
Towards Service-Oriented Ontology-Based Coordination

Thierry Moyaux, Ben Lithgow Smith, Shamimabi Paurobally,
Valentina Tamma and Michael Wooldridge
Department of Computer Science

University of Liverpool
Liverpool L69 7ZF, U.K.

{moyaux, ben, sha, valli, mjw}@csc.liv.ac.uk

Abstract

Coordination is a central problem in distributed com-
puting. The aim is towards flexible coordination, man-
aged at run-time, in open, dynamic environments. This ap-
proach would benefit from an explicit common vocabulary
for coordination and hence, in a previous paper, we mod-
elled coordination in an ontology, describing the activities
carried out and the interdependencies among these activi-
ties. The purpose of this paper is to show how such an on-
tology can be used alongside a set of rules to perform co-
ordination by managing the interdependencies among ac-
tivities. The ontology and rules can then be used to pro-
vide a general purpose coordination tool in the form of a
web service.

1. Introduction

Coordination is the management of interdependen-
cies among activities [7]. It is a crucial problem for
collaborative working, affecting many different para-
digms of distributed computing, not least multi-agent
systems, where coordination has been the subject of ex-
tensive research [9]. Our aim is to build on this re-
search and adapt it for other distributed technologies such
as web services and Grid computing, thereby develop-
ing a common coordination tool.
Coordination is often interpreted in a limited way, as

synchronisation [2], which is generally concernedwith the
rather restricted case of ensuring that processes do not de-
structively interact with one another. Thus it is often han-
dled by low-level hard-wired coordination mechanisms,
e.g. semaphores, monitors, or locks [2]. However, this in-
terpretation only highlights one aspect of coordination and
becomes insufficient when considering how it might be
achieved in more open systems, where the processes and
resources composing the system may be unknown at de-
sign time [3] and may constantly evolve.
In such systems, we ideally want computational

processes to be able to reason about the coordina-
tion issues in their system, and resolve these issues
autonomously [3], with the goal of facilitating positive in-
teractions (e.g. only performing a computation once
though it may have been requested twice), whilst pre-
venting negative interactions (e.g. preventing conflicts
over the use of a non-shareable resource). One way to
achieve this is to enable the relevant processes to commu-
nicate their intentions with respect to future activities and
resource utilisation.

Such communication would require an agreed common
vocabulary, with a precise semantics, and is therefore suit-
able for representation as an ontology. Based on previous
work by themulti-agents systems community [3, 7, 10, 14]
such an ontology has been developed [13]. It defines co-
ordination in terms of agents (or “actors”) and the possi-
ble relationships between them. It models the notion that
these agents carry out activities involving resources owned
by other agents. Here, the term agent is used loosely to re-
fer to any process that might perform an action or own a
resource; such processes need not embody the full set of
capabilities classically used to denote agenthood such as
autonomy, social ability and proactiveness [15].

To complement this ontology, we have developed a set
of rules, which can be used to govern the actual process
of coordination. These rules provide other vital functions;
they are used to refine the definitions in the ontology, and
to check the capabilities of the model represented by the
ontology.

To address the general feasibility of an ontology based
approach to dynamic coordination, we have also devel-
oped a prototype web service as a proof-of-concept. This
prototype uses a Protégé [11] implementation of the co-
ordination ontology and a Jess [5] implementation of the
rules.

In related work, WS-Coordination [8] specifies a coor-
dination service consisting of three kinds of sub-service:
an Activation Service used by service providers to cre-
ate the coordination context of their service; a Registra-
tion Service used by service requesters to inform the co-
ordination service of their future need for the service; and
several Protocol Services that perform the actual coordi-
nation. Essentially, it describes what a coordination ser-
vice should look like and how to interact with it (in partic-
ular, describing the messages to be used in such interac-
tions), but nothing is said about how the Protocol Services
should perform the actual coordination.

Our goal in this paper is to discuss how the coordina-
tion ontology can be used to perform such coordination
at run-time. In brief, the two research questions addressed
in this paper are: How can the coordination ontology be
used? And what can be achieved with the ontology?

An overview of the coordination ontology is given in
Section 2. Section 3 presents the rules which implement
the coordination mechanism. The prototype is then pre-
sented in Section 4, after which we conclude with a dis-
cussion, and some pointers to future work.

: ClassB is a subclass of ClassA

: instances of ClassA have the object property X with instances of ClassB

hasTarget

CoordinationRules
isCoordinatedWith

hasSourceAgent

hasSource

Agent

hasTargetAgent

ClassA ClassB

ClassA ClassB

X

Requester

requires

Resource

owner

Activity

NonCoordinableActivityCoordinableActivity

AtomicActivity NaturalEvents
ExternalProcesses

actor

ConjunctiveActivity
DisjunctiveActivity

Print

CheckActivities CoordinationMechanismFindInterdependencies

PositiveCoordination

Interdependency

NegativeCoordination

OperationalRelationship

Peer
Enables
Subsumes

MutuallyExcludes
Impedes

Provider
Compute

LegalAuthority
ContractualAuthority

Figure 1. An overview of the coordination
ontology.

