects are sets, arrows R : X � Y are relations R � X � Y .
Relational composition:

R; S (x� z) �� �y�R(x� y) � S (y� z)

� Let k be a field (for example, the real or complex numbers). Con-
sider the following categoryMatk. The objects are natural numbers.
A morphism M : n� m is an n �m matrix with entries in k. Com-
position is matrix multiplication, and the identity on n is the n � n
diagonal matrix.

� Monoids are one-object categories. Arrows correspond to the ele-
ments of the monoid, composition of arrows to the monoid multipli-
cation, and the identity arrow to the monoid unit.

� A category in which for each pair of objects A, B there is at most one
morphism from A to B is the same thing as a preorder, i.e. a reflexive
and transitive relation. Note that the identity arrows correspond to
reflexivity, and composition to transitivity.

2.1.1 Categories as Contexts and as Structures

Note that our first class of examples illustrate the idea of categories as
mathematical contexts; settings in which various mathematical theories can
be developed. Thus for example, Top is the context for general topology,
Grp is the context for group theory, etc.
This issue of “mathematics in context” should be emphasized. The idea

that any mathematical discussion is relative to the category we happen to
be working in is pervasive and fundamental. It allows us simultaneously
to be both properly specific and general: specific, in that statements about
mathematical structures are not really precise until we have specified which
structures we are dealing with, and which morphisms we are considering
— i.e. which category we are working in. At the same time, the awareness
that we are working in some category allows us to extract the proper gener-
ality for any definition or theorem, by identifying exactly which properties
of the ambient category we are using.
On the other hand, the last two examples illustrate that many impor-

tant mathematical structures themselves appear as categories of particular
kinds. The fact that two such di�erent kinds of mathematical structures
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as monoids and posets should appear as extremal versions of categories is
also rather striking.
This ability to capture mathematics both “in the large” and “in the small”

is a first indication of the flexibility and power of categories.

2.1.2 Arrows vs. Elements

Notice that the axioms for cateories are formulated purely in terms of the
algebraic operations on arrows, without any reference to ‘elements’ of the
objects. Indeed, in general elements are not available in a category. We
will refer to any concept which can be defined purely in terms of composi-
tion and identities as arrow-theoretic. We will now take a first step towards
learning to “think with arrows” by seeing how we can replace some famil-
iar definitions for functions between sets couched in terms of elements by
arrow-theoretic equivalents.
We say that a function f : X �� Y is:

injective if �x� x� � X� f (x) � f (x�) �� x � x� ,
surjective if �y � Y��x � X� f (x) � y ,

monic if �g� h : Z � X� f � g � f � h �� g � h ,
epic if �g� h : Y � Z� g � f � h � f �� g � h .

Note that injectivity and surjectivity are formulated in terms of elements,
while epic and monic are arrow-theoretic.

Proposition 1. Let f : X � Y. Then:

1. f is injective i� f is monic.

2. f is surjective i� f is epic.

Proof We show 1. Suppose f : X � Y is injective, and that f �g � f �h,
where g� h : Z � X. Then for all z � Z:

f (g(z)) � f � g(z) � f � h(z) � f (h(z)) �

Since f is injective, this implies g(z) � h(z). Hence we have shown that

�z � Z� g(z) � h(z) �

and so we can conclude that g � h. So f injective implies f monic. For the
converse, fix a one-element set 1 � ���. Note that elements x � X are in
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1–1 correspondence with functions x̄ : 1� X, where x̄(�) :� x. Moreover,
if f (x) � y then ȳ � f � x̄ . Writing injectivity in these terms, it amounts to
the following:

�x� x� � X� f � x̄ � f � x̄� �� x̄ � x̄��

Thus we see that being injective is a special case of being monic. �

The reader will enjoy — and learn from — proving the equivalence for
functions of the conditions of being surjective and epic.

2.1.3 Generality of Notions

Since the concepts of monic and epic are defined in purely arrow-theoretic
terms, they make sense in any category. This possibility for making def-
initions in vast generality by formulating them in purely arrow-theoretic
terms can be applied to virtually all the fundamental notions and construc-
tions which pervade mathematics.
As an utterly elementary, indeed “trivial” example, consider the notion of

isomorphism. What is an isomorphism in general? On might try a defini-
tion at the level of generality of model theory, or Bourbaki-style structures,
but this is really both unnecessarily elaborate, and still insu�ciently gen-
eral. Category theory has exactly the language needed to give a perfectly
general answer to the question, in any mathematical context, as specified
by a category. An isomorphism in a category � is an arrow f : A � B
with a two-sided inverse: an arrow g : B� A such that

g � f � idA� f � g � idB�

One can check that in Set this yields the notion of bijection; in Grp it
yields isomorphism of groups; in Top it yields homeomorphism; in Matk,
it yields the usual notion of invertible matrix; and so on throughout the
range of mathematical structures. In a monoid considered as a category,
an isomorphism is an invertible element. Thus a group is exactly a one-
object category in which every arrow is an isomorphism! This cries out
for generalization; and the notion of a category in which every arrow is
an isomorphism is indeed significant — it is the idea of a groupoid, which
plays a key rôle in modern geometry and topology.
We also see here a first indication of the prescriptive nature of categori-

cal concepts. Having defined a category, what the notion of isomorphism
means inside that category is now fixed by the general definition. We can
observe and characterize what that notion is; if it isn’t right for our pur-
poses, we need to work in a di�erent category.
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2.1.4 Replacing Coding by Intrinsic Properties

We now consider one of the most common constructions in mathemat-
ics: the formation of “direct products”. Once again, rather than giving a
case-by-case construction of direct products in each mathematical context
we encounter, we can express once and for all a general notion of prod-
uct, meaningful in any category — and such that, if a product exists, it
is characterised uniquely up to unique isomorphism. Given a particular
mathematical context, i.e. a category, we can then verify whether on not
the product exists in that category. The concrete construction appropriate
to the context will enter only into the proof of existence; all of the useful
properties of the product follow from the general definition. Moreover, the
categorical notion of product has a normative force; we can test whether
a concrete construction works as intended by verifying that it satisfies the
general definition.
In set theory, the cartesian product is defined in terms of the ordered pair:

X � Y :� �(x� y) � x � X � y � Y��

It turns out that ordered pairs can be defined in set theory, e.g. as

(x� y) :� ��x� y�� y��

Note that in no sense is such a definition canonical. The essential properties
of ordered pairs are:

1. We can retrieve the first and second components x, y of the ordered
pair (x� y), allowing projection functions to be defined:

�1 : (x� y) �� x� �2 : (x� y) �� y �

2. The information about first and second components completely de-
termines the ordered pair:

(x1� x2) � (y1� y2) �� x1 � y1 � x2 � y2�

The categorical definition expresses these properties in arrow-theoretic terms,
meaningful in any category.
Let A� B be objects in a category �. A product of A and B is an object

A � B together with a pair of arrows A �

�1 A � B �2
� B such that for

every such triple A �

f
C

g
� B there exists a unique morphism

� f � g� : C �� A � B
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such that the following diagram commutes.
Writing the equations corresponding to this commuting diagram explic-

itly, one obtains:

�1 � � f � g� � f � �2 � � f � g� � g�

Moreover, � f � g� is the unique morphism h : C � A � B satisfying these
equations.
To relate this definition to our earlier discussion of definitons of pairing

for sets, note that a ‘pairing’ A �

f
C

g
� B o�ers a decomposition ofC

into components in A and B, at the level of arrows rather than elements. The
fact that pairs are uniquely determined by their components is expressed in
arrow-theoretic terms by the universal property of the product; the fact that
for every candidate pairing, there is a unique arrow into the product, which
commutes with taking components.
As immediate evidence that this definition works in the right way, we

note the following properties of the categorical product (which of course
hold in any category):

� The product is determined uniquely up to unique isomorphism. That
is, if there are two pairings satisfying the universal property, there is
a unique isomorphism between them which commutes with taking
components. This sweeps away all issues of coding and concrete
representation, and shows that we have isolated the essential content
of the notion of product. We shall prove this property for the related
case of terminal objects in the next subsection.

� We can also express the universal property in purely equational terms.
This equational specification of products requires that we have a
pairing A �

�1 A � B �2
� B satisfying the equation

�1 � � f � g� � f � �2 � � f � g� � g
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as before, and additionally, for any h : C � A � B:

h � ��1 � h� �2 � h��

This says that any map into the product is uniquely determined by
its components. This equational specification is equivalent to the
definition given previously.

We look at how this definition works in some of our example categories.

� In Set, products are the usual cartesian products.

� In Pos, products are cartesian products with the pointwise order.

� In Top, products are cartesian products with the product topology.

� In Vectk, products are direct sums.

� In a poset, seen as a category, products are greatest lower bounds.

2.1.5 Terminal Objects

Our discussion in the previous sub-section was for binary products. The
same idea can be extended to define the product of any family of objects
in a category. In particular, the apparently trivial idea of the product of
an empty family of objects turns out to be important. The product of an
empty family of objects in a category � will be an object 1; there are no
projections, since there is nothing in the family to project to! The universal
property turns into the following: for each object A in �, there is a unique
arrow from C to 1. Note that compatibility with the projections trivially
holds, since there are no projections! This ‘empty product’ is the notion of
terminal object, which again makes sense in any category.

Examples

� In Set, any one-element set ��� is terminal.

� In Pos, the poset (���� �(�� �)�) is terminal.

� In Top, the space (���� ��� ����) is terminal.

� In Vectk, the one-element space �0� is terminal.

� In a poset, seen as a category, a terminal object is a greatest element.
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We shall now prove that terminal objects are unique up to (unique) iso-
morphism. This property is characteristic of all such “universal” defini-
tions. For example, the apparent arbitrariness in the fact that any singleton
set is a terminal object in Set is answered by the fact that what counts is the
property of being terminal; and this su�ces to ensure that any two objects
having this property must be isomorphic to each other.
The proof of the proposition, while elementary, is a first example of dis-

tinctively categorical reasoning.

Proposition 2. If T and T � are terminal objects in the category � then
there exists a unique isomorphism T � T �.
Proof Since T is terminal and T � is an object of �, there is a unique
arrow �T � : T � � T . We claim that �T � is an isomorphism. Since T � is
terminal and T is an object in �, there is an arrow ��T : T � T �. Thus
we obtain �T � � ��T : T � T , while we also have the identity morphism
idT : T � T . But T is terminal, and therefore there exists a unique arrow
from T to T , which means that �T � � ��T � idT . Similarly, ��T � �T � � idT � ,
so �T � is indeed an isomorphism. �

One can reduce the corresponding property for binary products to this
one, since the definition of binary product is equivalently expressed by
saying that the pairing A �

�1 A� B �2
� B is terminal in the category of

such pairings, where the morphisms are arrows preserving the components.
It is straightforward to show that if a category has a terminal object, and

all binary products, then it has products of all finite families of objects.
Thus these are the two cases usually considered.

2.1.6 Natural Numbers

Wemight suppose that category theory, while suitable for formulating gen-
eral notions and structures, would not work well for specific mathematical
objects such as the number systems. In fact, this is not the case, and the
idea of universal definition, which we just caught a first glimpse of in the
categorical notion of product, provides a powerful tool for specifying the
basic discrete number systems of mathematics. We shall illustrate this with
the most basic number system of all — the natural numbers (i.e. the non-
negative integers).
Suppose that � is a category with a terminal object 1. We define a natural

numbers object in � to be an object N together with arrows z : 1� N and
s : N � N such that, for every such triple of an object A and arrows
c : 1� A, f : A � A, there exists a unique arrow (note this characteristic
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property of universal definitions again) h : N � A such that the following
diagram commutes:
Equivalently, this means that the following equations hold:

h � z � c� h � s � f � h�

Once again, the universal property implies that if a natural numbers ob-
ject exists in �, it is unique up to unique isomorphism. We are not commit-
ted to any particular representation of natural numbers; we have specified
the properties a structure with a constant and a unary operation must have
in order to function as the natural numbers in a particular mathematical
context.
In Set, we can verify that � � �0� 1� 2� � � �� equipped with

z : ��� � � :: � �� 0� s : �� � :: n �� n � 1

does indeed form a natural numbers object. But we are not committed to
any particular set-theoretic representation of �: whether as von Neumann
ordinals, Zermelo numerals [10] or anything else. Indeed, any countable
set X with a particular element x picked out by a map z, and a unary oper-
ation s : X � X which is injective and has X � �x� as its image, will fulfil
the definition; and any two such systems will be canonically isomorphic.
Note that, if we are given a natural numbers object (N� z� s) in an abstract

category �, the resources of definition by primitive recursion are available
to us. Indeed, we can define numerals relative to N: n̄ : 1 � N :� sn � z.
Here sn is defined inductively: s1 � s, sn�1 � s � sn.3 Given any (A� c� f ),
with the unique arrow h : N � A given by the universal property, we can
check that h�n̄ � f n�c. In fact, if we assume that � has finite products, and
refine the definition of natural numbers object to allow for parameters, or

3There is a metainduction going on here, using a natural number object outside the
category under discussion. This is not essential, but is a useful device for seeing what is
going on.



Logic and Categories 287

if we keep the definition of natural numbers object as it is but assume that
� is cartesian closed [19], then all primitive recursive function definitions
can be interpreted in �, and will have their usual equational properties.

2.1.7 Functors: category theory takes its own medicine

Part of the “categorical philosophy” is:

Don’t just look at the objects; take the morphisms into account too.

We can also apply this to categories! A “morphism of categories” is a
functor. A functor F : � � � is given by:

� An object map, assigning an object FA of� to every object A of �.

� An arrow map, assigning an arrow F f : FA � FB of � to every
arrow f : A� B of �, in such a way that composition and identities
are preserved:

F(g � f ) � Fg � F f � FidA � idFA]�

Note that we use the same symbol to denote the object and arrow maps; in
practice, this never causes confusion. The conditions expressing preserva-
tion of composition and identities are called functoriality.
As a first glimpse as to the importance of functoriality, the following fact

can be noted:

Proposition 3. Functors preserve isomorphisms; if f : A � B is an iso-
morphism, so is F f .

Proof Suppose that f is an isomorphism, with inverse f �1. Then

F( f �1) � F( f ) � F( f �1 � f ) � F(idA) � idFA

and similarly F( f ) � F( f �1) � idFB. So F( f �1) is a two-sided inverse for
F f , which is thus an isomorphism. �
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Examples

� Let (P��), (Q��) be preorders (seen as categories). A functor F :
(P��) �� (Q��) is specified by an object-map, say F : P � Q,
and an appropriate arrow-map. The arrow-map corresponds to the
condition

�p1� p2 � P� p1 � p2 � F(p1) � F(p2) �

i.e. to monotonicity of F. Moreover, the functoriality conditions are
trivial since in the codomain (Q��) all hom-sets are singletons.Hence,
a functor between preorders is just a monotone map.

� Let (M� �� 1), (N� �� 1) be monoids. A functor F : (M� �� 1) �� (N� �� 1)
is specified by a trivial object map (monoids are categories with a
single object) and an arrow-map, say F : M � N. The functoriality
conditions correspond to

�m1�m2 � M� F(m1 � m2) � F(m1) � F(m2) � F(1) � 1 �

i.e. to F being a monoid homomorphism.Hence, a functor between
monoids is just a monoid homomorphism.

Some further examples:

� The covariant powerset functor � : Set� Set:

X �� �(X) � ( f : X � Y) �� �( f ) :� S �� � f (x) � x � S ��

� More sophisticated examples: e.g. homology. The basic idea of al-
gebraic topology is that there are functorial assignments of algebraic
objects (e.g. groups) to topological spaces. The fact that functorial-
ity implies that isomorphisms are preserved shows that these assign-
ments are topological invariants. Variants of this idea (‘(co)homology
theories’) are pervasive throughout modern pure mathematics.

2.1.8 The category of categories

There is a category Cat whose objects are categories, and whose arrows
are functors. Identities in Cat are given by identity functors:

Id� : � �� � :� A �� A� f �� f �
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Composition of functors is defined in the evident fashion. Note that if
F : � � � and G : � � � then, for f : A� B in �,

G � F( f ) :� G(F( f )) : G(F(A)) �� G(F(B))

so the types work out. A category of categories sounds (and is) circular,
but in practice is harmless: one usually makes some size restriction on the
categories, and then Cat will be too ‘big’ to be an object of itself.

2.1.9 Logical notions as adjunctions

Finally, we shall take a glimpse at the fundamental notion of adjunction;
not in its most general form, but in some examples arising from logic [22],
which also give a first impression of the deep connections which exist be-
tween category theory and logic.
We begin with implication. Implication and conjunction—whether clas-

sical or intuitionistic — are related by the following bidirectional inference
rule:

� � � � �

� � �� � �

If we form the preorder of formulas related by entailment as a category, this
rule becomes a relationship between arrows which holds in this category.
In fact, it can be shown that this uniquely characterizes implication, and
is a form of universal definition. Note that it gives the essence of what
implication is. The way one proves an implication—essentially the only
way—is to add the antecedent to one’s assumptions and then prove the
consequent. This is justified by the above rule.
In terms of the boolean algebra of sets, define X � Y � Xc � Y , where

Xc is the set complement. Then we have, for any sets X, Y , Z:

X � Y � Z �� X � Y � Z�

The same algebraic relation holds in any Heyting algebra, and defines in-
tuitionistic implication.
Now we show that this same formal structure underpins quantification.

This is the fundamental insight due to Lawvere [22], that quantifiers are
adjoints to substitution.
Consider a function f : X � Y . This induces a function

f �1 : �(Y) �� �(X) :: T �� �x � X � f (x) � T ��
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This function f �1 has both a left adjoint �( f ) : �(X) �� �(Y), and a right
adjoint �( f ) : �(X) �� �(Y). These adjoints are uniquely specified by the
following conditions. For all S � X, T � Y:

�( f )(S ) � T �� S � f �1(T )� f �1(T ) � S �� T � �( f )(S )�

The unique functions satisfying these conditions can be defined explicitly
as follows:

�( f )(S ) :� �y � Y � �x � X� f (x) � y � x � S � �
�( f )(S ) :� �y � Y � �x � X� f (x) � y � x � S � �

Given a formula � with free variables in �v1� � � � � vn�1�, it will receive its
Tarskian denotation ��� in �(An�1) as the set of satisfying assignments:

��� � �s � An�1 � s ��X �� �

We have a projection function

� : An�1 �� An :: (a1� � � � � an�1) �� (a1� � � � � an) �

Note that this projection is the Tarskian denotation of the tuple of terms
(v1� � � � � vn). We can characterize the standard quantifiers as adjoints to this
projection:

��vn�1� �� � �(�)(���)� ��vn�1� �� � �(�)(���) �

More explicitly, the Tarski semantics over a structure� � (A� � � �) assigns
such formulas values in �(An�1). We can regard the quantifiers �vn�1,
�vn�1 as functions

�(�)��(�) : �(An�1) �� �(An)

�(�)(S ) � �s � An � �a � A� s[vn�1 �� a] � S �
�(�)(S ) � �s � An � �a � A� s[vn�1 �� a] � S �

If we unpack the adjunction conditions for the universal quantifier, they
yield the following bidirectional inference rule:

� �X �

� �X �vn�1� �
X � �v1� � � � � vn� �

Here the set X keeps track of the free variables in the assumptions �. Note
that the usual “eigenvariable condition” is automatically taken care of in
this way.
Since adjoints are uniquely determined, this characterization completely

captures the meaning of the quantifiers.
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2.2 Discussion: the significance of category theory

We turn from this all too brief glimpse at the basics of category theory to
discuss its conceptual significance, and why it might matter to philosophy.
The basic feature of category theory which makes it conceptually fas-

cinating and worthy of philosophical study is that it is not just another
mathematical theory, but a way of mathematical thinking, and of doing
mathematics, which is genuinely distinctive, and in particular very di�er-
ent to the prevailing set-theoretic style which preceded it. If one wanted a
clear-cut example of a paradigm-shift in the Kuhnian sense within mathe-
matics, involving a new way of looking at the mathematical universe, then
the shift from the set-theoretic to the categorical perspective provides the
most dramatic example we possess.
This has been widely misunderstood. Category theory has been por-

trayed, sometimes by its proponents, but more often by its detractors, as
o�ering an alternative foundational scheme for mathematics to set theory.
But this is to miss the point. What category theory o�ers is an alternative
to foundational schemes in the traditional sense themselves. This point has
been argued with great clarity and cogency in a forceful and compelling es-
say by Steve Awodey [7]. We shall not attempt to replicate his arguments,
but will just make some basic observations.
Firstly, it must be emphasized that the formalization of mathematics

within the language of set theory, as developed in the first half of the twen-
tieth century, has been extremely successful, and has enabled the formula-
tion of mathematical definitions and arguments with a previously unparal-
leled degree of precision and rigour. However, the set-theoretical paradigm
has some deficiencies.
The set-theoretical formalization of mathematics rests on the idea of rep-

resenting mathematical objects as sets which can be defined within a formal
set theory, typically ZFC. It is indeed a significant empirical observation,
as remarked by Blass [11], that mathematical objects can be thus repre-
sented, and mathematical proofs carried out using the axioms of set theory.
This leads to claims such as the recent one by Kunen [18] (p. 14), that

All abstract mathematical concepts are set-theoretic.
All concrete mathematical objects are specific sets.

This claim fails to ring true, for several reasons.

� Firstly, the set-theoretic representation is too concrete. it involves
irrelevant details and choices — it is a coding rather than a struc-
tural representation of the concepts at hand. We saw this illustrated
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with the issue of defining ordered pairs in set theory, and the con-
trast with the categorical definition of product, which extracted the
essential structural features of pairing at the right level of abstrac-
tion. Even if we think of number systems, the representation say of
the natural numbers as the finite ordinals in set theory is just a par-
ticular coding — there are many others. The essential features of the
natural numbers are, rather, conveyed by the universal definition of
natural numbers object — which makes sense in any category. We
should not ask what natural numbers are, but rather what they do—
or what we can do with them. Set theoretic representations of math-
ematical objects give us too much information— and information of
the wrong kind.

� Furthermore, by being too specific, set theoretic representations lose
much of the generality that mathematical concepts, as used by math-
ematicians, naturally have. Indeed, the notion of natural numbers
object makes sense in any category with a terminal object. More-
over, as a universal consruction, if it exists in a given category, it
is unique up to unique isomorphism. Once we are in a particular
mathematical context specified by a category, we can look and see
what the natural numbers object is — while knowing that the stan-
dard reasoning principles such as proof by induction and definition
by primitive recursion will hold.

� When one passes to more inherently structural notions, such as ‘co-
homology theory’ or ‘coalgebra’ the assertion that ‘all abstract math-
ematical concepts are set-theoretic’ becomes staggeringly implausi-
ble, unless we replace ‘are’ by ‘are codable into’. The crudity of
the pure set-theoretic language becomes all too apparent. One might
indeed say that insensitivity to the distortions of coding is a tell-tale
feature of the set-theoretic cast of thought.

It may be useful to draw an analogy here with geometry. A major
theme of 20th century geometry was the replacement of coordinate-
based definitions of geometrical notions (such as tensors or vari-
eties) with ‘intrinsic’ definitions. Coordinates are still very useful
for calculations, but the intrinsic definitions are more fundamental
and more illuminating — and ultimately more powerful. The move
from set-theoretical encodings, which identify mathematical struc-
tures with specific entities in the set-theoretical universe, to univer-
sal characterizations which make sense in any mathematical context
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(category) satisfying some given background conditions, similarly
leads to greater insight and technical power.

The foundationalist critique of category theory proceeds as follows:

1. Category theory cannot emancipate itself completely from set theory,
and indeed relies on set theory at certain points.

2. Hence it is not truly fundamental, and cannot serve as a foundation
for mathematics.

On the first point, one can discern two main arguments.

� Firstly the very definition of category and functor presuppose the
notion of a collection of things, and of operations on these things.
So one needs an underlying theory of collections and operations as a
substrate for category theory.

This is true enough; but the required ‘theory of collections and op-
erations’ is quite rudimentary. Certainly nothing like formal set the-
ory is presupposed. In fact, the basic notions of categories are es-
sentially algebraic in form [14]; that is, they can be formalized as
partial algebras, in which the domains of definition of the operations
can themselves be defined equationally, in terms of operations which
have already been specified. For example, if we consider composi-
tion as a partial binary operation comp on arrows, then comp(g� f )
is defined just when cod( f ) � dom(g).

� The second argument is that at various points, issues of size enter
into category theory. We saw an example of this in considering the
category Cat of categories and functors. Is Cat an object of Cat?
To avoid such issues, one usually defines a version of Cat with some
size restriction; for example, one only considers categories whose
underlying collection of arrows form a set in Zermelo-Fraenkel set
theory. Then Cat will be too large (a proper class) to be an object of
itself.

There are various technical elaborations of this point. One can con-
sider categories of arbitrary size in a stratified fashion, by assuming a
su�cient supply of inaccessible cardinals (and hence of ‘Grothendieck
universes’ [11]). One can also formalize notions of size relative to an
ambient category one is ‘working inside’; which actually describes
what one is doing when formalizing category-thoretic notions in set
theory.
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Again, the point that in practice category theory is not completely
emancipated from set theory is fair enough. What should be borne in
mind, though, is how innocuous this residue of set theory in category
theory actually is in practice. The strongly typed nature of category
theory means that one rarely — one is tempted to say ‘never’ —
stumbles over these size issues; they serve more as a form of type-
checking than as a substantial topic in their own right. Moreover,
category theoretic arguments typically work generically in relation
to size; thus in practice, one argument fits all cases, despite the strat-
ification.

All this is to say that, while category theory is not completely disentan-
gled from set theory, it is quite misleading to see this as the main issue in
considering the philosophical significance of categories. The temptation to
do so comes from the foundationalist attitude expressed in (2) above.
The form of categorical structuralism sketched by Awodey in [7] stands

in contrast to this set-theoretic foundationalism. It is a much better repre-
sentation of mathematical practice, and it directs attention towards the kind
of issues we have been discussing, and away from the well-worn tracks of
traditional thought in the philosophy of mathematics, which after more
than a century have surely reached, and passed, the point of diminishing
returns.

2.2.1 Categories and Logic

Our brief introduction to category theory did not reach the rich and deep
connections which exist between category theory and logic. Categorical
logic is a well-developed area, with several di�erent branches. The most
prominent of these is topos theory.
Topos theory is an enormous field in its own right, now magisterially

presented in Peter Johnstone’s magnum opus [16]. Because, among other
things, it provides a categorical formulation of a form of set theory, it is
often seen as the main or even the only part of category theory relevant to
philosophy. Topos theory is seen as an alternative or rival to standard ver-
sions of set theory, and the relevance of category theory to the foundations
of mathematics is judged in these terms.
There are many things within topos theory of great conceptual interest;

but topos theory is far from covering all of categorical logic, let alone all
of category theory. From our perspective, there is a great deal of ‘logic’
in the elementary parts of category theory which we have diacussed. The
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overemphasis on topos theory in this context arises from the wish to under-
stand the novel perspectives of category theory in terms of the traditional
concepts of logic and set theory. This impulse is understandable, but mis-
guided. As we have already argued, learning to look at mathematics from
a category-theoretic viewpoint is a real and deep-seated paradigm shift. It
is only by embracing it that we will reap the full benefits.
Thus while we heartily recommend learning about topos theory, this

should build on having already absorbed the lessons to be learnt from cat-
egory theory in general, and with the awareness that there are other impor-
tant connections between category theory and logic, in particular categori-
cal proof theory and type theory.

2.2.2 Applications of Category Theory

As we have argued, category theory has a great deal of intrinsic conceptual
interest. Beyond this, it o�ers great potential for applications in formal
philosophy, as a powerful and versatile tool for building theories. The best
evidence for this comes from Theoretical Computer Science, which has
seen an extensive development of applications of category theory over the
past four decades.
Some of the main areas where category theory has been applied in Com-

puter Science include:

� Semantics of Computation. Denotational semantics of program-
ming languages makes extensive use of categories. In particular,
categories of domains have been widely studied [28, 5]. An impor-
tant topic has been the study of recursive domain equations such as

D � [D� D]

which is a space isomorphic to its own function space. Such spaces
do not arise in ordinary mathematics, but are just what is needed to
provide models for the type-free �-calculus [9], in which one has
self-application, leading to expressions such as the Y combinator

� f �(�x� f (xx))(�x� f (xx))

which produces fixpoints from arbitrary terms: YM � M(YM).

The solution of such domain equations is expressed in terms of fix-
points of functors:

FX � X�



296 SAMSON ABRAMSKY

This approach to the consistent interpretation of a large class of re-
cursive data types has proved very powerful and expressive, in al-
lowing a wide range of reflexive and recursive process behaviours to
be modelled.

Another form of categorical structure which has proved very useful
in articulating the semantic structure of programs are monads. Var-
ious ‘notions of computation’ can be encapsulated as monads [25].
This has proved a fruitful idea, not only in semantics, but also in the
development of functional programming languages.

� Type Theories. An important point of contact between category the-
ory and logic is in the realm of proof theory and type theory. Logical
systems can be represented as categories in which formulas are ob-
jects, proofs are arrows, and equality of arrows reflects equality of
proofs [19]. There are deep connections between cut-elimination in
proof systems, and coherence theorems in category theory. More-
over, this paradigm extends to type theories of various kinds, which
have played an important rôle in computer science as core calculi
for programming languages, and as the basis for automated proof
systems.

