
A Tool for the Automated Verification of Nash
Equilibria in Concurrent Games

Alexis Toumi, Julian Gutierrez(B), and Michael Wooldridge

Department of Computer Science, University of Oxford, Oxford, UK
Julian.Gutierrez@cs.ox.ac.uk

Abstract. Reactive Modules is a high-level specification language for
concurrent and multi-agent systems, used in a number of practical model
checking tools. Reactive Modules Games is a game-theoretic extension of
Reactive Modules, in which concurrent agents in the system are assumed
to act strategically in an attempt to satisfy a temporal logic formula rep-
resenting their individual goal. The basic analytical concept for Reactive
Modules Games is Nash equilibrium. In this paper, we describe a tool
through which we can automatically verify Nash equilibrium strategies
for Reactive Modules Games. Our tool takes as input a system, speci-
fied in the Reactive Modules language, a representation of players’ goals
(expressed as CTL formulae), and a representation of players strategies;
it then checks whether these strategies form a Nash equilibrium of the
Reactive Modules Game passed as input. The tool makes extensive use of
conventional temporal logic satisfiability and model checking techniques.
We first give an overview of the theory underpinning the tool, briefly
describe its structure and implementation, and conclude by presenting a
worked example analysed using the tool.

1 Introduction

Model checking is the best-known and most successful technique for automated
formal verification, and is focussed on the problem of checking whether a (com-
puter) system S satisfies a property ϕ, where typically ϕ is represented as a
temporal logic formula. Model checking has proved to be a very successful tech-
nique for systems where S is a complete and monolithic description of the state
space of the system. In this case, S is usually called a closed system. However, in
many situations, especially when dealing with concurrent and distributed multi-
agent systems, S can be better represented as a collection of local and inter-
dependent processes. In this modelling framework, it is common to understand
such processes as modules, that is, as being open rather than closed systems, in
which the behaviour of each process/module may depend on the behaviour of
other processes, which constitute its environment, cf., [2,12].

We are interested in the verification of concurrent and multi-agent systems
where (computer) processes are modelled as open systems. In particular, we are
interested in systems modelled using a game-theoretic approach. In this setting,
a system is modelled as a game, system components are modelled as players
c⃝ Springer International Publishing Switzerland 2015
M. Leucker et al. (Eds.): ICTAC 2015, LNCS 9399, pp. 583–594, 2015.
DOI: 10.1007/978-3-319-25150-9 34

584 A. Toumi et al.

(each choosing and then following a given strategy), possible computation runs
are the plays of the game, and the desired or expected behaviour of the system
is specified with the goals that the players of the game wish to see satisfied. In
many cases, for instance when considering reactive systems, such goals can be
naturally expressed using temporal logic formulae.

However, because now one is following a game-theoretic approach, it is only
natural to ask whether the system has a stable behaviour from a game-theoretic
point of view, that is, whether the strategies used by the players modelling
the system are in equilibrium [15]. Then, in this case, we talk about equilibrium
checking rather than model checking. In fact, model checking is a simpler instance
of equilibrium checking where either players are forced to cooperate or the whole
system is modelled as a one-player game. However, in general, these may not be
the best representations of the system.

A way to model the kind of systems just described (open systems) is using
the Reactive Modules Language (RML [2]). This is a high-level specification lan-
guage for reactive, concurrent, and multi-agent systems, which is used in model
checking tools such as MOCHA [1] and Prism [13]. However, RML is used to spec-
ify general open systems rather than concurrent games. Recently [11], a subset
of RML, called the Simple Reactive Modules Language (SRML [19]) was given
a game-theoretic interpretation, which provides a game semantics for reactive
and concurrent systems written in SRML, and which can be used to perform an
equilibrium analysis of open systems modelled as SRML specifications. Indeed,
with SRML, one can analyse systems using a language that is much closer to
real-world programming and system modelling languages.