2. Coordination ontology

In general, an ontology is a formal description of a do-
main of discourse, which usually consists of a finite list of
concepts and relationships between these concepts [12].
Figure 1 represents a part of our coordination ontology,
that is, this figure shows the main concepts (i.e., classes
such asOperationalRelationship)with all their inheritance
relations (e.g. Peer is a subclass of OperationalRelation-
ship), and all the relationships linking them to one another
(object properties, e.g. every instance of OperationalRela-
tionship has a property, hasTargetAgent, pointing to
an instance of Agent). In our ontology the starting concept
is Agent, which is used to denote resource owners, along
with the entities in the system that perform activities re-
quiring coordination. Agent is specialised into the follow-
ing two subclasses, each denoting a role that an agent can
play in the system at a particular time:

• Provider is the class of service providers. The
class Resource has an object property owner of
type Provider, which describes the fact that a re-
source is managed by a service provider.

• Requester is the class of service requesters. Every re-
quester can be the actor of a CoordinableActivity.

An agent may play the role of requester and provider at
the same time, therefore these two classes are not disjoint.
The class Interdependency describes the type of in-

terrelationships existing between activities. This class
is described by the object properties hasSource
and hasTarget that both take an Activity as their
value, and by the two datatype properties hasDura-
tion and type. Composite activities, either conjunctive
or disjunctive (Conjunctive- and DisjunctiveActivity), al-
low this class to be related to several activities. The type
property is used to distinguish between hard and soft in-
terdependencies. Hard interdependencies are those
for which the source activity directly affects the suc-
cess of the target activity. Conversely, soft interdepen-
dencies are those in which the source activity affects
the progress (rather than the success) of the target activ-
ity. In other words, hard interdependencies are “mission
crictical”, and must always be handled, whilst soft in-

terdependencies merely affect the efficiency of the sys-
tem.
Interdependencies can either be Positive or Negative:

PositiveCoordination occurs when the interaction leads to
an increase in the utility of the participants or the qual-
ity of the solution, while Negative Coordination denotes
an interaction which, if it occurs, will lead to a reduction
in the quality of the solution or the utility of the partici-
pants.
Positive coordination can be of the following kind:

• Enables (hard PositiveCoordination): the prior oc-
currence of the activity denoted in hasSource is
both necessary and sufficient for the subsequent oc-
currence of the activity denoted in hasTarget.

• Subsumes (soft PositiveCoordination): the activity
denoted in hasSource contains all the actions of
the activity denoted in hasTarget, and the result
of the latter activity is shareable with the former ac-
tivity. Both activities may involve different resources,
but their outcome has to be similar, because it has to
be shareable among the requesters of the two activi-
ties.

Negative coordination has the following subclasses:

• MutuallyExcludes (hard NegativeCoordination):
the two involved activities cannot occur at the same
time, for example, because they both need to ac-
cess the same non-shareable resource.

• Impedes (soft NegativeCoordination): the activity
denoted in hasSourcemay impede the activity de-
noted in hasTarget, but it does not make it impos-
sible.

Agents are related to one another via the notion of
an OperationalRelationship, which describes the prior-
ities among them. For example, the subclass Contrac-
tualAuthority indicates that, in the context of an orga-
nization, the agent instantiating hasSourceAgent
should take precedence over the agent instantiating
hasTargetAgent. Similarly, LegalAuthority repre-
sents the same priority among agents, but according to
norm and regulations, rather than according to an organi-
sation. Peer indicates that neither agent has any authority
over the other.
An OperationalRelationshipmight be used to resched-

ule some CoordinableActivitys, in order to manage the
interdependencies defined among them. In particular, by
moving a CoordinableActivity in time we might reduce
or completely eliminate NegativeCoordination, while in-
creasing the number of interactions that cause Positive-
Coordination.
To illustrate these definitions, let us consider the five

following activities which will be used throughout the pa-
per:

• ‘compute-phi’ makes the resource named
CPU-UNIQUE calculate the first digits of the
Golden Number φ 1,

• ‘compute-pi-short’ makes CPU-UNIQUE calculate the
first fifty digits of π,

• ‘compute-pi-long’ calculates the first hundred digits
of π,

1 In Antiquity, the Golden Number φ, also called the Divine Propor-
tion, was said to be the proportion of everything beautiful. It is the
positive solution to φ2 − φ − 1 = 0.

• ‘print-pi-short’ makes the printer called
‘PRINTER-UNIQUE’ print the first fifty digits
of π, and

• ‘print-pi-long’ prints the first hundred digits of π.
Several instances of Interdependency should be managed,
such as: (i) ‘compute-pi-short’ Enables ‘print-pi-short’,
(ii) ‘compute-pi-long’ Subsumes ‘compute-pi-short’
(but it is not the case that ‘print-pi-long’ Subsumes
‘print-pi-short’), (iii) ‘print-pi-short’ MutuallyEx-
cludes ‘print-pi-long’ and (iv) ‘compute-phi’ Impedes
‘compute-pi-long’. Interdependency (i) illustrates the
meaning of the type hard: it is not possible to print π
if it has not been previously calculated – this deals with
more than just the efficiency of an activity. Similarly, (ii)
is soft because the result of ‘compute-pi-short’ is as-
sumed to be the beginning of ‘compute-pi-long’, i.e., it
is possible to accelerate the operation of the overall sys-
tem by using the expected result of ‘compute-pi-short’
inside of the result of ‘compute-pi-long’, but not exploit-
ing this possible improvement would have no impact on
the success of these two activities.
We can now describe the class CoordinableActivity rep-

resenting these activities. We can see from Figure 1 that
CoordinableActivity is related to the Requester who wants
to carry out the considered activity, and also that its sub-
class AtomicActivity has a property requires. (Note
that for the sake of the implementation in Section 4, Atom-
icActivity has two subclasses Compute and Print.) In ad-
dition to these two object properties, CoordinableActivity
has eight further datatype properties:

• actualStartDate, actualEndDate,
earliestStartDate, latestStartDate,
latestEndDate and expectedDuration all
contain a date, which is a string in our representa-
tion in OWL.

