
Agent-BasedSoftwareEngineering

Michael Wooldridge

MitsubishiElectricDigital Library Group
18thFloor, CentrePoint,103New OxfordStreet

LondonWC1A 1EB,UnitedKingdom
mjw@dlib.com

September19,1997

Abstract

The technologyof intelligent agentsandmulti-agentsystemsseemsset to radically
alter theway in which complex, distributed,opensystemsareconceptualizedandimple-
mented.The purposeof this paperis to considerthe problemof building a multi-agent
systemasa softwareengineeringenterprise.Thearticle focuseson threeissues:(i) how
agentsmightbespecified;(ii) how thesespecificationsmightberefinedor otherwisetrans-
formedinto efficient implementations;and(iii) how implementedagentsandmulti-agent
systemsmightsubsequentlybeverified,in orderto show thatthey arecorrectwith respect
to their specifications.Theseissuesare discussedwith referenceto a numberof case-
studies. The article concludesby settingout someissuesandopenproblemsfor future
research.

1 Intr oduction

Intelligentagentsareninety-ninepercentcomputerscienceandonepercentAI.
OrenEtzioni [12]

Over its 40-yearhistory, Artificial Intelligence(AI) hasbeensubjectto many andvariedcrit-
icisms. Perhapsthe mostpersistentandtroublingof theseis thatAI hassimply failed to de-
liver on its promises.Clearly, themoreextremepredictionsof someAI researchers(suchas
human-qualityintelligent robotswithin five decades)have not beenrealized.This would not
besoworrying if it wasobvious thatAI hadpaidoff in someotherway: if, for example,AI
techniqueswerestandardcomponentsin workadaysoftware. But this is not the case. Even
comparatively mundaneAI techniques(suchasrule-basedsystems)arestill regardedashome-
opathicmedicineby a significantproportionof themainstreamcomputersciencecommunity.
Why is this? Therearemany reasons,including, for example,the reluctanceof softwarede-
velopersto learnaboutandapplynew technologies,andtheinappropriatenessof mainstream
softwareengineeringtechniquesandtoolsfor AI systemdevelopment.But at leastpartof the
answeris alsothatmany AI researcherseitherignoreor elseglossover thepragmaticconcerns
of softwaredevelopment,for thesimplereasonthatthey do not regardthemselvesassoftware

1



engineers.AI pridesitself on beingmulti-disciplinary, takingcontributionsfrom many other
fields;but softwareengineeringis generallyregardedasneitheracontributornoraconcern.

Themostrecentinfantsto emergefromtheAI nurseryarethenotionsof anintelligentagent
andagent-basedsystem[66]. An intelligentagentis generallyregardedasanautonomousde-
cisionmakingsystem,whichsensesandactsin someenvironment(wediscussthequestionof
whatanagentis in moredetailbelow). Agentsappearto beapromisingapproachto developing
many complex applications,rangingfrom INTERNET-basedelectroniccommerceandinforma-
tion gatheringto industrial processcontrol (see[28] for a survey). But unlessresearchers
recognisethatagent-basedsystemsareaboutcomputerscienceandsoftwareengineeringmore
thanthey areaboutAI, thenwithin a decade,we may well be askingwhy agenttechnology
sufferedthesamefateassomany otherAI ideasthatseemedgoodin principle.

In summary, theaim of this paperis to considertheproblemof building agent-basedsys-
temsasasoftwareengineeringenterprise.In sodoing,thepaperconstructsaframework within
which futurework on agent-basedsoftwareengineeringmaybeplaced.Thepaperbeginsby
motivatingandintroducingtheideaof agent-basedsystems,andthengoesonto discussthekey
softwareengineeringissuesof specification,refinement/implementation,andverificationwith
respectto agent-basedsystems.We begin by briefly discussingthequestionof whata speci-
ficationis, andgo on to considerwhatanagent-basedspecificationmight look like. We then
discusssomeof the dimensionsalongwhich an agent-basedspecificationframework might
vary, with particularreferenceto thenotionof agentsasrational,mentalisticsystems[57, 49].
We subsequentlydiscussthekey issueof implementingor refiningagent-basedspecifications
into systems,andfinally, we considertheverificationof agent-basedsystems.Throughoutthe
article,wetakecarebothto illustratethevariousissueswith casestudies,andto draw parallels
with moremainstreamsoftwareengineeringresearchwhereverpossible.Thearticleconcludes
with adiscussionof futurework directions.

It shouldbe notedthat the emphasisof this paperis on formal methodsfor agent-based
softwareengineering.This bias reflectsthe currentstateof the field. As the areamatures,
andmoreagent-basedsystemsaredeployed, we will naturallyseean increasingnumberof
structuredbut informaldevelopmenttechniquesemerge.

2 Agent-BasedSystems

By anagent-basedsystem, we meanonein which thekey abstractionusedis thatof anagent.
Agent-basedsystemsmay containa singleagent,(as in the caseof userinterfaceagentsor
softwaresecretaries[39]), but arguablythe greatestpotentiallies in the applicationof multi-
agentsystems[6]. By an agent, we meana systemthat enjoys the following properties[66,
pp116–118]:

� autonomy: agentsencapsulatesomestate(that is not accessibleto other agents),and
make decisionsaboutwhat to do basedon this state,without the direct interventionof
humansor others;

� reactivity: agentsare situatedin an environment,(which may be the physicalworld,
a uservia a graphicaluser interface,a collection of other agents,the INTERNET, or
perhapsmany of thesecombined),areableto perceivethisenvironment(throughtheuse
of potentiallyimperfectsensors),andareableto respondin a timely fashionto changes
thatoccurin it;

2



� pro-activeness: agentsdo not simply act in responseto their environment,they areable
to exhibit goal-directedbehaviour by takingtheinitiative;

� socialability: agentsinteractwith otheragents(andpossiblyhumans)via somekind of
agent-communicationlanguage [17], andtypically have the ability to engagein social
activities (suchascooperative problemsolvingor negotiation)in orderto achieve their
goals.