In this paper, we present a tool for the automated verification of Nash equilib-
ria in concurrent and reactive systems modelled as concurrent games succinctly
represented using the SRML specification language. More specifically, we develop
a Python implementation of the above theory of games that, in particular, can
be used to solve the equilibrium checking problem for this kind of concurrent
games/systems. Since the tool, which we call EAGLE (“Equilibrium Analyser
for Game-Like Environments”), can be used to automatically check whether
a set of strategies forms a Nash Equilibrium in a given game-like concurrent
system, its analytical power goes beyond model checking.

Related Work. Reactive Modules [2] is used as a specification language in ver-
ification tools such as MOCHA [1] and Prism [13]. In each case, open systems
modelled as concurrent games can also be specified. However, these tools do not
have explicit support for equilibrium analysis. Instead, it is model checking with
respect to logics such as PCTL and ATL that these tools allow. MCMAS [14] is
another tool for the specification and verification of open systems, modelled as
multi-agent systems. In MCMAS, systems are described using the Interpreted
Systems Programming Language and properties are described using ATL∗ and
strategy logic—see [5]. Similar to MOCHA and Prism, in MCMAS the analysis
of systems focuses on the model checking problem for the logics just mentioned.
Because strategy logic can express the existence of Nash equilibria in a concur-
rent and multi-agent game, in principle, it is possible to analyse some equilib-
rium properties of MCMAS systems. However, this has to be manually crafted.

A Tool for the Automated Verification 585

Closer to EAGLE is PRALINE [4], a tool for computing Nash equilibria in con-
current games played on graphs. Whereas PRALINE focuses on the synthesis
problem (constructing strategies in equilibrium), EAGLE focuses on the veri-
fication problem (checking that a given profile of strategies is in equilibrium).
There are many other tools available online which either use game techniques for
design and verification or allow the analysis of winning strategies in games. For
instance, see [3,6,9] for a few references. However, as just said, these tools focus
on the study of winning strategies in such games rather than in the equilibrium
analysis of these systems/games.

2 Preliminaries

Logic. In this paper we will be dealing with logics that extend classical proposi-
tional logic. Thus, these logics are based on a finite set Φ of Boolean variables.
A valuation for propositional logic is a set v ⊆ Φ, with the intended interpreta-
tion that p ∈ v means that p is true under valuation v , while p ̸∈ v means that
p is false under v . For formulae ϕ we write v |= ϕ to mean that ϕ is satisfied
by v . Let V (Φ) = 2Φ be the set of all valuations for variables Φ; where Φ is clear,
we omit reference to it and simply write V .

Kripke Structures. We use Kripke structures to model the dynamics of our
systems. A Kripke structure K over Φ is given by K = (S ,S 0,R,π), where
S = {s0, . . .} is a finite non-empty set of states, R ⊆ S × S is a total transition
relation on S , S 0 ⊆ S is the set of initial states, and π : S → V is a valuation
function, assigning a valuation π(s) to every s ∈ S . Where K = (S ,S 0,R,π) is
a Kripke structure over Φ, and Ψ ⊆ Φ, then we denote the restriction of K to Ψ
by K |Ψ , where K |Ψ = (S ,S 0,R,π|Ψ) is the same as K except that the valuation
function π|Ψ is defined as follows: π|Ψ (s) = π(s) ∩ Ψ.

Runs. A run of K is a sequence ρ = s0, s1, s2, . . . where for all t ∈ N we have
(st , st+1) ∈ R. Using square brackets around parameters referring to time points,
we let ρ[t] denote the state assigned to time point t by run ρ. We say ρ is an
s-run if ρ[0] = s. A run ρ of K where ρ[0] ∈ S 0 is referred to as an initial run.
Let runs(K , s) be the set of s-runs of K , and let runs(K) be the set of initial
runs of K . Notice that a run ρ ∈ runs(K) induces an infinite sequence ρ ∈ V ω of
propositional valuations, viz., ρ = π(ρ[0]),π(ρ[1]),π(ρ[2]), The set of these
sequences, we denote by runs(K). Given Ψ ⊆ Φ and a run ρ : N → V (Φ), we
denote the restriction of ρ to Ψ by ρ|Ψ , that is, ρ|Ψ [t] = ρ[t]∩ Ψ for each t ∈ N.
We can extend the notation for restriction of runs to sets of runs. In particular,
we write runs(K)|Ψ for the set {ρ|Ψ : ρ ∈ runs(K)}.