� Coalgebra. Over the past couple of decades, a very lively research
area has developed in the field of coalgebra. In particular, ‘universal
coalgebra’ has been quite extensively developed as a very attractive
theory of systems [27]. This entire area is a good witness to the pos-
sibilities a�orded by categorical thinking. The idea of an algebra
as a set equipped with some operations is familiar, and readily gen-
eralizes to the usual setting for universal algebra. Category theory
allows us to dualize the usual discussion of algebras to obtain a very
general notion of coalgebras of an endofunctor. Coalgebras open
up a new and quite unexpected territory, and provides an e�ective
abstraction and mathematical theory for a central class of computa-
tional phenomena:

– Programming over infinite data structures, such as streams,
lazy lists, infinite trees, etc.

– A novel notion of coinduction

– Modelling state-based computations of all kinds

– A general notion of observation equivalence between processes.
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– A general form of coalgebraic logic, which can be seen as a
wide-ranging generalization of modal logic.

In fact, coalgebra provides the basis for a very expressive and flexible
theory of discrete, state-based dynamical systems, which seem ripe
for much wider application than has been considered thus far; for a
recent application to the representation of physical systems, see [2].

� Monoidal Categories.
Monoidal categories impart a geometrical flavour to category the-
ory. They have a beautiful description in terms of ‘string diagrams’
[29], which allows equational proofs to be carried out in a visually
compelling way. There are precise correspondences between free
monoidal categories of various kinds, and constructions of braids,
tangles, links, and other basic structures in knot theory and low-
dimensional topology. Monoidal categories are also the appropri-
ate general setting for the discussion of multilinear algebra, and, as
has recently been shown, for much of the basic apparatus of quan-
tum mechanics and quantum information: tensor products, traces,
kets, bras and scalars, map-state duality, Bell states, teleportation and
more [3, 4]. There are also deep links to linear logic and other sub-
structural, ‘resource-sensitive’ logics, and to diagrammatic represen-
tations of proofs. For a paper showing links between all these topics,
see [1]. Monoidal categories are used in the modelling of concurrent
processes [24], and are beginning to be employed in ‘computational
systems biology’ [17].

Altogether, the development of structures based on monoidal cat-
egories, and their use in modelling a wide range of computational,
physical, and even biological phenomena, is one of the liveliest areas
in current logically and semantically oriented Theoretical Computer
Science.

It is interesting to compare and contrast the two rich realms of mono-
idal categories and the structures built upon them, on the one hand;
and topos theory, on the other. One might say: the linear world,
and the cartesian world. It is still not clear how these two worlds
should be related. A clearer understanding of the mathematical and
structural issues here may shed light on di�cult questions such as
the relation of quantum and classical in physics.

Having surveyed some of the ways in which category theory has been
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used within Computer Science, we shall now consider some of the features
and qualities of category theory which have made it particularly suitable
for these applications, and which may suggest a wider range of possible
applications within the scope of formal philosophy.

Modelling at the right level of abstraction As we have discussed, cate-
gory theory goes beyond coding to extract the essential features of concepts
in terms of universal characterizations, which are then uniquely specified
up to isomorphism. This is not just aesthetically pleasing; as experience
in Computer Science has shown, working at the right level of abstraction
is essential if large and complex systems are to be described and reasoned
about in a managable fashion. Formal philosophy will benefit enormously
by learning this lesson — among others! — from Computer Science.

Compositionality Another deep lesson to be learned fromComputer Sci-
ence is the importance of compositionality, in the general sense of a form
of description of complex systems in terms of their parts. This notion orig-
inates in logic, but has been greatly widened in scope and applicability in
its use in computer science.
The traditional approach to systems modelling in the sciences has been

monolithic; one considers a whole system, models it with a system of dif-
ferential equations or some other formalism, and then analyzes the model.
In the compositional approach, one starts with a fixed set of basic, simple

building blocks, and constructions for building new, more complex sys-
tems out of given sub-systems, and builds up the required complex system
with these. This typically leads to some form of algebraic description of
complex systems:

S � �(S 1� � � � � S n)

where � is an operation corresponding to one of the system-building con-
structions.
In order to understand the logical properties of such a system, one can

develop a matching compositional view:

S 1 �� �1� � � � � S n �� �n
�(S 1� � � � � S n) �� �

One searches for a rule that will allow one to reduce the verification of a
property of a complex system to verifications of suitable sub-properties for
its components.
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The compositional methods for description and analysis of systems which
have been developed in Computer Science are ripe for application in a
much wider range of scientific contexts — and in formal philosophy.

Mappings between representations Another familiar theme in Com-
puter Science is the need for multiple levels of abstraction in describing
and analyzing complex systems, and for mappings between them. Func-
torial methods provide the most general and powerful basis for such map-
pings. Particular cases, such as Galois connections, which specialize the
categorical notion of adjoint functors to posets, are widely used in abstract
interpretation [13].

Normative criteria for definitions As we have already remarked on a
couple of occasions, category theory has a strong normative force. If we
devise a mapping from one kind of structure to another, category theory
tells us that we should demand that it maps morphisms as well as objects,
and that it should be functorial. Similarly, if we devise some kind of prod-
uct for a certain type of structures, category theory tells us which properties
our construction should satisfy to indeed be a product in the correspond-
ing category. More generally, constructions, if they are ‘canonical’, should
satisfy a suitable universal property; and if they do, then they are unique up
to isomorphism. There are other important criteria too, such as naturality
(which we have not discussed).
These demands and criteria to be satisfied should be seen as providing

valuable guidance, as we seek to develop a suitable theory to capture some
phenomenon. If we have no such guidance, it is all too likely that we may
make various ad hoc definitions, not really knowing what we are doing.
As it is, once we have specified a category, there are an enormous range
of well-posed questions about its structure which we can ask. Does the
category have products? Other kinds of limits and colimits? Is it cartesian
closed? Is it a topos? And so on. By the time we have answered these ques-
tions, we will already know a great deal about the structure of the category,
and what we can do with it. We can also then focus on the more distinctive
features of the category, which may in turn lead to a characterization of it,
or perhaps to a classification of categories of that kind.
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2.3 Logic and Category Theory as Tools for Building Theories

The project of scientific or formal philosophy, which seems to be gather-
ing new energy in recent times, can surely benefit from the methods and
tools o�ered by Category theory. Indeed, it can surely not a�ord to neglect
them. Logic has been used as the work-horse of formal philosophy for
many years, but the limitations of logic as traditionally conceived become
apparent as soon as one takes a wider view of the intellectual landscape. In
particular, Computer Science has led the way in finding new ways of ap-
plying logic — and new forms of logic and structural mathematics which
can be fruitfully applied.
Philosophers and foundational thinkers who are willing and able to grasp

these opportunities will find a rich realm of possibilities opening up before
them. Perhaps this brief essay, modest in scope as it is, will point someone
along this road. If so, the author will feel handsomely rewarded.

3 Guide to Further Reading

The lecture notes [6] are a natural follow-up to this article.
The short book [26] is nicely written and gently paced. A very clear,

thorough, and essentially self-contained introduction to basic category the-
ory is given in [8].
Another very nicely written text, focussing on the connections between

categories and logic, and especially topos theory, is [15], recently reissued
by Dover Books. The book [23] is pitched at an elementary level, but o�ers
insights by one of the key contributors to category theory.
The text [20] is a classic by one of the founders of category theory. It

assumes considerable background knowledge of mathematics to fully ap-
preciate its wide-ranging examples, but it provides invaluable coverage of
the key topics. The 3-volume handbook [12] provides coverage of a broad
range of topics in category theory.
A classic text on categorical logic and type theory is [19]. A more ad-

vanced text on topos theory is [21]; while [16] is a comprehensive treatise,
of which Volume 3 is still to appear.
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Memory and Logic: a Tale from Automata
Theory

R. RAMANUJAM�

1 Infrastructure of reasoning

Please assume � � � that there is in our souls a block of wax,
in one case larger, in another smaller, in one case the wax
is purer, in another more impure and harder, in some cases
softer, and in some of proper quality � � � Let us, then, say that
this is the gift of Memory, the mother of the Muses, and that
whenever we wish to remember anything we see or hear or
think of in our own minds, we hold this wax under the percep-
tions and thoughts and imprint them upon it, just as we make
impressions from seal rings; and whatever is imprinted we re-
member and know as long as its image lasts, but whatever is
rubbed out or cannot be imprinted we forget and do not know.

��������� �� ����������� ������ ���������� �����.

I once had the pleasure of reading this quote to some school children. I
was discussing memory in the context of playing games, and the quote was
to set the context. One child in the audience stood up to ask me: “If this
is right, we would need a huge block of wax inside us, how can we carry
it?” Everyone laughed, but she was a true philosopher and had grasped one
important problem underlying reasoning that we often tend to overlook. In
fact, the theory of computation is her natural home, where such questions
are de rigueur.
Logicians typically ask, what do we need to know about something to

reason about it? A supplementary question is lurking here: how much
memory is implied (for acquiring and maintaining such knowledge)? For
an all-powerful being, all reasoning may be instanteneous. But the compo-
sitional language of logic carries with it a notion of a being who assembles
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together pieces of propositional knowledge to construct epistemic edifices
by processes of inference. This is a moving image and uses memory for
retrieval of pieces encountered earlier to combine with pieces constructed
later. So one might well ask: what are the mechanisms that underlie the
process of reasoning, that the reasoner needs to have access to? In other
words, what is the infrastructure of reasoning?
Rather interestingly, such were the considerations that led Alan Turing

to devise the mathematical model of a digital computer, which answered
an important question raised by David Hilbert: what is the notion of an
e�ective procedure? If we were to talk of the existence of procedures to
solve mathematical problems, their construction, or show that such proce-
dures cannot exist, we need to formalize the notion of procedure. In a very
readable and amusing account, Turing takes this head-on: he envisages a
mathematician sitting with pen and paper, writing symbols on paper and
performing calculations. He takes questions of how much ink and paper
would be required very seriously indeed. The model he goes on to de-
fine, what we now call Turing machines, has turned out to be robust: over
the last century, a consensus (based on strong mathematical argument) has
emerged, and ‘solvable’ has come to mean ‘computable’ by a Turing ma-
chine. (See [Dav06] for a lucid account of this history.)
Theory of computation o�ers the paradigm of computational complex-

ity to study these ‘infrastructural’ questions, so that we can sensibly ask
how much memory is needed to solve problems, and sometimes even find
good answers to such questions. This is done by postulating the problem
solver to be a Turing machine which processes instances of the problem
and produces answers, and studying how much memory such a machine
would require, expressed as a function of the input description size. This
is studied under the rubric of space complexity, and solvable problems
are classified as being in logarithmic space, polynomial space, exponen-
tial space, and so on (where the terms refer to the function that reflects the
growth of memory requirement on input size). Why this is a good idea may
not be clear, but since that would take us too far afield, we refer the reader
to texts on theory of computation and complexity such as [HU79], [Koz97]
and [Sip05], and move on. Complexity classes of time and space and rela-
tionships between them occupy a central place in computation theory.
In the context of logic, we could translate the discussion above to ask:

how much memory is needed for solving a problem expressed in a (spec-
ified) formal logical language? Finding a model for the formula (if it is
satisfiable) would amount to solving the problem, so we consider a Turing
machine that takes a formula as input and after some finite time, outputs
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a ‘Yes’ (and perhaps a model for the formula) or a ‘No’ to assert that the
formula is not satisfiable. One then addresses the question of how much
memory would be necessary and su�cient for the hypothesized Turing ma-
chine. This is the well-known question of decision procedures for logics
and their complexity. But there are more questions of this nature, leading to
logical foundations of complexity theory, and in relation to computational
logics.
This is only one of many questions related to memory infrastructure for

reasoners. A natural one, and closer to the spirit of the preceding discus-
sion on reasoning, would be: how much memory is needed for proving
a property in a formal deduction system? This is related to the notion
of proof complexity which attempts to measure how hard it is to prove a
property in a formal system. Consider an arithmetical property such as
�(x) � �y : y � y � x, where � is the multipication operation. The formula
asserts that x is a perfect square. A proof of �(1024) is also a computation
of the square-root of 1024, but the formula itself o�ers no clue as to how
hard such a computation would be, even within a specified formal system.
[Par71] o�ered an early account, distinguishing existence assertions from
the feasibility of proving them in a fragment of Peano arithmetic. Subse-
quently, bounded arithmetic has provided many interesting insights of this
kind.
Proof complexity arises from the view of logic as a system of deduc-

tive reasoning. Another natural question relates to the view of logic as a
language. How hard is it to describe a structure in a (specified) logical
language? Termed descriptive complexity this is the study of expressive-
ness of logical languages. Consider a fixed formula (sentence) in a logical
language and its “input” to be a structure over which the sentence can be in-
terpreted. The formula then acts as a machine that takes structures as input
and answers ‘True’ or ‘False’. We can then ask, how much memory does
this machine require? Note that this line of thought is very fruitful: the
next step is to formalize notions of complexity in logic, and thus attempt
to capture complexity classes by logical means. Indeed, it is then natural
to go further and ask meta-theoretical questions: what is the complexity of
reasoning about complexity theoretic statements?
These are fertile areas of formal study, with rich notions and theorems.

However, formal connections between notions of hardness arising from
these di�erent viewpoints have not been clearly established (yet) and form
a subject of very interesting current research. We refer the interested reader
to [ABSRW02] and [Kol08] for a fascinating account; we will not take up
this theme here.
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There is yet another, and more direct, question relating memory and
logic, and that is the theme we will pursue here. Consider any logic for
reasoning about processes that occur in time. Examples are tense log-
ics and temporal logics, but also dynamic logics, epistemic logics, process
logics, game logics and logics of action and agency. These are patterns of
reasoning that naturally involve phrases such as ‘before’ and ‘after’, past
and future, always and never. The infrastructural concern is very relevant in
these contexts: what does the reasoning entail, in terms of memory needed
to support such reasoning? Plato’s wax is just what we need: form im-
pressions of events when they occur and recall events by referring to the
traces.
Already, we see that there is more to be said than speak only of how

much memory is needed. Rather, we can consider what we need to re-
member (and hence what we may a�ord to forget), how such memory can
be structured or organized (for e�cient retrieval), and so on. These mem-
ory mechanisms can well be thought of as infrastructure underlying logics
for reasoning about processes.
We need some language for describing such mechanisms, and theory

of computation provides such a language. This is a programme that can be
taken up in general, but since this aims to be a presentation at an elementary
level, we will confine ourselves to finite memory mechanisms and logics
that describe seqential behaviour (into which many of the process logics
listed above can be translated). We present two formalisms: one of first
order and monadic second order logics over sequences; the other, of finite
state automata that encapsulate memory mechanisms. We then see that
these are two ways of looking at the same picture, in the sense that the
formalisms are equivalent in expressive power, with the proof giving us
some insight into what we have referred to as the memory infrastructure
underlying the logics. We discuss how this approach can be generalized
and extended in many directions.
Why should a philosopher and logician interested in inference bother

about automata models at all? While inference can be discussed in descrip-
tive terms, it is clear that there are underlying procedures which together
make up inference, and theory of computation provides a formal basis for
studying such procedures. However, such procedures make infrastuctural
assumptions which need logical analyses, and this interplay between logic
and procedures (computations) is complex. One way of understanding this
is to ask what the addition of a new connective to a logic implies: in terms
of how existing underlying procedures need to be modified, and what new
procedures need to be created. The answer to this is complex and con-
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sidered to be di�cult for even very simple logics, which shows that this
interaction is little understood as yet.
Another important dimension is the study of inference by “real” agents,

who have limited capacity to observe, to recall facts, to decide which in-
ference mechanism to apply when, and to pursue assumptions to their con-
clusions. Many of these limitations can be easily modelled as memory
limitations which is what automata models achieve. Whatever an agent
knows, if the agent is to recall and make use of such knowledge at di�er-
ent points in time, needs to be remembered, and hence part of the agent’s
memory. Explicit modelling of such memory can then incorporate agency
more directly.
However, the account developed in this article also shows us roads un-

travelled yet: these automata models of memory mechanisms incorporate
agency at a “hardware level” in the design of the machines, as it were.
When we take agency more seriously, and study the interaction of memory
and epistemic attitudes, further structuring of memory (in terms of selec-
tion and retention) becomes important, and this needs more sophisticated
modelling. When we consider systems of many reasoners, the situation
is much more interesting: in such systems, individual memory is traded
o� against communication, and hence notions like Halbwachs’ collective
memory ([Hal80]) become important. The fact that memory is distributed
across agents, and that it evolves with time is well known to us. When in-
ference systems treat memory as being monolithic and immediately avail-
able as a whole, they miss the influence of such temporal and distributed
structure which, in turn, limits the reasoning being studied. Distributed au-
tomata models can be seen as initial attempts in this direction but we are
far from the sort of logical analyses discussed here.

2 Finite state automata

The memory mechanism that we wish to describe is very simple: it has
some fixed number of fixed size registers. This means that the set of val-
ues that each register can hold is finite and fixed a priori. For instance, a
boolean variable is such a register, its value can be 0 or 1. Date (within this
century) would be one such register. An integer valued variable cannot be
a register since its value space is infinite.
Formally, a finite memory is a tuple M � (� R1�D1 �� � � � � � Rm�Dm �),

where, for j � �1� � � � �m�, Rj is a register that can hold a value in the
finite set Dj. A configuration of M is an m-tuple (d1� � � � � dm), where, for
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j � �1� � � � �m�, d j � Dj is the current value of register Rj.
How would any mechanism use such a memory? Given any configu-

ration, the mechanism would perform an action which causes a potential
change in the configuration. The action may be reading a register, per-
forming some computation, updating a register, interact with some exter-
nal agent and based on the interaction, store some value in the register, etc.
Since we can use as many registers as we wish, all information that the
mechanism needs (as long as it is finite) can be coded up into registers.
Thus an action is in general of the form (e� �� �) where e is some event
occurrence, � is some condition that is checked to hold of the current con-
figuration, and � is an instruction to update one or more of the registers. A
process would then be simply a finite sequence of such actions, or more
generally, a (finite or infinite) set of action sequences.
We can design a suitable programming language in which we can ex-

press such event stimuli, interactions, tests on register values, instructions
to update registers etc. Such a language would have variables, declarations
of types of variables (to specify range of values). It can have conditional
branching and looping. What it would not have are variables that can take
infinitely many values.
How would we present the semantics of such processes? We would need

to specify the initial memory configuration of the mechanism, describe
which action is enabled in any configuration, and define how each action
may modify any given configuration. A process can then be presented as a
set of sequences of configuration changes. Any particular historical trajec-
tory would be given by the trace which is the sequence of configurations.
The objective or goal of the process can then be given by labelling se-
quences as good (those that satisfy the objective) or bad (those that don’t).
It should be clear that however informal this description may be, it can be

quite easily formalized. Further we can also see that the notion of process
is general enough to cover a wide range of processes that we wish to reason
about in propositional modal logics, at least in terms of what we might need
to remember.
One benefit of such an analysis, however superficial, is that we imme-

diately see that there is no need at all to design a mechanism language
as above and work out its detailed semantics. A very simple abstraction
su�ces.
For M, let CM denote the space of all possible configurations. It is clear

that CM is finite, and that the cardinality of CM is given by: �CM � � �D1� �

� � � �Dm�. Let �CM � � K. We might as well enumerate CM as �c1� c2� � � � cK�.
Similarly, as far as the actions are concerned, whatever the actions may
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be, we are only concerned with how they change configurations. Clearly
there can be only finitely many such changes that we can describe (there
are at most KK functions from CM to CM), we can work with a finite set of
event types E and specify, for each e � E, a function �e : CM � CM . An
initial configuration, and a set of final configurations, declaring whether
the desired “objective” has been attained, and we are done.
We mentioned that the semantics of a process can be given by a set of

action sequences. Since actions are abstracted into event types above, we
would have a set of sequences of event occurrences, those that start from
initial configurations and end in one of the acceptable final configurations.
In general, behaviours are given by sets of finite words (sequences of let-
ters) called languages.
The theory of computation formalizes these intuitive suggestions in the

well-known model of finite state automata.

2.1 Automata and languages

Let E be a fixed finite set of event types. We use letters a� b� e etc (with
or without subscripts) to denote elements of E. By E� we denote the set
of all finite sequences over E, and � to denote the null sequence in E�. We
use letters u� v�w etc (with or wihout subscripts) to denote sequences over
E (called words). �w� denotes the length of the sequence w. We call L � E�

a language over E. We use L� L� etc for languages.
Suppose u � a1a2 � � � am and v � b1b2 � � � bn be sequences. By uv we

denote the concatenated sequence w � c1c2 � � � ck, where k � m � n, and
ci � ai, for 1 � i � m, and c j�m � b j for 1 � j � n. Note that w� � �w � w,
for all w � E�. We can extend this to define concatenation of languages by
L1L2 � �uv � u � L1� v � L2�. By un we mean the n-fold concatenation of
u. Given u � E� and L � E�, we also define u � L � �uv � v � L�.
Let E � �a� b� c� and u � abbaccb. We can then talk about the first occur-

rence of a, the kth occurrence of b, the lack of occurrences of c in u and so
on. Note that when we talk of a property of a sequence over E, we implic-
itly define a subset of E� (and thus a language). For instance, consider the
property that every occurrence of b is preceded by some earlier occurrence
of a. u above satisfies the property but v � cbaaccb does not. This defines
the following set: L0 � �a� c�� � �uavbw � u � �c��� v � �a� c���w � E��.
Note that we can alternatively define L0 by: E� � �ubv � u � �c��� v � E��.
The rationale for invoking such a property is: a might be the signal that

enables the occurrences of b’s thereafter. This formalism can be used to ex-
press many temporal and causal relationships between event occurrences.



312 R. RAMANUJAM

�� ����������������q0
a

�� ��������q1
b

��

(a) Automaton for (ab)n, n � 0

�� ����������������q0
a

��

b

����������q1
b

��
a �� ��������q2 a�b

��

(b) Deterministic automaton for (ab)n, n � 0

Figure 1:

A finite state automaton over E is a tuple A � (Q� �� I� F), where Q is
a finite set of states, I� F � Q are the sets of initial and accepting or final
states, respectively, and � � (Q � E � Q) is the transition relation.
A is said to be deterministic if I is a singleton set, and � is the graph of a

function (Q � E)� Q.
We say that a � E is enabled at q � Q if there exists q� � Q such that

(q� a� q�) � � (for which we usually write q
a
�q�).

We present finite state automata in graphical form as below. States are
represented by circles, and transitions by edges. Initial states are marked by
incoming arrows without source, and final states by two concentric circles.
Consider the two automata on E � �a� b� pictured in Figure 1 below. In the
one in Figure 1(a), b is not enabled at q1 and a is not enabled at q2. The
automaton in Figure 1(b) is deterministic.
Let w � e1e2 � � � ek � E�. A run of A on w from q0 � Q is a sequence
� � q0q1 � � � qk, where for all i : 1 � i � k, we have: (qi�1� ai� qi) � �. We
say that � is accepting and that A accepts w if q0 � I and qk � F. We
define the language accepted by A to be the set L(A) � �w � E� � there
exists an accepting run of A on w�. Note that a deterministic automaton has
a unique run on every word in E�.
Let L � E�. We say that L is recognizable if there exists a finite state

automaton A such that L(A) � L. The class of recognizable languages over
E is denoted RecE .
We can check that both automata in Figure 1 accept the same language:
�(ab)n � n � 0�. Now consider the language L0 above, the set of all se-
quences in which every occurrence of b is preceded by some earlier occur-
rence of a. It is easily seen that the automaton below in Figure 2 accepts
the language L0.
As one more example, consider the language Leven over E � �a� b� con-
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Figure 2: Deterministic automaton accepting L0
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Figure 3: Automaton for Leven

sisting of all sequences of even length. The automaton below in Figure 3
accepts this language.

2.2 Deterministic automata

In the few examples we have considered so far, deterministic automata
have been used to accept a given language. The following theorem, due to
Rabin and Scott ([RS59], which in some sense initiated automata theory)
asserts that this is no accident.

Theorem 2.1. Every recognizable language is accepted by a deterministic
automaton.
Proof Suppose that L � E� is recognizable and A � (Q� �� I� F) is an au-
tomaton such that L(A) � L. We now construct a deterministic automaton
B such that L(B) � L. Define B � (QB� �B� IB� FB), where:

� QB � 2QA .

� IB � �I�.

� FB � �X � Q � (X � F) � ���.

� �B � �(X� a�Y) � Y � �q� � (q� a� q�) � �� q � X��.

We can easily check that B is indeed deterministic. To see that L(A) �
L(B), consider a word w � e1 � � � ek � E� and the unique run of B on
it, say �B � X0X1 � � � Xk where Xj

a j
�BX j�1. If w � L(B), X0 � I and
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Figure 4: Automaton for “accepting kth last letter is a”

Xk � F � �. Then we can find qi � Xi, i � �0� � � � � k� such that the sequence
�A � q0q1 � � � qk is a run of A on w and show that it must be accepting.
Conversely, given such an accepting run �A of A on w, we can use it to
show that �B must be accepting. �

Thus every automaton is language-equivalent to a deterministic one. The
construction above causes an exponential blow-up, and it can be shown that
this is unavoidable. Consider the language �w � �a� b�� � w � ue1e2 � � � ek� k �
0� e1 � a� u � �a� b��� e2� � � � ek � �a� b��, that consists of words in which the
kth last letter is an a. This is accepted by an automaton with k � 1 states as
in Figure below, whereas one can argue that any deterministic automaton
requires more than 2k states.
How do we show such lower bounds on number of states? Given a lan-

guage (specified somehow), how do we argue that any automaton for it
must use so many states? This is important, since the number of states tells
us how much memory we have in the system, to realize the behaviour spec-
ified by the language. n states corresponds to log n bits of memory (roughly
speaking). While we are about it, we might as well ask: how do we know
that any automaton exists at all which accepts the given language?

2.3 Existence of non-recognizable languages

Consider an automaton A � (Q� �� I� F) on E � �a� b�, and consider a run
of A on w � a1 � � � ak � E�, say � � q0q1 � � � qk. Now suppose that k � �Q�.
Then, some state must repeat in this sequence: there exist i � j such that
qi � q j. (So the automaton has a loop from qi to itself via qi�1 � � � q j�1.)
We can write w � uvu�, where u � a1 � � � ai, v � ai�1 � � � a j, u� � a j�1 � � � ak.
Therefore, if w is accepted by A then so also is a strictly shorter word uu�

and a strictly longer word uvvu�. Indeed, for any n � 0, uvnu� is accepted,
and hence the language accepted by A is infinite.
This observation leads us to an important limitation of finite state au-

tomata. All information about the past has to be “hard-wired" into its states.
Two di�erent pasts that end up in the same state are equivalent for the au-
tomaton. When it considers words that are ‘too long’, it cannot tell them
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apart. Such ‘forgetfulness’ is a critical feature of the automaton, measured
by the number of its states, and gives us a handle on what it can and what
it cannot do.
The remark above is formalized as follows. Let A � (Q� �� q0� F) be

a deterministic automaton on E, and let u� v � E�. A has a unique run on
each word from q0, ending in say, qu and qv. Now suppose that qu � qv � q.
Consider any w � E�. A has a unique run from q on w, ending in q�. Now
either q� � F or not; in the former case, both uw and vw are accepted, and
in the latter, both are rejected. Therefore the role of q is to simply ‘tie up
together’ all words (pasts) after which a residue can be accepted (or not).
This intuition leads us to the following definition.
Fix E and consider u � E�� L � E�. Define u�L � �v � E� � uv � L�.

We call u�L the residue of u in L. Note that ��L � L (hence L � Res(L)
always) and for any u � E�, we have: u � L i� � � u�L.
Define Res(L) � �u�L � u � E��. The cardinality of Res(L) is called the

rank of L. We call L � E� a regular language when Res(L) is finite.

Theorem 2.2. L is recognizable i� L is regular. Moreover if A is any de-
terministic automaton with m states accepting L then rank(L) � m.

Before we go on to proving the theorem (due toMyhill and Nerode), con-
sider what it says. Finite state automata accept precisely the finite residue
languages, and the rank of a recognizable language is the number of states
of a minimal deterministic automaton accepting it. Thus residues (defined
for any language, independent of machines) correspond abstractly to states
of the most economical constructions possible.
The implications are clear. To show that a given language L is not rec-

ognizable, we only need to show that it has infinitely many residues. To
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prove a lower bound on number of states required for a recognizable lan-
guage, we only need to compute its rank. Note an immediate consequence
of the theorem: every finite language is recognizable.
As an example consider the language L � �anbn � n � 0� over �a� b�. Let

i � 0� j � 0� i � j. Then ai�L � �bi� � �b j� � a j�L. Thus �ai�L � i � 0�
is infinite and hence Res(L) is infinite. By the theorem, we cannot find
any automaton that accepts this language. As an exercise, consider the
language that consists of words over �a� b� which have the same number of
a’s as that of b’s (but in any order), and show that it is not recognizable.
Recall the language over �a� b� with words where the kth last letter is an

a. Showing that its rank is exponential in k su�ces to establish the lower
bound we were after.
The proof of the Theorem proceeds by constructing an automaton in case

Res(L) is finite. For the converse, when L is recognizable, the proof shows
that any automaton for L has fewer than rank(L) many states, thus estab-
lishing the converse as well as the stronger statement.