• shareableResult is a boolean represent-
ing whether the outcome of an activity, or a
part of that outcome, can be used as the out-
come of another activity. In the example (ii) above,
we noted that ‘print-pi-long’ does not subsume
‘print-pi-short’, which is due to the fact that the out-
come of these two activities is assumed to be
non-shareable. In general, the outcome of a Com-
pute is always shareable, while the outcome of a
Print depends on the circumstances. For exam-
ple, if you print a document only to read it, you
may allow me to read it as well, in which case the
shareableResult property of Print will have
the value true. But if the printed document is a cross-
word that you fill in, shareableResult is now
false because I do not want your finished cross-
word!

• status takes one of the values presented in Fig-
ure 2. As we can see, a CoordinableActivity ini-
tially has the status requested. It then becomes
scheduled if no coordination with other activi-
ties is necessary, otherwise a change is proposed to
the requester. The status eventually becomes ei-
ther scheduled or failed, depending on
whether an agreement has been reached with the re-
quester. When the current date corresponds to the
actualStartDate of a scheduled activ-
ity, the status changes to continuing, indicat-
ing that the activity is being performed. The activ-
ity may be suspended during its execution, but
it will eventually take the status succeeded or
failed.

proposed

scheduled

requested

continuing succeeded

failed

suspended

Figure 2. Life cyle of the property status of
a CoordinableActivity.

Note that any (datatype or object) property may not be as-
sociated with a value, and therefore, status may also
take the value null, but this should not occur in our
model. More details on the other classes of this ontology
may be found in [13].
Finally, each Resource is managed by one of the Coor-

dinationMechanisms indicated by the property isCoordi-
natedWith. Every instance of CoordinationMechanism is
a set of coordination rules, which are implemented in Jess
in our system.
We divide the CoordinationRules into three classes,

namely, CheckActivities, FindInterdependencies and Co-
ordinationMechanism:

1. CheckActivities are fired by activities in order to
modify them. These modifications aim at either com-
pleting these activities (e.g. we may infer informa-
tion about one activity from another activity that sub-
sumes it), or detecting inconsistencies among the
composite conjunctive and disjunctive activities.

2. FindInterdependencies are fired by activities in order
to add instances of positive and negative interdepen-
dencies.

3. CoordinationMechanism contains rules fired by in-
terdependencies (asserted either at run-time by rules
in FindInterdependencies or at design-time) in or-
der to modify (or proposemodifications to) activities.
More precisely, these modifications aim at managing
positive and negative interdependencies, so that ac-
tivites are coordinated.

We discuss the first two classes now, and the most impor-
tant, CoordinationMechanism, in the next section.

2.1. Check activities

The rules in CheckActivities define basic properties of
CoordinableActivitys. They capture some of the basic ax-
iomatic properties of the ontology, and are independent of
any coordinationmechanism. For example, one rule (num-
ber 2 in the list below) checks whether a continuing
activity has passed its latest start date, and if so, defines its
status as failed. These rules should be fired before the
rules in FindInterdependencies and CoordinationMecha-
nism, and thus, they should have the highest priority. Our
prototype currently uses the following rules:

1. coordinableActivity1: If an activity has the status
continuing and its actualEndDate is less
that its earliestStartDate, then its status
should be changed to failed.

2. coordinableActivity2: Similarly to coordinableActi-
vity1, if a continuing activity started after its
latestStartDate, then it has failed.

3. conjAct-succeeded: A ConjunctiveActivity
has successfully terminated if all its inner activi-
ties have successfully terminated. In practice, this
is equivalent to: if a ConjunctiveActivity has in-
ner activities listed in its property isComposedOf
and none of these inner activities has a sta-
tus which is not succeeded, then the status
of the ConjunctiveActivity has to be set to
succeeded (i.e., we use two negations to imple-
ment a “for all”).

4. disjAct-succeeded: A DisjunctiveActivity has suc-
cessfully terminated if at least one of its inner
activities has successfully terminated. The imple-
mentation is a simplification of the implementation
of conjAct-succeeded, since we do not require ei-
ther of the negations.

5. conjAct-fails: A ConjunctiveActivity fails as soon as
one of its inner activities fails (rule similar to disjAct-
succeeded).

6. disjAct-fails: A DisjunctiveActivity fails when all
its inner activities fail (rule similar to conjAct-
succeeded).

7. conjAct-actualStartDate (respectively, disjAct-
actualStartDate): The actualStartDate of
a ConjunctiveActivity (respectively, Disjunctive-
Activity) is the actualStartDate of its in-
ner activity which starts first. More precisely, if
a ConjunctiveActivity (respectively, Disjunctive-
Activity) has inner activities listed in its property
isComposedOf, and one of these inner ac-
tivities has an actualStartDate which has
the value V , and there are no other inner activi-
ties having an actualStartDate Vany so that
V > Vany (respectively, V < Vany), then the
actualStartDate of the ConjunctiveActiv-
ity (respectively, DisjunctiveActivity) has to be set to
V .

8. conjAct-actualEndDate (respectively disjAct-
actualEndDate): The actualEndDate of a
ConjunctiveActivity (respectively a DisjunctiveAc-
tivity) is the actualEndDate of the inner activity
that ends last (respectively, ends first).