Trees. By a tree we here understand a non-empty set T ⊆ N∗
0, such that (i)

T is closed under prefixes, i.e., for every u ∈ T , also (u) ⊆ T , and (ii) u ∈ T
implies ux ∈ T for some x ∈ N0. For s ∈ S , a state-tree for a Kripke structure
K = (S ,S 0,R,π) is a function κ : T → S , where T ⊆ N∗

0 is a tree, κ(ϵ) ∈ S 0,

586 A. Toumi et al.

and, for every u ∈ N∗
0 and x , y ∈ N0 such that ux , uy ∈ T , (i) κ(u) R κ(ux), and

(ii) κ(ux) = κ(uy) implies x = y . By trees(K) we denote the state-trees for the
Kripke structure K . By a computation tree we understand a function κ : T →
V (Φ), where T is a tree. For Ψ ⊆ Φ we write κ|Ψ for the restriction of κ to Ψ ,
i.e., for every u ∈ T , κ|Ψ (u) = κ(u)∩ Ψ . Notice that every state-tree κ : T → S
induces a computation tree κ : T → V (Φ) such that for every u ∈ T we have
that κ[u] = π(κ(u)). In such a case κ is said to be a computation tree for K .
The set of computation trees for K we denote by trees(K). We can extend the
notation for restrictions of computation trees to sets of computation trees as
done for runs, that is, we write trees(K)|Ψ for the set {κ|Ψ : κ ∈ trees(K)}.

3 Reactive Modules Games

Reactive Modules. The objects used to define agents in SRML are known as
modules. An SRML module consists of: (i) an interface, which defines the name
of the module and lists the Boolean variables under the control of the module;
and (ii) a number of guarded commands, which define the choices available to
the module at every state.

Guarded commands are of two kinds: those used for initialising the variables
under the module’s control (init guarded commands), and those for updating
these variables subsequently (update guarded commands). A guarded command
has two parts: a condition part (the “guard”) and an action part, which defines
how to update the value of (some of) the variables under the control of a module.
The intuitive reading of a guarded command ϕ ! α is “if the condition ϕ is
satisfied, then one of the choices available to the module is to execute the action
α”. We note that the truth of the guard ϕ does not mean that α will be executed:
only that it is enabled for execution—it may be chosen.

Formally, a guarded command g over a set of Boolean variables Φ is an
expression

ϕ ! x ′
1 := ψ1; · · · ; x ′

k := ψk

where ϕ (the guard) is a propositional formula over Φ, each xi is a member of
Φ and each ψi is a propositional logic formula over Φ. Let guard(g) denote the
guard of g . Thus, in the above rule, guard(g) = ϕ. We require that no variable
appears on the left hand side of two assignment statements in the same guarded
command. We say that x1, . . . , xk are the controlled variables of g , and denote
this set by ctr(g). If no guarded command of a module is enabled, the values of
all variables in ctr(g) are left unchanged.

Formally, an SRML module, mi , is defined as a triple mi = (Φi , Ii ,Ui),
where: Φi ⊆ Φ is the (finite) set of variables controlled by mi ; Ii is a (finite) set
of initialisation guarded commands, such that for all g ∈ Ii , we have ctr(g) ⊆ Φi ;
and Ui is a (finite) set of update guarded commands, such that for all g ∈ Ui ,
we have ctr(g) ⊆ Φi .

Moreover, an SRML arena, A, is defined to be an (n + 2)-tuple

A = (N ,Φ,m1, . . . ,mn)

A Tool for the Automated Verification 587

where N = {1, . . . ,n} is a set of agents, Φ is a set of Boolean variables, and
for each i ∈ N , mi = (Φi , Ii ,Ui) is an SRML module over Φ that defines the
choices available to agent i . We require that {Φ1, . . . ,Φn} forms a partition of Φ
(so every variable in Φ is controlled by some agent, and no variable is controlled
by more than one agent).