To moreclearlyunderstandwhatis meantby theseproperties,considerthefollowing scenario.
Imagineanautonomousautomaticpilot controllinganaircraft, thatwe presentwith thegoal
of safely landing at someairport. We expect the systemto plan how to achieve this goal
(perhapsby makinguseof pre-compiledplans,ratherthanreasoningfrom first-principles),and
if necessary, weexpectit to generatesubsidiarygoals(e.g.,ascendto analtitudeof 30,000feet,
thenproceedduenorth at a speedof. . . ). This is what we meanby pro-activeness.We also
expectthesystemto try to executeits plans,but not blindly. Thus,in theeventof unforeseen
circumstances(e.g.,a changein weatherconditions,a fault in theaircraft,a requestfrom air-
traffic control),we expectthesystemto respondto thenew situationaccordingly, in time for
theresponseto beuseful.A systemthatspenthoursdeliberatingaboutwhatto donext would
benouseasanauto-pilot.This is whatwemeanby reactiveness.Wealsoexpectourauto-pilot
to beableto cooperatewith air-traffic controllersandperhapsotheraircraftin orderto achieve
its goals. This is what we meanby socialability. Note that this exampleis intendedto be
extreme:it is notaclaimaboutwhatagentscancurrentlydo,or whatthey will beableto do in
thenearfuture.It is merelyintendedto highlight thetypeof featuresweultimatelyhopeto see
in agents.

Theconceptof anintelligentautonomousagentdid not appearin a vacuum.It is a natural
developmentof variousothertrendsin AI andcomputerscience.In thesubsectionsthatfollow,
we discusssomeancestorsof agents,andidentify theattributesthatmake themdistinct from
their forbears.

Agentsand AI

Thedisciplineof intelligentagentshasemergedlargely from researchin AI. In fact,oneway
of definingAI is asthe problemof building an intelligentagent(RusellandNorvig’s recent
textbookon AI more-or-lesstakesthis view [53]). But it is importantto distinguishbetween
the broadintelligencethat is the ultimategoal of the AI community, andthe intelligencewe
seekin agents.Theonly intelligencerequirementwegenerallymakeof ouragentsis thatthey
canmake an acceptabledecisionaboutwhat actionto performnext in their environment,in
time for this decisionto beuseful. Otherrequirementsfor intelligencewill bedeterminedby
the domainin which the agentis applied: not all agentswill needto be capableof learning,
for example. Capabilitiessuchascommonsensereasoning(à la CYC [19]) arenot required
for many importantapplicationdomains.Thus,aswepointedout in theintroduction,we view
theapplicationandexploitationof agenttechnologyprimarily asa computerscienceproblem.
Agentsaresimply softwarecomponentsthatmustbedesignedandimplementedin muchthe
sameway that othersoftwarecomponentsare. However, AI techniquesare often the most
appropriatewayof building agents.

3



Agentsand Expert Systems

Expert systemswere the AI technologyof the 1980s[23]. An expert systemis one that is
capableof solvingproblemsor giving advicein someknowledge-richdomain[26]. A classic
exampleof anexpertsystemis MYCIN, whichwasintendedto assistphysiciansin thetreatment
of blood infectionsin humans. Perhapsthe most importantdistinctionbetweenagentsand
expert systemsis that expert systemslike MYCIN are inherentlydisembodied. By this, we
meanthatthey donot interactdirectlywith any environment:they gettheir informationnotvia
sensors,but througha useractingasmiddleman. In addition,expertsystemsarenot usually
requiredto operatein anything like real-time. Finally, we do not generallyrequireexpert
systemsto becapableof co-operatingwith otheragents.

Despitethesedifferences,someexpertsystems,(particularlythosethatperformreal-time
controltasks),look verymuchlikeagents.A goodexampleis ARCHON [27], whichstartedlife
asacollectionof expertsystems,andendedupbeingviewedasamulti-agentsystem.ARCHON

operatesin thedomainof industrialprocesscontrol.

Agentsand Objects

Object-orienteddevelopmenttechniqueshavebeenpromotedas‘bestpractice’by theacademic
computersciencecommunityfor at leasta decade.Fueledby recentpopularinterestin lan-
guagessuchasJAVA, object-orientedapproachesarefinally leaving the relative backwaterof
academiaandenteringthe mainstream.While thereis muchongoingdebateaboutmany as-
pectsof object-orienteddevelopment,thereis broadagreementthatanobjectis anentity that
encapsulatessomestateanda collectionof methods,correspondingto operationsthatmaybe
performedonthatstate.Methodsaretypically invokedasaresultof messagessentto theobject
(onemaythink of thesemessagesasrequestsfor services).

Themostobviousdifferencebetweenthe ‘standard’objectmodelandour view of agent-
basedsystemsis thatin traditionalobject-orientedprograms,thereis asinglethreadof control.
In contrast,agentsareprocess-like,concurrentlyexecutingentities.However, therehave been
variantson the basicobject model in which objectsare more like processes:object-based
concurrentprogrammingmodelssuchasACTORS [1] have long beenrecognizedasanelegant
model for concurrentcomputation,and ‘active object’ systemsare also quite similar; even
comparatively earlyon in thedevelopmentof object-orientedprogramming,it wasrecognized
thatsomethinglikeagentswouldbeanaturalnext step.