9. conjAct-expectedDuration:The expectedDuration
of a ConjunctiveActivity is the difference between
the actualEndDate of its latest finishing in-
ner activity and the actualStartDate of its
earliest beginning inner activity.

10. disjAct-expectedDuration: The expectedDuration
of a disjunctiveActivity is the expectedDuration
of the inner activity that has the shortest
expectedDuration.

11. conjAct-latestEndDate (respectively, disjAct-
latestEndDate): The latestEndDate of a Con-
junctiveActivity (respectively, DisjunctiveActivity) is
the latestEndDate of the inner activity finish-
ing last (respectively, finishing first).

12. conjAct-latestStartDate (respectively, disjAct-
latestStartDate): The latestStartDate of a
ConjunctiveActivity (respectively, DisjunctiveAc-
tivity) is the latestStartDate of the inner
activity which has the earliest (respectively, lat-
est) latestStartDate.

13. conjAct-earliestStartDate (respectively, disjAct-
earliestStartDate): The earliestStartDate of

a ConjunctiveActivity (respectively, DisjunctiveAc-
tivity) is the earliestStartDate of the inner
activity which has the latest (respectively, earli-
est) earliestStartDate.

2.2. Find additional interdependencies

The rules in FindInterdependencies infer new instances
of Interdependency from Activitys. Such interdependen-
cies are asserted either at run-time by the rules now pre-
sented, or at design-time. The first four rules add Negati-
veCoordinations which are hard (MutuallyExcludes) or
soft (Impedes):
14. mutually-excludes1 (respectively, impedes1): When
the end of a time slot for an activity A2 over-
laps the beginning of the time slot for another
activity A1, and A1 and A2 both require a non-
shareable (respectively, shareable) resource, then
record this by asserting an instance of Mutual-
lyExcludes (respectively, Impedes). More pre-
cisely, if Activity A1 has actualStartDate
SD1, actualEndDate ED1 and requires
R12, Activity A2 has actualStartDate SD2,
actualEndDate ED2 and requires R12,
the property shareable of Resource R12 is
false (respectively, true), and SD1 > SD2,
ED1 > ED2 and ED2 > SD1, then assert an in-
stance of MutuallyExcludes (respectively, Im-
pedes) with hasSource A1, hasTarget A2 and
hasDuration (ED2 − SD1).

15. mutually-excludes2 and impedes2: When the time
slot for an activity is included in the time slot for an-
other activity, record this by asserting a MutuallyEx-
cludes or an Impedes, depending on the shareable
property of the resource used by both activities.

16. mutually-excludes3 and impedes3: When the begin-
ning of the time slot for an activity overlaps the end of
another time slot, assert an instance of MutuallyEx-
cludes or Impedes, depending on the shareable
property of the resource used by both activities..

17. mutually-excludes4 and impedes4: When the time
slot for an activity includes another time slot, assert
an instance ofMutuallyExcludes or Impedes, depend-
ing on the shareable property of the resource used
by both activities.

The next rule finds instances of PositiveCoordination.
There is only one such rule and it deals with the positive
interdependency Enables:
18. enables-compute->print: if a composite Conjunc-
tiveActivity both contains an instance ofCompute and
of Print, then we assume that the result of the com-
pute is to be printed, and thus the Print should be af-
ter the Compute.

In this paper, we also include another PositiveCoordina-
tion, namely Subsumes, but the description of activities in
our ontology is not yet sufficiently detailed to state that an
activity subsumes another, that is, that all the actions car-
ried out in an activity are also carried out in another ac-
tivity. As future work, we may use a more detailed de-
scription for CoordinableActivity, e.g. by using a repre-
sentation in BPEL4WS [6] (Business Process Execution
Language) instead of our class. With such an extension,
we expect to be able to see that ‘compute-pi-long’ Sub-
sumes ‘compute-pi-short’, while there is no Subsumes re-
lation between ‘compute-phi’ and ‘compute-pi-long’, or
between ‘compute-phi’ and ‘compute-pi-short’.

3. A coordination mechanism

This section presents the core of the paper, that is, the
coordination rules that manage interdependencies among
activities. Here, we illustrate the use of our ontology with
an example set of rules for a CoordinationMechanism.
Other coordinationmechanisms are also possible, depend-
ing on how the designer would like to coordinate her sys-
tem.
Every rule in CoordinationMechanism is fired by a sin-

gle (positive or negative) Interdependency, and mod-
ifies an AtomicActivity. This modification consists of
changing only the properties actualStartDate,
actualEndDate and status. To choose the time to
which an Activity should be moved, the right-hand side of
a coordination rule queries the knowledge base to find a
“space” among the atomic activities in which this Atom-
icActivity may be fitted in. The invocation of queries
to find such a “hole” is put in functions. These func-
tions and the queries they use are presented in Subsec-
tion 3.1. Once an Interdependency has been managed
by moving some activities, this Interdependency is re-
moved as well as all the other interdependencies involving
the moved AtomicActivity, in order to maintain the consis-
tency of the knowledge base. Note that the process of co-
ordination only deals with moving atomic activities, i.e.,
conjunctive and disjunctive activities are only there to ma-
nipulate atomic activities in a simpler way and to add
some relations among activities.
Since coordination only deals with managing interde-

pendencies, we could write a generic coordination rule.
However, it seems important that hard interdependencies
be coordinated before soft ones, since the former deal
with the success of the operation of the system while the
latter deal only with efficiency. This is why we introduce
a first division between rules managing hard interdepen-
dencies (which have a higher priority) and rules managing
soft interdependencies.
These two sets of rules are further split to take differ-

ent kinds of operational relationships between agents into
account. We focus in this paper on these pairs of rules:

1. the coordination rules managing interdependencies
involving a single Agent. There is one rule for hard
Interdependency and one for soft.