The behaviour of an SRML arena is obtained by executing guarded com-
mands, one for each module, in a synchronous and concurrent way. The exe-
cution of an SRML arena proceeds in rounds, where in each round every mod-
ule mi = (Φi , Ii ,Ui) produces a valuation vi for the variables in Φi on the basis
of a current valuation v . For each SRML arena A, the execution of guarded
commands induces a unique Kripke structure KA, which formally defines the
semantics of A. Based on KA, one can define the sets of runs and computation
trees allowed in A, namely, those associated with the Kripke structure K ; we
write runs(A) and trees(A) for such sets. Indeed, one can show that for every A
there is a KA such that runs(A) = runs(KA)|Φ and trees(A) = trees(KA)|Φ,
that is, with the same runs and computation trees when restricted to Φ. Likewise,
for every K there is an SRML module whose runs and computation trees are
those of K . In this paper, we provide, amongst others, a Python implementation
of all these constructions.

Games. The model of games we consider has two components. The first compo-
nent is an arena: this defines the players, some variables they control, and the
choices available to them in every game state. Preferences are specified by the
second component of the game: every player i is associated with a goal γi , which
will be a logic formula. The idea, as in several models of strategic behaviour,
is that players desire to see their goal satisfied by the outcome of the game.
Formally, a game is given by a structure:

G = (A, γ1 . . . , γn)

where A = (N ,Φ,m1, . . . ,mn) is an arena with player set N , Boolean variable
set Φ, and mi an SRML module defining the choices available to each player i ;
moreover, for each i ∈ N , the temporal logic formula γi represents the goal that
i aims to satisfy.1 Games are played by each player i selecting a strategy σi

that will define how to make choices over time. Given an SRML arena A =
(N ,Φ,m1, . . . ,mn), a strategy for module mi = (Φi , Ii ,Ui) is a structure σi =
(Qi , q0i , δi , τi), where Qi is a finite and non-empty set of states, q0i ∈ Qi is the
initial state, δi : Qi ×V−i → 2Qi \ {∅} is a transition function, and τi : Qi → Vi

is an output function. Note that not all strategies for a module may comply with
that module’s specification. For instance, if the only guarded update command
of a module mi has the form ⊤ ! x ′ := ⊥, then a strategy for mi should not
prescribe mi to set x to true under any contingency. Strategies that comply with
1 Goals can be given by any logic with a Kripke structure semantics. Although we will
consider CTL goals here, due to generality, at this point all definitions will be made
leaving this open. Indeed, one could extend our implementation to SRML games
with CTL∗ or µ-calculus goals.

588 A. Toumi et al.

the module’s specification are called consistent. Let Σi be the set of consistent
strategies for mi . A strategy σi can be represented by an SRML module (of
polynomial size in |σi |) with variable set Φi ∪ Qi . We write mσi for such a
(strategy) module specification.

Once every player i has selected a strategy σi , a strategy profile σ⃗ =
(σ1, . . . ,σn) results and the game has an outcome, which we will denote by [[σ⃗]].
The outcome [[σ⃗]] of a game with SRML arena A = (N ,Φ,m1, . . . ,mn) is defined
to be the Kripke structure associated with the SRML arena Aσ⃗ = (N ,Φ ∪⋃

i∈N Qi ,mσ1 , . . . ,mσn) restricted to valuations with respect to Φ, that is, the
Kripke structure KAσ⃗

|Φ. The outcome of a game will determine whether or not
each player’s goal is or is not satisfied. Because outcomes are Kripke structures,
in general, goals can be given by any logic with a well defined Kripke structure
semantics. Assuming the existence of such a satisfaction relation, which we denote
by “|=”, we can say that a goal γi is satisfied by an outcome [[σ⃗]] if and only if
[[σ⃗]] |= γi ; in order to simplify notations, we may simply write σ⃗ |= γi .

We are now in a position to define a preference relation !i over outcomes
for each player i with goal γi . For strategy profiles σ⃗ and σ⃗′, we say that

σ⃗ !i σ⃗′ if and only if σ⃗′ |= γi implies σ⃗ |= γi .