Giventheseremarks,it mayseemthatagentsareidenticalto (active)objectsin mostimpor-
tant respects:they encapsulatebothstateandbehaviour, andcommunicatevia messagepass-
ing1. But agentsarenot simplyobjectsby anothername.This is becauseanagentis a rational
decisionmakingsystem: werequireanagentto becapableof reactiveandpro-activebehaviour,
andof interleaving thesetypesof behaviour asthesituationdemands.Theobject-orientedre-
searchcommunityhasnothingwhatsoever to sayaboutbuilding systemsthat arecapableof
this kind of behaviour. In contrast,thedesignof suchsystemsis a fundamentalresearchtopic

1Thefollowing is from a textbookonobject-orientedprogramming:

‘Thereis a tendency [. . . ] to think of objectsas“actors” andendow themwith human-like inten-
tions andabilities. It’s temptingto think aboutobjects“deciding” what to do abouta situation,
[and] “asking” otherobjectsfor information.[. . . ] Objectsarenot passivecontainersfor stateand
behaviour, but aresaidto betheagentsof aprogram’sactivity.” [44, p7]

4



in theintelligentagentscommunity[66]2. In addition,theobject-orientedcommunityhasnot
addressedissueslike cooperation,competition,negotiation,computationaleconomies,andso
on,thatform thefoundationfor multi-agentsystemsdevelopment[6].

2.1 AgentsasRational Systems

An obvious problemis how to conceptualizesystemsthat arecapableof rationalbehaviour
of the type discussedabove. Oneof the mostsuccessfulsolutionsto this probleminvolves
viewing agentsasintentionalsystems[10], whosebehaviour canbepredictedandexplainedin
termsof attitudessuchasbelief, desire,andintention[47]. Therationalefor this approachis
thatin everydaylife, weusea folk psychology to explainandpredictthebehaviour of complex
intelligentsystems:people.For example,we usestatementssuchasMichael intendsto write
a paper in orderto explain Michael’s behaviour. Oncetold this statement,we expectto find
Michaelshelvingothercommitmentsanddevelopingaplantowrite thepaper;wewouldexpect
him to spenda lot of time at his computer;we would not besurprisedto find him in a grumpy
mood;but wewouldbesurprisedto find him ata latenightparty.

This intentionalstance, wherebythebehaviour of a complex systemis understoodvia the
attribution of attitudessuchasbelieving anddesiring,is simply an abstraction tool. It is a
convenientshorthandfor talkingaboutcomplex systems,whichallowsusto succinctlypredict
andexplain theirbehaviour withouthaving to understandhow they actuallywork. Now, much
of computerscienceis concernedwith looking for goodabstractionmechanisms,sincethese
allow systemdevelopersto managecomplexity with greaterease:witnessproceduralabstrac-
tion, abstractdatatypes,andmostrecently, objects.So,why not usetheintentionalstanceas
an abstractiontool in computing— to explain, understand,and,crucially, programcomplex
computersystems?

For many researchersin AI, this ideaof programmingcomputersystemsin termsof ‘men-
talistic’ notionssuchasbelief,desire,andintentionis thekey componentof agent-basedcom-
puting. Theconceptwasarticulatedmostclearlyby Yoav Shoham,in his agent-orientedpro-
gramming(AOP)proposal[57]. Thereseemto bea numberof argumentsin favour of AOP.
First, it offers us a familiar, non-technicalway to talk aboutcomplex systems.We needno
formal trainingto understandmentalistictalk: it is partof oureverydaylinguisticability.

Secondly, AOPmayberegardedasa kind of ‘post-declarative’ programming.In procedu-
ral programming,sayingwhata systemshoulddo involvesstatingpreciselyhow to do it, by
writing a detailedalgorithm.Proceduralprogrammingis difficult becauseit is hardfor people
to think in termsof thedetailrequired.In declarativeprogramming(à la PROLOG), theaim is
to reducetheemphasisoncontrolaspects:we statea goalthatwe wantthesystemto achieve,
andlet abuilt-in controlmechanism(e.g.,goal-directedrefutationtheoremproving) figureout
what to do in order to achieve it. However, in order to successfullywrite efficient or large
programsin a languagelike PROLOG, it is necessaryfor theprogrammerto haveadetailedun-
derstandingof how thebuilt-in controlmechanismworks. This conflictswith oneof themain
goalsof declarative programming:to relieve the userof the needto dealwith control issues.
In AOP, theideais that,asin declarative programming,we stateour goals,andlet thebuilt-in
controlmechanismfigureout what to do in orderto achieve them. In this case,however, the
controlmechanismimplementssomemodelof rationalagency (suchastheCohen-Levesque
theoryof intention[9], or theRao-Georgeff BDI model[47]). Hopefully, this computational

2Of course,boththeideaof anagentandtheideaof anobjectbothoweagreatdebtto thepioneeringwork of
Hewitt onopensystemsandtheACTOR model[1].

5



modelcorrespondsto our own intuitive understandingof (say)beliefsanddesires,andsowe
neednospecialtrainingto useit. Returningto theexampleweusedabove,supposewetold our
autopilotagentto landat LAX airport. Thenwe would expecttheagentto continueto attempt
to landat LAX until it hadsucceeded,or elseit discoveredthat this goalwasimpossible.We
would not expect the agentto acceptany othergoal that wasnot consistentwith landingat
LAX, andwe would expecttheagentto continueattemptingdifferentstrategiesfor achieving
thegoalin theeventof difficulties. Ideally, asAOPprogrammers,we would not beconcerned
with howtheagentachievesits goals.Thereality, asever, doesnotquiteliveup to theideal.

Interestingly, we againfind thatresearchersfrom a moremainstreamcomputingdiscipline
have adopteda similar setof ideas. In theoreticalcomputerscience,logicsof knowledge are
usedto reasonaboutdistributedsystems[13]. Theideais thatwhenspecifyingsuchsystems,
oneoftenmakesuseof statementssuchasthefollowing:

IF processi knowsprocessj hasreceivedmessagem�
THEN processi shouldsendprocessj messagem� . (1)

This kind of statementmay be formalisedusinga logic of knowledge. Althoughmostwork
on knowledgetheory in distributedsystemshasbeenratherabstract,andunconnectedwith
softwarepractice,researchershave recentlybegunto payseriousattentionto thepossibilityof
directly programmingsystemsusingstatementssuchas(1), above [13, pp233–271].Theidea
is verycloseto AOP.