Proof Let L � E� and suppose that Res(L) is finite. Define A � (Q� �� q0� F),
where Q � Res(L), q0 � L, F � �X � Res(L) � � � X� and � : (Q � E)� Q
is defined by: �(X� a) � Y if there exists u � E� such that X � u�L and
Y � (ua)�L.
To show that � is well-defined, we need to prove that for any u� v � E�,

if u�L � v�L then (ua)�L � (va)�L. But this is easy: if w � (ua)�L, then
uaw � L, so aw � u�L, hence aw � v�L so w � (va)�L. Thus A is indeed
a deterministic automaton. To show that L(A) � L, let u � a1 � � � ak � E�.
The unique run of A is of the form

q0 � L � ��L a1�L (a1a2)�L � � � (a1 � � � ak)�L � u�L�

u is accepted by A i� u�L � F i� � � u�L i� u � L, as required.
For the converse direction, assume that L is recognizable and that A �

(Q� �� q0� F) accepts L. For q� q� � Q and u � E�, define ��(q� u) � q�

when q is the last state of the unique run of A on u from q. With no loss of
generality, we can assume that every q � Q is reachable from q0, that is, for
some u � E�,��(q0� u) � q. (Otherwise, simply remove all the unreachable
states and consider the automaton with remaining states.)
Now consider the map f : Q � Res(L) defined by f (q) � u�L, such

that u � E� and��(q0� u) � q. We need to show that f is well-defined. Let
u� v � E� such that ��(q0� u) � ��(q0� v) � q. Then we need to prove that
u�L � v�L. Let w � u�L, then uw � L � L(A). Hence��(q�w) � F. But
then vw � L(A) � L as well, and hence w � v�L as well.
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Now since A is deterministic, for every u � E�, ��(q0� u) is defined and
hence f is onto. Thus we have a surjective map from a finite set Q to
Res(L), which means that �Res(L)� � �Q�, proving the theorem. �

2.4 Programs and machines

We have shown that the two notions on languages, that of recognizability
(based on automaton mechanisms) and regularity (based on behavioural
notions) coincide. We have relied on informal specifications of languages
and discussed their recognizability. In the next section, we seek a logical
notation in which such languages can be described. As a preparation, we
note some properties of regular languages and describe a di�erent notation
here.

Proposition 2.3. Recognizable languages are closed under the boolean
operations.
Proof Let A � (Q� �� q0� F) be a deterministic automaton over E. Con-
sider A� � (Q� �� q0�Q � F). It is easily seen from the definitions that
L(A�) � E� � L(A). From the Rabin - Scott theorem it follows that recog-
nizable languages are closed under complementation.
Let A1 � (Q1� �1� I1� F1) and A2 � (Q2� �2� I2� F2) be automata over E.

Without loss of generality assume that Q1 and Q2 are disjoint. (Otherwise,
rename states.) Then define A � (Q1 � Q2� �1 � �2� I1 � I2� F1 � F2) by
point-wise union. It is easily seen that L(A) � L(A1) � L(A2). Thus rec-
ognizable languages are closed under union (and hence, from above, under
intersection as well). �

Suppose that E � E1�E2 and let u � E�. Define the projection operation
on E1 as follows: let u � (a1� b1) � � � (ak� bk) � E�; then u�E1 � a1 � � � ak.
For L � E� define L�E1 � �u�E1 � u � L�. u�E2 and L�E2 are defined in the
obvious way.

Proposition 2.4. Recognizable languages are closed under projection.
Proof Let A � (Q� �� I� F) be an automaton over E � E1 � E2 accepting
L � E�. Define A� � (Q� ��� I� F) where �� � (Q � E1 � Q) is the erasure
map: (q� a� q�) � �� if there exists b � E2 such that (q� (a� b)� q�) � �. It is
then easily seen that L(A�) � L(A)�E1. �

Indeed, recognizable languages are closed under many other interesting
operations such as concatenation, iteration, mirror-reversal, prefixing etc
(and some exotic ones such as ‘halving’). For theory of computation this
o�ers the possibility of ‘programming notations’ for finite state devices.
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Let Ln� n � 0 be defined inductively as follows: L0 � ���; Lk�1 � LLk,
for k � 0. Let L� �

�

k�0

Lk, the Kleene iteration of L.

Proposition 2.5. Recognizable languages are closed under concatenation
and Kleene iteration.
Proof Let A1 � (Q1� �1� I1� F1) and A2 � (Q2� �2� I2� F2) be automata
over E. Without loss of generality assume that Q1 and Q2 are disjoint.
Then define A � (Q1 � Q2� �� I1� F2), where � � �1 � �2 � �(q� a� q�) �
q� � I2��q�� � F1 : (q� a� q��) � �1�. Then it is easily seen that L(A) �
L(A1)�L(A2). Thus recognizable languages are closed under concatenation.
Let A � (Q� �� I� F) an automaton over E and define A� � (Q� ��� I� I)

where �� � �� �(q� a� q�) � q� � I��q�� � F : (q� a� q��) � ��. Then it is easily
seen that L(A�) � L(A)�, proving closure of recognizable languages under
iteration. �

I1 F1 I2 F2q q�� q�a

a

I Fq q��q� a

a

A celebrated theorem of Kleene asserts that these operations can indeed
be used to characterize the class of recognizable languages. We state the
theorem below without proof.

Theorem 2.6. Recognizable languages over E constitute the least class of
languages that contains all finite languages over E and closed under the
operation of union, concatenation and Kleene iteration.

This theorem serves as a basis for a syntactic presentation of regular
languages. Consider the following syntax:
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r � RE ::� � � a � E � r1 � r2 � r1 � r2 � r�

The semantics of the constructs is given inductively. � stands for the
empty set, a for the singleton word language �a�; �, � and � respectively
denote union, concatenation and iteration. An expression in the syntax
above is called a rational expression over E, and L � E� is said to be a
rational language if there exists a rational expression r whose semantics
is L.
Then Kleene’s theorem can be restated as follows:

Theorem 2.7. L is recognizable i� it is rational.

Rational expressions are very similar to basic programming notations.
Note the absence of complementation in the language of rational expres-
sions, as in the case of programs as well. Since regular languages are closed
under complementation, adding it will not change expressive power. How-
ever, it turns out that this can give a more succinct description. Consider
the following syntax:

r � S FE ::� � � a � E � r1 � r2 � r1 � r2 � � r

The semantics is as before, the meaning of �r is the complement of the
meaning of r. Note that there is no iteration in this expression language.
We call L star free if there exists r � S FE such that the semantics of r is L.
E�, for all its appearance, is star free, since it is ��. (ab)� (over E �
�a� b�) is also star free: it is the complement of (E� � a)� (b � E�)� (E� � aa �
E�) � (E� � bb � E�). On the other hand, (aa)�, which is deceptively similar,
is not star free, a fact that is by no means easy to prove and well beyond
the technical means of this article.
As we will see soon, regular languages and star free languages have im-

portant rôles to play in logic.

3 Logics on sequences

As wementioned in the introductory section, we consider logics for reason-
ing about processes that happen in time. Modal logics provide the general
framework in which philosphical logic tends to discuss such reasoning, but
since our aim here is not to discuss specific modalities, we look for an
abstract logic in which several such logics can be embedded.



320 R. RAMANUJAM

3.1 First order

Let E � �a� b� c� and the property that every occurrence of b is preceded
by some earlier occurrence of a. A logical specification of this property
would be as follows. We use variables to denote positions in sequences and
unary predicates Pe for talking of event occurrences at specific positions:
�x�Pb(x) � (�y�y � x � Pa(y)). Note that the alternative is asserted by:
�x�Pb(x)��y�(y � x � Pc(y)), though this is not immediately clear, looking
at the sentences only syntactically. This is precisely the sort of reasoning
we wish to carry out in a logic for sequences.
The logical language introduced by way of illustration above is the fa-

miliar language of first order predicate calculus. However, we will work
with only a small fragment, which we define formally now.
Fix E, a finite event alphabet. Let L(E) denote the first order vocabulary

(�min�max�;�2� �P1
e � e � E�), where we have two constant symbols min

and max, one binary predicate symbol � and a unary predicate symbol Pe
for each e in E. There are no function symbols in the vocabulary. This
defines the (monadic) first order language, often denoted FO(�).
The syntax of the logic can be presented in inductive form as follows.

Let V be a countable set of variables, with x� y etc denoting elements of V .
A term is either a constant (min or max), or a variable. t� t� denote terms.

� ::� Pe(t)� e � E � t � t� � t � t� � �� � � � �� � �x��

The other boolean connectives �, � , � etc are defined using � and �.
�x�� is defined as ��x���. The notion of bound and free occurrences of a
variable in a formula are defined as usual. We often write �(x) to signify
that x occurs free in �. A formula with no free variables is referred to as a
sentence.
To give the semantics of formulas in the logic, we need first order struc-

tures on which to interpet them. Every u � E� has a natural presentation
as a structure in our language. For example, let E � �a� b� and w � abbab.
We can view this as a structure (�1� 5�;�N � Pa� Pb) where �N is the standard
ordering of the natural numbers, Pa � �1� 4� and Pb � �2� 3� 5�.
In general, given a word w � e1 � � � em � E�, let Dw denote the set
�1� � � � � �w��. �w denotes the structure (Dw; � j� �w��;�N � (Pe)e�E), where j �
�0� 1� and j � 1 i� �w� � 0; Pe � �i � 1 � i � �w�� ei � e�. (Note that
in��, Pe is the empty set for all e and �� � � 0.) We use Pe both to denote
the predicate symbol in the syntax as well as the set in the structure; this
should cause no confusion in usage.
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A model is a pair M � (�w� �) where w � E�, and � : V � Dw is the
interpretation map that assigns positions in the sequence to variables. We
can now define the truth of a formula � in the model M by induction on
the structure of M. Note that min and max are interpreted as 1 (0 if w � �)
and �w� respectively, and � is interpreted as the standard ordering on natural
numbers. � is easily lifted so that it is defined on all terms.

� M �� Pe(t) if �(t) � Pe.

� M �� t � t� if �(t) � �(t�).

� M �� t � t� if �(t) �N �(t�).

� M �� �� if M ��� �.

� M �� � � �� if M �� � or M �� ��.

� M �� �x�� if for some i � Dw, M�(i) �� �, where M�(i) � (�w� ��)
where �� : V � Dw is defined by: ��(x) � i, and ��(y) � �(y) for
y � x.

It is easily seen that M �� �x�� if for every i � Dw, M�(i) �� �, where
M�(i) is defined as above.
We say that a formula � is satisfiable if there exists a model M such that

M �� �. We say � is valid if �� is not satisfiable.

�x�
�

e�E

(Pe(x) �
�

e��E�e��e

�Pe�(x)) is a valid formula, whereas min � max

is not (since � falsifies it). min � max is satisfiable but max � min is not.
We can define the successor relation: S (x� y) � x � y � �z�(x � z � z �

y) � (x � z� z � y). We often denote S (x� y) by y � x� 1 though we do not
have function symbols in the logic.
Let FV(�) denote the set of free variables in �. Let M be a model M �

(�w� �). To define M �� �, it su�ces to consider the model M � (�w� ��)
where �� is defined to agree with � on FV(�) and arbitrary otherwise. That
is, the truth of the formula in a structure is determined by the interpretation
of its free variables. We will in general write �w� k1� � � � � km �� �, where
FV(�) � �x1� � � � � xm� and ��(xi) � ki.
Therefore, for a sentence �, we have the notion of a structure making it

true or false, and we can speak of �w �� �. Thus, given a sentence �, we can
define the language of �: L(�) � �w � E� � �w �� ��.
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Let L � E�. We say that L is first order definable if there exists a
sentence � such that L � L(�).
Note that min and max can be easily eliminated from the logic. Let
�0(x) � �y�(x � y � x � y) and �1(x) � �y�(x � y � y � x). Now,
given some formula �, let y� z be variables that do not occur in �, and
let �[y�min][z�max] be the result of replacing every occurrence of min
in � by y and max in � by z. Then the formula �y��z�(�0(y) � �1(z) �
�[y�min][z�max]) is the one we want. Thus we can work with a purely
relational vocabulary, with no constants or functions, but only variables,
unary predicates and one binary relation (�).

Example: Let E � �a� b� c�, w � babba. Now consider the following
formulas:

� Let �1 � �x�Pb(x) � �y�(x � y � Pa(y)). Then �w �� �1.

� L(�1) � �a� c�� � �ubvaw � u� v � E��w � �a� c��� v � ��.

� Let �2(y) � (�z�(y � z � Pa(z)). Then �w� 5 �� �2, �w� 4 �� �2 but
�w� 3 ��� �2.

� Let �3(x) � �y�(x � y � Pa(y) � (�z�x � z � z � y � Pb(z))). Then
�w� j �� �3 for every j.

L(�x��3) is the language of sequences in which every su�x has the
property that an a is preceded by a b. As one would expect, L(�x��3)
is one where some a is preceded by a b. L(�x�(Pa(x) � �3)) talks of
sequences where there is a b between two a’s.

� Let �4 � �x�S (x�max) � Pa(x). Then �w ��� �4.

Example: Once again let E � �a� b� c�. Now consider the following
languages:

� L1: Between any two occurrences of b’s there are only a’s.

� L2: There are two occurrences of b’s between which there are only
a’s.

� L3: No two occurrences of b’s are such that between them there are
only a’s.
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Let �(x� y) � x � y�Pb(x)�Pb(y)��z�((x � z�z � y) � Pa(z)). Now de-
fine �1 � �x��y��, �2 � �x��y��, �3 � ��2. It is easy that �i defines Li for
i � 1� 2� 3. More importantly, the compositionality inherent in a logical de-
scription helps us construct the sentences easily, one using the other. Note
how closely the logical description matches the loose description above in
natural language.
Is every language first-order definable? If it were, the logic would not be

very interesting, would it? But what is rather surprising is that even some
regular languages are not first-order definable.
Now consider the language consisting of all sequences of even length. To

keep matters simple, let us assume that E � �a�. Thus we want the language
��� aa� aaaa� aaaaaa� � � ��. A deterministic automaton for the language was
given in Figure 3.
If we had addition on positions, this would be easily defined: �x�x � x �

max. But addition is not definable in the logic, and indeed, this ‘little’
language is not first order definable. The proof of this assertion requires
algebraic techniques beyond the scope of this article. On the other hand,
this has to do with memory (or lack of it) in first order descriptions; we
will discuss this later on.

3.2 Monadic second order

If addition on positions is not definable in the first order logic we have, why
not simply “add” it to the logic? The extended logic is indeed interesting
and termed Presburger arithmetic. In such a logic, we can define not only
even-ness, but also other interesting languages like the following one. Let
E � �a� b�, and � � �x�(x � x � max � Pa(x) � �y�(y � x � Pa(x) �
x � y � Pb(x)). It defines the set �anbn � n � 0�, which we have already
seen to be non-recognizable as it requires strong infrastructure, namely
unbounded memory.
It turns out that we have another option, one that admits languages like

the even-length one, but not the ‘unbounded memory’ one. This is to add
set quantification to the logic.
Consider the following logic. Let V be a countable set of first order

variables, and U be a countable set of set variables. We use x� y etc for
elements of V and X�Y etc for elements of U.

� ::� Pe(x)� e � E � x � y � x � y � x � X � �� � � � �� � �x�� � �X��
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We have added set membership and set quantification in the logic. The
semantics of the logic is extended naturally.
A model is a triple M � (�w� �� �) where w � E�, � : V � Dw is the

interpretation map for first order variables, and � : V � 2Dw is the inter-
pretation map for set variables. Then the semantics of formulas is defined
inductively as before; we only present the new cases below.

� M �� x � X if �(x) � �(X).

� M �� �X�� if for some D � Dw, M�(D) �� �, where M�(D) �
(�w� �� ��) where �� : V � 2Dw is defined by: ��(X) � D, and
��(Y) � �(Y) for Y � X.

As before, we will use the notation �(x1� � � � � xm� Y1� � � � � Yn) to denote
a formula all whose free first order variables are among x1� � � � � xm and
all whose second order variables are among Y1� � � � � Yn. Its models are
denoted by the tuple (�w� k1� � � � � km�D1� � � � �Dn), where each ki � Dw and
each Dj � Dw. When � is a sentence, we define L(�) � �w � E� � �w �� ��.
Note that we do not have the constants min and max in the logic, but we

will freely use them in formulas with the understanding that we can always
eliminate them. We will also use other abbreviations in particular:

X � Y � �x�x � X � x � Y�
Empty(X) � ��x�x � X�
S ing(X) � �x�x � X � (�y�y � X � x � y)�

We showed earlier that the successor relation S (x� y) can be defined from
the order relation x � y in first order logic. In MSO, the converse also
holds. Consider �(x� y) � �x � y � �X�(x � X � y � X � �z��z��((z � X �
S (z� z�)) � z� � X). Then it is easily seen that for any w � E�, (�w� i� j) �� �
i� i � j.
This logic is referred to as Monadic Second Order logic (abbreviated

MSO), since it is second order (quantification over relations rather than
only over individual positions) and monadic second order since such quan-
tification is only over unary relations (sets). Formally it is denoted by
MSOE(�).
We say that L � E� is MSO-definable if there exists a sentence � in the

logic MSOE(�) such that L � L(�).
The ‘even-length’ language is defined by the following MSO sentence.

�X�(min � X) � (max � X) � �x��y�S (x� y) � (x � X � y � X)
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Let E � �a� b� and L � �(ab)n � n � 0�. We can define this by the MSO
sentence: �X�(min � X) � (max � X) � �x�:

�y�S (x� y) � ((x � X�y � X�Pa(x)�Pb(y))�(x � X�Pb(x)�y � X�Pa(y)))

But then this language is already first order definable and by a simpler
sentence. In general, it is not easy to determine when an MSO definable
language is FO definable.
Are there languages that are not MSO definable either? Yes, and these

are languages that require unbounded memory. This is what we now pro-
ceed to establish.

4 The logic - automata connection

Automata over E specify collections of E-sequences, and so do formulas
in FOE(�) and MSOE(�). What is the di�erence in expressive power
between the two formalisms? The following celebrated theorem of Büchi,
Elgot and Trakhtenbrot (1960) asserts that there is none.
Below, we use the notation [n] to denote the set �1� 2� � � � � n�, where n � 0.

Theorem 4.1. L � E� is recognizable i� it is MSOE(�)-definable.

How can one hope to prove this theorem? In one direction, we are given
an automaton recognizing L, say A � (Q� �� I� F) over E. We wish to con-
struct a sentence � such that L(�) � L. This means that the models of
the sentence should be exactly accepting runs of A. An accepting run is a
sequence q1q2 � � � qk, where q1 � I, qk � F and for all i � �1� � � � � k � 1�
there exists ai � E such that (qi� ai� qi�1) � �. How do we refer to states in
formulas when we do not have Q in the syntax of the logic? But then the
names of the states are quite irrelevant. There is a canonical representation
of the automaton: suppose �Q� � m. Then we might as well refer to the
states by the set [m] and �� I� F are redescribed appropriately.
Consider the accepting run j1 j2 � � � jk, where all the ji are from the set

[m]. The sequence can then be given by an m-way partition of the set [k]:
Xj � �i � ji � j�, with j � [m]. The set Xj is indeed the state q j of the
automaton.
Now we can specify any accepting run of A on a word a1 � � � ak by an

m-way partition X1� � � � � Xm such that:

� if min � Xj then j � I.
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� if i � Xj and i � 1 � X� then ( j� ai� �) � �.

� if max � Xj then j � F.

Since each of these conditions can be expressed in logic, we are almost
done. Since we have set quantification, we only need to say �X1 � � ��Xm
and then express the above. There is a slight modification required, since
models of the logic are words a1a2 � � � ak but associated runs would be of
length k � 1: so the last condition needs to be changed appropriately.
Thus the sentence we seek can be given as follows:

�A � �X1 � � ��Xm : S tates � Init � Trans � Fin

where States asserts that these sets partition the set of positions, and the
other formulas correspond to conditions above:

� States � �x�((x � X1 � � � � � x � Xm) �
�

i� j:i� j
�(x � Xi � x � Xj)).

� Init �
�

j�I

min � Xj.

� Trans � �x��y�(S (x� y) � (
�

(i�a� j)��

x � Xi � Qa(x) � y � Xj)).

� Fin �
�

(i�a� j)��� j�F

(max � Xi � Qa(max)).

It is then an easy exercise to show that A accepts w i� �w �� �A.
Some observations are in order. Note that the sentence above is of the

form �X1 � � ��Xm� where � is a first order sentence using the predicates
X1� � � � Xm. Thus we need only existential second order quantification to
express automata.
When the automaton has m states, we have used m set variables. For

those who care about such things, it should be clear that this is wasteful,
and that at most �log2m� variables su�ce.
We thus have that every recognizable language is MSO-definable. The

converse assures us that the non-regular languages cannot be described by
the logic either.
We are given an MSO sentence � and seek an automaton that accepts ex-

actly the models of �. What is the proof strategy for this construction? The
semantics of the formula is “global” but it is defined inductively, hence the
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�� ��������q0
��

f (x)�1

(a� f )
�� ����������������q1

(a� f )

f (x)�0

��

Figure 6: Automaton accepting the legal sequences

natural strategy is to proceed by induction on the structure of �. Since rec-
ognizable languages are closed under complementation as well as union,
it is clear that the boolean cases of the inductive step go through easily.
Therefore, we need to think only in terms of atomic formulas and the cases
of quantification.
For an inductive proof, it is clear that we cannot work with sentences, but

that we need to work with formulas with free variables. For this, we extend
the structure of words as follows: consider a word w � a1 � � � ak. Every
first order variable is interpreted as some i � [k] and every set variable is a
subset of [k]. Thus for each position j � [k] we can have an m-bit vector,
specifying whether each of the m first order variables takes that value or
not, and similarly an n-bit vector, specifying which of the sets j is in. This
is formalized as follows.
Let � be a formula with all its first order variables among F� � �x1� � � � � xm�

and all its set variables among S � � �X1� � � � � Xn�. An interpretation for a
word w such that �w� � k is a pair Iw � (IF � IS ) where IF : F� � [k] and
IS : S � � 2[k].
Let V� � F� � S �. Let �V � � f � f : V� � �0� 1��. Let EV � E � �V .
Thus, given a pair (w� Iw), where w � a1 � � � ak, the encoding enc(w� Iw) �

(a1� f1) � � � (ak� fk) is a word over EV where fi(x j) � 1 i� IF(x j) � i and
fi(Xj) � 1 i� i � IS (Xj). On the other hand, given u � E�V � u1 � � � uk,
where ui � (ai� fi) we say u is legal if for all x j � F�, there exists a unique
i � [k] such that fi(x j) � 1. Let LegV be the set of all legal words over EV .
It is easily seen that enc gives a bijection between LegV and the set of

pairs (w� Iw) of words with interpretations. Moreover we can check that
LegV is recognizable: consider the automaton Aj below corresponding to
x j � F�. Then LegV �

�

j�[m]

L(Aj). Since recognizable languages are closed

under intersection, LegV is recognizable.
What we then need to prove is the following:

Lemma 4.2. For every formula � with all its first order variables among
F� � �x1� � � � � xm� and all its set variables among S � � �X1� � � � � Xn�, there
exists an automaton A� such that L(A�) � �enc(w� Iw)�(w� Iw) �� ��.



328 R. RAMANUJAM

�� ��������q0

any

��

f (x)�1

(a� f )
�� ����������������q1 any

��

Figure 7: Automaton for Pa(x)

�� ��������q0

any

��

f (x)� f (y)�1

(a� f )
�� ����������������q1 any

��

Figure 8: Automaton for x � y

Clearly, the theorem follows from the lemma, which is proved by induc-
tion on the structure of �.
The base case is when � is atomic, and is of the form Pa(x)� a � E, x � y,

x � y, or x � X. In each case we can construct an automaton as below, and
take intersection with LegV .
The induction step is when � is a negated formula, a disjunction, or a

quantified formula.
� � ��1: L(��1) � L(�1) � LegV . Since recognizable languages are

closed under complementation and intersection, the required automaton
exists.
� � �1 � �2: Inductively consider A�1 and A�2 and “expand” their al-

phabets to EV replacing every transition on (a� f ) in A�1 by some (a� f �)
transition on the same states such that f �(x) � f (x) for x � F�1 etc. Then
we only need to appeal to closure of recognizable languages under union.
� � �x��1: Note that L(�) consists of those words (a1� f1)� � � � � (ak� fk)

such that for some word (a1� g1)� � � � � (ak� gk) in L(�1), each gi : (EV �

�x�)� �0� 1� and gi�EV � fi. That is, f is the same as g, with the evaluation
for x “discarded”. Thus the construction is simple: consider the inductive
automaton A�1 , and replace each (a� g) transition by (a� f ) on the same

�� ��������q0

any

��

f (x)�1

(a� f )
�� ��������q0

any

��

f (y)�1

(a� f )
�� ����������������q1 any

��

Figure 9: Automaton for x � y
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�� ��������q0

any

��

f (x)� f (X)�1

(a� f )
�� ����������������q1 any

��

Figure 10: Automaton for x � X

states, where f � g�EV .
� � �X��1: This case is proved exactly as above.
This completes the induction and proves the lemma. To prove the theo-

rem, consider an MSO sentence � and construct A� as above, then replace
every (a� f ) transition by a on the same states, and we are done.

4.1 E�ectiveness

An EMSO sentence is an MSO formula of the form �X1 � � ��Xm� where
� is a first order sentence using the predicates X1� � � � Xm.

Corollary 4.3. Every MSO sentence is equivalent to an EMSO sentence.

This is a nontrivial normal form for the logic, obtained by a detour
through automata theory. The fact that all set quantification can be pulled
out to a prenex form is not obvious when we take a look at the semantics
of the logic.
Theorem 4.1 o�ers us a construction of an MSO sentence corresponding

to every automaton and vice versa. How e�ective is this construction?
We need to consider the cost of all the operations in the induction step. If

we consider nondeterministic automata of size n inductively, union needs
at most 2n � 1 states, intersection at most n2 states, projection at most n
states, and complementation at most 2n states. Does this mean that the
construction is exponential? Sadly, it is much worse. Each projection
may convert a deterministic automaton to a nondeterministic one, which
means that the next complementation will involve the subset construction
and hence cause an exponential blowup. Thus every quantifier alternation
gives one exponent and we have a procedure that generates 22���2

n
where the

tower of exponents is of size k, where k is the number of logical operators
in the sentence.
Can we do better? A theorem byMeyer and Stockmeyer, 1972 ([MS72])

asserts that such a non-elementary blowup is unavoidable.
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4.2 Remarks

What we see here is a trade-o� between two forms of specification, one
logical, and the other in terms of automata. The former has a compositional
semantics, and operations like complementation come for free. The latter
has only local structure and combinational operators are hard to work with.
On the other hand, there are easy and e�cient algorithms to determine
properties of automata, whereas algorithmic questions on logical formulas
tend to be hard. Given an automaton, we can e�ciently minimize it, so that
we can work with the optimal one, whereas for formulas, it is hard to see
such optimal equivalents.

4.3 First order

Theorem 4.1 establishes an equivalence between regular languages and
MSO-definable languages. What can we say about FO-definable languages?
Clearly this is a strict subclass of regular languages.

Theorem 4.4. Schützenberger, 1965 ([Sch65]): FO-definable languages
are exactly the star-free languages.

The proof of this theorem involves use of algebraic machinery that is
very interesting but beyond the scope of this elementary exposition. But
one application of such machinery is the decidability of the following very
interesting question: given an MSO sentence � can we determine that it is
already equivalent to some FO sentence (over the same vocabulary)? Yes,
and an algorithm was presented by Hashiguchi in 1988 ([Has88]).

5 Generalizations

Having established a connection between definability in monadic second
order logic and recognizability by finite state automata, one can ask whether
this connection is of any significance beyond the relationship itself. Indeed,
this connection is merely a starting point for journeys in many directions.

5.1 Arithmetic

Büchi used this in 1960 to prove the decidability ofWS1S, theweakmonadic
second order theory of 1 successor: all MSO(�) sentences true in the struc-
ture (�� S � �) of natural numbers where the second order quantification is
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contrained to be only over finite sets. From this, we can infer the decid-
ability of Presburger arithmetic, the first order theory of addition on the
structure (���). The main idea is that a number, say 27, can be repre-
sented as a word 11011 which in turn can be represented by the finite set
�0� 1� 3� 4�. Now we can write a sentence �(X1� X2� X3) to assert that Xi rep-
resents the number xi, and that x1� x2 � x3. Thus every sentence in FO(�)
can be translated into WS 1S , establishing the decidability of Presburger
arithmetic. Is there a translation possible in the other direction? It turns
out ([MV96]) that we need to extend the first order theory of addition with
an additional arithmetical predicate so that we can translate WS 1S into
it: V2(m� n) if the highest power of 2 that divides m is n. There are many
more interesting connections between definability in arithmetical theories
and recognizability, see [MV96] for a nice survey.