On this basis, we can also define the standard solution concept of Nash equilib-
rium [15]: given a game G = (A, γ1, . . . , γn), a strategy profile σ⃗ is said to be a
Nash equilibrium of G if for all players i and all strategies σ′

i in the game, we have

σ⃗ !i (σ⃗−i ,σ
′
i),

where (σ⃗−i ,σ′
i) denotes the strategy profile (σ1, . . . ,σi−1,σ′

i ,σi+1, . . . ,σn). Here-
after, let NE (G) be the set of (pure strategy) Nash equilibria of game G .

4 Reactive Modules Games in Python

Our main contribution is EAGLE, a Python implementation of the theory of
games described in the previous sections. In particular, EAGLE allows a simple
high-level Python description of games specified in SRML, where players are
assumed to have branching-time (CTL) goals and strategies can be described
as SRML modules. More importantly, EAGLE allows the automated verifica-
tion of solutions of such games, that is, checking whether a particular profile
of strategies is or is not a Nash equilibrium of a given RM game—a problem
called equilibrium checking. From a systems analysis point of view, this is the
game-theoretic equivalent to the model checking problem in formal verification.
A short description of our verification tool is given next.

Our tool expects as input an RM game G = (A = (N ,Φ,m0, ...,mn), (γi)i∈N)
and a strategy profile σ⃗. Because strategies are modelled as finite state machines
with output (which are known as transducers), they can easily be described,
uniformly, using SRML. Goals, on the other hand, are written using the syntax
for CTL formulae in [7]. For ease of use, a simple command-line interface can be
used to input text files with the specification of games. An concrete example will

A Tool for the Automated Verification 589

be given later, but all implementation details can be found in [18]. Moreover,
EAGLE implements an algorithm—which uses two external libraries for CTL
satisfiability and model checking—that automatically solves these multi-player
games, that is, their (Nash) equilibrium problem.

More precisely, on input (G , σ⃗), the tool outputs True if and only if
σ⃗ ∈ NE (G). We have also implemented, using the command-line interface, a
“verbose” mode in which a detailed account of the running process of the algo-
rithm is given. For instance, apart from checking solutions of a given game, the
tool reports whether or not players get their goal achieved, and in the case they
do not, whether they could benefit from changing the strategy they are cur-
rently using. We should note that because in a Nash equilibrium strategy profile
no player can benefit from unilaterally changing its strategy, it is the case that if
the tool reports that σ⃗ ̸∈ NE (G), then there is some player who does not get its
goal achieved, but can change to a different strategy that achieves its goal. On
the contrary, if the tool reports that σ⃗ ∈ NE (G), then no player can benefit from
changing its strategy, in particular, those who do not get their goal achieved.

Throughout, we made the following assumptions, which define what a correct
input is. In some cases, the assumptions are about the games themselves (1 & 2),
and in other cases about the input files (3). In particular, we have made the
following assumptions:

1. That the modules, both for the arena and for the strategy profile, respect
the specification of SRML. In particular, we require: (a) that no variable is
assigned twice in the same guarded command; (b) that the guards to init
commands are “⊤”; (c) that in the assignment statements x := ψ in init
commands, ψ is a Boolean constant, ⊤ or ⊥; (d) that for every module mi =
(Φi , Ii ,Ui), both Ii and Ui are sets instead of bags, i.e. that they contain only
pairwise distinct elements; (e) that for every module mi = (Φi , Ii ,Ui) and for
every command g ∈ Ii ∪ Ui we have that ctr(g) ⊆ Φi .

2. That the strategy profile is consistent with the arena, as required by the game
model.

3. That the input strings for goals are syntactically correct CTL formulae, in
particular that they respect the alternation between path quantifiers and
tense operators.

To make this concrete, we will, later and in the next section, present some
examples.

CTL Satisfiability and Model Checking. In order to solve the equilibrium prob-
lem for Reactive Modules games we used a CTL variant of the algorithms first
introduced in [10] to check whether a strategy profile is or is not a Nash equilib-
rium. The technique developed in [10] relies on the existence of two oracles, one
for model checking and one for satisfiability of the temporal logic at hand. In
the case of this paper, such oracles are for CTL, and can be obtained using any
“off-the-shelf” open source external libraries for CTL satisfiability (Ctl Sat)
and CTL model checking (Ctl MC). Specifically, we decided to use the Python
CTL model checker Mr.Waffles [17] and the CTL satisfiability checker in [16],
both open source libraries available online.