Now thatweunderstandwhatanagentis, wecanbegin to look atsoftwareengineeringfor
agent-basedsystems.

3 Specification

The software developmentprocessbegins by establishingthe client’s requirements.When
this processis complete,a specificationis developed,which setsout the functionality of the
new system.Thepurposeof this sectionis to considerwhata specificationfor anagent-based
systemmight look like. Whataretherequirementsfor anagentspecificationframework?What
sortof propertiesmustit becapableof representing?To answerthisquestion,we returnto the
propertiesof agents,asdiscussedin theprecedingsection.

Weobservedabovethatagentsaresituatedin anenvironment,andareableto perceive this
environmentthroughsensorsof somekind. Agentsthushave informationabouttheir envi-
ronment.This leadsto our first requirement:that the agentspecificationframework mustbe
capableof representingboth thestateof theenvironmentitself, andthe informationanagent
hasabouttheenvironment.It is worthmakingsomecommentsaboutwhatpropertiesthisinfor-
mationmight have. First, the informationanagenthasmaybe incorrect.Theagent’s sensors
maybe faulty, the informationmight beout of date,or theagentmayhave beendeliberately
or accidentallygivenfalseinformation.Secondly, the informationanagenthasis not directly
availableto otheragents:agentsdo not sharedatastructures,anddo not have accessto the
privatedatastructuresof otheragents(this is partof whatwe meantby autonomy).Third, the
environmentwill containotheragents,eachwith theirown informationabouttheenvironment.
Thusanagentmayhave informationaboutthestateof otheragents:we mayneedto represent
such‘nested’information.Notethatit is commonpracticeto referto theinformationavailable
to anagentasthatagent’sbeliefs.

6



Now considerthenotionof reactivity. Softwaresystemsmaybebroadlydividedinto two
types: functionaland reactive[45]. A functionalsystemis one that simply takessomein-
put, performssomecomputationover this input, andeventuallyproducessomeoutput. Such
systemsmay be viewed asfunctionsf � I � O from a set I of inputsto O of outputs. The
classicexampleof sucha systemis a compiler, which canbe viewed asa mappingfrom a
setI of legal sourceprogramsto a setO of correspondingobjector machinecodeprograms.
Although the internalcomplexity of the mappingmay be great(e.g., in the caseof a really
complex programminglanguage),it is neverthelessthe casethat functionalprogramsare,in
general,inherentlysimplerto specify, design,andimplementthanreactive systems.Because
functionalsystemsterminate,it is possibleto usepre-andpost-conditionformalismsin order
to reasonaboutthem[24]. In contrast,reactive systemsdo not terminate,but rathermaintain
anongoinginteractionwith theirenvironment.It is thereforenotpossibleto usepre-andpost-
conditionformalismssuchasHoarelogic to reasonaboutthem.Instead,reactivesystemsmust
bespecifiedin termsof their ongoingbehaviour. Thenext requirementfor our agentspecifi-
cationframework is that it mustbe capableof representingthis inherentlyreactive natureof
agentsandmulti-agentsystems.Note that oneof the mostsuccessfulformalismsdeveloped
for specifyingreactive systemsis temporallogic. The ideais thatwhenspecifyinga reactive
system,oneoftenwantsto staterequirementssuchas‘if a requestis received,thena response
is eventuallysent’.Suchrequirementsareeasilyandelegantlyexpressedin temporallogic.

The third aspectof agentsasdiscussedabove is pro-activeness, by which we meanthat
agentsareable to exhibit goal-directedbehaviour. (Note that we usethe term ‘goal’ fairly
loosely. We includesuchnotionsascommitmentsor obligationsin our usage.) It doesnot
follow that in orderto exhibit goal-directedbehaviour, anagentmustexplicitly generateand
representgoals[38], althoughthisisby farthemostcommonapproach.Ouragentspecification
framework mustbecapableof representingtheseconative(goal-directed)aspectsof agency.

Finally, our agentsare able to act. Agentsdo not typically have completecontrol over
their environment(our auto-pilotcannotcontrol the weather),but they aregenerallyableto
influencetheirenvironmentby performingactions,andmayhavereliablecontroloverportions
of it. We requiresomeway of representingtheseactionswithin our specificationframework.
To summarize,an agentspecificationframework must be capableof capturingat least the
following aspectsof anagent-basedsystem:

� thebeliefsagentshave;

� theongoinginteractionagentshavewith theirenvironment;

� thegoalsthatagentwill try to achieve;

� theactionsthatagentsperformandtheeffectsof theseactions.

Whatsortof specificationframework is capableof representingsuchaspectsof asystem?The
mostsuccessfulapproachappearsto be the useof a temporal modallogic [7] (spacerestric-
tions prevent a detailedtechnicaldiscussionon suchlogics — see,e.g., [66] for a detailed
overview andextensive references).A typical temporalmodalagentspecificationframework
will contain:

� normalmodallogic connectivesfor representingagent’sbeliefs;

� temporallogic connectivesfor representingthe dynamicsof the system— its ongoing
behaviour;

7



InformationAspects
knowledge[13]
belief [33]
collective informationattitudes[20]

Temporal Aspects
linearvsbranching[11]
densevsdiscrete[4]
directreferencevstenseoperators[56]
pointbasedvs interval based[2]

ConativeAspects
desire
intention[9]
obligation[42]
choice[5]
collectivepro-attitudes[34]

Actions
directrepresentation[22]
implicit representation[55]

Table1: Dimensionsof AgentSpecification

� normalmodallogic connectivesfor representingconatives(e.g.,desires,intentions,obli-
gations);

� someapparatusfor representingtheactionsthatagentsperform.