5.2 Trees

We have all along considered only sequences as inputs to automata. A nat-
ural generalization is to consider automata over finite trees whose nodes
are labelled by elements of the finite alphabet E. It is then convenient to
present E as a tuple (E0� E1� � � � � Em) where Ei is the set of elements of arity
i: the idea is that when a tree node is labelled by a � Ei, it has i children.
The automaton can then proceed bottom-up: on reading each leaf, the au-
tomaton assumes a state. On reading any non-leaf node labelled a � Ek, if
after reading its k children, the automaton is in states (q1� � � � � qk), then the
transition relation specifies what the next state can be, say q, which is the
state that the automaton assumes. Proceeding this way, the automaton is in
some state q f when it reaches the root. If q f is designated to be an accept-
ing state, the tree is accepted, otherwise rejected. Thus we can associate a
tree language with such a bottom-up tree automaton, and talk of recogniz-
able tree languages. Correspondingly, we can define MSO(S 1� S 2� � � � Sm),
the monadic second order logic with S i representing the i-way generaliza-
tion of the successor function. The details are interesting but not di�cult,
and we can prove a correspondence between recognizability of tree lan-
guages and MSO-definability. Many other techniques like determinization
and minimization, and results like characterization of first order definabil-
ity transfer neatly from words to trees.
Instead of a bottom-up processing tree automaton, we could also con-

sider a top-down automaton that works its way downward, splitting into
several states depending on the arity of the letter being read. Such automata
are expressively equivalent to bottom-up automata, though the determinis-
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tic subclass is strictly weaker in the top-down case.
Often, we wish to consider trees where the arities at nodes are not pre-

determined, as in the case of XML documents which are trees but of un-
bounded arity. Recognizability and definability of such unranked tree lan-
guages is a topic of much interest to contemporary researchers, as lifting
the machinery from ranked to unranked trees proves to be di�cult. A natu-
ral machine model to process such input is that of tree walking automata:
from any node, the transition includes an instruction to move up, down, left,
right etc thus enabling the automaton to walk all over the tree. Once again,
the theory is di�cult and still under development. The e-book [CDG�07]
is a good source of information on automata over finite trees.

5.3 Infinite behaviours

The connection between finite state automata and monadic second order
logic yields its most beautiful results in the context of infinite words and
infinite trees. In 1962, Büchi showed that S 1S , the monadic second or-
der theory of 1 successor (that is, the set of sentences of MSO(�) true in
(�� �)) is decidable, by setting up a correspondence between definability
in the logic and recognizability by a simple generalization of finite state
automaton. Consider an automaton A � (Q� �� I� F) over E. A run of A on
an infinite word w � a0a1 � � � is an infinite sequence � � q0q1 � � �, where
for all j � 0, (q j� a j� q j�1) � � and q0 � I. Since Q is finite, such a run
must visit some states infinitely often. Let In f (�) denote this set. The run
is accepting if In f (�) � F � �. The word w is accepted by A if there is an
accepting run on it.
Interestingly, almost all results and techniques transfer from finite to in-

finite words though with a great deal of work. For instance, the automata
defined above are not determinizable. We need to enrich the acceptance
condition to enumerate sets F1� � � � � Fk such that for some i, Fi � In f (�)
for an accepting run �. Such automata can then be determinized ([Saf88])
but the complexity is high.
In a celebrated theorem, Rabin ([Rab69]) showed the correspondence

between automata on infinite trees (necessarily top-down) and S 2S , the
monadic second order theory of the infinite binary tree, thus proving the
decidability of the latter. Not only is the proof intricate, but the core tech-
nique of complementing finite automata over infinite trees, turned out to be
immensely useful for later developments. Today the decidability of many
logical theories is proved by the technique of interpretation into S 2S . The
connection between this theory and that of infinite games has opened au-
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tomata theory and logic to a range of new questions. The reader is referred
to the excellent surveys in ([GTW02]) for an illuminating introduction to
the theory.
Once we have moved from words to trees, the natural move to consider

automata over graphs. Unfortunately, while the machine model is easy
to define, it turns out to be too powerful. For instance, the problem of
checking whether the automaton accepts some non-empty language at all,
does not admit any algorithmic solution. Logics and automata on finite and
infinite graphs is an arena of interesting current research ([Tho03]).

5.4 Infinite alphabets

We have all along been working only with finite alpabets. Considering that
finite state machines have only bounded memory, it is a priori reasonable
that their input alphabet is finite. If the input alphabet were infinite, it
is hardly clear how such a machine could tell infinitely many elements
apart. And yet, there are many good reasons to consider mechanisms that
achieve precisely this. An important reason is data manipulation: when we
need to work with data values such as integers, we implicitly need infinite
state mecanisms, and the question is whether some techniques can at all be
usefully lifted from the finite state experience to such situations.
Consider the set of all finite sequences of natural numbers (given in

binary) separated by hashes. A word of this language, for example, is
100#11#1101#100. Now consider the subset L containing all sequences
with some number repeating in it. It is easily seen that L is not regular.
The problem with L has little to do with the representation of the input
sequence. If we were given a bound on the numbers occurring in any se-
quence, we could easily build a finite state automaton recognizing L. The
di�culty arises precisely because we don’t have such a bound or because
we have ‘unbounded data’.
In the last decade, there have been interesting developments in the theory

of automata over infinite alphabets, showing intriguing connections with
variable restricted first order logics, as well as logics with several order
relations. See [AR10] for a brief survey of these attempts.

6 Closing remarks

We started with a discussion of memory infrastructure required for rea-
soning and suggested that automata models o�er abstractions of bounded
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memory. This led us to the question of how we could describe such models
in logic, closing the circle. Büchi’s theorem shows an equivalence between
definability in monadic second order logic over words and recognizability
by finite state automata. The fact that this theorem can be generalized in
many ways (to trees, infinite objects, and so on) attests to the basic nature
of this equivalence. In formulaic terms, logical descriptions and memory
models can be seen as being dual to each other, but identifying the precise
connection between the two can be enriching.
In a sense, these computational models can be seen as an addition to

the philosopher’s toolkit, for finer analyses of expressiveness embodied in
connectives and quantifiers. When we move to logics of agency and in-
teraction, memory structures play an important role and such additions to
the toolkit are indeed necessary. Refining this understanding of memory
structures, and their associated logics o�ers a systematic way of address-
ing many questions of great complexity related to memory. This is of spe-
cial interest when we consider not individual memory but collective and
distributed memory. Logics of interaction can o�er an abstract view of
such memory and the reasoning involved. While there are many research
attempts in this direction, these are early days and we need to await the
clarity of insight comparable to Büchi’s theorem from half a century ago.
On the other hand, the issue of how complex memory needs to be for ef-

fective reasoning, the space complexity of logics, has received little math-
ematical attention, and most natural questions remain unanswered. The
interplay between these two strands, memory for logic and logics of mem-
ory, is likely to lead to a rich mathematical theory of relevance to logic and
computation.
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PART IV

Logics of Information and
Agency





Logics of Informational Attitudes and
Informative Actions

ERIC PACUIT�

1 Introduction

There is an extensive literature focused on using logical methods to reason
about communities of agents engaged in some form of social interaction.
Much of the work builds upon existing logical frameworks developed by
philosophers and computer scientists incorporating insights and ideas from
philosophy (especially epistemology and philosophy of action), game the-
ory, decision theory and social choice theory. The result is a web of logical
systems each addressing di�erent aspects of rational agency and social in-
teraction. This paper focuses one one aspect of this broad area: logical
systems designed to model the agents’ informational attitudes (eg., knowl-
edge, belief, certainty) in social interactive situations. This includes no-
tions of group knowledge and informative action. Indeed, a key challenge
for the logician is to account for the many dynamic processes that gov-
ern the agents’ (social) interactions over time. Inference, observation and
communication are all examples of such processes that are the focus of cur-
rent logics of informational update and belief revision (see, for example,
the papers, [15, 31, 77]1). This paper will introduce these epistemic and
doxastic logics as models of “rational interaction" and provide pointers to
some current literature.
The point of departure for modern epistemic and doxastic logic is Jaakko

Hintikka’s seminal textKnowledge and Belief: An Introduction to the Logic
of the Two Notions [57]2. In fact, Hintikka was not the first to recognize
that discourse about knowledge and belief could be the subject of a logi-
cal analysis. Indeed, Hintikka cites G.H. Von Wright’s An Essay in Modal

�A Resident Fellow and Assistant Professor, Dept. of Philosophy, Univ. of Tilburg
1Of course, one may argue that (logical) inference is the central topic of any logic. What

we have in mind here is reasoning about agents that make inferences.
2This important book has recently been re-issued and extended with some of Hintikka’s

latest papers on epistemic logic [58].
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Logic [94] as the starting point for his logical analysis. A comprehensive
history of epistemic and doxastic logic is beyond the scope of this paper;
however, the interested reader can consult the following three sources for
relevant historical details:

1. Paul Gochet and Pascal Gribomont’s article in the Handbook of the
History of Logic [39] has an extensive discussion of the main high-
lights in the technical development of epistemic logic;

2. Robert Goldblatt’s article in the Handbook of the History of Logic
[40] has a nearly complete history of the mathematical development
of modal logic in the 20th century; and

3. Vincent Hendricks and John Symons [55, Section 2] describe some
key developments in modal logic that led to Hintikka’s book.

While Hintikka’s project sparked some discussion among mainstream epis-
temologists (especially regarding the “KK Principle": does knowing some-
thing imply that one knows that one knows it?3, much of the work on
epistemic and doxastic logic was taken over by Game Theorists [1] and
Computer Scientists [36] in the 1990s. Recently, focus is shifting back to
Philosophy with a growing interest in “bridging the gap between formal
and mainstream epistemology”: witness the collection of articles in [54]
and the bookMainstream and Formal Epistemology by Vincent Hendricks
(cf. the paper [53]).
Thus, the field of Epistemic Logic has developed into an interdisciplinary

area no longer immersed only in the traditional questions of mainstream
epistemology. Much recent work focuses on explicating epistemic issues
in, for example, game theory [24] and economics [83], computer security
[49, 80], distributed systems [47], and social software [73]4. The situation
is nicely summarized in a recent article by Robert Stalnaker who suggests
that a logical analysis can

“...bring out contrasting features of some alternative concep-
tions of knowledge, conceptions that may not provide plausi-
ble analyses of knowledge generally, but that may provide in-
teresting models of knowledge that are appropriate for partic-
ular applications, and that may illuminate in an idealized way,
one or another of the dimensions of the complex epistemolog-
ical terrain.” [91, pg. 170]

3Timothy Williamson [93, Chapter 5] has a well-known and persuasive argument
against this principle (cf. [32] for a discussion of interesting issues for epistemic logic
deriving from Williamson’s argument).

4See also Parikh’s contribution to this volume.
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In this survey, the modeling of informational attitudes of a group of (ra-
tional) agents engaged in some form of social interaction (eg. having a
conversation or playing a card game) takes center stage.
Many logical systems today focus on (individual and group) informa-

tional attitudes often with a special focus on how the agents’ information
changes over time. Sometimes di�erences between “competing” logical
systems are technical in nature reflecting di�erent conventions used by dif-
ferent research communities. And so, with a certain amount of technical
work, such frameworks are seen to be equivalent up to model transforma-
tions (cf. [43, 69, 71, 17]). Other di�erences point to key conceptual issues
about rational interaction.
The main objective of this paper is to not only to introduce important

logical frameworks but also help the reader navigate the extensive literature
on (dynamic) epistemic and doxastic logic. Needless to say, we will not be
able to do justice to all of this extensive literature. This would require a
textbook presentation. Fortunately, there are a number of excellent text-
books on this material (see [36, 31, 15]). The article will be self-contained,
though familiarity with basic concepts in modal logic may be helpful5.

2 Informational Attitudes

Contemporary epistemology provides us with a rich typology of informa-
tional attitudes. There are numerous notions of knowledge around: the
pre-Gettier “justified true belief” view, reliability accounts [41], counter-
factual accounts [70], and active vs. passive knowledge [90, pg. 299], to
name just a few (cf. [87] for a survey). Similarly, beliefs come in many
forms: graded or flat-out [50], conditional and lexicographic [24], safe and
strong [4]. On top of all this, beliefs seem to be just one example in a large
variety of “acceptance-like” attitudes [85]. In this paper, we concentrate on
a general distinction between attitudes of hard and soft information [13, 4]
without taking a stance on which of these attitudes, if any, should be seen
as primary, either for epistemology in general or for specific applications.
Hard information, and its companion attitude, is information that is veridi-

cal and not revisable. This notion is intended to capture what the agents are
fully and correctly certain of in a given social situation. So, if an agent has
hard information that some fact � is true, then � really is true. In absence
of better terminology and following common usage in the literature, we
use the term knowledge to describe this very strong type of informational

5See [16] for a modern textbook introduction to modal logic and [20] for an overview
of some of the more advanced topics.
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attitude. However, we make no claim as to whether this notion captures
one of the many notions of knowledge just mentioned (in fact, it proba-
bly does not) and simply note that “hard information” shares some of the
characteristics that have been attributed to knowledge in the epistemolog-
ical literature such as veridicality. Soft information is, roughly speaking,
anything that is not “hard”: it is not necessarily veridical and�or highly re-
visable in the presence of new information. As such, it comes much closer
to beliefs or more generally attitudes that can be described as “regarding
something as true” [84].

Thus, we identify revisability as a key distinguishing feature. Typically,
discussions of epistemic logic focus instead on the epistemic capabilities
of the agents such as introspection or logical omniscience. For example, it
is typically assumed that if an agent has the (hard or soft) information that
� is true, then this fact is fully transparent (to the agent). In order keep the
presentation manageable, we do not go into details about these interesting
issues (cf. [36] for extensive discussions).

Before going into details, a few comments about the general approach to
modeling are in order. The formal models introduced below can be broadly
described as “possible worlds models" familiar in much of the philosoph-
ical logic literature. These models assume and underlying set of states
of nature describing the (ground) facts about the situation being modeled
that do not depend on the agents’ uncertainties. Typically, these facts are
represented by sentences in some propositional (or first-order) language.
Each agent is assumed to entertain a number of possibilities, called possible
worlds or simply (epistemic) states. These “possibilities" are intended to
represent “the current state of the world". So each possibility is associated
with a unique state of nature (i.e., there is a function from possible worlds
to sets of sentences “true" at that world, but this function need not be 1-1 or
even onto). Crucial for the epistemic-logic analysis is the assumption that
there may be di�erent possible worlds associated with the same state of
nature. Such possible worlds are important for representing higher-order
information (eg., information about the other agents’ information). One fi-
nal common feature is that the agents’ informational attitudes are directed
towards propositions, also called events in the game-theory literature, rep-
resented as sets of possible worlds. These basic modeling choices are not
uncontroversial, but such issues are beyond the scope of this paper6 and so
we opt for mathematical precision in favor of philosophical carefulness.

6The interested reader can consult [75] for a discussion.
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2.1 Models of Hard Information

Let Agt be a non-empty set of agents and At a (countable or finite) set of
atomic sentences. Elements p � At are intended to describe ground facts,
for example, “it is raining" or “the red card is on the table", in the situation
being modeled. A non-empty set W, called possible worlds or states, are
intended to represent the di�erent ways the situation being modeled may
evolve. Rather than directly representing the agents’ hard information, the
models given below describe the “implicit consequences" of this informa-
tion in terms of “epistemic indistinguishability relations"7. The idea is that
each agent has some “hard information" about the situation being modeled
and agents cannot distinguish between states that agree on this informa-
tion. In basic epistemic models, this “epistemic indistinguishability" is
represented by equivalence relations on W:

Definition 2.1 (Epistemic Model). An epistemic model (based on the set
of agents Agt and set of atomic propositions At) is a tuple �W� ��i�i�Agt�V�
where W is a non-empty set; for each i � Agt, �i� W � W is reflexive,
transitive and symmetric; and V : At� �(W) is a valuation function. �

A simple propositional modal language will be used to describe properties
of these structures. Formally, let �EL be the (smallest) set of sentences
generated by the following grammar:

� :� p � �� � � � � � Ki�

where p � At and i � Agt. The additional propositional connectives
(�����) are defined as usual and the dual of Ki, denoted Li, is defined
as follows: Li� :� �Ki��. The intended interpretation of Ki� is “ac-
cording to agent i’s current (hard) information, � is true" (following stan-
dard notation we can also say “agent i knows that � is true"). Given a
story or situation we are interested in modeling, each state w � W of
an epistemic model � � �W� ��i�i�Agt�V� represents a possible scenario
which can be described in the formal language given above: if � � �EL,
� � �W� ��i�i�Agt�V� and w � W, we write ��w �� � if � is a correct
description of some aspect of the situation represented by w. This can be
made precise as follows:

7The phrasing “epistemic indistinguishability", although common in the epistemic logic
literature, is misleading since, as a relation, “indistinguishability" is not transitive. A stan-
dard example is: a cup of co�ee with n grains of sugar is indistinguishable from a cup with
n� 1 grains; however, transitivity would imply that a cup with 0 grains of sugar is indistin-
guishable from a cup with 1000 grains of sugar. In this context, two states are “epistemicly
indistinguishable" for an agent if the agent has the “same information" in both states. This
is indeed an equivalence relation.
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Definition 2.2 (Truth). Let� � �W� ��i�i�Agt�V� be an epistemic model.
For each w � W, � is true at state w, denoted��w �� �, is defined by
induction on the structure of �:

� ��w �� p i� w � V(p)

� ��w �� �� i���w ��� �

� ��w �� � � � i���w �� � and��w �� �

� ��w �� Ki� i� for all v � W, if w �i v then�� v �� �

We say � is satisfiable if there is an epistemic model� � �W� ��i�i�Agt�V�
and state w � W such that��w �� �; and � is valid in�, denoted� �� �
if��w �� � for all w � W. �

Given the definition of the dual of Ki, it is easy to see that

��w �� Li� i� there is a v � W such that�� v �� �.

Thus an interpretation of Li� is “� is consistent with agent i’s current (hard)
information". The following example will illustrate the above definitions.
Suppose there are two agents, Ann (A) and Bob (B), and three cards

labeled with the numbers 1, 2 and 3. Consider the following scenario: Ann
is dealt one of the cards, Bob is given one of the cards and the third card
is put face down on a table. What are the relevant possible worlds for this
scenario? The answer to this question depends, in part, on the level of detail
in the description of the situation being modeled. For example, relevant
details may include whether Ann is holding the card in her right hand or
left hand, the color of the cards or whether it is raining outside. The level of
detail is fixed by the choice of atomic propositions. For example, suppose
that At � �p1� p2� p3� q1� q2� q3� where pi is intended to mean that “Ann has
card i" and qi is intended to mean “Bob has card i". Since each agent is
given precisely one of the three possible cards, there are 6 relevant possible
worlds, W � �w1�w2�w3�w4�w5�w6�, one for each way the cards could be
distributed. What about the agents’ information? Some of the aspects
about the situation being modeled can be classified as “informative" for
the agents. For example, since the third card is placed face down on the
table, neither agent “knows" the number written on the other agent’s card.
The complete epistemic state of the agents is described by the epistemic
model pictured below (in this picture, an i-labeled arrow from state w to
state v means w �i v and each state is labeled with the atomic propositions
true at that state):
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� ��w1 �� KAp1 � KA�q1

� ��w1 �� KA(q2 � q3)

� ��w1 �� KA(KBp2 � KB�p2)

The reader is invited to check that the formulas to the right are indeed true
at state w1 according to Definition 2.2. The intuitive interpretation of these
formulas describe (part of) the hard information that Ann has in the above
situation. For example, Ann knows that she has card 1 (i.e., it is assumed
that Ann is looking at her card); Ann knows that Bob does not have card 1
(because, for example, Ann has background knowledge that there are only
three cards with no duplicates); and Ann knows that Bob either has card 2
or card 3 and she knows that Bob knows whether he has card 2 (this can
also be derived from her background knowledge).

Notice that the set of states that Ann considers possible at w1 is �w1�w2�.
This set is the truth set of the formula p1 (i.e., �x � �� x �� p1� � �w1�w2�);
and so, we can say that all Ann knows about the situation is that she has
card 1. The other propositions that Ann knows are (non-monotonic) con-
sequences of this proposition (given her background knowledge about the
situation). This suggests that it may be useful to include an operator “for all
agent i knows". In fact, this notion was introduced by Hector [64] and, al-
though the logical analysis turned out to be a challenge cf. [62, 45, 46, 33],
has proven useful in the epistemic analysis of certain solution concepts (cf.
the paper[48]).

The above epistemic models are intended to represent the agents’ hard
information about the situation being modeled. In fact, we can be much
more precise about the sense in which these models “represent" the agents’
hard information by using standard techniques from the mathematical the-
ory of modal logic [20]. In particular, modal correspondence theory rig-
orously relates properties of the the relation in an epistemic model with
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modal formulas cf. Chapter 3 [20]8. The following table lists some key
formulas in the language �EL with their corresponding (first-order) prop-
erty and the relevant underlying assumption.

Assumption Formula Property
Logical Omniscience Ki(�� �)� (Ki�� Ki�) —
Veridical Ki�� � Reflexive
Positive Introspection Ki�� KiKi� Transitive
Negative Introspection �Ki�� Ki�Ki� Euclidean

Viewed as a description, even an idealized one, of knowledge, the above
properties have raised many criticisms. While the logical omniscience as-
sumption (which is valid on all models regardless of the properties of the
accessibility relation) generated the most extensive criticisms [88] and re-
sponses (cf. [36, Chapter 9]), the two introspection principles have also
been the object of intense discussion (cf. [93, 32]9). These discussions are
fundamental for the theory of knowledge and its formalization, but here we
choose to bracket them, and instead take epistemic models for what they
are: models of hard information, in the sense introduced above.

2.2 Varieties of Soft Information

A small modification of the above epistemic models allows us to model a
softer informational attitude. Indeed, by simply replacing the assumption
of reflexivity of the relation �i with seriality (for each state w there is a

8To be more precise, the key notion here is frame definability: a frame is a pair �W�R�
where W is a nonempty set and R a relation on W. A modal formula is valid on a frame
if it is valid in every model (cf. Definition 2.1) based on that frame. It can be shown that
some modal formulas have first-order correspondents P where for any frame �W�R�, the
relation R has property P i� � is valid on �W�R�. A highlight of this theory is Sahlqvist’s
Theorem which provides and algorithm for finding first-order correspondents for certain
modal formulas. See Sections 3.5 - 3.7 [20] for an extended discussion.

9In fact, Hintikka explicitly rejects negative introspection: “The consequences of this
principle, however, are obviously wrong. By its means (together with certain intuitively
acceptable principles) we could, for example, show that the following sentence is self sus-
taining p � KiLi p" [57, pg. 54]. Hintikka regards this last formula as counter-intuitive
since it means that if it possible that an agent knows some fact p then that fact must be
true. However, it seems plausible that an agent can justifiably believe that she knows some
fact p but p is in fact false. Other authors have pointed out di�culties with this principle in
modal systems with both knowledge and belief modalities: see, in particular, [91] and [86,
Section 13.7].
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state v such that w �i v), but keeping the other aspects of the model the
same, we can capture what epistemic logicians have called “beliefs". For-
mally, a doxastic model is a tuple �W� �Ri�i�Agt�V� whereW is a nonempty
set of states, Ri is a transitive, Euclidean and serial relation onW and V is a
valuation function (cf. Definition 2.1). Truth is defined precisely as in Def-
inition 2.2, replacing �i with Ri. This notion of belief is very close to the
above hard informational attitude and, in fact, shares all the properties of Ki
listed above except Veracity (this is replaced with a weaker assumption that
agents are “consistent" and so cannot believe contradictions). This points
to a logical analysis of both informational attitudes with various “bridge
principles" relating knowledge and belief (such as knowing something im-
plies believing it or if an agent believes � then the agent knows that he
believes it). However, we do not discuss this line of research here since
these models are not our preferred ways of representing the agents’ soft
information (see, for example, [42, 91]).
A key aspect of beliefs which is not yet represented in the above models

is that they are revisable in the presence of new information. While there
is an extensive literature on the theory of belief revision (see the article
by Booth and Meyer in this collection for a discussion), the focus here is
how to extend the above models with a representation of softer, revisable
informational attitudes. The standard approach is to include a plausibility
ordering for each agent: a preorder (reflexive and transitive) denoted �i �
W �W. If w �i v we say “player i considers v at least as plausible as w."
For X � W, let

Min�i(X) � �v � W � v �i w for all w � X �

denote the set of minimal elements of X according to �i. Thus while the
�i partitions the set of possible worlds according to the hard information
the agents are assumed to have about the situation, the plausibility ordering
�i represents which of the possible worlds the agent considers more likely
(i.e., it represents the players soft information). Models representing both
the agents’ hard and soft information have been used not only by logicians
[12, 30, 4] but also by game theorists [21] and computer scientists [23, 63]:

Definition 2.3 (Epistemic-Doxastic Models). SupposeAgt is a set of agents
and At a set of atomic propositions, an epistemic doxastic model is a tuple
�W� ��i�i�Agt� ��i�i�Agt�V� where �W� ��i�i�Agt�V� is an epistemic model and
for each i � Agt, �i is a well-founded10, reflexive and transitive relation on
W satisfying the following properties, for all w� v � W

10Well-foundedness is only needed to ensure that for any set X, Min�i (X) is nonempty.
This is important only when W is infinite.
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1. plausibility implies possibility: if w �i v then w �i v.

2. locally-connected: if w �i v then either w �i v or v �i w. �

Remark 2.4. Note that if w �i v then, since �i is symmetric, we also have
v �i w, and so by property 1, w �i v and v �i w. Thus, we have the
following equivalence: w �i v i� w �i v or v �i w.

Let [w]i be the equivalence class of w under �i. Then local connected-
ness implies that �i totally orders [w]i and well-foundedness implies that
Min�i([w]i) is nonempty. This richer model allows us to formally define a
variety of (soft) informational attitudes. We first need some additional no-
tation: the plausibility relation �i can be lifted to subsets ofW as follows11

X �i Y i� x �i y for all x � X and y � Y

Suppose � � �W� ��i�i�Agt� ��i�i�Agt�V� is an epistemic-doxastic model
with w � W, consider the following extensions to the language �EL

� Belief: ��w �� Bi� i� for all v � Min�i([w]i), �� v �� �. This
is the usual notion of belief which satisfies the standard properties
discussed above (eg., positive and negative introspection).

� Safe Belief: ��w �� �i� i� for all v, if v �i w then�� v �� �.Thus,
� is safely believed if � is true in all states the agent considers more
plausible. This stronger notion of belief has also been called cer-
tainty by some authors (cf. [86, Section 13.7]).

� Strong Belief: ��w �� Bs
i� i� there is a v such that w �i v and

�� v �� � and �x � �� x �� �� � [w]i �i �x � �� x �� ��� � [w]i.So
� is strongly believed provided it is epistemically possible and agent
i considers any state satisfying � more plausible than any state sat-
isfying ��. This notion has also been studied by Stalnaker [89] and
Battigalli and Siniscalchi [10].

The logic of these notions has been extensively studied by Alexandru Bal-
tag and Sonja Smets in a series of articles [4, 6, 8]. We conclude this
section with a few remarks about the relationship between these di�erent
notions. For example, it is not hard to see that if agent i knows that � then
i (safely, strongly) believes that �. However, much more can be said about
the logical relationship between these di�erent notions (cf. [8]).

11This is only one of many possible choices here, but it is the most natural in this setting
(cf. [68, Chapter 4]).
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As noted above, a crucial feature of these informational attitudes is that
they are defeasible in light of new evidence. In fact, we can character-
ize these attitudes in terms of the type of evidence which can prompt the
agent to adjust her beliefs. To make this precise, we introduce the no-
tion of a conditional belief: suppose� � �W� ��i�i�Agt� ��i�i�Agt�V� is an
epistemic-doxastic and � and � are formulas, then we say i believes � given
�, denoted B�i �, provided

��w �� B�i � i� for all v � Min�i([[�]]� � [w]i),�� v �� �

where [[�]]� � �w � ��w �� �� is the truth set of �. So, ‘B
�
i ’ encodes what

agent i will believe upon receiving (possibly misleading) evidence that �
is true. Two observations are immediate. First of all, we can now define
belief Bi� as B�i � (belief in � given a tautology). Second, unlike beliefs,
conditional beliefs may be inconsistent (i.e., B�� may be true at some
state). In such a case, agent i cannot (on pain of inconsistency) revise by �,
but this will only happen if the agent has hard information that � is false.
Indeed, K�� is logically equivalent to B�i � (over the class of epistemic-
doxastic models). This suggests the following (dynamic) characterization
of an agents’ hard information as unrevisable beleifs:

��w �� Ki� i���w �� B�i � for all �

Safe belief and strong belief can be similarly characterized by restricting
the admissible evidence:

� ��w �� �i� i� ��w �� B�i � for all � with ��w �� �. That is, i
safely beliefs � i� i continues to believe � given any true formula.

� ��w �� Bs
i� i���w �� Bi� and��w �� B�i � for all � with��w ��

�Ki(� � ��). That is, agent i strongly believes � i� i believes �
and continues to believe � given any evidence (truthful or not) that
is not known to contradict �.

Baltag and Smets [8] provide an elegant logical characterization of the
above notions by adding the safe belief modality (�i) to the epistemic lan-
guage �EL (denote the new language �EDL). First of all, note that con-
ditional belief (and hence belief) and strong belief are definable in this
language:

� B�i � :� Li�� Li(� � �i(�� �))

� Bs
i� :� Bi� � Ki(�� �i�)
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All that remains is to characterize properties of an epistemic-doxastic model
(Definition 2.3). As discussed in the previous Section, Ki satisfies log-
ical omnsicience, veracity and both positive and negative introspection.
Safe belief, �i, shares all of these properties except negative introspec-
tion. Modal correspondence theory can again be used to characterize the
remaining properties:

� Knowledge implies safe belief: Ki�� �i�
(Definition 2.3, property 1)

� Locally connected: Ki(� � ��) � Ki(� � ��)� Ki� � Ki�
(Definition 2.3, property 2)

Remark 2.5. The above models use a “crisp” notion of uncertainty, i.e.,
for each agent and state w, any other state v � W is either is or is not
possible�more plausible than w. However, there is an extensive body of
literature developing graded, or quantitative, models of uncertainty [44].
For instance, in the Game Theory literature it is standard to represent the
players’ beliefs by probabilities [2, 51]. The idea here is to use proba-
bility distributions in place of the above plausibility orderings. Formally,
a epistemic-proabalistic model is a tuple � � �W� ��i�i�Agt� �Pi�i�Agt�V�
where �W� ��i�i�Agt�V� is an epistemic model and Pi : W � �(W) (�(W) �
�p : W � [0� 1] � p is a probability measure �) assigns to each state a prob-
ability measure over W. Write pwi for the i’s probability measure at state
w. We make two natural assumptions (cf. Definition 2.3):

1. For all v � W, if pwi (v) � 0 then pwi � pvi (i.e., if i assigns a non-
zero probability to state v at state w then the agent uses the same
probability measure at both states)

2. For all v, if w �i v then pwi (v) � 0 (i.e., assign nonzero probability
only to the states in i’s (hard) information set, compare this with
Definition 2.3 item 1).