2. the rules taking a ContractualAuthority (a sub-
class of OperationalRelationship) into account.
As previously stated, a ContractualAuthority in-
dicates that the Agent denoted by the property
hasSourceAgent has contractual authority over
the Agent denoted by hasTargetAgent; that is,
both “belong” to the same organisation, and in the
context of this organisation, hasSourceAgent
should take precedence over hasTargetAgent.
Again, there is one rule for hard Interdepen-
dency and one for soft.

3. the rules taking a LegalAuthority into account. These
rules are essentially similar to rules for Contractu-
alAuthority, except that the OperationalRelationship
is due to the law rather than an organisation.

When the coordination process is time-constrained, the
first rules should have the lowest priority, because satis-
fying a ContractualAuthority is more important than hav-
ing consistent activities within an Agent. Similarly, the
third rules should have the highest priority, because a Con-
tractualAuthority is less important than (and should abide
by) a LegalAuthority. However, since our prototype is not

time-constrained and it is good practice to avoid priori-
ties in rule-based systems, our prototype in Section 4 does
not use them.
To summarise, we are left with the following six co-

ordination rules: manage-softInterdependency-contractu-
alAuthority, manage-softInterdependency-legalAuthority
and manage-softInterdependency-singleRequester,
manage-hardInterdependency-contractualAuthority,
manage-hardInterdependency-legalAuthority and ma-
nage-hardInterdependency-singleRequester. The first
three rules might have the same priority as the rules in
FindInterdependencies that find soft interdependen-
cies, while the last three rules might have the same priority
as the rules in FindInterdependencies that find hard in-
terdependencies. Note that these rules do not make a
distinction between rules managing Positive- and Negati-
veCoordination. The remainder of this section details the
implementation of these six coordination rules.

3.1. Functions and queries

To simplify the right-hand side of the coordination
rules, i.e. the part that solves interdependencies, we make
use of two functions, namely find-a-free-schedule and
delete-interdependency. These two functions use queries
to get facts from the knowledge base, with a query be-
ing a special kind of rule with no right-hand side fired by
program control (normal rules are fired automatically by
Jess) [5].
The first of our two functions is find-a-free-

schedule(?duration, ?resource12) which returns the
beginning of the next time slot of ?resource12 which
is free for more than ?duration. The function first
checks if it is possible to insert a new schedule among
the activities already scheduled for ?resource12 by in-
voking the query list-free-schedules(?duration, ?re-
source12). This query returns a list of pairs of activi-
ties. Each pair represents a sufficiently long free slot in
the schedule and is comprised of the activity that pre-
cedes that slot and the activity that it follows. If the
query successfully returns one or more pairs of activ-
ities, the function returns the actualEndDate of
the first activity of each pair. If list-free-schedules re-
turns nothing, the function has to schedule the new activ-
ity at the end of the current schedule. For this purpose, the
query list-all-schedules(?resource12) returns all the activ-
ities scheduled for ?resource12, and the function returns
the latest actualEndDate of all the instances of Activ-
ity returned by list-all-schedules.
The function delete-interdependency(?activity2remove)

deletes all deprecated instances of Interdependency. This
function is used to maintain the consistency of the
knowledge base when an activity is removed or sched-
uled at a different time, in which case the previously
found interdependencies no longer hold. This function
calls the query list-interdependencies2remove(?activi-
ty2remove) which returns the list of all interdependencies
in which ?activity2remove appears in either hasSour-
ce or hasTarget. Next, the function deletes all these
interdependencies.
These two functions are just short-hands to make coor-

dination rules simpler, but their content could have been
put in the code we now present.

3.2. Detail of the coordination rules

The coordination rules are fired by instances of Interde-
pendency which are asserted when the corresponding In-

terdependency is violated. When two Requesters are in-
volved, the coordination process uses operational relation-
ships to select the AtomicActivity to be moved, otherwise
it moves the shortest AtomicActivity.
19. manage-softInterdependency-singleRequester:
When an Agent requests two AtomicActivitys which
conflict with each other, the shortest one is resched-
uled later by this rule whose salience is zero when
priorities are used. More precisely, when there
is an Interdependency with hasSource point-
ing to Act1, hasTarget pointing to Act2 and
type is soft, an AtomicActivity Act1 has
expectedDuration ED1 and status dif-
ferent from proposed or continuing, an
AtomicActivity Act2 has expectedDuration
ED2, requires R2 and status different from
proposed or continuing, and ED1 ≥ ED2,
then move Act2 (we only need Act2’s Resource
R2 to find when this Resource can carry out Act2
at another moment). Moving Act2 consists in set-
ting its actualStartDate to the result of
find-a-free-schedule (ED2, R2), and its actual-
EndDate to the sum of ED2 and of the result of
find-a-free-schedule(ED2, R2).

20. manage-hardInterdependency-singleRequester: This
rule is the same as manage-softInterdependency-
singleRequester, except that it is fired by a hard
Interdependency, and its salience is higher when pri-
orities are used.