Giventheserequirements,thereareagreatmany dimensionsalongwhichanagentspecification
framework may vary: someof thesedimensionsaresummarizedin Table1. Note that there
is by no meansany consensuson the desirablepropertiesof what we might call an ‘agent
theory’. For example,two of thebestknown agenttheoriesaretheCohen-Levesquetheoryof
intention[9], andtheRao-Georgeff belief-desire-intentionmodel[47]. TheCohen-Levesque
model takesasprimitive just two attitudes:beliefsandgoals. Otherattitudes(in particular,
the notionof intention) arebuilt up from these.In contrast,Rao-Georgeff take intentionsas
primitives, in addition to beliefsandgoals. Also, Cohen-Levesqueadopta linear temporal
model,(andstatea numberof objectionsto branchingtemporalmodels),whereasbranching
time is moreor lessessentialto the Rao-Georgeff model. As a result, the two formalisms,
thoughcloselyrelated,areirreconcilable.

Thekey technicalproblemfacedby agenttheoristsis developingamodelthatgivesagood
accountof theinterrelationshipsbetweenthevariousattitudesthattogethercompriseanagents
internalstate.Somecontemporarymodelsarereviewedin [66].

CaseStudy: The Belief-Desire-Intention Model

Oneof the mostsuccessfulagenttheoriesis the belief-desire-intention(BDI) modelof Rao
andGeorgeff (see[47] for extensive references).The technicaldetailsof BDI aresomewhat
involved,andsohere,weshallsimplysummarizethemainconceptsthatunderpinBDI models.

8



As thenamesuggests,theinternalstateof aBDI agentis comprisedof threekey datastruc-
tures,which areintendedto looselycorrespondto beliefs,desires,andintentions.An agent’s
beliefsareintendedto representtheinformationit hasabouttheworld, aswesuggestedabove.
Beliefswill typically berepresentedsymbolically: in theProceduralReasoningSystem(PRS)
— thebest-known BDI implementation— beliefslook verymuchlike PROLOG facts[18]. An
agent’s desiresmay be thoughtof as the tasksallocatedto it. An agentmay not in fact be
ableto achieve all of its desires,andin humans,desiresmayevenbeinconsistent.An agent’s
intentionsrepresentdesiresthat it hascommittedto achieving. The intuition is thatasagents
will not,in general,beableto achieveall theirdesires,evenif thesedesiresareconsistent,they
mustthereforefix uponsomesubsetof availabledesiresandcommit resourcesto achieving
them. Chosendesiresareintentions. Theseintentionswill thenfeedbackinto futuredecision
making: for example,anagentshouldnot in futureadoptintentionsthatconflict with thoseit
currentlyholds.

The BDI modelof agency hasbeenformalisedby RaoandGeorgeff in a family of BDI
logics [48, 51]. Theselogicsareextensionsto theexpressive branchingtime logic CTL

�
[11],

which alsocontainnormalmodalconnectivesfor representingbeliefs,desires,andintentions.
Most work on BDI logics hasfocussedon possiblerelationshipsbetweenthe three‘mental
states’[48], andmorerecently, on developingproof methodsfor restrictedforms of the log-
ics [51].

3.1 Discussion

Specificationlanguagesfor agent-basedsystemsareanorderof magnitudemorecomplex than
the comparatively simpletemporalandmodal languagesthat have becomecommonplacein
mainstreamcomputerscience.Typically, they aretemporallogicsenrichedby a family of ad-
ditionalmodalconnectives,for representingthe‘mentalstate’of anagent.Thereareanumber
of problemswith suchlanguages,in additiontheir conceptualcomplexity. The mostworry-
ing of theseis with respectto their semantics.While the temporalcomponentof theselogics
tendsto be ratherstandard,the semanticsfor the additionalmodalconnectivesaregiven in
the normalmodal logic tradition of possibleworlds [7]. So, for example,an agent’s beliefs
in somestatearecharacterisedby a setof differentstates,eachof which representsonepos-
sibility for how the world could actuallybe, given the informationavailableto the agent. In
muchthe sameway, an agentsdesiresin somestatearecharacterisedby a setof statesthat
areconsistentwith theagentsdesires.Intentionsarerepresentedsimilarly. Thereareseveral
advantagesto thepossibleworldsmodel: it is well-studiedandwell-understood,andtheasso-
ciatedmathematics(known ascorrespondencetheory) is extremelyelegant. Theseattractive
featuresmake possibleworlds the semanticsof choicefor almostevery researcherin formal
agenttheory. However, therearealsoanumberof seriousdrawbacksto possibleworldsseman-
tics. First,possibleworldssemanticsimply thatagentsarelogically perfectreasoners,(in that
theirdeductivecapabilitiesaresoundandcomplete),andthey have infinite resourcesavailable
for reasoning.No realagent,artificial or otherwise,hastheseproperties.

Secondly, possibleworlds semanticsaregenerallyungrounded. That is, thereis usually
nopreciserelationshipbetweentheabstractaccessibilityrelationsthatareusedto characterize
anagentsstate,andany concretecomputationalmodel. As we shallseein latersections,this
makesit is difficult to go from a formal specificationof a systemin termsof beliefs,desires,
and so on, to a concretecomputationalsystem. Similarly, given a concretecomputational
system,thereis generallyno way to determinewhatthebeliefs,desires,andintentionsof that

9



systemare. If temporalmodallogicsof thetypediscussedabove areto betakenseriouslyas
specificationlanguages,thenthisproblemis significant.

4 Implementation

Specificationis not theendof thestory in softwaredevelopment.Oncegivena specification,
we mustimplementa systemthat is correctwith respectto this specification.Thenext issue
we consideris this move from abstractspecificationto concretecomputationalmodel. There
areat leastthreepossibilitiesfor achieving this transformation:

1. manuallyrefinethespecificationinto anexecutableform via someprincipledbut infor-
mal refinementprocess(asis thenormin mostcurrentsoftwaredevelopment);

2. somehow directlyexecuteor animatetheabstractspecification;or

3. somehow translateor compilethespecificationinto aconcretecomputationalform using
anautomatictranslationtechnique.