Many di�erent formal languages have been used to describe these rich
structures. Examples range from ‘�i�’ with the intended meaning “� is
more probable than �� for agent i" [56] to more expressive languages
containing operators of the form Bq

i � (with q a rational number) and inter-
preted as follows:

��w �� Bq
i (�) i� p

w
i (�v � �� v �� ��) � q�
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These models have also been the subject of sophisticated logical analy-
ses [35, 34, 52] complementing the logical frameworks introduced in this
paper [5].

2.3 Group Attitudes

Suppose there are two friends Ann and Bob on a bus separated by a crowd.
Before the bus comes to the next stop a mutual friend from outside the
bus yells “get o� at the next stop to get a drink?”. Say Ann is standing
near the front door and Bob near the back door. When the bus comes to
a stop, will they get o�? Of course, this depends, in part, on Ann and
Bob’s preferences. Suppose that both Ann and Bob want to have a drink
with their mutual friend, but only if both are there for the drink. So Ann
will only get o� the bus if she “knows" (justifiable believes) that Bob will
also get o� (similarly for Bob). But this does not seem to be enough (after
all, she needs some assurance that Bob is thinking along the same lines).
In particular, she needs to “know" (justifiably believe) that Bob “knows"
(justifiably believes) that she is going to get o� at the next stop. Is this state
of knowledge su�cient for Ann and Bob to coordinate their actions? Both
Lewis [65] and Clark and Marshall [28] argue that a condition of common
knowledge is necessary for such coordinated actions. In fact, a seminal
result by Halpern and Moses [47] shows that, without synchronized clocks,
such coordinated action is impossible. Michael Chwe [27] has a number of
examples that point out the everyday importance of the notion of common
knowledge.
Both the game theory community and the epistemic logic community

have extensively studied formal models of common knowledge and belief.
Barwise [9] highlights three main approaches to formalize common knowl-
edge: (i) the iterated view, (ii) the fixed-point view and (iii) the shared sit-
uation view. Here we will focus only on the first two approaches (cf. [18]
for a rigorous comparison between (i) and (ii)). Vanderschraaf and Sillari
[92] provide an extensive discussion of the literature (see also [36] for a
general discussion).
Consider the statement “everyone in groupG knows �”. If there are only

finitely many agents, this notion can be easily defined in the basic epistemic
language �EL:

EG� :�
�

i�G

Ki�

where G � Agt. Following Lewis [65]12, the intended interpretation of “it
is common knowledge in G that �" (denoted CG�) is the infinite conjunc-

12Although see [29] for an alternative reconstruction of Lewis’ notion of common knowl-



354 ERIC PACUIT

tion:
� � EG� � EGEG� � EGEGEG� � � � �

However, this involves an infinite conjunction, so cannot be a formula in the
language of epistemic logic. This suggests that common knowledge is not
definable in the language of multi-agent epistemic logic13. Thus we need
to add a new symbol to the language CG� whose intended interpretation is
“it is common knowledge in the group G that �”. Let �C

EL be the smallest
set generated by the following grammar:

p � �� � � � � � Ki� � CG�

with p � At and G � Agt.
Before giving semantics to CG�, we consider EGEGEG�. This formula

says that “everyone from group G knows that everyone from group G
knows that everyone from group G knows that �”. When will this be true
at a state w in an epistemic model? First some notation: a path on length n
for G in an epistemic model is a sequence of states (w0�w2� � � � �wn) where
for each l � 0� � � � � n � 1, we have wl �i wl�1 for some i � G (for example
w0 �1 w1 �2 w2 �1 w3 is a path of length 3 for �1� 2�). Thus, EGEGEG� is
true at state w i� every path of length 3 for G starting at w leads to a state
where � is true. This suggests the following definition:

Definition 2.6 (Interpretation of C). Let� � �W� ��i�i���V� be an epis-
temic model and w � W. The truth of formulas of the form C� is:

��w �� CG� i� for all v � W, if wR�Gv then�� v �� �

where R�G :� (
�

i�G �i)� is the reflexive transitive closure of
�

i�G �i. �

Sometimes it is useful to work with this equivalent characterization:
��w �� CG� i� every finite path forG fromw ends with a state satisfying

the formula �.
The logical analysis is much more complicated in languages with a com-

mon knowledge operator; however, the following two axioms can be said
to characterize14 common knowledge:

edge. Amore precise statement is “the infinite conjunction is a necessary but not a su�cient
condition for common knowledge".

13In fact, one can prove this using standard methods in modal logic.
14Techniques similar to the previously mentioned correspondence theory can be applied

here to make this precise: see [14] for a discussion.
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� Fixed-Point: CG�� EGCG�

� Induction: � �CG(�� EG�)� CG�

The first formula captures the “self-evident" nature of common knowledge:
if some fact is common knowledge in some groupG then everyone inG not
only knows the fact but also that it is common knowledge. Robert Aumann
[1] uses this as an alternative characterization of common knowledge:

Suppose you are told “Ann and Bob are going together,"’ and
respond “sure, that’s common knowledge.” What you mean is
not only that everyone knows this, but also that the announce-
ment is pointless, occasions no surprise, reveals nothing new;
in e�ect, that the situation after the announcement does not
di�er from that before. ...the event “Ann and Bob are going
together” — call it E — is common knowledge if and only if
some event — call it F — happened that entails E and also
entails all players’ knowing F (like all players met Ann and
Bob at an intimate party). [1, pg. 271]

Remark 2.7. In this section we have focused only on the notion of com-
mon knowledge (hard information). What about notions of common (safe,
strong) belief? The general approach outlined above also works for these
informational attitudes: for example, suppose wRB

i v i� v � Min�i([w]i)
and define RB

G to be the transitive closure of �i�GRB
i . Of course, this does

suggest interesting technical and conceptual issues, but these are beyond
the scope of this paper (cf. [22, 66, 67]).

While it is true that coordinated actions do happen, the analysis of many
social situations suggests that other “levels of knowledge", short of the
above infinite-common knowledge level are also relevant. Such levels can
arise in certain pragmatic situations:

Example 2.8. Suppose that Ann would like Bob to attend her talk; how-
ever, she only wants Bob to attend if he is interested in the subject of her
talk, not because he is just being polite. There is a very simple procedure to
solve Ann’s problem: Have a (trusted) friend tell Bob the time and subject
of her talk.
Taking a cue from computer science, perhaps we can prove that this sim-

ple procedure correctly solves Ann’s problem. However, it is not so clear
how to define a correct solution to Ann’s problem. If Bob is actually present
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during Ann’s talk, can we conclude that Ann’s procedure succeeded? Not
really. Bob may have figured out that Ann wanted him to attend, and so is
there only out of politeness. Thus for Ann’s procedure to succeed, she must
achieve a certain “level of knowledge” (cf. [74]) between her and Bob.
Besides both Ann and Bob knowing about the talk and Ann knowing that
Bob knows, we have

Bob does not know that Ann knows about the talk.

This last point is important, since, if Bob knows that Ann knows that he
knows about the talk, he may feel social pressure to attend15. Thus, the
procedure to have a friend tell Bob about the talk, but not reveal that it is at
Ann’s suggestion, will satisfy all the conditions. Telling Bob directly will
satisfy the first three, but not the essential last condition.

We conclude this section by briefly discussing another notion of “group
knowledge": distributed knowledge. Intuitively, � is distributed knowledge
among a group of agents if � would be known if all the agents in the group
put all their information together. Formally, given an epistemic model (be-
liefs do not play a role here)� � �W� ��i�i�Agt�V�, let RD

G � �i�G �i, then
define

��w �� DG� i� for all v � W, if wRD
Gv then�� v �� �.

Note that DG� is not simply equivalent to
�

i�G Ki� (the reader is invited
to prove this well-known fact). Indeed, the logical analysis has raised a
number of interesting technical and conceptual issues (cf. [47, 60, 81, 15]).

3 Informative Actions

The logical models and languages introduced in the previous Section pro-
vide static descriptions of the situation being modeled. However, many of
the situations we are interested in concern agents interacting over time, and
this dynamics also calls for a logical analysis. Indeed, an important chal-
lenge for the logician is to account for the many dynamic processes that
govern the agents’ social interactions. Inference, observation and com-
munication are all examples of such processes that are the focus of cur-
rent logics of informational update and belief revision (see, for example,
[15, 31, 77]16). In this Section, we discuss some key issues that appear
when shifting from a static to a dynamic perspective.

15Of course, this is not meant to be a complete analysis of “social politeness”.
16Of course, one may argue that (logical) inference is the central topic of any logic. What

we have in mind here is reasoning about agents that make inferences.
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The main issue is how to incorporate new information into an epistemic-
doxastic model. At a fixed moment in time the agents are in some epistemic
state (which may be described by an epistemic(-doxastic) model). The
question is how does (the model of) this epistemic state change during the
course of some social interaction? The first step towards answering this
question is identifying (and formally describing) the informative events
that shape a particular social interaction. Typical examples include show-
ing one’s hand in a card game, make a public or private announcement or
sending an email message. However, this step is not always straightfor-
ward since the information conveyed by a particular event may depend on
many factors which need to be specified. Even the absence of an event can
trigger a change in an agent’s informational state: Recall the famous ob-
servation of Sherlock Holmes in Silver Blaze: “Is there any point to which
you would wish to draw my attention?" “To the curious incident of the dog
in the night-time." “The dog did nothing in the night-time." “That was the
curious incident," remarked Sherlock Holmes.
Current dynamic epistemic(-doxastic) logics focus on three key issues:

1. The agents’ observational powers. Agents may perceive the same event
di�erently and this can be described in terms of what agents do or do
not observe. Examples range from public announcements where every-
one witnesses the same event to private communications between two or
more agents with the other agents not even being aware that an event took
place.

2. The type of change triggered by the event. Agents may di�er in precisely
how they incorporate new information into their epistemic states. These
di�erences are based, in part, on the agents’ perception of the source of
the information. For example, an agent may consider a particular source
of information infallible (not allowing for the possibility that the source
is mistaken) or merely trustworthy (accepting the information as reliable
though allowing for the possibility of a mistake).

3. The underlying protocol specifying which events (observations, messages,
actions) are available (or permitted) at any given moment. This is intended
to represent the rules or conventions that govern many of our social inter-
actions. For example, in a conversation, it is typically not polite to “blurt
everything out at the beginning”, as we must speak in small chunks. Other
natural conversational protocol rules include “do not repeat yourself”, “let
others speak in turn”, and “be honest”. Imposing such rules restricts the
legitimate sequences of possible statements or events.

A comprehensive theory of rational interaction focuses on the sometimes
subtle interplay between these three aspects (cf. [15]).
The most basic type of informational change is a so-called public an-

nouncement [79, 38]. This is the event where some proposition � (in the
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language of�EL) is made publicly available. That is, it is completely open
and all agents not only observe the event but also observe everyone else
observing the event, and so on ad infinitum (cf. item 1 above). Further-
more, all agents treat the source as infallible (cf. item 2 above). Thus the
e�ect of such an event on an epistemic(-doxastic) model should be clear:
remove all states that do not satisfy �. Formally,

Definition 3.1 (Public Announcement). Suppose � � �W� ��i�i�Agt� ��i
�i�Agt�V� is an epistemic-doxastic model and � is a formula (in �EDL). The
model updated by the public announcement of � is the structure�� �
�W�� ���i �i�Agt� ��

�
i �i�Agt�V��whereW� � �w � W � ��w �� ��, for each i �

Agt, ��i ��i �W
� �W�, ��i ��i �W

� �W�, and for all atomic proposition
p, V�(p) � V(p) �W�. �

It is not hard to see that if� is an epistemic-doxastic model then so is��.
So, the models� and�� describe two di�erent moments in time with�
describing the current or initial information state of the agents and�� the
information state after the information that � is true has been incorporated
in�. This temporal dimension needs to also be represented in our logical
language: let �PAL extend �EDL with expressions of the form [�]� with
� � �EDL. The intended interpretation of [�]� is “� is true after the public
announcement of �" and truth is defined as��w �� [�]� i� if��w �� �
then���w �� �.
For the moment, focus only on the agents’ hard information and consider

the formula �Ki��[�]Ki�: this says that “agent i (currently) does not know
� but after the announcement of �, agent i knows �". So, the language of
�PAL describes what is true both before and after the announcement. A
fundamental insight is that there is a strong logical relationship between
what is true before and after an announcement in the form of so-called
reduction axioms:

[�]p � �� p, where p � At
[�]�� � �� �[�]�
[�](� � �) � [�]� � [�]�
[�][�]� � [� � [�]�]�
[�]Ki� � �� Ki(�� [�]�)

These are reduction axioms in the sense that going from left to right ei-
ther the number of announcement operators is reduced or the complexity
of the formulas within the scope of announcement operators is reduced.
These reductions axioms provide an insightful syntactic analysis of an-
nouncements which complements the semantic analysis. In a sense, the
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reduction axioms describe the e�ect of an announcement in terms of what
is true before the announcement. By relating pre- and postconditions for
each logical operator, the reduction axioms completely characterize the an-
nouncement operator.
The above reductions axioms also illustrate the mixture of factual and

procedural truth that drives conversations or processes of observation (cf.
item 3 above). To be more explicit about this point, consider the formula
���� (with ���� � �[�]�� the dual of [�]) which means “� is announce-
able". It is not hard to see that ���� � � is derivable using standard modal
reasoning and the above reduction axioms. The left-to-right direction rep-
resents a semantic fact about public announcements (only true facts can be
announced), but the right-to-left direction represents specific procedural
information: every true formula is available for announcement. But this is
only one of many di�erent protocols and di�erent assumptions about the
protocol is reflected in a logical analysis. Consider the following variations
of the knowledge reduction axiom (cf. [17, Section 4]):

1. ���Ki�� � � Ki����

2. ���Ki�� ���� � Ki(�� ����)

3. ���Ki�� ���� � Ki(���� � ����)

Each of these axioms represent a di�erent assumption about the underlying
protocol and how that a�ects the agents’ knowledge. The first is the above
reduction axiom (in the dual form) and assumes a specific protocol (which
is common knowledge) where all true formulas are always available for
announcement. The second (weaker) axiom is valid when there is a fixed
protocol that is common knowledge. Finally, the third adds a requirement
that the agents must know which formulas are currently available for an-
nouncement. Of course, the above three formulas are all equivalent given
our definition of truth in an epistemic(-doxastic) model (Definition 2.2) and
public announcement (Definition 3.1). In order to see a di�erence, the pro-
tocol information must be explicitly represented in the model (cf. Section
3.1 and [17]).
We end this introductory Section with a few comments about the e�ect of

a public announcement on the agents’ soft information. In particular, it is
natural to wonder about the precise relationship between B�i � and [�]Bi�.
Prima Facie, the two statements seem to express the same thing; and, in
fact, they are equivalent provided � is a ground formula (i.e., does not
contain any modal operators). However, consider state w1 in the following
epistemic-doxastic model:
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p� q

w1

p��q

w2

�p� q

w3

1 2

In this model, the solid lines represent agent 2’s hard and soft information
(the box is 2’s hard information �2 and the arrow represent 2’s soft infor-
mation �2) while the dashed lines represent 1’s hard and soft information.
(Reflexive arrows are not drawn to keep down the clutter in the picture.)
Note that at statew1, agent 2 knows p and q (eg., w1 �� K2(p�q)), and agent
1 believes p but not q (w1 �� B1p � �B1q). Now, although agent 1 does
not know that agent 2 knows p, agent 1 does believe that agent 2 believes
q (w1 �� B1B2q). Furthermore, agent 1 maintains this belief conditional on
p: w1 �� Bp

1B2q. However, public announcing the true fact p, removes state
w3 and so we have w1 �� [p]�B1B2q. Thus a belief in � conditional on �
is not the same as a belief in � after the public announcement of �. This
point is worth reiterating: the reader is invited to check that Bp

i (p � �Kip)
is satisfiable but [!p]Bi(p � �Kip) is not satisfiable. The situation is nicely
summarized as follows: “B�i � says that if agent i would learn � then she
would come to believe that � was the case (before the learning)...[!�]Bi�
says that after learning �, agent i would come to believe that � is the case
(in the worlds after the learning)." [7, pg. 2]. While a public announcement
increases the agents’ knowledge about the state of the world by reducing
the total number of possibilities, it also reveals inaccuracies agents may
have about the other agents’ information. The example above is also inter-
esting because the announcement of a true fact misleads agent 1 by forcing
her to drop her belief that agent 2 believes q (cf. [15, pg. 182]). Nonethe-
less, we do have a reduction axiom for conditional beliefs:

[�]B�i �� (�� B��[�]�i [�]�)

What about languages that include group knowledge operators (note that
w1 �� [p]C�1�2�p)? The situation is much more complex in languages with
common knowledge�belief operators. Baltag et al. [3] proved that the ex-
tension of �EL with common knowledge and public announcement op-
erators is strictly more expressive than with common knowledge alone.
Therefore a reduction axiom for formulas of the form [�]CG� does not ex-
ist. Nonetheless, a reduction axiom-style analysis is still possible, though
the details are beyond the scope of this paper (see [19]).
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3.1 Two Models of Informational Dynamics

Many di�erent logical systems today describe the dynamics of informa-
tion over time in a social situation. However, two main approaches can
be singled out. The first is exemplified by epistemic temporal logic (ETL,
[36, 76]) which uses linear or branching time models with added epistemic
structure induced by the agents’ di�erent capabilities for observing events.
These models provide a “grand stage” where histories of some social in-
teraction unfold constrained by a protocol (cf., item 3. in the previous
Section). The other approach is exemplified by dynamic epistemic logic
(DEL, [3, 31]) which describes social interactions in terms of epistemic
event models (which may occur inside modalities of the language). Simi-
lar to the way epistemic models are used to capture the (hard) information
the agents’ have about a fixed social situation, an event model describes the
agents’ information about which actual events are currently taking place
(cf. item 1 in the previous Section). The temporal evolution of the situa-
tion is then computed from some initial epistemic model through a process
of successive “product updates”. In this Section, we demonstrate each ap-
proach by formalizing Example 2.8.

Epistemic Temporal Logic. Fix a finite set of agents � and a (possibly
infinite) set of events17 �. A history is a finite sequence of events18 from �.
We write �� for the set of histories built from elements of �. For a history
h, we write he for the history h followed by the event e. Given h� h� � ��,
we write h � h� if h is a prefix of h�, and h �e h� if h� � he for some event
e.
For example, consider the social interaction described in Example 2.8.

There are three participants: Ann (A), Bob (B) and Ann’s friend (call him
Charles (C)). What are the relevant primitive events? To keep things sim-
ple, assume that Ann’s talk is either at 2PM or 3PM and initially none of
the agents know this. Say, that Ann receives a message stating that her talk
is at 2PM (denote this event —Ann receiving a private message saying that

17There is a large literature addressing the many subtleties surrounding the very notion
of an event and when one event causes another event (see, for example, [26]). However, for
this paper we take the notion of event as primitive. What is needed is that if an event takes
place at some time t, then the fact that the event took place can be observed by a relevant
set of agents at t. Compare this with the notion of an event from probability theory. If we
assume that at each clock tick a coin is flipped exactly once, then “the coin landed heads”
is a possible event. However, “the coin landed head more than tails” would not be an event,
since it cannot be observed at any one moment. As we will see, the second statement will
be considered a property of histories, or sequences of events.

18To be precise, elements of � should, perhaps, be thought of as event types whereas
elements of a history are event tokens.
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her talk is at 2PM — by e2PM
A ). Now, after Ann receives the message that

the talk is at 2PM, she proceeds to tell her trusted friend Charles that the
talk is at 2PM (and that she wants him to inform Bob of the time of the talk
without acknowledging that the information can from her — call this event
eA

C), then Charles tells Bob this information (call this event eC
B). Thus, the

history
e2PM

A eA
C eC

B

represents the sequence of events where “Ann receives a (private) message
stating that the talk is at 2PM, Ann tells Charles the talk is at 2PM, then
Charles tells Bob the talk is at 2PM". Of course, there are other events that
are also relevant to this situation. For one thing, Ann could have received
a message stating that her talk is at 3PM (denote this event by e3PM

A ). This
will be important to capture Bob’s uncertainty about whether Ann knows
that he knows about the talk. Furthermore, Charles may learn about the
time of the talk independently of Ann (denote these two events by e2PM

C ,
e3PM

C ). So, for example, the history

e2PM
A e2PM

C eC
B

represents the situation where Charles independently learns about the time
of the talk and informs Bob.
There are a number of simplifying assumptions that we adopt in this

section. They are not crucial for the analysis of Example 2.8, but do sim-
plify the some of the formal details. Since, histories are sequences of (dis-
crete) events, we assume the existence of a global discrete clock (whether
the agents have access to this clock is another issue that will be discussed
shortly). The length of the history then represents the amount of time that
has passed. Note that this implies that we are assuming a finite past with
a possibly infinite future. Furthermore, we assume that at each clock tick,
or moment, some event takes place (which need not be an event that any
agent directly observes). Thus, we can include an event et (for ‘clock tick’)
which can represent that “Charles does not tell Bob that the talk is at 2PM."
So the history

e2PM
A eA

C et

describes the sequence of events where, after learning about the time of the
talk, Ann informs Charles, but Charles does not go on to tell Bob that the
talk is at 2PM. Once a set of events � is fixed, the temporal evolution and
moment-by-moment uncertainty of the agents can be described.

Definition 3.2 (ETL Models). Let � be a set of events and At a set of
atomic propositions. A protocol is a set H � �� closed under non-empty
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prefixes. An ETL model is a tuple ���H� ��i�i���V� with H a protocol, for
each i � �, an equivalence relation �i on H and V a valuation function
(V : At� 2H). �

An ETL model describes how the agents’ hard information evolves over
time in some social situation. The protocol describes (among other things)
the temporal structure, with h� such that h �e h� representing the point in
time after e has happened in h. The relations �i represent the uncertainty
of the agents about how the current history has evolved. Thus, h �i h�

means that from agent i’s point of view, the history h� looks the same as
the history h.
A protocol in an ETL model captures not only the temporal structure

of the social situation but also assumptions about the nature of the partic-
ipants. Typically, a protocol does not include all possible ways a social
situation could evolve. This allows us to account for the for the motivation
of the agents. For example in Example 2.8, the history

e3PM
A eA

C eC
B

describes the sequence of events where Ann learns the talk is at 3PM but
tells Charles (who goes on to inform Bob) that the talk is at 2PM. Of course,
given that Ann wants Bob to attend her talk, this should not be part of
(Ann’s) protocol. Similarly, since we assume Charles is trustworthy, we
should not include any histories where et follows the event eA

C. Taking
into account these underlying assumptions about the motivations (eg. Ann
wants Bob to attend the talk) and dispositions (eg. Charles tells the truth
and lives up to his promises) of the agents we can drop a number of histo-
ries from the protocol shown above. Note that we keep the history

e2PM
A e2PM

C et

in the protocol, since if Charles learns independently about the time of the
talk, then he is under no obligation to inform Bob. In the picture below,
we also add some of the uncertainty relations for Ann and Bob (to keep the
picture simple, we do not draw the full ETL model). The solid line repre-
sents Bob’s uncertainty while the dashed line represents Ann’s uncertainty.
The main assumption is that Bob can only observe the event (eC

B). So, for
example, the histories h � e2PM

A eA
C eC

B and h� � e2PM
A e2PM

C eC
B look the

same to Bob (i.e., h �B h�).19

19Again we do not include any reflexive arrows in the picture to keep things simple.



364 ERIC PACUIT

t � 0

t � 1

t � 2

t � 3

e2PM
A

eA
C e2PM

C

eC
B eC

B et

e3PM
A

e3PM
C

et

B A B

Assumptions about the underlying protocol in an ETL model corresponds
to “fixing the playground” where the agents will interact. As we have seen,
the protocol not only describes the temporal structure of the situation being
modeled, but also any causal relationships between events (eg., sending a
message must always proceed receiving that message) plus the motivations
and dispositions of the participants (eg., liars send messages that they know
—or believe — to be false). Thus the “knowledge” of agent i at a history h
in some ETL model is derived from both i’s observational powers (via the
�i relation) and i’s information about the (fixed) protocol.
We give the bare necessities to facilitate a comparison between ETL and

DEL. Di�erent modal languages describe ETL models (see, for example,
[59, 36]), with ‘branching’ or ‘linear’ variants. Let At be a countable set of
atomic propositions. The language �ETL extends the epistemic language
�EL with “event" modalities:

p � �� � � � � � Ki� � �e��

where i � �, e � � and p � At. The boolean connectives (�����) and
the dual modal operators (Li, [e]) are defined as usual. The intended inter-
pretation of ‘�e��’ is “after event e (does) take place, � is true." Formulas
are interpreted at histories: Let� � ���H� ��i�i���V� be an ETL model, �
a formula and h � H, we define � � h �� � inductively as follows (we only
give the modal definitions)

1. � � h �� Ki� i� for each h� � H, if h �i h� then� � h� �� �

2. � � h �� �e�� i� there exists h� � H such that h �e h� and� � h� �� �

Natural extensions of the �ETL include group operators (cf. Section
2.3) and more expressive temporal operators (e.g., arbitrary future or past
modalities).
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Dynamic Epistemic Logic. An alternative account of interactive dynam-
ics was elaborated by [3, 11, 19] and others. From an initial epistemic
model, temporal structure evolves, explicitly triggered by complex infor-
mative events.
Returning to our running example (Example 2.8), initially we assume

that none of the agents knows the time of Ann’s talk. Let P be the atomic
proposition “Ann’s talk is at 2PM.” Whereas an ETL model describes the
agents’ information at all moments, event models are used to build new
epistemic models as needed.

Definition 3.3 (Event Model). An event model is a tuple �S � ���i�i��� pre�,
where S is a nonempty set of primitive events, for each i � �, ��i� S �S
and pre : S � �EL is the pre-condition function. �

Given two primitive events e and f , the intuitive meaning of e ��i f
is “if event e takes place then agent i thinks it is event f ” Event models
then describe an “epistemic event”. In Example 2.8 the first event is Ann
receiving a private message that the talk is at 2PM. This can be described
by a simple event model with two primitive events e (with precondition P)
and f (with precondition �: f is the “skip” event),

P

e

�

f

B�C
A� B�CA

Thus, initially Ann observes the actual event e (and so, learning that P is
true) while Bob an Charles observe a skip event (and so, their information
does not change). What is the e�ect of this event on the initial situation
(where no one knows the time of the talk)? Intuitively, it is not hard to
see that after this event, Ann knows that P while Bob and Charles are still
ignorant of P and the fact that Ann knows P. That is, incorporating this
event into the initial epistemic model should yield (for simplicity we only
draw Ann and Bob’s uncertainty relations):

P

w�

P
w

�P

v�

B

B

BA

A� B

A� B
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The following definition gives a general procedure for constructing a new
epistemic model from a given epistemic model and an event model.

Definition 3.4 (Product Update). The product update��� of an epis-
temic model� � �W� �Ri�i���V� and event model � � �S � ���i�i��� pre�
is the epistemic model �W��R�i �V

�� with

1. W� � �(w� e) � w � W� e � S and��w �� pre(e)�,

2. (w� e)R�i(w
�� e�) i� wRiw� in� and e ��i e� in �, and

3. For all P � At, (s� e) � V �(P) i� s � V(P) �

We illustrate this construction using our running example. The main
event in Example 2.8 is “Charles telling Bob (without Ann present) that
Ann’s talk is at 2PM”. This can be described using the following event
model (again only the Ann and Bob relations will be drawn): Ann is aware
of the actual event taking place while Bob thinks the event is a private
message to himself.

P
e1

P
e2

�e3

B
BA

A

A� B

As in the previous section, there are implicit assumptions here about the
motivations and dispositions of the agents. Thus, even though Ann is not
present during the actual event20, she trusts that Charles will honestly tell
Bob that the talk is at 2PM (without revealing he received the information
from her). This explains why in the above event model, e1 ��A e1. Start-
ing from a slightly modified epistemic model from the one given above
(where Bob now knows that Ann knows whether the talk is at 2PM), us-
ing Definition 3.4, we can calculate the e�ect of the above event model as
follows:

20Of course, we must assume that she knows precisely when Charles will meet with Bob.
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P

w

�P

v

B

A� BA� B

� Pe1 P e2

� e3

B

BA

A
A� B

�

P

(w� e1)

P

(w� e2)

�P

(v� e3)

P

(w� e3)

B

A

B

Again, for simplicity, not all the reflexive arrows are drawn.
Finally, a few comments about syntactic issues. The language �DEL

extends �EL with operators ��� e� for each pair of event models � and
event e in the domain of �. Truth is defined as usual: We only give the
typical DEL modalities:

��w �� ��� e�� i���w �� pre(e) and���� (w� e) �� �

Remark 3.5. We conclude by noting that the public announcement of the
previous Section is a special case of Definition 3.3. Given a formula � �
�EL, the public announcement is the event model �� � ��e�� ���i�i��� pre�
where for each i � �, e ��i e and pre(e) � �. As the reader is in-
vited to verify, the product update of an epistemic model� with a public
announcement event �� (����) is (isomorphic) to the model�� of Def-
inition 3.1.