21. manage-softInterdependency-contractualAuthority:
If two agents request to carry out two activities re-
lated by a ContractualAuthority, the OperationalRe-
lationship among these agents is exploited to find out
which activity has precedence over the other. More
precisely, when there is an Interdependency with
hasSource pointing to Act1, hasTarget point-
ing to Act2 and type being soft, an AtomicActiv-
ity Act1 having actor Ag1 and status different
from proposed or continuing, an AtomicAc-
tivity Act2 having actor Ag2, status differ-
ent from proposed or continuing, requires
R2 and expectedDuration ED2, a Con-
tractualAuthority with hasSourceAgent Ag1
and hasTargetAgent Ag2, then move Act2.
Here, the expectedDuration ED2 and Re-
source R2 are necessary to move Act2. As for
manage-softInterdependency-singleRequester, the
actualStartDate of Act2 is set to the re-
sult of find-a-free-schedule(ED2, R2), and its
actualEndDate to the sum of ED2 and the re-
sult of find-a-free-schedule (ED2, R2).

22. manage-hardInterdependency-contractualAuthori-
ty: This rule is the same as manage-
softInterdependency-contractualAuthority, ex-
cept that is is fired by a hard Interdependency and
its salience is higher.

23. manage-softInterdependency-legalAuthority: This
rule is similar to manage-softInterdependency-
contractualAuthority, except that it is fired by
LegalAuthority instead of a ContractualAuthor-
ity. This is due to the fact that these two subclasses
of OperationalRelationship have the same mean-
ing, but with different strength.

24. manage-hardInterdependency-legalAuthority: This
rule is the same as manage-softInterdependency-
legalAuthority (and thus, similar to manage-
hardInterdependency-contractualAuthority), ex-

E
na

bl
es

MutuallyExcludes

Impedes

E
na

bl
es

requester−short has a ContractualAuthority over requester−long

compute−phi

conjAct−long

compute−pi−long

print−pi−long

activities requested by requester−longactivities requested by requester−short

compute−pi−short

print−pi−short

conjAct−short

Figure 3. Instances of CoordinableActivity
with their interdependencies considered in
the case study.

cept that is is fired by a hard Interdependency and
its salience is higher.

3.3. Integration of the rules in the ontology

At the moment, all the rules are implemented in Jess
and we have not yet discovered any necessary rules that
could not be written in Jess. However, we need to translate
our rules from Jess into a standardized rule language, such
as SWRL or ruleML, in order to add them as instances
of CheckActivities, FindInterdependencies and Coordina-
tionMechanism. We expect to use SWRL, as it describes
rules in OWL, which is the language used to represent
the rest of the ontology. More precisely, we expect to use
SWRL extension to first-order logic, because it adds the
negation to standard SWRL, which is required by some
of our rules, e.g. conjAct-actualStartDate (rule 7) contains
this negation in its description: “. . . and there are NO other
inner activities having. . .”.

4. Web Service Implementation

We have implemented a prototype with the JessTab
1.1 [4] plug-in for Protégé 3.0 [11]. This integrates the in-
ference engine Jess (version 6.1p7 [5] in our case) with
Protégé, enabling the Jess rule-engine to work with a
Protégé knowledge base. Specifically, the inference en-
gine in JessTab can (i) access the ontology and the in-
stances represented in Protégé, (ii) directly manipulate the
ontology and instances, (iii) infer new facts deduced from
the ontology and instances, and (iv) perform all the other
programming tasks permitted by Jess, such as performing
computations or launching Java operations.
To create the prototype, we first implemented the coor-

dination ontology in Protégé using the OWL plug-in. We
then created a web service, which wrapped a Jess engine
containing the ontology and rules. This web service pro-
vides a number of methods allowing us to register/dereg-
ister requesters and providers, along with new activity re-
quests. It also allows us to request the whole schedule for
a given resource, and logs all details of rules that are fired.
With the web service running, instances represent-

ing the activities to be coordinated were added. These ac-
tivities are represented in Figure 3, in which we can see
there are five AtomicActivitys (namely, ‘compute-phi’/‘-
-pi-short’/‘--pi-long’ and ‘print-pi-short’/‘--long’) and
two ConjunctiveActivitys. These two composite activities
are ‘conjAct-short’, which contains ‘compute-pi-short’
and ‘print-pi-short’, and ‘conjAct-long’, which consists of
‘compute-pi-long’ and ‘print-pi-long’. Adding these two

0 5 10 15 20
time

Requester:

}

}
compute−phi

compute−pi−long

compute−pi−short

print−pi−long

print−pi−short

requester−long requester−short

printer−unique

cpu−unique

Figure 4. Gantt chart of the sched-
ules requested by ‘requester-long’ and
‘requester-short’ for ‘ PRINTER-UNIQUE’ and
‘CPU-UNIQUE’.