In thesub-sectionsthatfollow, weshallinvestigateeachof thesepossibilitiesin turn.

4.1 Refinement

At the time of writing, most software developersusestructuredbut informal techniquesto
transformspecificationsinto concreteimplementations.Probablythemostcommontechniques
in widespreadusearebasedon theideaof top-down refinement.In this approach,anabstract
systemspecificationis refinedinto anumberof smaller, lessabstractsub-systemspecifications,
which togethersatisfythe original specification.If thesesub-systemsarestill too abstractto
be implementeddirectly, then they arealso refined. The processrecursesuntil the derived
sub-systemsaresimpleenoughto be directly implemented.Throughout,we areobligedto
demonstratethateachsteprepresentsa truerefinementof themoreabstractspecificationthat
precededit. This demonstrationmay take the form of a formal proof, if our specificationis
presentedin, say, Z [60] or VDM [29]. Moreusually, justificationis by informalargument.

For functionalsystems,therefinementprocessiswell understood,andcomparativelystraight-
forward. Refinementcalculi exist, which enablethesystemdeveloperto take a pre-andpost-
conditionspecification,andfrom it systematicallyderive an implementationthroughthe use
of proof rules[43]. Part of this reasonfor this comparative simplicity is that thereis oftenan
easilyunderstandablerelationshipbetweenthe pre- andpost-conditionsthat characterizean
operationandtheprogramstructuresrequiredto implementit.

For reactivesystems,refinementis notsostraightforward.This is becausereactivesystems
mustbespecifiedin termsof their ongoingbehaviour. In contrastto pre-andpost-condition
formalisms,it is not soeasyto determinewhatprogramstructuresarerequiredto realisesuch
specifications.Therefinementproblemfor agent-basedsystems,wherespecificationsmaybe
regardedaseven moreabstractthan thosefor reactive systems,is harderstill. As a conse-
quence,researchershaveonly justbegunto investigatetherefinementof agent-basedsystems.
In thesubsectionsthatfollow, weshallreview two examplesof thiswork.

10



CaseStudy: Agentsin Z

Luck andd’Invernohave developedan agentspecificationframework in the Z language,al-
though,aswe shall see,the typesof agentsconsideredin this framework aresomewhatdif-
ferentfrom thosediscussedabove [36]. They definea four-tieredhierarchyof theentitiesthat
canexist in an agent-basedsystem.They startwith entities, which areinanimateobjects—
they have attributes(colour, weight, position),but nothingelse. They thendefineobjectsto
beentitiesthathavecapabilities(e.g.,tablesareentitiesthatarecapableof supportingthings).
Agentsarethendefinedto beobjectsthathavegoals,andarethusin somesenseactive;finally,
autonomousagentsaredefinedto beagentswith motivations.Theideais thatachaircouldbe
viewedastakingonmy goalof supportingmewhenI amusingit, andcanhencebeviewedas
anagentfor me. But we would not view a chairasanautonomousagent,sinceit hasno mo-
tivations(andcannoteasilybeattributedthem).Startingfrom this basicframework, Luck and
d’Invernogoon to examinethevariousrelationshipsthatmightexist betweenagentsof differ-
enttypes.In [37], they examinehow anagent-basedsystemspecifiedin their framework might
be implemented.They found that therewasa naturalrelationshipbetweentheir hierarchical
agentspecificationframework andobject-orientedsystems:

‘The formal definitionsof agentsand autonomousagentsrely on inheriting the
propertiesof lower-level components.In the Z notation,this is achieved through
schemainclusion[. . . ]. This is easilymodelledin ¡C++ by deriving oneclassfrom
another. [. . . ] Thuswe movefrom a principledbut abstracttheoreticalframework
througha moredetailed,yet still formal,modelof thesystem,down to anobject-
orientedimplementation,preservingthehierarchicalstructureateachstage.’ [37]

TheLuck-d’Invernoformalismis attractive,particularlyin thewaythatit capturestherelation-
shipsthatcanexist betweenagents.Theemphasisis placedon thenotionof agentsactingfor
another, ratherthanon agentsasrationalsystems,aswe discussedabove. Thetypesof agents
that theapproachallows usto developarethusinherentlydifferentfrom the ‘rational’ agents
discussedabove. So, for example,theapproachdoesnot helpus to constructagentsthatcan
interleavepro-activeandreactivebehaviour. This is largelya resultof thechosenspecification
language:Z. This languageis inherentlygearedtowardsthespecificationof operation-based,
functionalsystems.Thebasiclanguagehasno mechanismsthatallow usto easilyspecifythe
ongoingbehaviour of anagent-basedsystem3.

CaseStudy: A Methodologyfor BDI Agents

In section3,wenotedthatthebelief-desire-intention(BDI) modelis oneof themostsuccessful
generalframeworksfor agency. In [32], Kinny et al proposea four-stagedesignmethodology
for systemsof BDI agents.Themethodologyis closelylinkedto a specificrealizationof the
BDI model:thePRS architecture[18]. Themethodologymaybesummarizedasfollows:

1. Identify therelevant rolesin theapplicationdomain,andon thebasisof these,develop
anagentclasshierarchy. An examplerolemightbeweathermonitor, wherebyagenti is
requiredto makeagentj awareof theprevailing weatherconditionseveryhour.

3Thereareof courseextensionsto Z designedfor thispurpose.

11



2. Identify theresponsibilitiesassociatedwith eachrole, theservicesrequiredby andpro-
videdby therole,andthendeterminethegoalsassociatedwith eachservice.With respect
to the above example,the goalswould be to find out the currentweather, andto make
agentj awareof this information.