3.2 Varieties of Informational Change

The dynamic models discussed in the previous Section focus on the agents’
observational powers and procedural information. The assumption is that
precisely how an agent incorporates new information depends on only two
factors: what the agent has observed and the underlying protocol (which
is typically assumed to be common knowledge). To what degree the agent
trusts the source of the information is not taken into account (cf. item 2
from Section 3). In this section, we show how to extend our logical analysis
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with this information. We only have the space here for some introductory
remarks: see [15, Chapter 7] and [8] for more extensive discussions.
The general problem we focus on in the Section is how to incorporate the

evidence that � is true into an epistemic-doxastic model�. The approach
taken so far is to eliminate all worlds inconsistent with (each agent’s obser-
vation of) the evidence that � is true. (This may reveal more than � is true
given an underlying protocol). However, not all sources of evidence are
100% reliable opening the door to the possibility that later evidence may
contradict earlier evidence. Consider the situation from agent i’s point-
of-view: Abstractly, the problem is how to define a new ordering over i’s
(hard) information cell given i’s current soft information (represented as a
total ordering over the set of states that i considers possible) and the in-
coming information represented as the truth set of some formula �:

A

B

C

D

E

�

Rather than removing the states inconsistent with � (in the above case, this
would be the states in the set C � D � E), the goal is to rearrange the
states in such a way that � is believed. In the above example, this means
that at least the set A should become the new minimal set. But there is a
variety ways to fill in the rest of the order with each way corresponding
to a di�erent “policy" the agent takes towards the incoming information
[82]. We only have space here to discuss two of these policies (both have
been widely discussed in the literature, see for example, [15, Chapter 7]).
The first captures the situation where the agent only tentatively accepts the
incoming information � by making the best � the new minimal set and
keeping the rest of the ordering the same. Before formally defining the
policy we need some notation: given an epistemic-doxastic model�, let
besti(��w) � Min�i([w]i � �x � �� x �� ��) denote the best � worlds at state
w.

Definition 3.6 (Conservative Upgrade). Given an epistemic-doxastic model
� � �W� ��i�i�Agt� ��i�i�Agt�V� be an epistemic-doxastic model and a for-
mula �, the conservative upgrade of�with � is the model��� � �W��� ����i
�i�Agt� ��

��
i �i�Agt�V��� with W�� � W, for each i, ���i ��i, V

�� � V and for
all i � Agt and w � W�� we have:
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1. If v � besti(��w) then v ���i x for all x � [w]i, and

2. for all x� y � [w]i � besti(��w), x �
��
i y i� x �i y. �

In the above picture a conservative upgrade with � results in the new or-
dering A �i C �i D �i B � E. A logical analysis of this type of in-
formation change includes formulas of the form [�i�]� intended to mean
“after i’s conservative upgrade of �, � is true" and interpreted as follows:
��w �� [�i�]� i���i��w �� �. We also have reduction axioms for condi-
tional beliefs:

[��]B��� (B��[��]� � B[��]�[��]�) � (�B��[��]� � B��[��]�[��]�)

(We leave out the i subscripts to make the formula easier to read). The
reader is invited to check the validity of the above axiom. The second
policy we introduce here models a more “radical" change to the agent’s
plausibility ordering: all � worlds are moved ahead of all other worlds.
Thus, rather than focusing on only the best � worlds, the agent shifts all
� worlds consistent with i’s current information: let [[�]]wi � �x � �� x ��
�� � [w]i denote this set of � worlds:

Definition 3.7 (Radical Upgrade). Given an epistemic-doxastic model� �
�W� ��i�i�Agt� ��i�i�Agt�V� be an epistemic-doxastic model and a formula �,
the conservative upgrade of � with � is the model ��� � �W��� ����i
�i�Agt� ��

��
i �i�Agt�V��� with W�� � W, for each i, ���i ��i, V

�� � V and for
all i � Agt and w � W�� we have:

1. for all x � [[�]]wi and y � [[��]]wi , set x �
��
i y,

2. for all x� y � [[�]]wi , set x �
��
i y i� x �i y, and

3. for all x� y � [[��]]wi , set x �
��
i y i� x �i y. �

In the above picture a conservative upgrade with � results in the new order-
ing A �i B �i C �i D �i E. A logical analysis of this type of information
change includes formulas of the form [�i�]� intended to mean “after i’s
radical upgrade of �, � is true" and interpreted as follows: ��w �� [�i�]�
i���i��w �� �. As the reader is invited to check, the conservative upgrade
is a special case of this radical upgrade: the conservative upgrade of � at w
is the radical upgrade of besti(��w). In fact, both of these operations can be
seen as instances of a more general lexicographic update (cf. [15, Chapter
7]). In fact, the above reduction axiom for conservative upgrade can be de-
rived from the following reduction axiom for radical upgrade: (again, we
leave out the i subscripts to make the formula easier to read)

[��]B��� (L(��[��]�)�B��[��]�[��]�)�(�L(��[��]�)�B[��]�[��]�)
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4 Conclusions

Agents are faced with many diverse tasks as they interact with the envi-
ronment and one another. At certain moments, they must react to their
(perhaps surprising) observations while at other moments they must be
proactive and choose to perform a specific action. One central underlying
assumption is that “rational” agents obtain what they want via the imple-
mentation of (successful) plans (cf. [25]). And this implementation often
requires, among other things, representation of various informational atti-
tudes of the other agents involved in the social interaction. In social situa-
tions there are many (sometimes competing) sources for these attitudes: for
example, the type of “communicatory event” (public announcement, pri-
vate announcement), the disposition of the other participants (liars, truth-
tellers) and other implicit assumptions about procedural information (re-
ducing the number of possible histories). This naturally leads to di�erent
notions of “knowledge” and “belief” that drive social interaction.
An overarching theme in is this paper is that during a social interaction,

the agents’ “knowledge” and “beliefs" both influence and are shaped by
the social events. The following example taken from [72] illustrates this
point. Suppose that Uma is a physician whose neighbour Sam is ill and
consider the following cases

Case 1: . Uma does not know and has not been informed. Uma has no
obligation (as yet) to treat her neighbour.

Case 2: The neighbour’s daughter Ann comes to Uma’s house and tells
her. Now Uma does have an obligation to treat Sam, or perhaps call
in an ambulance or a specialist.

In both of these cases, the issue of an obligation arises. This obligation
is circumstantial in the sense that in other situations, the obligation might
not apply. If Sam is ill, Uma needs to know that he is ill, and the nature
of the illness, but not where Sam went to school. Thus an agent’s obliga-
tions are often dependent on what the agent knows, and indeed one cannot
reasonably be expected to respond to a problem if one is not aware of its
existence. This, in turn, creates a secondary obligation on Ann to inform
Uma that her father is ill.
Based on the logical framework discussed in Section 3.1 and [61], Pacuit

et al. [72] develop a logical framework that formalizes the reasoning of
Uma and Ann in the above example. It is argued that this reasoning is
shaped by the assumption that Uma and Ann’s preferences are aligned (i.e.,
both want Sam to get better). For example, Ann will not be under any
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obligation to tell Uma that her father is ill, if Ann justifiably believes that
Uma would not treat her father even if she knew of his illness. Thus, in
order for Ann to know that she has an obligation to tell Uma about her
father’s illness, Ann must know that “Uma will, in fact, treat her father (in
a reasonable amount of time) upon learning of his illness”. More formally,
in all the histories that Ann currently considers possible, the event where
her father is treated for his illness is always preceded by the event where
she tells Uma about his illness. That is, the histories where Uma learns of
Sam’s illness but does not treat him are not part of the protocol. Similar
reasoning is needed for Uma to derive that she has an obligation to treat
Sam. Obviously, if Uma has a good reason to believe that Ann always lies
about her father being ill, then she is under no obligation to treat Sam. See
[72] for a formal treatment of these examples.
This paper surveyed a number of logical systems that model the reason-

ing and dynamic processes that govern many of our social interactions.
This is a well-developed area attempting to balance sophisticated logical
analysis with philosophical insight. Furthermore, the logical systems dis-
cussed in this paper have been successfully used to sharpen the analysis of
key epistemic issues in a variety of disciplines. However, they represent
only one component of a logical analysis of rational interaction. Indeed,
as the above example illustrates, a comprehensive account of rational in-
teraction cannot always be isolated from other aspects of rational agency
and social interaction – such as the motivational attitudes of the agent or
her social obligations.
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Belief Change
RICHARD BOOTH� and THOMASMEYER�

Abstract

In this paper we present a brief overview of belief change, a
research area concerned with the question of how a rational agent
ought to change its mind in the face of new, possibly conflicting,
information. We limit ourselves to logic-based belief change, with a
particular emphasis on classical propositional logic as the underly-
ing logic in which beliefs are to be represented. Our intention is to
provide the reader with a basic introduction to the work done in this
area over the past 30 years. In doing so we hope to sketch the main
historical results, provide appropriate pointers to further references,
and discuss some current developments. We trust that this will spur
on the interested reader to learn more about the topic, and perhaps to
join us in the further development of this exciting field of research.

1 Introduction

Consider the situation in which an agent has just encountered a bird: let’s
call it Tweety. Part of the agent’s beliefs about the world is that birds fly.
Being a logical agent, it therefore believes that Tweety flies. On closer
inspection, though, the agent learns that Tweety is an ostrich. Since the
agent also believes that ostriches don’t fly, it is now faced with a dilemma:
Can Tweety fly, or can’t it?
The simple scenario above aptly illustrates the central topic of this paper—

that a rational intelligent agent is sometimes forced to adjust its current be-
liefs in some appropriate fashion when confronted with new information.
The investigation of the reasoning patterns involved in such a task is known
as the study of belief change.
The approach to the problem of belief change that we discuss in this

paper is logic-based. Both the beliefs of an agent and new information
presented to it will be represented in a logic language with a strong em-
phasis on the case where the underlying logic is a classical propositional
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logic. Although much of the early work on belief change has a some-
what weaker assumption about the underlying logic, requiring simply that
it be a logic equipped with a Tarskian consequence relation and satisfying
Compactness, the usual assumption in practice was to use a propositional
logic. However, as we shall soon see, propositional logic on its own is not
enough to obtain unique answers to the problems of belief change. The
primary principle we shall use to guide us is known as the Principle of
Minimal Change. The idea is simple and intuitive. Information is hard to
come by and if an agent has gone to the trouble of incorporating a piece of
information into its set of beliefs, it has presumably done so for a good rea-
son. It should therefore give up any beliefs it has only if it is forced to do
so. That is, any changes to its current stock of beliefs should be minimal.
Traditionally, approaches to belief change have followed one of two tra-

jectories, with the di�erences centred around the question of whether be-
liefs should be represented as belief bases (arbitrary sets of sentences) or
logically closed theories. The AGM approach to belief change [1, 28]
(named after its originators Alchourrón, Gärdenfors and Makinson), per-
haps the most influential voice within this field of research, is based on
the assumption that beliefs need to be represented as theories. The idea
here is that we are interested in belief change on the knowledge level and
that the particular syntactic formulation that we choose for representing
the beliefs of an agent is largely irrelevant. On the other hand, the case
made for the use of belief bases, which originated with the work of Sven
Ove Hansson [34], is that the sentences chosen to represent the beliefs of
an agent are somehow more basic than those that merely follow logically
from these basic sentences. Although these two approaches start o� with
di�erent, seemingly conflicting basic assumptions, we shall see that they
actually have much in common. In fact, one of the assumptions underlying
both approaches is the necessity of introducing additional structure to the
representation of beliefs in order to obtain unique results to specific prob-
lems in belief change. In much of the work on this topic the additional
structure is not represented in the underlying logic itself, but is viewed as
meta-information of some kind, and our work here strongly emphasises
that approach. Having said that, it is important to note that there is a grow-
ing body of work in which information such as this is incorporated into the
logic itself—a topic which we touch on in Section 8.
Our intention in this paper is to provide the reader with a basic introduc-

tion to the work done in the area of belief change over the past 30 years.
In doing so we hope to sketch the main historical results, provide appropri-
ate pointers to further references, and discuss some current developments.
Of course, it is impossible to present a truly comprehensive account of a
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research area in a paper such as this and our perspective on matters will
invariably be subjective, to some extent. The reader is urged to keep this in
mind when going through the paper.
On to more concrete matters, then. We commence with a discussion of

the formal preliminaries needed to digest the rest of the paper in Section 2.
This is followed in Sections 3 and 4 by accounts of the two basic operators
investigated in belief change: belief contraction and belief revision. In
Section 5 we take a closer look at the semantic methods for constructing
belief change operators before we use this approach to consider iterated
belief revision in Section 6. Section 7 discusses the links between belief
change and the area of nonmonotonic reasoning, while Section 8 considers
approaches to belief change using epistemic logics. Finally, Section 9 takes
a brief look at recent developments in belief change before we conclude in
Section 10.

2 Preliminaries

First the logical framework. We start with a quite abstract formulation
(L�Cn), where we just have a set L whose elements are the sentences, to-
gether with a consequence operatorCnwhich takes sets of sentences B � L
to sets of sentences Cn(B) which intuitively represents all the sentences
which are entailed by B. Cn is assumed to be a compact Tarskian con-
sequence operator (after Alfred Tarski), i.e., it satisfies the following four
properties for all B� B1� B2 � L:

� B � Cn(B) (Reflexivity)

� B1 � B2 implies Cn(B1) � Cn(B2) (Monotony)

� Cn(Cn(B)) � Cn(B) (Idempotence)

� If � � Cn(B) then � � Cn(B�)

for some finite B� � B (Compactness)

We call any arbitrary set B � L a belief base, but if B � Cn(B), i.e., B is
closed under Cn, then we call B a theory. Following the tradition of the
AGM approach, we will use K rather than B to denote theories. � � L is
a tautology i� � � Cn(�). From Cn we can define a notion of consistency.
A set B of sentences is Cn-consistent i� Cn(B) � L. We will just say
consistent if the consequence operator is clear from the context.

Definition 1. An abstract deduction system is a pair (L�Cn) as above.
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This logical setup, although very general, is surprisingly already rich
enough to explore many interesting issues in belief change. However, tra-
ditionally researchers (including AGM) have worked within more specific
background logical systems. In particular the machinery of propositional
logic is usually taken as minimum. We may take L � LP, consisting of
all sentences built up from some set of propositional variables using the
connectives ���������. The classical propositional consequence oper-
ator is denoted by Cn0. We call a supraclassical deduction system a pair
(LP�Cn) where in addition to the four properties mentioned above, Cn is
assumed to satisfy

� Cn0(B) � Cn(B) (Supraclassicality)
� � � Cn(B � ���) i� (� � �) � Cn(B) (Deduction)

For supraclassical deduction systems we have B���� is consistent i� �� �
Cn(B). In particular � is consistent i� �� � Cn(�).

2.1 The problem formalised

We are now ready to state formally the problem of belief revision:

Assume some fixed abstract deduction system (L�Cn) as back-
ground. Then given an initial belief base B � L and some new
information represented as a sentence � � L, find a new belief
base B � � which includes � and is consistent.

The requirement that B � � be consistent is crucial here. Without it we
might as well just add � set-theoretically to B and stop there. But if B����
is inconsistent then entailment is trivialised, since by definition of incon-
sistency then all sentences are entailed by B � ���, rendering it useless. So
how should we approach this problem?
One influential idea, which comes from Isaac Levi [48] is to decompose

the operation into two main steps. First, B is altered if necessary so as
to “make room” for, i.e., become consistent with, the incoming sentence
�. This is achieved by making B deductively weaker. This is known as
contraction. Here we should adhere to the principle of minimal change,
according to which this weakening should be made as “small” as possible.
(See [62] for a discussion of this principle.) In the second, trivial step,
the new formula is then simply joined on to the result (this is known as
expansion). Clearly the di�cult step is the first one. So in order to answer
the problem of revision we first need to address the problem of contraction.
We turn to this in the next section.
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3 Belief contraction

Note that for the purposes of revision we just need to make B consistent
with �. In the case where the background deduction system is supraclassi-
cal this is the same as ensuring �� � Cn(B). But in general (for instance
if negation is not available in the language) these two things will be dif-
ferent. So in general there are two kinds of contraction operator: the first
is inconsistency-based and the second is entailment-based.1 We will focus
on entailment-based contraction here. We denote the result of contracting
B so that it no longer entails a given sentence � by B��. We will first deal
with the case where B is an arbitrary belief base. Later we will look at the
special case where it is a theory.

3.1 Partial meet base contraction

One of the best-known approaches to contraction is partial meet contrac-
tion [1, 37]. Here the idea is to calculate contraction in three steps:

1. Focus for the first step on those subsets of B which do not entail �
and which are maximal with this property. We denote this set by
B��.

2. Then, a certain number of the elements of this set are somehow se-
lected as the “best” or “most preferred” by means of a selection func-
tion �: �(B��) � B��.

3. Finally, the intersection of these best elements is taken:
�
�(B��)

Let’s formalise all this, starting with the set B�� in step 1.

Definition 2. Let B � L and � � L. Then B�� is the set of subsets X � L
such that X � B�� i� (i). X � B, (ii). � � Cn(X), (iii). For all X� � B, if
X � X� then � � Cn(X�). We call B�� the set of �-remainders of B

If � is a tautology then B � � � �, but this is the only case for which
B � � � �. This is a result of the following fact, the proof of which
requiresMonotony and Compactness of Cn as well as Zorn’s Lemma.

Fact 3 ([2]). If � � Cn(Y) and Y � B then there exists X � B�� such that
Y � X.

In other words, every non-�-implying subset of B may be extended to a
maximal non-�-implying subset of B. Next comes the definition of selec-
tion function.

1See also Section 9.
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Definition 4. Let B � L. A selection function for B is a function � such
that for all � � L, (i) if B� � � � then � � �(B� �) � B� �, and (ii) if
B�� � � then �(B��) � �B�.

Finally we can use a selection function for B to define a contraction opera-
tor �� for B:

B �� � �
�
�(B��)�

Definition 5. If � can be defined via some selection function � for B as
above then � is a partial meet base contraction operator (for B).

Two special cases of partial meet contraction deserve mention. If the se-
lection function picks a single element of B��, it is called a maxichoice
contraction. If it picks the whole of B��, it is called a full meet contrac-
tion. Observe that full meet contraction is unique, whereas there are many
di�erent maxichoice contractions: one for each element of B��.
Partial meet base contraction may be characterised as follows.

Theorem 6 ([36]). � is a partial meet base contraction operator for B i�
it satisfies the following properties:
� If � � Cn(�) then � � Cn(B � �) (Success)

� B � � � B (Inclusion)

� If � � B � B � � then there exists B� such that B � � � B� � B,
� � Cn(B�) and � � Cn(B� � ���) (Relevance)

� If for all B� � B we have � � Cn(B�) i� � � Cn(B�) then B�� � B��

(Uniformity)

The above properties may be explained as follows. Success says the sen-
tence to be removed is actually removed, i.e., is no longer a consequence
of the base2 and Inclusion states that no new beliefs may be added in the
course of removing �.3 Relevance seeks to avoid unnecessary loss of in-
formation. It says that a sentence � should be given up only if it contributes
to the fact that B, and not B��, entails �. Uniformity states that if two sen-
tences are indistinguishable from the viewpoint of B, in that every subset of
B which implies one also implies the other, then the results of contracting
by them should be the same. As was noted in [40], the only properties of
Cn which are actually used in the proof of Theorem 6 are Monotony and
Compactness.
The following two reasonable properties can be shown to follow from

those in Theorem 6 (see [34]), and thus are satisfied by any partial meet
base contraction operator.

2But see [23] for a discussion on why this is not always desirable.
3See [10] for an argument against this postulate.
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� If � � Cn(B) then B � � � B (Vacuity)

� If Cn(�) � Cn(�) then B � � � B � � (Preservation)

Vacuity says that if � is not entailed by B to begin with, then nothing needs
to be changed. It can be shown to be a consequence of Relevance and
Inclusion. Preservation says that if two sentences are equivalent under
logical consequence then contracting by them should give the same results.
It can be shown to follow from Uniformity, while in the special case when
B is a theory, it is actually equivalent to Uniformity in the presence of
Vacuity.

3.2 Partial meet theory contraction

The preceding construction works equally well when B is taken to be a
theory K. But in this case, since the input to contraction is a theory, we
should expect the output to be a theory too. This is ensured because in this
case the elements of K�� are themselves theories, and the intersection of
any family of theories is again a theory. When applied to a theory K we
will refer to the above construction as partial meet theory contraction.
In this case we obtain a di�erent representation theorem, which was one

of the main results of AGM.4

Theorem 7 ( [1]). Assume we work with a supraclassical deduction sys-
tem (LP�Cn), and let K be a theory. Then � is a partial meet theory con-
traction operator for K i� it satisfies Success, Inclusion, Vacuity, Preser-
vation and the following properties:

� K � � � Cn(K � �) (Closure)

� K � Cn((K � �) � ���) (Recovery)

Note that this result requires the assumption of a supraclassical deduction
system as background. It may not hold for general abstract deduction sys-
tems (see [24] for discussion on this).
The postulates listed in the above theorem are collectively known as the

basic AGM contraction postulates. Closure says that the result of theory
contraction is another theory, while Recovery says that if one removes �
and then simply adds it again (and then closes under logical consequence)
then one should get back all the initial beliefs K. Recovery has been by
far the most controversial of the AGM contraction postulates, with many
authors calling it into question (see [34, pp. 72-74]). It should be noted that

4Note that, historically, partial meet theory contraction actually pre-dates the more gen-
eral version for arbitrary bases given above.
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this postulate is specific to the theory version of partial meet contraction,
i.e., it does not hold in general for partial meet base contraction, where B
is allowed to be an arbitrary base. For supraclassical deduction systems, in
the presence of Closure, Inclusion and Vacuity it is equivalent to Rele-
vance [25].

3.3 The supplementary postulates

In partial meet contraction, when selecting the remainder sets via �, what
we have is an instance of a choice situation. We have a number of alterna-
tives up for selection, namely B� �, and some of them are singled out as
being in some sense more preferred. So we make some crossover into the
realm of rational choice. How can this choice be made? We can assume
it is made on the basis of a binary preference relation � over the set of all
possible remainder sets for B, i.e., the set �X � X � B�� for some � � L�.
For any two possible remainder sets X� Y , we write X � Y to mean that Y
is at least as preferred as X, and use � to denote the strict part of �, i.e.,
X � Y i� both X � Y and Y � X. Then � can be used as the basis for a
selection function �� by setting, in the principal case in which B�� � �,

��(B��) � �X � B�� � Y � X for all Y � B����

That is, ��(B � �) consists of those elements of B � � which are at least
as preferred as all other elements of B��. If a selection function � for B
is generated from some relation � in this way then we say � is a relational
selection function, and a partial meet contraction operator �� which can
be generated from some relational selection function � will be called a
relational partial meet contraction operator.
By putting some mild constraints on the relation �, we can constrain the

behaviour of the resulting relational partial meet contraction operator in
interesting ways. Consider the following two properties:

� X � Y and Y � Z implies X � Z (Transitivity)
� If X � Y then X � Y (Maximising)

The first property is a standard requirement for a relation of preference.
The second is motivated by minimal change considerations: when con-
tracting B it is always preferable to retain as much of B as possible, so
a given subset Y of B should always be strictly more preferred to any of
its strict subsets. If � is generated from some � satisfying Transitivity
then we say �� is a transitively relational partial meet contraction opera-
tor, while if it generated from some � satisfying, in addition, Maximising
then �� is a transitively, maximisingly relational partial meet contraction.
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Note that, if B is a theory, then these two collapse into the same thing, in
the sense that �� is transitively relational i� it is transitively, maximisingly
relational [33].
We obtain the following results, both of which assume we work in a

supraclassical deduction system:

Theorem 8 ([37]). Assume a supraclassical deduction system as background.
Let B be a belief base and suppose � is a transitively, maximisingly rela-
tional partial meet base contraction operator for B. Then � satisfies the
following property:

� (B � �) � (B � �) � B � (� � �) (Conjunctive Overlap)

For the case of relational partial meet theory contraction we can say more:

Theorem 9 ([1]). Assume a supraclassical deduction system as background.
Let K be a theory and � an operator for K. Then � is a transitively rela-
tional partial meet theory contraction operator for K i� it satisfies all the
basic AGM contraction postulates (see Theorem 7) plus Conjunctive Over-
lap and the following property:

� If � � K � (� � �) then

K � (� � �) � K � � (Conjunctive Inclusion)

The postulatesConjunctive Overlap andConjunctive Inclusion are known
as the AGM supplementary contraction postulates. They go a step beyond
the basic postulates, in that they relate the results of contracting by con-
junctions � � � with the result of contracting by the individual conjuncts.
We refer the interested reader to [1, 34] for discussion on these postulates.

3.4 Kernel contraction

The partial meet approach to contraction focusses on maximal subsets of B
which do not imply the sentence � to be removed. Another approach is in-
stead to single out the minimal subsets which do entail �, and then to make
sure at least one sentence is removed from each. This is the idea behind
Hansson’s operation of kernel contraction [38], which is a generalisation
of the safe contraction of Alchourrón and Makinson [3].

Definition 10. Let B be a belief base and � � L. Then B � � is the set
of sets X such that (i). X � B, (ii). � � Cn(X), (iii). If X� � X then
� � Cn(X�). We call the elements of B � � the �-kernels of B.
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To remove �, it is necessary and su�cient to remove at least one sentence
from every �-kernel. To this end, we assume the existence of an func-
tion which makes an “incision” into every such set, returning the sentences
which must be discarded.

Definition 11. � is an incision function for B if (i). �(B � �) �
�

B � �,
and (ii). X � B � � implies � (B � �) � X � �.

Every incision function� then yields a contraction operator by setting B��
� � B � � (B � �).

Definition 12. Let � be an operator for B. If � equals �� for some incision
function � for B then it is called a kernel base contraction operator (for B).

Kernel base contraction may be characterised in the following way:

Theorem 13 ([38]). � is a kernel base contraction operator for B i� it
satisfies Success, Inclusion, Uniformity and the following property:

� If � � B � B � � then there exists B� such that B� � B, � � Cn(B�)
and � � Cn(B� � ���) (Core retainment)

As with Theorem 6, it was noted in [40] that the only properties required to
prove this result areMonotony and Compactness. Note that Core retain-
ment is weaker than Relevance and so we see that every partial meet base
contraction operator is a kernel base contraction operator. The converse,
however, does not hold, i.e., there exist kernel base contraction operators
which are not partial meet base contraction operators (see [34, p91]) for
a counterexample, and [22] for more on the relation between partial meet
and kernel base contraction).
The above discussion was about kernel base contraction. It is also pos-

sible to employ the construction in the case when B is a theory except,
since K �� � is not guaranteed to be a theory (even when K is), it is
necessary to add a post-processing step of closing under Cn. That is,
a kernel theory contraction operator for K is any operator of the form
K �� � � Cn(K �� �), where � is an incision function for K and ��
is defined from � as for kernel base contraction. However, in this case (at
least for supraclassical deduction systems), the distinction between kernel
theory contraction and partial meet theory contraction disappears, in that
every kernel theory contraction operator is a partial meet theory contraction
operator, and vice versa [38].
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4 Belief Revision

As stated earlier, once we have a contraction operation for a belief base B,
we can use it to define a revision operator via the Levi Identity. The Levi
Identity comes in two flavours, according to whether we want the result
of revision to be a theory or not. In the former case we take B � � �
(B � ��) � ���, in the latter case we take K � � � Cn((K � ��) � ���).
We call the former the non-closing Levi Identity, and the latter the closing
Levi Identity. Whenever we talk of the Levi Identity in connection with
an arbitrary belief base B we shall implicitly assume it is the non-closing
version we are using, while if we use it in connection with a theory K,
we shall assume the closing version.5 Throughout this section we shall
assume, for simplicity, that we work in a supraclassical deduction system.
First we deal with arbitrary belief bases, where the result is not expected

to be logically closed.

Definition 14. Let B be a belief base. If � can be defined from some partial
meet base contraction operator for B using the (non-closing) Levi Identity
then it is a partial meet base revision operator for B.

Partial meet base revision may be characterised as follows:

Theorem 15 ([37]). � is an operation of partial meet base revision for B
i� it satisfies the following properties:

� � � B � � (Success)

� If � is consistent then B � � is consistent (Consistency)

� B � � � B � ��� (Inclusion)

� If � � B � B � � then there exists B� such that B � � � B� � B � ���,
B� is consistent and B� � ��� is inconsistent. (Relevance)

� If, for all B� � B, we have B� � ��� is consistent i� B� � ��� is consis-
tent, then B � (B � �) � B � (B � �) (Uniformity)

Success and Consistency are taken as fundamental requirements here.6

Inclusion places an upper-bound on the result of revision. It says the result
should not contain any sentence not included in B, apart from the new

5The Levi Identity breaks revision by � into two steps: contraction (by ��) and expan-
sion (by �), in that order. Another possibiity is to reverse this order and do the expansion
(by �) first, followed by the contraction (by ��). This possibility is explored in [37].