AtomicActivitys allows rule 18 (enables-compute->print)
to infer ‘compute-pi-short’ Enables ‘print-pi-short’
and ‘compute-pi-long’ Enables ‘print-pi-long’. Fig-
ure 3 represents some of the interdependencies aris-
ing amongst the activities. In particular, the instances of
Compute are related by different kinds of interdependen-
cies, that is, ‘compute-phi’ Impedes (and is impeded by)
‘compute-pi-short’. While Figure 3 should also mention
that ‘compute-pi-long’ Subsumes ‘compute-pi-short’, this
Subsumes does not appear on the figure because the cur-
rent version of the prototype is not able to determine that.
Instead, our prototype finds that ‘compute-pi-long’ Im-
pedes (and is impeded by) ‘compute-pi-short’, which is
also true, but exploiting a Subsumeswould make the over-
all system much more efficient than avoiding an Impedes.
It is with a view to recognising such a Subsumes rela-
tionship that we plan to use a more detailed definition for
AtomicActivity using, for example, BPEL4WS.
We can also see that ContractualAuthority en-

sures that ‘requester-short’ has a higher priority
than ‘requester-long’. Next, Figure 4 shows the
actualStartDate and actualEndDate of the
five AtomicActivitys before the coordination. For ex-
ample, ‘requester-long’ has requested the activity
‘compute-phi’ in the time slot [1;4] with the resource
‘CPU-UNIQUE’.
When a new activity request is registered by the web

service, the rules detailed in Section 3 are executed, thus
coordinating the activities. Figure 5 shows the execution
trace, illustrating the system’s activity. Each firing of a
rule in FindInterdependencies begins with the word “INT-
DEP” followed by the name of the fired rule and an expla-
nation of what is done. Similarly, each fire of a rule in Co-
ordinationMechanism begins with the word “MECA” fol-
lowed by the name of the fired rule and an explanation of
what is done. Rules in CheckActivities do not display any-
thing.
Figure 6 represents the result of coordination, in which

we can see that activities can be coordinated with the use
of an ontology.

5. Conclusions & Future Work

This paper has investigated the flexible and explicit co-
ordination of distributed systems working in environments
which are open, dynamic and evolving. We ultimately aim
at coordination managed at run-time rather than being
hard-wired. For that purpose, we developed an ontology of
coordination which models interdependencies among ac-
tivities. Regarding this ontology, we raised two questions
in the introduction. The first question is how to use a coor-

1 INTDEP enables-compute–>print: in activity ‘conjAct-short’,
‘print-pi-short’ should be after ‘ compute-pi-short’ => as-

sert the PositiveCoordination ‘compute-pi-short-ENABLES-

print-pi-short’.

2 MECA manage-hardInterdependency-singleAgent man-

ages ‘compute-pi-short-ENABLES-print-pi-short’, i.e.,

‘requester-short’s compute-pi-short’ vs. ‘requester-short’s

print-pi-short’: ‘print-pi-short’ moved from [2;4] to [5;7].

3 INTDEP enables-compute–>print: in activity ‘conjAct-long’,
‘print-pi-long’ should be after ‘compute-pi-long’ => assert the
PositiveCoordination ‘compute-pi-long-ENABLES-print-pi-long’.

4 MECA manage-hardInterdependency-singleAgent manages

‘compute-pi-long-ENABLES-print-pi-long’, i.e., ‘requester-long’s

compute-pi-long’ vs. ‘requester-long’s print-pi-long’:

‘print-pi-long’ moved from [1;5] to [7;11].

5 INTDEP impedes4: (compute-phi vs. compute-pi-long)

‘requester-long’ requests ‘cpu-unique’ over [1;4], which is in-

cluded in [1;5] requested by ‘requester-long’.

6 MECA manage-softInterdependency-singleAgent man-

ages ‘compute-pi-long-IMPEDES4-compute-phi’, i.e.,

‘requester-long’s compute-pi-long’ vs. ‘requester-long’s

compute-phi’: ‘compute-phi’ moved from [1;4] to [5;8].

7 INTDEP impedes4: (compute-pi-short vs. compute-pi-long)

‘requester-short’ requests ‘cpu-unique’ over [2;4], which is in-

cluded in [1;5] requested by ‘requester-long’.

8 MECA manage-softInterdependency-contractualAuthority man-

ages ‘compute-pi-long-IMPEDES4-compute-pi-short’, i.e.,

‘requester-short’s compute-pi-short’ vs. ‘requester-long’s

compute-pi-long’ => ‘compute-pi-long’ moved from [1;5] to

[8;12].

9 INTDEP enables-compute–>print: in activity ‘conjAct-long’,
‘print-pi-long’ should be after ‘compute-pi-long’ => assert the
PositiveCoordination ‘compute-pi-long-ENABLES-print-pi-long’.

10 MECA manage-hardInterdependency-singleAgent manages

‘compute-pi-long-ENABLES-print-pi-long’, i.e., ‘requester-long’s

compute-pi-long’ vs. ‘requester-long’s print-pi-long’:

‘print-pi-long’ moved from [7;11] to [11;15].

11 INTDEP enables-compute–>print: in activity ‘conjAct-long’,
‘print-pi-long’ should be after ‘compute-pi-long’ => assert the
PositiveCoordination ‘compute-pi-long-ENABLES-print-pi-long’.

12 MECA manage-hardInterdependency-singleAgent manages

‘compute-pi-long-ENABLES-print-pi-long’, i.e., ‘requester-long’s

compute-pi-long’ vs. ‘requester-long’s print-pi-long’:

‘print-pi-long’ moved from [11;15] to [15;19].

Figure 5. Execution trace of JessTab Proto-
type

dination ontology: we answered this by presenting an ex-
ample of coordination mechanism which manages the in-
terdependencies among activities. The second question is
what can be done with a coordination ontology: our pro-
totype answered this by demonstrating that our approach
based on an ontology seems feasible and efficient.