3. For eachgoal,determinetheplansthatmaybeusedto achieve it, andthecontext con-
ditionsunderwhich eachplanis appropriate.With respectto theaboveexample,a plan
for thegoalof makingagentj awareof theweatherconditionsmight involve sendinga
messageto j.

4. Determinethe belief structureof the system— the informationrequirementsfor each
planandgoal. With respectto theabove example,we might proposea unarypredicate
windspeed

�
x� to representthefact that thecurrentwind speedis x. A planto determine

thecurrentweatherconditionswouldneedto beableto representthis information.

Note that the analysisprocesswill be iterative, as in more traditionalmethodologies.The
outcomewill beamodelthatcloselycorrespondsto thePRS agentarchitecture.As aresult,the
movefrom end-designto implementationusingPRS is relatively simple.

Kinny et al illustratetheir methodologyby applyingit to an implementedair traffic man-
agementsystemcalledOASIS. Thissystem,currentlybeingdeployedatSidney airportin Aus-
tralia, is, by any measure,a largeanddifficult application.It is arguablythemostsignificant
agentapplicationyet developed.Thattheagentapproachhasbeensuccessfullyappliedin this
domainis encouraging;theuseof themethodologyevenmoreso.

4.2 Dir ectly ExecutingAgent Specifications

Onemajordisadvantagewith manualrefinementmethodsis thatthey introducethepossibility
of error. If no proofsareprovided, to demonstratethat eachrefinementstepis indeeda true
refinement,thenthecorrectnessof the implementationprocessdependsuponlittle morethan
the intuitions of the developer. This is clearly anundesirablestateof affairs for applications
in which correctnessis a major issue.Onepossibleway of circumventingthis problem,that
hasbeenwidely investigatedin mainstreamcomputerscience,is to get rid of the refinement
processaltogether, anddirectlyexecutethespecification.

It mightseemthatsuggestingthedirectexecutionof complex agentspecificationlanguages
is naive. (It is exactly thekind of suggestionthatdetractorsof symbolicAI hate.)Oneshould
be thereforebe very carefulaboutwhatclaimsor proposalsonemakes. However, in certain
circumstances,thedirectexecutionof agentspecificationlanguagesis possible.

Whatdoesit mean,to executea formula � of logic L? It meansgeneratinga logicalmodel,
M, for � , suchthatM 	 
�� [15]. If this coulddonewithout interferencefrom theenvironment
— if theagenthadcompletecontrolover its environment— thenexecutionwould reduceto
constructive theoremproving, wherewe show that � is satisfiableby building a modelfor � .
In realityof course,agentsarenot interference-free:they mustiteratively constructamodelin
thepresenceof input from theenvironment.Executioncanthenbeseenasa two-way iterative
process:

� environmentmakessomethingtrue;

� agentrespondsby doingsomething,i.e.,makingsomethingelsetruein themodel;

12



� environmentresponds,makingsomethingelsetrue;

� . . .

Executionof logical languagesandtheoremproving arethuscloselyrelated.This tells usthat
the executionof sufficiently rich (quantified)languagesis not possible(sinceany language
equalin expressivepower to first-orderlogic is undecidable).

A useful way to think aboutexecutionis as if the agentis playing a gameagainstthe
environment.Thespecificationrepresentsthegoalof thegame:theagentmustkeepthegoal
satisfied,while the environmenttries to prevent the agentdoing so. The gameis playedby
agentandenvironmenttakingit in turnsto build a little moreof themodel.If thespecification
ever becomesfalsein the (partial) model,thenthe agentloses. In real reactive systems,the
gameis never over: the agentmustcontinueto play forever. Of course,somespecifications
(logically inconsistentones)cannotever besatisfied.A winningstrategy for building models
from (satisfiable)agentspecificationsin thepresenceof arbitraryinput from theenvironment
is anexecutionalgorithmfor thelogic.

CaseStudy: Concurrent METATEM

ConcurrentMETATEM is a programminglanguagefor multi-agentsystems,that is basedon
theideaof directly executinglineartime temporallogic agentspecifications[16, 14]. A Con-
currentMETATEM systemcontainsa numberof concurrentlyexecutingagents,eachof which
is programmedby giving it a temporallogic specificationof the behaviour it is intendedthe
agentshouldexhibit. An agentspecificationhasthe form � i Pi 
 Fi, wherePi is a temporal
logic formulareferringonly to thepresentor past,andFi is a temporallogic formulareferring
to thepresentor future.ThePi 
 Fi formulaeareknown asrules. Thebasicideafor executing
suchaspecificationmaybesummedup in thefollowing slogan:

on thebasisof thepastdo thefuture.

Thuseachrule is continuallymatchedagainstan internal,recordedhistory, andif a matchis
found, thenthe rule fires. If a rule fires, thenany variablesin the future time partareinstan-
tiated,andthe future time part thenbecomesa commitmentthat the agentwill subsequently
attemptto satisfy. Satisfyingacommitmenttypically meansmakingsomepredicatetruewithin
theagent.Hereis asimpleexampleof aConcurrentMETATEM agentdefinition:

ask
�
x� 
 give

�
x����

ask
�
x��� �

give
�
x��� � ask

�
x��� 
 �

give
�
x�

give
�
x ��� give

�
y� 
 �

x 
 y�
Theagentin this exampleis a controllerfor a resourcethat is infinitely renewable,but which
mayonly bepossessedby oneagentat any giventime. Thecontrollermustthereforeenforce
mutualexclusion. The predicateask

�
x � meansthat agentx hasasked for the resource.The

predicategive
�
x� meansthat the resourcecontrollerhasgiven the resourceto agentx. The

resourcecontroller is assumedto be the only agentable to ‘give’ the resource. However,
many agentsmayaskfor theresourcesimultaneously. Thethreerulesthatdefinethis agent’s
behaviour maybesummarizedasfollows:

Rule1: if someoneasks,theneventuallygive;

13



Rule2: don’t giveunlesssomeonehasaskedsinceyou lastgave;and

Rule3: if you give to two people,thenthey mustbe the sameperson(i.e., don’t give to more
thanonepersonata time).