6Although Success is not beyond controversy, since one can certainly imagine situations
in which new information is not accepted. See [39, 35] for studies of revision operators
which don’t satisfy it.
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information �. Relevance and Uniformity are similar to their namesakes
in the list of base contraction postulates.
Let us move on to theory revision.

Definition 16. Let K be a theory. If � can be defined from some partial
meet theory contraction operator for K via the (closing) Levi Identity, then
� is a partial meet theory revision operator for K.

The following result is the AGM characterisation of partial meet theory
revision.

Theorem 17 ([1]). � is a partial meet theory revision operator for a the-
ory K i� it satisfies Success, Consistency and the following basic AGM
postulates for theory revision:

� K � � � Cn(K � �) (Closure)

� K � � � Cn(K � ���) (Inclusion)

� If K � ��� is consistent then K � � � Cn(K � ���) (Vacuity)

� If Cn(�) � Cn(�) then K � � � K � � (Preservation)

Furthermore, � is a transitively relational partial meet theory revision op-
erator (i.e, is defined via the Levi Identity from some transitively relational
partial meet contraction operator) i� it satisfies, in addition, the following
two supplementary AGM revision postulates:

� K � (� � �) � Cn ((K � �) � ���) (Subexpansion)

� If (K � �) � ��� is consistent then Cn ((K � �) � ���) � K � (� � �)
(Superexpansion)

Observe that, for the remainder of this paper we will take AGM revision to
mean transitively relational partial meet revision.
It is also possible to use the Levi Identity to define revision from kernel

contraction, leading to kernel revision operators. Axiomatic characterisa-
tions are given in [40], and we refer the reader to that paper for details.
Finally in this section, while the Levi Identity deals with how to define

revision in terms of contraction, it is also possible to go the other way and
define contraction in terms of revision by using the Harper Identity [41]:

B � � � B � (B � ��)�

The Levi and Harper identities can be thought of as inverses to each other.
They ensure a very tight connection between contraction and revision.
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5 On the semantic side

The previous sections have been developed against the background of some
given, fixed abstract (sometimes supraclassical) deduction system (L�Cn),
which represents the background logic we work in. These systems can be
said to be syntactical, in the sense that they simply declare (via Cn) which
sentences are entailed by which sentences. There is, of course, usually
another side to logic which is the semantical side. It is the semantics of
a logic which tells us what are the objects, or possible worlds, or models
which the sentences in L are actually talking about. In this section we
investigate belief change from a more semantical viewpoint. The ideas
behind this approach originate in a famous paper by Adam Grove [31]. For
this and the next section we make a number of simplifying assumptions:
(i) we assume that we are working in a supraclassical deduction system
(LP�Cn), (ii) we furthermore assume LP is generated by only finitely many
propositional atoms, and (iii) we will focus only on theory revision and
contraction.
What are the models in a supraclassical deduction system? One way to

define them is as the set of maximally consistent theories of LP.

�
def
� �M � LP � M is a Cn-consistent theory and for no Cn-consistent
theoryM� � L do we have M � M���

Given M � � and B � LP, we say M is a model of B i� B � M. Then the
set of models of B is denoted by [B].
The set� defines a consequence relation Cn� by setting, for any B �

LP, Cn�(B) �
�
[B], i.e., a sentence is entailed by B i� it is contained

in all models of B. Then � provides a semantics which is sound and
complete with respect to (LP�Cn), in the sense that, for any B � LP, the
identity Cn�(B) � Cn(B) holds.
Now suppose we have a theory K representing our initial beliefs. This

corresponds to the belief that the actual “true” world is one of the worlds
in [K]. It turns out that performing transitively relational partial meet the-
ory contraction on K is equivalent to choosing, on the basis of some to-
tal preorder over the set�, some countermodels of (i,e, models of the
negation of) the sentence to be contracted, and adding them to [K]. To
be more precise, let � be a total preorder7, or tpo for short, over�. For
M1�M2 � �, M1 � M2 may be informally read as “M1 is at least as
plausible (as a candidate to be the real world) as M2”. Given any subset

7A binary relation � over a set S is a total preorder i� it is (i) reflexive, i.e., s � s for
all s � S , (ii) transitive, and (iii) connected, i.e., either s � t or t � s for all s� t � S .
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T � �, we denote by min�(T ) the minimal elements of T under �, i.e.,
min�(T ) � �t � T � t � t� for all t� � T �. We assume � is anchored on [K],
i.e., [K] � min�(�). Then we may use � to define a contraction operator
for K as follows:

K �� � �

����
���
K if � � Cn(�)
K �
�

min� ([��]) otherwise.

In other words, the models of the new theory are obtained by taking the
minimal models of �� and adding them to the models of K.

Theorem 18 ([31]). Let K be a theory. Then � is a transitively relational
partial meet theory contraction operator for K i� � equals �� for some tpo
over� which is anchored on [K].

This is not the only way we could use a plausibility order to define a con-
traction operator. Rott and Pagnucco introduced and axiomatically charac-
terised the operation of severe withdrawal [64].

K�� �

����
���
K if � � Cn(�)
�
�M � � � M � M� for some M� � min�([��])� otherwise.

Here, the models of the new belief set are obtained by taking all models
which are at least as plausible as the �-minimal ��-models. This operation
was independently proposed, using a di�erent construction, by Isaac Levi
under the name mild contraction [49]. Unlike partial meet theory contrac-
tion, severe withdrawal does not satisfy Recovery. Yet another possibility
was explored byMeyer et al. [50]. Systematic withdrawal is just like severe
withdrawal except we add to [K] not only the most plausible ��-models,
but all models which are strictly more plausible than them.

K � � �

����
���
K if � � Cn(�)
K �
�
�M � � � M � M� for some M� � min�(��)� �

�
min�([��]) otherwise.

What about defining revision from a plausibility order �? We may just
apply the Levi Identity to each of the three families of contraction operator
above. It turns out we get the same revision operator in each case, viz.

K �� � �

����
���
L if �� � Cn(�)
�

min� ([�]) otherwise

In other words the models of the new theory which results from revising
by � are exactly �-minimal �-models.
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Theorem 19 ([31]). Let K be a theory. Then � is a transitively relational
partial meet theory revision operator for K i� � equals �� for some tpo
over� which is anchored on [K].

In the theory case, we have that the AGM postulates are equivalent to to-
tal preorders over the set of models. There is a third way of characterising
AGM theory contraction, namely as an ordering of entrenchment among
the sentences of the language [54, 55]. The best-known version of such en-
trenchment orderings is the epistemic entrenchment orderings put forward
by Gärdenfors and Makinson [28, 26]. We do not these in details here, but
rather refer the interested reader to the references provided.

6 Iterated theory revision as revising tpos

Everything in the preceding sections has been about “one-shot” belief change.
There is an initial theory, there is some new input and then there is a new
theory. However, in realistic settings, a rational agent does not simply “shut
down” after incorporating this input, but must be ready to receive the next
input, followed by further inputs after that. That is to say, belief change is
an iterative process, and any theory of belief change worthy of the name
should be able to account for this. The question is, then, does the theory
sketched in the previous sections adequately handle iterated changes? The
answer, as researchers began to realise in the mid 1990s, is “no”.
What does the theory described until now have to say about iterated be-

lief change? Notice that the extra structure required to carry out revision,
be it incision functions, selection functions, or total preorders over models
is always defined relative to the theory which is being changed. Thus, for
example, when using the tpo construction, there is a fixed total preorder
�K associated to each di�erent theory K. So, to revise a theory K by a
sentence �, we can use the total preorder �K associated to K to compute
the result K � �. If we then want to further revise this new theory by �,
then we use the tpo �K�� associated to it to compute (K � �) ��. There are
three, interrelated problems with this:

1. There need be hardly any relation between the successive tpos �K
and �K��, where intuitively we might expect some.

2. Some intuitively plausible properties of iterated revision may be vi-
olated (see below).

3. This method totally disregards the role that “revision history” may
play in determining results of belief change.
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What researchers realised in the mid 1990s is that, to address these short-
comings, the theory of belief change should be widened so that it deals
not only with change on the level of theories, but that it should address
change in the very structure used to change those theories. A contraction
or revision operator should tell us not only what the new theory should
be, but should also provide us with a new selection function�incision func-
tion�tpo over models which is then the target for the next input. In fact
most the best-known approaches to iterated change deal with tpos rather
than the other ways of modelling the extra-structure. Furthermore the fo-
cus in this area tends to be more on revision than contraction (but see
[19, 17, 18, 57, 42]) so in the following we focus on iterated theory re-
vision as a problem of revising tpos.

6.1 Revising total preorders

So given K and a total preorder � associated to K, the result of revi-
sion should be a new theory K � � together with a new associated tpo
�K��. However we can simplify a bit, since the tpo associated to any
theory contains enough information to recapture the theory anyway (since
[K] � min�(�)). So, our new revision problem may be formulated as
follows:

Given an initial tpo � over�, and revision input �, determine
a new tpo ��� over�.

The theory should extend the foregoing theory of single-step revision, which
means the new belief set K(���) should be derived from the initial tpo and
� using the partial meet revision recipe from Theorem 19. This means that
the new lowest level min���(�) in the new tpo is determined already - it
is equal to min� ([�]). But what about the rest of the ordering? The most
obvious thing to do, if we want to be motivated by the principle of mini-
mal change, is to simply leave the rest of the ordering untouched, and sure
enough, this was one of the first proposals for tpo revision. Boutilier called
it Natural Revision [15, 16], though the idea dates back to [69]. Formally
it is defined as follows:

M1 �
�B
� M2 i�

����
���
either M1 � min� ([�])
or M1�M2 � min� ([�]) and M1 � M2�

The problem with natural revision is that it makes too few changes. This
was recognised by Darwiche and Pearl, who proposed four postulates for
regulating tpo revision [20]:



Belief Change 395

(CR1) If M1�M2 � [�] then M1 �
�
� M2 i� M1 � M2

(CR2) If M1�M2 � [��] then M1 �
�
� M2 i� M1 � M2

(CR3) If M1 � [�] and M2 � [��] and M1 � M2 then M1 �
�
� M2

(CR4) If M1 � [�] and M2 � [��] and M1 � M2 then M1 ��� M2

(CR1) and (CR2) say that, when revising � by �, the relative ordering
of models within [�], respectively within [��], should remain unchanged.
(CR3) and (CR4) say that if a given �-model was judged to be at least as
(respectively strictly more) plausible as a given ��-model before revising
by �, then that relation should be preserved after the revision. Essentially
revising by � should not cause any degradation in plausibility of any �-
model with respect to the ��-models.
As noted by Darwiche and Pearl themselves, the above postulates do not

rule out natural revision as a sensible approach to tpo revision, because �B
satisfies all these postulates. However �B does not satisfy the following
strengthening of (CR3) and (CR4), which was suggested independently in
[11, 45]:

(CR5) If M1 � [�] and M2 � [��] and M1 � M2 then M1 ��� M2

(CR5) forces there to be a strict increase in plausibility of the �-models in
relation to the ��-models which were not deemed more plausible to begin
with.
The above postulates can be repackaged as postulates constraining the

theory following a double revision:

(C1) If � � Cn(�) then K
��
���
��
�

�
� K
�
���

�

(C2) If �� � Cn(�) then K
��
���
��
�

�
� K
�
���

�

(C3) If � � K
�
���

�
then � � K

��
���
��
�

�

(C4) If �� � K
�
���

�
then �� � K

��
���
��
�

�

(C5) If �� � K
�
���

�
then � � K

��
���
��
�

�

(C1) says if two inputs arrive, the second entailing the first, then the first
can be ignored when calculating the resulting theory. (C2) says if two
contradictory inputs arrive, then the e�ects of the first are cancelled out.
(C3) and (C4) say that if � would be believed, resp. not rejected, after
receiving � alone, then this should not change if � were to be preceded by
an input �. Finally (C5) postulates a condition under which belief in an
input � is guaranteed to survive the arrival of a subsequent input �.
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Theorem 20 ([11, 20, 45]). Let � be a tpo revision operator such that al-
ways K(���) �

�
min�([�]). Then, for each i � 1� 2� 3� 4� 5, � satisfies

(CRi) i� it satisfies (Ci).

A few concrete tpo revision operators have been proposed which satisfy all
of the above postulates. For example in lexicographic revision [56, 69] the
new tpo following input � is determined by placing all �-models strictly
below all ��-models while leaving the relative ordering within the sets [�]
and [��] unchanged. This is a most radical form of tpo revision, where the
new information � is given total priority over the initial ordering �. At the
opposite end of the spectrum is restrained revision [11], in which the strict
part of the initial ordering is preserved (apart from the minimal �-models,
which become strictly more plausible than all the other models), with �-
models being promoted only ahead of the ��-models which were on the
same plausibility “level” (see also [63]).

7 Belief revision and nonmonotonic reasoning

In this section we discuss the connections between belief revision and the
work done in the nonmonotonic reasoning community. A logic is said to be
nonmonotonic if its associated entailment relation �� need not satisfy the
following monotonicity property: if A ��� then A� ������. With �� seen as
a relation of plausible consequence, there are many examples to show that
monotonicity is an undesirable property. Perhaps the one most deeply en-
trenched in the nonmonotonic reasoning literature is the Tweety example
(the example we used in the introduction). Given that Tweety is a bird, it
seems plausible to infer that Tweety can fly. But given the additional evi-
dence that Tweety is an ostrich, we should abandon our conclusion about
Tweety’s flying capabilities.
While there are many approaches to nonmonotonic reasoning (see e.g.,

[61, 53]), we consider here the influential framework proposed by Kraus,
Lehmann, and Magidor [47] and show that it has a strong connection with
AGM belief revision. Formally, Kraus et al. take �� to be a binary rela-
tion on sentences of a propositional logic where � ��� is to be read as “�
follows plausibly from �”. For example, if we represent the information
that Tweety is a bird by the atom b, and that Tweety can fly by the atom f ,
the statement b �� f is to be read as “from the fact that Tweety is a bird it
follows plausibly that Tweety can fly”. Kraus et al. define �� as a rational
consequence relation i� it satisfies the properties Ref, LLE, RW, And, Or,
CM, and RM given below.

(Ref) � ��� (Reflexivity)
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(LLE) If Cn(�) � Cn(�) and � ��� then � ��� (Left Logical Equivalence)

(RW) If � � Cn(�) and � ��� then � ��� (Right Weakening)
(And) If � ��� and � ��� then � ��� � �

(Or) If � ��� and � ��� then � � � ���

(CM) If � ��� and � ��� then � � � ��� (Cautious Monotonicity)
(RM) If � ��� then either � � � ��� or � ���� (Rational Monotonicity)

We do not discuss these properties in detail here. Instead, the interested
reader is referred to the paper of Kraus et al. [47]. To make the connection
with AGM belief revision, we need to go one step further. Gärdenfors and
Makinson [27] define �� as an expectation based consequence relation i�
it is a rational consequence relation which also satisfies the property CP
given below.

(CP) If � ��� then � is Cn-inconsistent (Consistency Preservation)

(where � is any truth-functional contradiction, e.g., p � �p). The under-
lying intuition provided by Gärdenfors and Makinson is that the reasoning
of an agent is guided by its expectations. Every expectation based conse-
quence relation �� is based on a set of expectations E, playing a role that
is analogous to that of a belief set K in theory change. Intuitively, E is the
“current” set of expectations of the agent, and the plausible consequences
of a sentence � are those sentences � for which � ��� holds. The set of ex-
pectations E is not explicitly mentioned in the definition of an expectation
based consequence relation �� , but a suitable E can be recovered from ��
as follows: E � �� � �����. That is, E is taken as the set of plausible
consequences of a tautology.
This places us in a position to define a method for translating between

belief revision and expectation based consequence relations. Given a con-
sequence relation �� , we take the set of expectations E associated with ��
as the theory K to be revised, and we define K � � as �� � � ����. Con-
versely, given a theory K and a revision operator �, we define a nonmono-
tonic consequence relation �� as follows: � ��� i� � � K � �. The main
result, linking belief revision to nonmonotonic reasoning is the following
theorem by Gärdenfors and Makinson [27] proving that these definitions
allow us to show that AGM revision and expectation based nonmonotonic
consequence coincide:

Theorem 21. Let �� be an expectation based consequence relation and let
E � �� � �����. Then E � Cn(E) (i.e. E is a theory). Furthermore, the
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revision operator � for E, defined in terms of �� as follows: E � � � �� �
� ����, is an AGM revision operator. Conversely, consider a theory K, and
let � be an AGM revision operator for K. Then the consequence relation ��
defined as follows: � ��� i� � � K ��, is an expectation based consequence
relation.

8 Information change in epistemic logic

In the work on belief change we have described thus far we have avoided
discussion on its most fundamental notion: that of belief itself. Since the
seminal book of Hintikka [43] this question is traditionally explored in
the context of modal logic within doxastic and epistemic logics.8 In these
logics belief is studied within the object language as a modal operator.
Although the initial work in this area was concerned purely with static
notions of belief and knowledge, in more recent times there has been much
interest in bringing dynamics into the picture, and studying how beliefs
change in response to various learning events.
In a language for epistemic logic the sentences are built up from propo-

sitional variables using the usual propositional connectives, but now also
an explicit modality for belief, so that whenever � is a sentence then so is
B�. The latter sentence has the intuitive reading that the agent believes �.
Semantics is provided by a (single-agent) epistemic model� � (S �R� v),
where S is a set of states, R is a binary accessibility relation over S , and
v is a function which assigns a truth-value to every propositional variable
at every state. For each s � S , the set R(s) of all states t which are acces-
sible from s, i.e., such that R(s� t) holds, intuitively represents those states
which are consistent with the agent’s information at state s. Evaluation of
sentences is made with respect to a model-state pair (�� s), where s � S ,
with the crucial clause for B� being as follows:

(�� s) � B� i� (�� t) � � for all t � S s.t. R(s� t)�

By putting various restrictions on the accessibility relation R we can obtain
di�erent properties for the B-operator. For example by assuming that R is
serial, transitive and Euclidean9 we obtain the most common modal logic
of belief, known as KD45, which is the axiomatic system with inference

8Strictly speaking, since we deal here with belief rather than knowledge, the adjective
doxastic (rather than epistemic) is the appropriate one. However, since the use of the latter
is widespread we shall use it in the rest of this section.

9R is serial i� for every s there exists some t such that R(s� t). It is Euclidean i� R(t� u)
whenever both R(s� t) and R(s� u).



Belief Change 399

rules Modus Ponens (if � and � � � are theorems then so is �) and Ne-
cessitation (if � is a theorem then so is B�) and which has as axioms all
instances of propositional tautologies together with the following:

K B(�� �)� (B�� B�) (Distribution)
D B�� �B�� (Consistency)
4 B�� BB� (Positive Introspection)
5 �B�� B�B� (Negative Introspection)

As can be seen in axioms 4 and 5 above, epistemic logics a�ord us the
possibility to express higher-order beliefs, or beliefs about beliefs, directly
in the object language. Moreover, in multi-agent extensions of epistemic
logic, in which we have a number of di�erent agents �1� � � � � n�, to each of
which we assign its own accessibility relation Ri, we can also have sen-
tences of the form BiBj�, expressing what one agent i believes about the
beliefs of another agent j.
So far our description of epistemic logic only deals with static belief. In

order to build dynamics into this framework one may introduce dynamic
modalities. This is what is done in Dynamic Epistemic Logic (DEL) [73].
Full DEL comes with a rich typology of di�erent belief-changing events,
up to (di�erent varieties of) private announcements and complex forms
of epistemic action in which di�erent agents can have di�erent perspec-
tives on the learning event. We will just mention here the prototypical
kind of event, namely public announcement [29, 58] in which all agents in
the scenario being modelled simultaneously learn that � is true. In pub-
lic announcement logic (PAL) we introduce new dynamic modalities [!�],
where � can be any sentence (including one containing belief modalities).
The crucial semantic clause is as follows:

(�� s) � [!�]� i� if (�� s) � � then (���� t) � ��

where � � � is the epistemic model obtained from � by eliminating all
states s� for which (�� s�) � �, with the accessibility relations and valua-
tion functions restricted accordingly. Note that a public announcement of
� represents hard information that � is true. As such it is more in the spirit
of belief expansion than revision (but see [4, 72]). Some interesting things
happen if we try to reformulate the AGM revision postulates in terms of
PAL. For one thing, the natural translation of the Success postulate does
not hold, i.e., the sentence [!�]B� need not be valid for all choices of �.
The best known counterexample is if we take � to be a Moore-type sen-
tence such as p��Bp, where p is a propositional variable (“p is true, but I
don’t believe it”). While it may well be the case that (�� s) � p��Bp, the
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sentence B(p � �Bp) is inconsistent (i.e., true in no state). Thus although
a Moore sentence may be truthfully announced, it can never be believed
after the announcement.
The above considerations give rise to a distinction in the epistemic logic

literature between static and dynamic belief revision. In static belief revi-
sion the result of revision expresses what an agent comes to believe about
what was the case before the actual learning event took place. Dynamic
revision deals with what the agent now comes to believe after the learning.
The distinction only comes into e�ect when revising by higher-order be-
liefs such as with the Moore sentence above. When dealing with factual
beliefs as with AGM the two notions coincide.
One way to model static belief revision which has been explored is via

doxastic conditionals. This involves allowing sentences of the form B��
into the language, expressing the hypothetical belief that if the agent learned
� then he would believe that � was true before the learning. Roughly-
speaking, the semantical structures for this language are obtained by re-
placing an agent’s set of accessible states from each state by binary plau-
sibility relations (total preorders) over states [7, 9]. Then the doxastic con-
ditional B�� evaluates to true i� (�� s�) � � for all the minimal states s�

in the ordering such that (�� s�) � �. Within this framework one can de-
fine dynamic modalities for learning events of soft information, unlike the
hard information of public announcement. These events have the e�ect of
modifying the agents’ plausibility relations rather than eliminating states
from the picture completely. Van Benthem [71] studies modalities for two
such events: lexicographic upgrade [� �] and conservative upgrade [� �],
which essentially correspond respectively to the lexicographic tpo revision
method and to Natural revision described in Section 6.1 of the present pa-
per.
For more details on belief change in epistemic logics we refer the inter-

ested reader to the survey articles [30] and [8]. Section 7 of the latter also
includes a detailed comparison with AGM belief revision.

9 Current developments:
belief change for other logics

From the work discussed so far it is clear that belief change has come a long
way in the past 30 years. However, a look back at the work done over this
period reveals an interesting tendency. Although the original aims were
phrased in terms of a broad class of logic—all those with Tarskian conse-
quence relation and satisfying Compactness—most of the work done in
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the area is actually based on the assumption of an underlying propositional
logic, whether finitely or infinitely generated. In this section we consider a
departure from this trend, and discuss recent developments in belief change
expressed in two logics other than full propositional logic: propositional
Horn logic and description logics.

9.1 Propositional Horn contraction

One of the main reasons for considering belief change for Horn logic is
that it has found extensive use in artificial intelligence and database the-
ory, in areas where belief change is an issue to consider, such as logic
programming, truth maintenance systems, and deductive databases. Del-
grande [21] was the first to point this out and to investigate the contraction
of theories for propositional Horn logic.
A Horn clause is a sentence of the form p1 � p2 � � � � � pn � pn�1

where n � 0, and where the pis are propositional atoms or one of � or �.
A Horn sentence is a conjunction of Horn clauses. A Horn set is a set of
Horn sentences. Given a propositional language LP, the Horn language LH
generated from LP is simply the Horn sentences occurring in LP. The Horn
logic obtained from LH has the same semantics as the propositional logic
obtained from LP, but just restricted to Horn sentences. A Horn theory
is a Horn set closed under logical consequence, but containing only Horn
sentences. We denote Horn consequence by CnH(�).
Delgrande’s main contributions were threefold. Firstly, he showed that

the move to Horn logic leads to two di�erent types of contraction which co-
incide in the full propositional case. Given a Horn theoryH, the entailment-
based contraction, or e-contraction, of a sentence � should result in a new
Horn belief H �e � of which � is not a logical consequence: H �e � � �.
On the other hand, the inconsistency-based contraction, or i-contraction,
of a sentence � should result in a new Horn belief H �i � which is such
that adding � to it does not result in an inconsistency: H �i � � ��� � �.
In full propositional logic, a way to express i-contraction in terms of e-
contraction would be to require that H �e �� � ��� � �. This cannot be
expressed in Horn logic, though, because it is not possible to express the
negation of the Horn sentence � (see also Section 3). Below we consider
only e-contraction. Similar results have been obtained for i-contraction as
well.
Delgrande’s second contribution was to show that e-contraction for Horn

theories should not satisfy the controversial Recovery postulate. As an ex-
ample of the failure ofRecovery for e-contraction, take H � CnH(�p� r�)
and let � � p � q � r. Then any reasonable version of e-contraction will
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yield H �e � � CnH(�). So CnH(H �e � � ���) � CnH(�p � q � r�) and
therefore H � CnH(H � ���).
Delgrande’s third contribution was to base the construction of Horn con-

traction operators on partial meet contraction. The definitions of remainder
sets, selection functions, and partial meet contraction, as well as maxi-
choice and full meet contraction all carry over directly to e-contraction and
we will not repeat them here. We refer to these as e-remainder sets (de-
noted by H�e�), e-selection functions, partial meet e-contraction, maxi-
choice e-contraction and full meet e-contraction respectively. As in the full
propositional case, it is easy to verify that all e-remainder sets are also Horn
theories, and that all partial meet e-contractions (and therefore the maxi-
choice e-contractions, as well as full meet e-contraction) produce Horn
theories.
In two subsequent papers, Booth et al. [13, 14] extended Delgrande’s

work in a number of interesting ways. They show that while Delgrande’s
partial meet constructions are all appropriate choices for e-contraction in
Horn logic, they do not constitute all the appropriate forms of e-contraction.
For example, let H � CnH(�p� q� q� r�). It can be verified that, for the
e-contraction of p � r, maxichoice yields either H1

mc � CnH(�p� q�) or
H2
mc � CnH(�q� r� p � r � q�), that full meet yields Hfm � CnH

(�p � r � q�), and that these are the only three partial meet e-contractions.
Now consider the Horn theory H� � CnH(�p � q� r� p � r � q�). It is
clear that Hfm � H� � H2

mc. But observe that H� is not a partial meet
e-contraction. Booth et al. argue that H� ought to be regarded as an ap-
propriate candidate for e-contraction and, more generally, that every Horn
theory between full meet and some maxichoice e-contraction ought to be
seen as an appropriate candidate for e-contraction.

Definition 22. For Horn theories H and H�, H� � H �e � i� there is some
H�� � H�e� s.t. (

�
H�e�) � H� � H��. We refer to the elements of H �e�

as the infra e-remainder sets of H wrt �.

Definition 23. Let H be a Horn theory. An infra e-selection function is a
function � such that for every � � LH, �(H �e�) � H whenever H �e� � �,
and �(H �e�) � H �e� otherwise. We use an infra e-selection function � to
define an infra e-contraction as H �� � � �(H �e�).

Booth et al. show that infra e-contraction is captured precisely by the AGM
postulates for theory contraction, except that Recovery is replaced by the
Core retainment postulate we encountered earlier in the context of defin-
ing kernel contraction in Section 3.4.



Belief Change 403

Theorem 24 ([14]). Every infra e-contraction satisfiesClosure, Inclusion,
Success, Extensionality, and Core retainment. Conversely, every
e-contraction which satisfiesClosure, Inclusion, Success, Extensionality,
and Core retainment is an infra e-contraction.

It is possible to define a version of kernel contraction for Horn logic, sim-
ply by closing under Horn consequence the results obtained from kernel
contraction for bases.

Definition 25. Given a Horn theory H and an incision function � for H,
the kernel e-contraction for H is defined as H �e� � � CnH(H �� �), where
�� is the base kernel contraction for H obtained from �.

Booth et al. prove that kernel e-contraction corresponds exactly to infra
e-contraction. From these results it seems that the contraction of Horn the-
ories exhibits a kind of “hybrid” behaviour, somewhere between classical
base contraction and classical theory contraction. As evidence for this, re-
call firstly that in the classical case, partial meet contraction and kernel con-
traction coincide for theories, but that kernel contraction is more general
than partial meet contraction when dealing with the contraction of bases.
Furthermore, Horn e-contraction for theories does not satisfy theRecovery
postulate, unlike classical contraction for theories, but similar to classical
base contraction. And finally, the set of postulates provided by Booth et al.
to characterise infra e-contraction (and kernel e-contraction) bears a close
resemblance to the postulates for characterising Horn contraction for bases
in the classical case.
To summarise, these recent investigations into Horn contraction have

highlighted the fact that a move away from propositional logic as the un-
derlying logic for belief change can yield interesting and unexpected re-
sults. Interestingly enough, although the motivation for initiating research
on Horn contraction was partially motivated by an interest in Horn logic in
its own right, another reason for doing so is that propositional Horn logic
forms the backbone of a group of description logics, the class of logics to
which we turn to next.