The coordination mechanism and its implementation
presented in the section above are a first step towards a
decentralised, explicit coordination mechanism. However,
we still have to resolve some issues. For instance, if some
computations are not possible, what kinds of coordination
rules are not computable, and are there enough rules to
enable a high degree of coordination? In our implementa-

0 5 10 15 20
time

Requester:

compute−pi−short compute−pi−long
cpu−unique

printer−unique

requester−shortrequester−long

print−pi−long

compute−phi

print−pi−short

Figure 6. Gantt chart of the sched-
ules proposed to ‘requester-long’ and
‘requester-short’ for ‘PRINTER-UNIQUE’ and
‘CPU-UNIQUE’.

tion, we are able to solve all the implemented hard inter-
dependencies and to profit from some soft ones. In other
words, activities are coordinated but the quality of the co-
ordination can still be improved. We have therefore em-
pirically demonstrated that centralised dynamic coordina-
tion is achievable. The next step is to verify whether de-
centralized coordination can be supported by the coordi-
nation model represented in our ontology.

A number of other issues suggest themselves. First,
the issue of whether and how rules should be prioritized.
Priorities arise naturally in general and some principles
were proposed to organize them in any rule system [1]: (i)
higher priority of the source of the rule (e.g. federal law
has a higher priority than state law), (ii) a more recent rule
is preferred, and (iii) a rule is more specific, i.e., excep-
tions are stronger than the general case. In our case study,
no priorities are used because we are not time-constrained.
However, we indicated that some priorities should be used
if we are not sure all rules will be fired, e.g. all hard in-
terdependencies must be managed before any soft inter-
dependency. In our model, the class OperationalRelation-
ship alreadymanages the kind of priority (i) above.We ex-
pect that our rule base will be consistent, so that (ii) does
not apply to us. Case (iii) looks to be the most probable in
our approach, but we do not expect it to occur. Finally, pri-
orities depending on the application domain may be added
to accelerate the coordination process, e.g. we may empir-
ically see that managing a MutuallyExcludes in an appli-
cation for insurance companies generally avoids manag-
ing two subsequent Enables.

Another issue is the interaction of our ontology with
existing standards. For example, we are able to represent
our entire model of coordination in OWL Full, but can
we write the rules manipulating this model in SWRL or
ruleML? Specifically, can we represent all the code in the
right-hand side (in particular, the content of functions and
their queries) of Jess’ rules in SWRL or ruleML?

As future work, we plan to (i) use SWRL to de-
scribe the coordination rules in a standardized format
instead of in Jess, (ii) replace the class AtomicActiv-
ity with a more precise one that follows the represen-
tation used by BPEL4WS, (iii) add a means of sim-
ulating the passage of time and activities competing,
(iv) investigate means of decentralising the web ser-
vice.

Acknowledgments The work presented in this paper is
funded by the FP6 EU project Ontogrid (FP6-511513).

References

[1] G. Antoniou and F. van Harmelen. A Semantic Web Primer.
The MIT Press, 2004.

[2] M. Ben-Ari. Principles of concurrent and distributed pro-
gramming. Prentice-Hall, Inc., 1990.

[3] K. Decker and V. R. Lesser. Designing a family of coordi-

nation algorithms. In Proc. of 1st Int. Conf. on MultiAgent
Systems (ICMAS-95), San Francisco (CA, USA), 1995.

[4] H. Eriksson. Web site for the plug-in JessTab, 2005.

http://www.ida.liu.se/∼her/JessTab/ (ac-
cessed March 31, 2005).

[5] E. Friedman-Hill. Jess in Action: Java Rule-Based Sys-
tems. Manning Publications Co., 2003.

[6] IBM, BEA Systems, Microsoft, SAP AG, and Siebel

Systems. Web page for the specification of the

Business Process Execution Language for Web Ser-

vices, version 1.1 (updated Feb 1, 2005), 2005.

http://www-128.ibm.com/developerworks/
library/specification/ws-bpel/.

[7] T. W. Malone and K. Crowston. The interdisciplinary study

of coordination. ACM Computing surveys, 26(1):87–119,
1994.

[8] Microsoft, IBM, Hitachi, IONA, Arjuna Technolo-

gies, and BEA Systems. Web page for the specification of

WS-Coordination, version 1.0 (updated Aug. 2005), 2005.

http://www-128.ibm.com/developerworks/
library/specification/ws-tx/ (accessed Oct.
3, 2005).

[9] M. Singh and M. N. Huhns. Service-Oriented Computing
- Semantics, Processes, Agents. John Wiley and sons, Ltd.,
2005.

[10] M. P. Singh. A customizable coordination service for au-

tonomous agents. In M. P. Singh, A. Rao, and M. J.

Wooldridge, editors, Intelligent Agents IV (LNAI Volume
1365), pages 93–106. Springer-Verlag: Berlin, Germany,
1998.

[11] Stanford Medical Informatics. Web site for the software

Protégé, 2005. http://protege.stanford.edu/
(accessed March 31, 2005).

[12] R. Studer, V. Benjamins, and D. Fensel. Knowledge engi-

neering, principles and methods. Data and Knowledge En-
gineering, 25(1-2):161–197, 1998.

[13] V. Tamma, C. van Aart, T. Moyaux, S. Paurobally,

B. Lithgow-Smith, and M. Wooldridge. An ontological

framework for dynamic coordination. In Proc. of 4th Int.
Semantic Web Conf. (ISWC 2005), Galway (Ireland), 2005.

[14] F. von Martial. Coordinating Plans of Autonomous Agents.
Springer-Verlag New York, Inc., 1992.

[15] M. Wooldridge and N. Jennings. Intelligent agents: Theory

and practice. Knowledge engineering review, 10(2):115–
152, 1995.