590 A. Toumi et al.

For Ctl MC, the Mr.Waffles library implements Kripke structures with
a class PredicatedGraph which extends the networkx library for finite graphs
with a predicate attribute for every node: a list of the propositional variables
(represented as strings) that are true at this node. It then provides a check
method that takes a string representing a CTL formula (in prefix notation) and
outputs a list of the states at which the formula is satisfied. Hence, checking
whether a Kripke structure satisfies a CTL formula amounts to checking that all
the initial states are in this list. For Ctl Sat, we use a command-line interface
to access an external program that inputs CTL formulae as strings (in infix
notation), which is wrapped using a Python subprocess instance.

Concrete Data Structures. We represent propositional variables as ints, and
propositional valuations as lists of ints. We implemented a Python class for
propositional logic, which we used to store the guards and the Boolean values
of guarded commands. There is one subclass for each case in the grammar and
two special instances, T and F, to represent ⊤ and ⊥. Also, we implemented
assignment statements as Python named tuples (var, b) where var is an int
and b is an instance of the propositional logic class. Guarded commands are
implemented as named tuples (guard, action) where guard is an instance of the
propositional logic class and action is a list of assignment statements. Reactive
modules were also implemented as named tuples (ctrl, init, update) where
ctrl is a list of ints representing the variables the module controls, init and
update are lists of guarded commands.2

Input Format. As expected we use Python files, which we then parse using the
Python eval function. The input to the equilibrium checking algorithm is repre-
sented as a Python dict with three keys: (i) modules is a list of reactive modules
representing the SRML arena, (ii) goals is a list of CTL formulae represented
as strings in Mr.Waffles notation, and (iii) strategies is a list of reactive
modules representing the strategy profile. More specifically, we represent mod-
ules as Python dictionaries, following the same structure as the named tuples
for modules described before. The guards and the Boolean values in guarded
commands are expressed using Mr.Waffles prefix notation, and the proposi-
tional variable represented by the int n is simply denoted by xn. At this point it
is worth noting that using our Python assistant any finite-state strategy can be
represented, including non-deterministic ones, by extending the set of controlled
variables to represent strategy states without affecting the outcome of the game
(of course, as long as the strategy is consistent with its module).

System Architecture. Our system has five Python modules, as follows: 1.
A module that implements the command-line interface and the main algorithm; it
also implements the verbose mode and prints some running time measurements.

2 EAGLE is being improved and updated frequently. The implementation details in
this paper constitute the main design decisions at the moment of submission to
ICTAC (in June 2015).

A Tool for the Automated Verification 591

2. Amodule that implements the propositional logic class. 3. Amodule that imple-
ments the concrete data structures described before, as well as the parsing of input
modules and guarded commands. 4. A module that implements the algorithm to
translate an arena to its induced Kripke structure, represented as aMr.Waffles
PredicatedGraph instance. 5. A module that implements a construction to trans-
late an arena, given as a list of modules, into a single CTL formula (used with the
Ctl Sat command-line interface) representing the branching behaviour of the
arena; this module is also responsible for wrapping the Ctl Sat command-line
interface, using a Python subprocess instance.

Evaluation. EAGLE was tested with a number of systems taken from the lit-
erature, and the results are reported in [18]. The running time measures show
that its performance is greatly driven by the CTL satisfiability solver, which
is used to check whether an alternative player’s strategy could be constructed
whenever a strategy profile does not satisfy some player’s goal. Details can be
found in [18]. These experimental results go from two-player games that required
hours to be analysed (Ctl Sat used) to multi-player games whose equilibrium
analysis took a few seconds (only Ctl MC used). It was clear, in all cases, that
the bottleneck was in the CTL satisfiability subroutine. In the future, we would
like to compare EAGLE with PRALINE [4], the only other tool we are aware
of that is focused on the equilibrium analysis of concurrent games.