9.2 Belief change for description logics

Description Logics (or DLs for short) are a well-known family of logics
used for knowledge representation [6]. They have become the formal-
ism of choice for representing formal ontologies [44]. DLs are decidable
fragments of first-order logic, mainly characterised by constructors that
allow complex concepts (unary predicates) and roles (binary predicates)
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to be built from atomic ones. We provide a brief description of two well-
known DLs referred to as��� and ��, and show how they relate to belief
change.
In the description logic ��� [67], concept descriptions are built from

concept names using the constructors disjunction (C � D), conjunction
(C � D), negation (�C), existential restriction (�R�C) and value restric-
tion (�R�C), where C�D stand for concepts and R for a role name. To
define the semantics of concept descriptions, concepts are interpreted as
subsets of a domain of interest, and roles as binary relations over this do-
main. An interpretation I consists of a non-empty set �I (the domain of I)
and a function �I (the interpretation function of I) which maps every con-
cept name A to a subset AI of �I , and every role name R to a subset RI of
�I � �I . The interpretation function is extended to arbitrary concept de-
scriptions as follows. Let C�D be concept descriptions and R a role name,
and assume that CI and DI are already defined. Then (�C)I � �I � CI ,
(C � D)I � CI � DI � (C � D)I � CI � DI , (�R�C)I � �x � �y s�t� (x� y) � RI

and y � CI�, and (�R�C)I � �x � �y� (x� y) � RI implies y � CI�. The
distinguished concept name � is always interpreted as �I � �I . Similarly,
the dinstinguished concept name � is always interpreted as �I � �. A
DL Tbox contains statements of the form C � D (inclusions) where C and
D are (possibly complex) concept descriptions. Tboxes are used to repre-
sent the terminology part of ontologies in di�erent application areas. The
semantics of Tbox statements is as follows: an interpretation I satisfies
C � D i� CI � DI . I is a model of a Tbox i� it satisfies every statement
in it. A Tbox statement � is a logical consequence of a Tbox T , written as
T � �, i� every model of T is a model of �.
A concept name A is concept-satisfiable wrt to a Tbox T i� there is a

model, say I, of T in which AI � �. This turns out to be an important
property for ontology construction—if some concept names are concept-
unsatisfiable wrt a Tbox T it is usually an indication of modelling errors
made during the construction of T . For example, Schlobach et al. [66]
show the following part of a Tbox for the DICE medical terminology:

brain � CentralNervousSystem

brain � BodyPart

CentralNervousSystem � NervousSystem

NervousSystem � �BodyPart

According to this, a brain is a body part as well as a central nervous sys-
tem, while the latter is a type of nervous system, which, in turn, is not
a body part. Formally, the concept brain is concept-unsatisfiable wrt the
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Tbox. Checking for concept-satisfiability is closely related to checking for
logical consequence. Indeed, for many DLs, including���, checking for
concept-satisfiablity can be reduced to checking for logical consequence.
DL reasoners such as RACER [32] and FaCT�� [70] are able to detect
concept-unsatisfiability quite e�ciently.

The link with belief change comes in with attempts to deal with concept-
unsatisfiability in appropriate ways. Ontology debugging [46, 66] is con-
cerned with determining the cause of concept-unsatisfiability in a Tbox T ,
while ontology repair [65, 52] aims to modify T in such a way that all con-
cept names beome concept-satisfiable. It turns out that the techniques used
for ontology debugging are closely related to the special case of kernel con-
traction for belief bases known as safe contraction, which was mentioned
in Section 3. Recall that the �-kernels of a base B are the minimal subsets
of B implying �. Similarly, techniques for ontology debugging identify the
minimal subsets of a Tbox T with respect to which at least one concept
name is concept-unsatisfiable.

In ontology debugging the Tbox T isn’t modified automatically. Instead,
the ontology engineer, when presented with the “kernels” of Tbox state-
ments, is expected to use this information to modify T manually in order
achieve concept-satisfiability. In contrast, the aim of ontology repair is to
modify T automatically to ensure concept-satisfiability. This is achieved
by removing exactly one element from each of the “kernels” of Tbox state-
ments, an approach that can be seen as safe contraction applied to concept-
satisfiability. Ontology repair, in this sense, has more in common with
belief base contraction than with theory contraction, since it is the Tbox
statements occurring explicitly in the Tbox that are used to obtain the TBox
“kernels”, and not statements in the theory obtained from the the Tbox.

A di�erent application of belief contraction, this time one that is more
closely related to theory contraction, occurs in ontologies represented in
one of the �� family of DLs [5]. In �� itself, the basic member of this
DL family, concept descriptions are built up from concept names using just
conjunction (C � D) and existential restriction (�R�C). As in ���, Tbox
statements have the form C � D, where C and D are (possibly) complex
concepts. The lack of expressivity in �� is made up for by the e�ciency
of reasoning algorithms for it. In particular, the task of computing the sub-
sumption hierarchy for an �� Tbox T (determining whether T � A � B for
all concept names A and B) has polynomial complexity (in the size of the
Tbox). Moreover, it turns out that a member of the �� family is su�ciently
expressive to represent a number of biomedical ontologies, including the
widely used medical ontology SNOMED [68].
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As with ���, the application of belief change to �� is also related
to the construction of ontologies. In this case, however, it does not ad-
dress concept-unsatisfiability. Indeed, since �� does not have negation,
concept-unsatisfiability can only occur if the bottom concept � is used
explicitly. Instead, it relates to a di�erent method for testing the quality
of a constructed ontology: asking a domain expert to inspect and verify
the computed subsumption hierarchy. Correcting such errors involves the
expert pointing out that certain subsumptions are missing from the sub-
sumption hierarchy, while others currently occurring in the subsumption
hierarchy ought not to be there. A concrete example of this involves the
medical ontology SNOMED [68] which erroneously classified the concept
�������������������� as being subsumed by the concept
�����������������. Finding a solution to problems such as these is can
be seen as an instance of theory contraction, in this case by the statement
�������������������� � �����������������. The scenario also il-
lustrates why we are concerned with contraction of theories and not bases.
In general, ontologies are not constructed by writing down DL axioms, but
rather using ontology editing tools such as SWOOP10 or Protégé11, from
which the axioms are generated automatically. Because of this, it is the
theory obtained from a Tbox that is important, not the axioms from which
the theory is generated.
It is only recently that researchers have started to pay attention to theory

contraction for �� [12]. Indeed, much of the work relevant to this topic
does not address the �� family of DLs directly at all. In particular, the
work on propositional Horn contraction is of importance in this context.
Horn clauses correspond closely to subsumption statements in DLs, since
both Horn logic and the �� family lack full negation and disjunction. In
this respect, there is still much work to be done before a claim can be made
that belief contraction for �� has been addressed properly.
Finally, in this section we have focused on recent work related to belief

contraction for descriptions logics, but it must be pointed out that there
has also been some recent work on belief revision and related questions
[51, 59, 60, 74].

10 Conclusion

In conclusion, we hope that this brief overview of belief change has con-
vinced the reader that research in this area has come a long way over the

10http:��code.google.com�p�swoop
11http:��protege.stanford.edu
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past 30 years, with the fundamentals of the topic now firmly in place. The
main challenge ahead is to build on the established fundamentals and ex-
tend the work that has been done to new application areas. As we have seen
in Section 9, this is already taking place. And although much remains to
be done in this regard with, for example, di�erent underlying logics raising
interesting and unexpected questions, it seems clear that the existing body
of work provides an appropriate springboard for finding solutions to those
new issues that are cropping up.
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Some Remarks on Knowledge, Games and
Society

ROHIT PARIKH�

The peculiar character of the problem of a rational eco-
nomic order is determined precisely by the fact that the knowl-
edge of the circumstances of which we must make use never
exists in concentrated or integrated form, but solely as the dis-
persed bits of incomplete and frequently contradictory knowl-
edge which all the separate individuals possess. The economic
problem of society is thus not merely a problem of how to al-
locate “given" resources – if “given" is taken to mean given
to a single mind which deliberately solves the problem set by
these “data." It is rather a problem of how to secure the best
use of resources known to any of the members of society, for
ends whose relative importance only these individuals know.

F. Hayek
Individualism and Economic Order

1 Introduction

We give a sketch of recent developments in Epistemic Logic and Game
Theory and explain how they a�ect our understanding of the workings of
society.

2 Knowledge

The Kripke structures for the logic of knowledge have one or more accessi-
bility relations Ri which are reflexive, symmetric, and transitive, or in other
words, equivalence relations.

�City University of New York, Brooklyn College and CUNY Graduate Center, Com-
puter Science, Mathematics and Philosophy, research supported in part by a grant from
PSC-CUNY.
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Example: Suppose that there is a person who is either male or female, tall
or short. Then there are four possible combinations, MS, MT, FS, FT. We
write, W � {MS, MT, FS, FT} where W is our world of all possibilities.
Here FT, for instance, stands for the fact that the person in question is a
tall female. Suppose I know the gender of the person but not the height.
Then for me, MS, MT are equivalent, and so are FS, FT. So my space of
possibilities splits into classes,

{{MS, MT}, {FS, FT}}.

The two persons MS, MT are equivalent as far as my knowledge is con-
cerned, as are the two people FS, FT. So, referring to myself as 1, and the
other person as 2, I have the equivalence relation R1 where for instance, FT
is equivalent to both itself and FS. FS is equivalent to both itself and FT.
Suppose that someone else knows the height but not the gender. Then for
that person the classes would be

{{FT, MT}, {FS, MS}}.

Suppose now that the person in question is actually a tall female. Then 1
(that is I) knows that the person is female and 2 knows that the person is
tall.

Suppose an announcement is now made that the person is not a tall male.
1 already knew this and has learned nothing about the person in question.
1 is still uncertain between FS and FT. However, 2 now knows that the
person is a tall female. The new classes are, for 1,

{{MS}, {FS, FT}},
and for 2,
{{FT}, {FS, MS}}.

At this point, 2 knows that 1 does not know that it is a tall female.1 But 1
does not know that 2 knows that it is a tall female! Why? Because 1 knows
that anything that 2 knows has to be true. If 1 knew that 2 knew that it was a
tall female, then 1 could also conclude that it is a tall female, and of course
1 does not know that. So (to put it formally) the formula K2(�K1(FT )) is
true but K1(K2(FT )) is false.

2 also knows that 1 does not know.

1We assume that the various background facts are common knowledge so that 2 knows
that 1 only knows about gender.
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3 Some formal developments

The language � is obtained from atoms At � �p� q� ���� by closing under the
truth functions and operators Ki. Specifically,

1. An atom p is a formula

2. If A� B are formulas then so are �A, A � B

3. If A is a formula then so is Ki(A) for any i � n

Here n is the number of knowers we are considering. In actual examples
we may use letters A, B, or names Ann, Bob, rather than i� j. The letters
p� q etc denote basic facts.
Amodel for epistemic logic consists of a world or set of statesW, relations
Ri � W�W for each i � n and finally, a map V fromW�At to {0, 1} where
0 stands for false and 1 stands for true. For each i, Ri is the accessibility
relation for agent i. The Ri are usually assumed to be equivalence relations.
Here Ri(s� t) means that agent i cannot distinguish between the s and t.

Semantics We define the notion M� s � A, where M is a model, s � W is a
state, and A is a formula.

1. If p is an atom then M� s � p i� V(s� p) � 1

2. M� s � �B i� M� s �� B

3. M� s � B �C i� M� s � B or M� s � C

4. M� s � Ki(A) i� (�t)(sRit � M� t � A)

Note that an equivalence relation gives rise to equivalence classes or to a
partition of the space W.
Let us use the modalities K1 for me (1) (the � corresponding to R1), and
K2 for the other person (2).
Then since both R1�R2 are reflexive we get the axioms

K1(A)� A and K2(A)� A.
By transitivity, we get

K1(A)� K1(K1(A)) and K2(A)� K2(K2(A)).
And finally, by symmetry we get
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�K1(A)� K1(�K1(A)) as well as

�K2(A)� K2(�K2(A)).
Of course both operators K1�K2 are normal and we get, for instance,

K1(A� B)� (K1(A)� K1(B))
If I know A and I know A� B, then I (can) know B.2

Updates
Suppose we are in some model M at some state s and an announcement
of some formula A is made. (We assume that the announcement comes
from the outside, and not from one of the agents). The announcement is
assumed to be public. That is to to say that all agents hear it together. It is
also assumed that A is true at M� s.
Then the announcement converts M into a smaller model M�A where the
set W is reduced to the set W� defined by W� � �t�M� t � A�. The states
where A was false are simply dropped since they could not be the states
from which an announcement of A was made. The relations Ri and the
truth value map V remain the same but are now restricted to W�. Note that
since A was supposed to be true at s, s � W�.
In the example we had at the beginning,W was {MS, MT, FS, FT} andW�

is {MS, FS, FT}. The state MT is dropped because the announcement not
MT! was false at MT.
If A is an atomic formula or even a truth functional combination of atomic
formulas then A becomes common knowledge after the announcement.3 In
other words, all the agents know A, all agents know that all agents know A,
etc.
It is more subtle if A may contain knowledge operators. Suppose for in-
stance that there is a bug on Bob’s shoulder. Let that fact be represented
by p. Ann says to Bob, You don’t know this but there is a bug on your
shoulder. So she is announcing A � (p � �Kb(p)).
After the announcement, p becomes common knowledge, but A does not,
since half of A is no longer true!! Bob does know p now. In particular,
Kb(p) has become true and �Kb(p) has become false.
Some of the foundational work in this area was done by Jan Plaza, a Ph.D.
student at CUNY. He now teaches at SUNY, Plattsburgh. The following
URL is a link to his slides on dynamic epistemic logic.
http:��faculty.plattsburgh.edu�jan.plaza�research�logic�public-slides.pdf

2But do I actually know B? This is the problem of logical omniscience. See [20] for a
full discussion of this issue.

3This means that everyone knows A, everyone knows that everyone knows A, etc...
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4 Games

We shall usually talk about two player games. The players are typically
called Row and Column, but more catchy names may arise in specific
contexts. It is a convention that Row is female and Column is male. We
may also refer to Row and Column as players 1 and 2 respectively.

In so called normal form games, each player has a finite set of strategies,
call them S 1 and S 2, and each can choose a particular strategy from their
own set. Once the players have chosen their strategies, there are payo�s
which depend on both the strategies. pr� pc are the payo� functions. So
suppose that player Row chooses strategy a and Column chooses strategy
b, then the payo�s would be pr(a� b) and pc(a� b).

Suppose Row has chosen a and Column has chosen b, then (a� b) con-
stitutes a Nash equilibrium if, given that Column is playing b, Row has
nothing better than a, and given that Row is playing a, Column has nothing
better than b. In other words pr(a� b) � pr(a�� b) for all a� and pc(a� b) �
pc(a� b�) for all b�.

Given two strategies a� a� for Row, we say that a is dominated by a� if
regardless of what Column plays, a� always gives a better outcome for
Row. Thus pr(a� b) � pr(a�� b) for all b and pr(a� b) � pr(a�� b) for at
least one b. Sinilarly for dominance of a Column strategy b by b�. It is
normally accepted that a player would never play a dominated strategy,
and the opponent may then make his plans based on this fact.

We now give examples of various games in the literature.

4.1 Battle of the Sexes

In this game, the wife (Row) wants to go to the Opera and the husband
(Column) wants to watch football. But each would rather go together than
watch their favourite thing by themselves. So here are the payo�s. Row’s
payo�s in each box are listed first.

Opera Footb
Opera 2� 1 0� 0
Footb 0� 0 1� 2

If they go to di�erent events, they are not happy, so the payo�s are zero for
both. If they go to the same event, then both have positive payo�s, but the



418 ROHIT PARIKH

wife’s is higher if they go to the Opera and the husband’s is higher if they
go to football. There are two Nash equilibria, the NW one which is (2,1),
and the SE one which is (1,2).

The fact that (1,2) is a Nash equilibrium can be seen geometrically. Row
can change the row, but if she does her payo� will move from 1 to 0, and
she will be worse o�. Similarly, Column can change the column, but if he
does, his payo� will change from 2 to 0, and he will be worse o�.

4.2 Chicken

In this rather dangerous game, two cars race towards each other. If one goes
straight and the other swerves, then the one who swerves has shown fear,
and is called chicken. He is embarrassed while the other feels triumphant.
If neither swerves then there is an accident which they both regret – if they
survive.

Swerve Straight
Swerve 1� 1 �1� 7
Straight 7��1 �10��10

There are two Nash equilibria, the NE one which is (-1,7), with Row being
the ‘chicken’ and the SW one which is (7,-1) with Column in that role.

4.3 Matching Pennies

Heads Tails
Heads 1��1 �1� 1
Tails �1� 1 1��1

In this game, Row is the matcher and Column is the mismatcher. Both
parties exhibit a penny and if both pennies match (are both showing heads
or both showing tails) then Rowwins. If one is showing heads and the other
tails (mismatch), then Column wins. There are no (pure) Nash equilibria in
this game (there is a mixed strategy equilibrium, but we shall not consider
those here4).

4Still, as anyone knows who has ever played this game, there is a way in which one can
on average win half of a series of matching pennies games, by just tossing your own penny
on each move. This is called “playing a mixed strategy". The particular mixed strategy
where both players choose heads half of the time turns out to be a Nash equilibrium. Such
Nash equilibria are called mixed Nash equilibria. The strategies we have discussed above
are called “pure strategies", and the equilibria for those are called pure Nash equilibria.
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4.4 Prisoner’s dilemma (PD)

In this game, two men are arrested and invited to testify against each other.
If neither testifies, then there is a small penalty (for each) since there is no
real evidence. But if one defects (testifies) and the other does not, then the
defecter goes free and the other gets a large sentence. If both defect they
both get medium sentences. Jointly they are better o� (The payo�s are 2
each) if neither defects, but for both of them, defecting is the dominant
strategy and they end up with (1,1) which is worse.

Coop Def
Coop 2� 2 0� 3
Def 3� 0 1� 1

There is a unique, rather bad Nash equilibrium at SE with (1,1), while the
(2,2) solution on NW, though better for both, is not a Nash equilibrium.
This fact has often been taken to imply how, without the existence of an
external authority, individuals will harm or destroy each other in order to
derive benefit.
We now discuss the first one of our folk examples. We start with an actual
example from the Economics literature and then relate it to a story from
Indian history.

5 Tragedy of the Commons

From5 “The Tragedy of the Commons" by Garrett Hardin, 1968 [15].

The tragedy of the commons develops in this way. Picture a pasture open to
all. It is to be expected that each herdsman will try to keep as many cattle
as possible on the commons. Such an arrangement may work reasonably
satisfactorily for centuries because tribal wars, poaching, and disease keep
the numbers of both man and beast well below the carrying capacity of the
land. Finally, however, comes the day of reckoning, that is, the day when
the long-desired goal of social stability becomes a reality. At this point, the
inherent logic of the commons remorselessly generates tragedy.
As a rational being, each herdsman seeks to maximize his gain. Explicitly
or implicitly, more or less consciously, he asks, “What is the utility to me
of adding one more animal to my herd?" This utility has one negative and
one positive component.

5Some material in this section appeared in a previous article of mine [19]
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1. The positive component is a function of the increment of one animal.
Since the herdsman receives all the proceeds from the sale of the additional
animal, the positive utility is nearly �1.

2. The negative component is a function of the additional overgrazing cre-
ated by one more animal. Since, however, the e�ects of overgrazing are
shared by all the herdsmen, the negative utility for any particular decision-
making herdsman is only a fraction of -1.
Adding together the component partial utilities, the rational herdsman con-
cludes that the only sensible course for him to pursue is to add another an-
imal to his herd. And another.... But this is the conclusion reached by each
and every rational herdsman sharing a commons. Therein is the tragedy.
Each man is locked into a system that compels him to increase his herd
without limit – in a world that is limited. Ruin is the destination toward
which all men rush, each pursuing his own best interest in a society that
believes in the freedom of the commons. Freedom in a commons brings
ruin to all.

But Hardin was anticipated in India by four hundred years!

The following is from the famous Akbar Birbal collection of stories. Ak-
bar was the third Mughal emperor and the grandfather of Shah Jehan who
built the Taj Mahal as a monument (and mausoleum) for his wife. Birbal
was one of his ministers and well known (at least in stories) for his wit and
intelligence. Both lived in the second half of the sixteenth century.

5.1 Birbal story:

One day Akbar Badshah said something to Birbal and asked for an an-
swer. Birbal gave the very same reply that was in the king’s own mind.
Hearing this, the king said, “This is just what I was thinking also." Birbal
said, “Lord and Guide, this is a case of a hundred wise men, one opin-
ion " (in Hindi, sau siyane ek mat). The king said, “This proverb is indeed
well-known". Then Birbal petitioned, “Refuge of the World, if you are so
inclined, please test this matter". The king replied, “Very good."
The moment he heard this, Birbal sent for a hundred wise men from the
city. And the men came into the king’s presence that night.
Showing them an empty well, Birbal said, “His Majesty orders that at once
every man will bring one bucket full of milk and pour it in this well."
The moment they heard the royal order, every one reflected that “where
there were ninety-nine buckets of milk, how could one bucket of water be
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detected?" Each one brought only water and poured it in. Birbal showed
it to the king.
The king said to them all, “What were you thinking, to disobey my order?
Tell the truth, or I’ll treat you harshly!" Every one of them said with folded
hands, “Refuge of the World, whether you kill us or spare us, the thought
came into this slave’s mind that where there were ninety-nine buckets of
milk, how could one bucket of water be detected?"
Hearing this from the lips of all of them, the king said to Birbal, “What I’d
heard with my ears, I’ve now seen before my eyes: “a hundred wise men,
one opinion!"

Birbal lived from 1528 to 1586, and died in the battle of Malandari Pass,
in Northwest India.6

Analysis:
What is common between the example which Hardin gives and the Akbar-
Birbal story? In each case, the individual benefits at the cost of the group.
In the Hardin case, the herdsman benefits by having one more animal.7 In
the Birbal case, the “wise man" benefits by saving one pot of milk. In each
case the group is harmed. In the case of the herdsmen, the common is
overgrazed and the grass dies. In the Akbar-Birbal case, there is a danger
that if the cheating is discovered, all hundred men face the threat of prison
or even execution. Akbar was a benign king,8 but not entirely immune to
anger.
Also, in each case, cheating is a dominant strategy. If most of the others are
cheating, it does no extra harm if you cheat too. And if most of the others
are not cheating, then again it does no extra harm if you are one of the rare
cheaters. But if everyone practices their dominant strategy and cheats, then
there can be disaster for the whole group.
A very nice discussion of information as a sort of commons is to be found
in [9]. Elinor Ostrom was the first woman to win the Nobel prize in Eco-
nomics, 2009.
However, the contention that the PD is a typical game in society, has been
disputed by many scholars. Brian Skyrms claims that the Stag hunt is a
better example of a game which arises typically in society.

6http:��en.wikipedia.org�wiki�Akbar-the-Great , http:��en.wikipedia.org�wiki�Birbal
7We should acknowledge some di�erences between the two scenarios. The Akbar-

Birbal story is a comedy rather than a tragedy and its economic consequences are surely
minor. We submit, however, that the logical structure is very similar and Birbal should
surely receive some credit.

8Akbar, though a Muslim, worked hard to create amity between Hindus and Muslims,
even marrying a Hindu wife, and having endless discussions on religion with Hindus,
Christians and Jains.
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5.2 The Stag hunt

Stag Hare
Stag 2� 2 0� 1
Hare 1� 0 1� 1

The game Stag hunt has two Nash equilibria, at (stag, stag) and at (hare,
hare). But the (stag, stag) equilibrium, which involves co-operation is bet-
ter for both parties.
In this game, each person can decide to hunt hare, by himself. The hare is
a small animal, and a person can hunt a hare by himself, but the reward is
also small. Or two people could co-operate to hunt a stag, which requires
joint e�ort, but the reward is substantially better.
In [22], Brian Skyrms argues that the Stag hunt is a better model for human
co-operation than the Prisoners Dilemma. In the PD, both parties are better
o� betraying the other. In the Stag hunt, co-operation is better, although it
works only if the other party also co-operates.
Amadae and Lempert also argue in [1] that the prisoner’s dilemma is not
a good model for social interactions. They recommend instead the game
hi-lo whose payo� matrix looks as follows.

High Low
High 2� 2 0� 0
Low 0� 0 1� 1

In this game, there are two Nash equilibria. The (high,high) equilibrium
yields a payo� of 2 to each. The (low,low) equilibrium yields a payo� of
1 to each. Clearly the first, (high,high) equlibrium is better. But in order
for one player, row, to choose “high" she needs confidence that so will the
other player. Similarly, for column to choose high, he needs confidence
that row is choosing high. Thus each needing the other to justify his�her
action, we have an infinite regress. Amadae and Lempert argue that some
sort of team reasoning or social reasoning is needed in order for the two
players to co-ordinate on (high, high).9

This point is not new and belongs to a new way of looking at game theory
in terms of what is called team reasoning, a notion which is due to Michael
Bacharach and others [4, 13]. [6] provide experimental evidence in favor
of team reasoning where individuals put the interest of a group before their
own personal interest.

9See however, [10, 11] who use the notion of focal point to similar e�ect.
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One evolutionary argument in favor of team reasoning or group reason-
ing is that groups whose members co-operate with each other and do not
put individual interest first are likely to prosper compared to other groups
where selfishness reigns. Thus genes which are conducive to co-operation
will be passed on to future generation.
See Tomasello’s article on co-operation among humans as compared to
chimpanzees in the New York Times [14]. The doctoral dissertation of
Tithi Bhatnagar [5] also makes the point that relationships are primary for
human beings.
In fact note that while dogs are social creatures which move around in
packs, cats are more solitary and tend to hunt alone. Nonetheless, cats
have closer and more a�ectionate relationships with human beings than
they have with other cats! It is true that humans do go to war against each
other, but wars imply armies, and humans could not form armies without a
natural tendency to co-operate.
It may be a rash prediction but it may well be that in the future, when
Science and Technology have become common knowledge of all human-
ity, Eastern societies which emphasize co-operation and duty will do bet-
ter than Western societies which emphasize individual rights, and (conse-
quently) selfish behavior. But this is speculation, and only time will tell.

6 The Role of Knowledge in Society

We now return to the issue of knowledge which was introduced by Hajek
at the beginning of this paper. Hajek, when he speaks of resources, is
probably thinking of goods, but we can use the term more generally. For
instance, resources could mean medical expertise.
In [17] the authors consider the case of a physician Uma whose neighbour
Sam is sick, but she does not know this. [17] argue that she does not then
have an obligation to treat him. However, she acquires such an obligation
when she is informed.
Consider now, by comparison, the problem of parking, which is a also a
knowledge problem. When people are looking for parking in a busy area,
they tend to cruise around until they find a space. What they are trying to
acquire is knowledge, knowledge of where an empty space is.
This fact has unfortunate consequences as Shoup [12] points out.

When my students and I studied cruising for parking in a
15-block business district in Los Angeles, we found the aver-
age cruising time was 3.3 minutes, and the average cruising
distance half a mile (about 2.5 times around the block). This
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may not sound like much, but with 470 parking meters in the
district, and a turnover rate for curb parking of 17 cars per
space per day, 8,000 cars park at the curb each weekday. Even
a small amount of cruising time for each car adds up to a lot
of tra�c.

Over the course of a year, the search for curb parking
in this 15-block district created about 950,000 excess vehi-
cle miles of travel – equivalent to 38 trips around the earth,
or four trips to the moon. And here’s another inconvenient
truth about underpriced curb parking: cruising those 950,000
miles wastes 47,000 gallons of gas and produces 730 tons of
the greenhouse gas carbon dioxide. If all this happens in one
small business district, imagine the cumulative e�ect of all
cruising in the United States.

An algorithmic solution to the problem of parking might well be possible
using something like a GPS system. If information about empty parking
spaces was available to a central computer which could also accept requests
from cars for parking spaces, and allocate spaces to arriving cars, then
a solution could in fact be implemented. The information transfer and the
allocation system would in e�ect convert the physically distributed parking
spaces into the algorithmic equivalent of a queue. There would be little
wasteful consumption of gasoline, and the drivers would save a great deal
of time and frustration.

As our final example we consider elections. An election is a way of finding
out who is the most popular candidate running for o�ce. As Arrow [3], has
pointed out, defining “most popular candidate" is not devoid of problems.
But let us assume that in some particular election there is such a person.
Then the purpose of the election is to find out who he (say) is, that is to
say, to acquire knowledge. But here, more than knowledge is involved, for
the public also needs to be convinced that the candidate is the right one. A
good election procedure also makes sure that no one knows anyone else’s
vote, for otherwise bribery and bullying could become endemic.
Suppose for instance that when you vote you receive a receipt showing
whom you voted for. This would give you assurance that your vote was
counted because you could check your vote in a database. But at the same
time, someone else could say to you, “Show me the receipt that you voted
for my favorite candidate, or I will beat you up." Thus the asset, that you
can check your vote, can also become a liability.
Moreover, campaigning is a process by which the candidates inform the
public of their positions so that the public acquires knowledge. This issue
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is addressed in [7].
Of course, is it actually knowledge which the public acquires, or only, per-
haps, a false belief in case the election was stolen? It is also possible that
an election was not in fact stolen but that a large proportion of the public
(typically the losing party) believes that it was stolen.
These issues are starting to be addressed, but this paper is probably not the
place for that.

Further reading: The source [8] contains valuable papers on Social Soft-
ware, a project started by the author at a lecture given at the FSTTCS con-
ference in Hyderabad in 1996, and starting with [18], followed up by vari-
ous authors. The book [2] gives amusing insights into how society operates
with real people with their many foibles. [17] gives a knowledge theoretic
analysis of moral obligations, and o�ers an analysis of the Kitty Genovese
case. See [21] for the importance of social norms, trust, etc.
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