Example. This example illustrates the concrete syntax used for modules in
SRML as well as its translation to the concrete syntax in our Python implemen-
tation. The SRML module depicted below (on the left), named toggle, controls
two variables x and y . It has two init guarded commands and two update
guarded commands. The init commands define two choices for the initialisa-
tion of the pair (x , y): assign it the value (⊤,⊥) or the value (⊥,⊤). The first
update command says that if (x , y) has the value (⊤,⊥) then the correspond-
ing choice is to assign it the value (⊥,⊤), while the second command says that
if the pair (x , y) has the value (⊥,⊤), we can assign it the value (y , x) in the
next state. Note that the two update commands define essentially the same
choice, but in the first command the action mentions Boolean constants directly,
whereas the second command mentions the values of the variables at the current
state, and requires to evaluate those to assign the values for the next state. In
other words, the module toggle first non-deterministically picks an initial pair in
{(⊤,⊥), (⊥,⊤)}, then at each round it deterministically toggles between these
two pairs. This SRML module is written in our Python assistant for equilibrium
checking as shown below (on the right):

592 A. Toumi et al.

5 Case Study: A Peer-to-Peer Communication Protocol

To understand better the usefulness of an equilibrium checking tool, we now
present a case study based on the system presented in [8]. Consider a peer-to-peer
network with two agents (the extension to n > 2 agents is straightforward—we
restrict to two agents only due to space and ease of presentation). At each time
step, each agent either tries to download or to upload. In order for one agent to
download successfully, the other must be uploading at the same time, and both
are interested in downloading infinitely often.

While [8] considers an iBG model [10], where there are no constraints on the
values that players choose for the variables under their control, we will consider
a modified version of the communication protocol: using guarded commands, we
require that an agent cannot both download and upload at the same time. This
is a simple example of a system which cannot be specified as an iBG, but which
has an SRML representation.

We can specify the game modelling the above communication protocol as
a game with two players, 0 and 1, where each player i ∈ {0, 1} controls two
variables ui (“Player i tries to upload”) and di (“Player i tries to download”);
Player i downloads successfully if (di ∧ ui−1). Formally, we define a game G =
(A, γ0, γ1), where A = ({0, 1},Φ,m0,m1), Φ = {u0, u1, d0, d1}, and m0,m1 are
defined as follows:

module m0 controls u0, d0
init
:: ⊤ ! u ′

0 := ⊤, d ′
0 := ⊥

:: ⊤ ! u ′
0 := ⊥, d ′

0 := ⊤
update
:: ⊤ ! u ′

0 := ⊤, d ′
0 := ⊥

:: ⊤ ! u ′
0 := ⊥, d ′

0 := ⊤

module m1 controls u1, d1
init
:: ⊤ ! u ′

1 := ⊤, d ′
1 := ⊥

:: ⊤ ! u ′
1 := ⊥, d ′

1 := ⊤
update
:: ⊤ ! u ′

1 := ⊤, d ′
1 := ⊥

:: ⊤ ! u ′
1 := ⊥, d ′

1 := ⊤

Players’ goals can be easily specified in CTL: the informal “infinitely often”
requirement can be expressed in CTL as “From all system states, on all paths,
eventually”. Hence, for i ∈ {0, 1}, we define the goals as follows: γi = AGAF(di∧
u1−i).

This is clearly a very simple system/game: only two players and four con-
trolled variables. Yet, checking the Nash equilibria of the game associated
with this system is a hard problem. One can show—and formally verify using
EAGLE—that this game has at least two different kinds of Nash equilibria
(one where no player gets its goal achieved, and another one, which is Pareto
optimal, where both players get their goal achieved). In general, the game has
infinitely many Nash equilibria, but they all fall within the above two categories.
Based on the SRML specifications of players’ strategies given below, which can
be seen to be consistent with modules m0 and m1, we can verify that both
(StPlayer(0),StPlayer(1)) ̸∈ NE (G) and (OnlyUp(0),OnlyUp(1)) ∈ NE (G).

A Tool for the Automated Verification 593

module StPlayer(i) controls ui , di
init
:: ⊤ ! u ′

i := ⊤, d ′
i := ⊥

update
:: ⊤ ! u ′

i := di , d ′
i := ui

module OnlyUp(i) controls ui , di
init
:: ⊤ ! u ′

i := ⊥, d ′
i := ⊤

update
:: ⊤ ! u ′

i := ⊥, d ′
i := ⊤

6 Future Work

We see a number of ways in which EAGLE can be improved: From a theoret-
ical point of view, there is no reason to restrict to CTL goals. More powerful
temporal logics could be considered. Also, our tool solves games with respect
to the most widely used solution concept in game theory: Nash equilibrium.
However, other solution concepts could be considered. It would also be useful to
support, e.g., quantitative/probabilistic reasoning or epistemic specifications so
that more general agent’s preference relations or beliefs can be modelled. Finally,
even though our verification system is quite easy to use, we could implement a
more user-friendly interface to input temporal logic goals. At present, our main
limitations are given by the syntax used by the two external libraries we use to
solve the underlying CTL satisfiability and model checking problems.

Acknowledgment. EAGLE was implemented by Toumi as part of his final Computer
Science project [18] at Oxford. Both EAGLE and [18] can be obtained from him. (To
obtain EAGLE or [18], please, send an email to Alexis.Toumi at gmail.com). We also
acknowledge the support of the ERC Research Grant 291528 (“RACE”) at Oxford.

References

1. Alur, R., Henzinger, T.A., Mang, F., Qadeer, S., Rajamani, S., Tasiran, S.:
MOCHA: modularity in model checking. In: Hu, A.J., Vardi, M.Y. (eds.) CAV
1998. LNCS, vol. 1427, pp. 521–525. Springer, Heidelberg (1998)

2. Alur, R., Henzinger, T.A.: Reactive modules. Form. Meth. Syst. Des. 15(1), 7–48
(1999)

3. Berwanger, D., Chatterjee, K., De Wulf, M., Doyen, L., Henzinger, T.A.: Alpaga:
a tool for solving parity games with imperfect information. In: Kowalewski, S.,
Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 58–61. Springer, Heidelberg
(2009)

4. Brenguier, R.: PRALINE: a tool for computing nash equilibria in concurrent games.
In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 890–895.
Springer, Heidelberg (2013)

5. Čermák, P., Lomuscio, A., Mogavero, F., Murano, A.: MCMAS-SLK: a model
checker for the verification of strategy logic specifications. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 525–532. Springer, Heidelberg (2014)

6. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal
Stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 206–
211. Springer, Heidelberg (2015)

594 A. Toumi et al.

7. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook
of Theoretical Computer Science Volume B: Formal Models and Semantics, pp.
996–1072. Elsevier, Amsterdam (1990)

8. Fisman, D., Kupferman, O., Lustig, Y.: Rational synthesis. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 190–204. Springer,
Heidelberg (2010)

9. Friedmann, O., Lange, M.: Solving parity games in practice. In: Liu, Z., Ravn, A.P.
(eds.) ATVA 2009. LNCS, vol. 5799, pp. 182–196. Springer, Heidelberg (2009)

10. Gutierrez, J., Harrenstein, P., Wooldridge, M.: Iterated boolean games. In: IJCAI,
IJCAI/AAAI (2013)

11. Gutierrez, J., Harrenstein, P., Wooldridge, M.: Verification of temporal equilibrium
properties of games on Reactive Modules. Technical report, University of Oxford
(2015)

12. Kupferman, O., Vardi, M., Wolper, P.: Module checking. Inf. Comput. 164(2),
322–344 (2001)

13. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

14. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: a model checker for the verification
of multi-agent systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 682–688. Springer, Heidelberg (2009)

15. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge
(1994)

16. Prezza, N.: CTLSAT (2015). https://github.com/nicolaprezza/CTLSAT
17. Reynaud, D., Mr. Waffles: (2015). http://mrwaffles.gforge.inria.fr
18. Toumi, A.: Equilibrium checking in Reactive Modules games. Technical report,

Department of Computer Science, University of Oxford (2015)
19. van der Hoek, W., Lomuscio, A., Wooldridge, M.: On the complexity of practical

ATL model checking. In: AAMAS, pp. 201–208. ACM (2006)

https://github.com/nicolaprezza/CTLSAT
http://mrwaffles.gforge.inria.fr