NotethatConcurrentMETATEM agentscancommunicateby asynchronousbroadcastmessage
passing,thoughthedetailsarenot importanthere.

4.3 Compiling Agent Specifications

An alternative to direct executionis compilation. In this scheme,we take our abstractspec-
ification, andtransformit into a concretecomputationalmodelvia someautomaticsynthesis
process.Themainperceivedadvantagesof compilationover directexecutionarein run-time
efficiency. Directexecutionof anagentspecification,asin ConcurrentMETATEM, above,typi-
cally involvesmanipulatingasymbolicrepresentationof thespecificationatruntime. Thisma-
nipulationgenerallycorrespondsto reasoningof someform, which is computationallycostly
(andin many cases,simply impracticablefor systemsthat mustoperatein anything like real
time). In contrast,compilationapproachesaim to reduceabstractsymbolicspecificationsto a
muchsimplercomputationalmodel,which requiresno symbolicrepresentation.The‘reason-
ing’ work is thusdoneoff-line, at compile-time;executionof thecompiledsystemcanthenbe
donewith little or no run-timesymbolicreasoning.As a result,executionis muchfaster. The
advantagesof compilationover directexecutionarethusthoseof compilationover interpreta-
tion in mainstreamprogramming.

Compilationapproachesusuallydependupon the closerelationshipbetweenmodelsfor
temporal/modallogic (which are typically labeledgraphsof somekind), andautomata-like
finite statemachines. Crudely, the idea is to take a specification� , and do a constructive
proof of the implementabilityof � , whereinwe show that the specificationis satisfiableby
systematicallyattemptingto build a modelfor it. If the constructionprocesssucceeds,then
thespecificationis satisfiable,andwe have a modelto prove it. Otherwise,thespecificationis
unsatisfiable.If we have a model,thenwe ‘readoff ’ the automatonthat implements� from
its correspondingmodel. The mostcommonapproachto constructive proof is the semantic
tableauxmethodof Smullyan[59].

In mainstreamcomputerscience,thecompilationapproachto automaticprogramsynthesis
hasbeeninvestigatedby a numberof researchers.Perhapstheclosestto our view is thework
of PnueliandRosner[46] on theautomaticsynthesisof reactivesystemsfrom branchingtime
temporallogic specifications.The goal of their work is to generatereactive systems,which
sharemany of the propertiesof our agents(the main differencebeing that reactive systems
arenot generallyrequiredto becapableof rationaldecisionmakingin theway we described
above). To do this, they specifya reactivesystemin termsof a first-orderbranchingtime tem-
poral logic formula � x � y A � � x � y � : the predicate� characterisesthe relationshipbetween
inputsto thesystem(x) andoutputs(y). Inputsmaybethoughtof assequencesof environment
states,andoutputsascorrespondingsequencesof actions.TheA is a branchingtime temporal
logic connective meaning‘on all paths’,or ‘in all possiblefutures’. The specificationis in-
tendedto expressthefactthat in all possiblefutures,thedesiredrelationship� holdsbetween
theinputsto thesystem,x, andits outputs,y. Thesynthesisprocessitself is rathercomplex: it
involvesgeneratinga Rabintreeautomaton,andthencheckingthis automatonfor emptiness.
PnueliandRosnershow thatthetimecomplexity of thesynthesisprocessis doubleexponential
in thesizeof thespecification,i.e.,O

��� � c � n � , wherec is aconstantandn 
�	���	 is thesizeof the

14



specification� . Thesizeof thesynthesizedprogram(thenumberof statesit contains)is of the
samecomplexity.

ThePnueli-Rosnertechniqueis rathersimilar to (andin factdependsupon)techniquesde-
velopedbyWolper, Vardi,andcolleaguesfor synthesizingBüchiautomatafromlineartemporal
logic specifications[61]. Büchi automataarethosethatcanrecognise� -regular expressions:
regular expressionsthat may containinfinite repetition. A standardresult in temporallogic
theoryis thata formula � of lineartime temporallogic is satisfiableif andonly if thereexists
a Büchi automatonthat acceptsjust the sequencesthat satisfy � . Intuitively, this is because
thesequencesover which lineartime temporallogic is interpretedcanbeviewedas � -regular
expressions.This resultyields a decisionprocedurefor linear time temporallogic: to deter-
minewhethera formula � is satisfiable,constructanautomatonthatacceptsjust the(infinite)
sequencesthat correspondto modelsof � ; if the setof suchsequencesis empty, then � is
unsatisfiable.Thetechniquefor constructinganautomatonfrom thecorrespondingformulais
closelybasedonWolper’s tableauproofmethodfor temporallogic [62].

Similarautomaticsynthesistechniqueshavealsobeendeployedto developconcurrentsys-
tem skeletonsfrom temporallogic specifications.Mannaand Wolper presentan algorithm
that takesasinput a linear time temporallogic specificationof the synchronizationpart of a
concurrentsystem,andgeneratesasoutputa CSPprogramskeleton([25]) that realizesthe
specification[41]. The ideais that the functionalityof a concurrentsystemcangenerallybe
dividedinto two parts:a functionalpart,which actuallyperformstherequiredcomputationin
theprogram,anda synchronizationpart,whichensuresthatthesystemcomponentscooperate
in the correctway. For example,thesynchronizationpartwill be responsiblefor any mutual
exclusionthat is required. The synthesisalgorithm, (like the synthesisalgorithmfor Büchi
automata,above), is basedon Wolper’s tableauproof methodfor temporallogic [62]. Very
similarwork is reportedby ClarkeandEmerson[8]: they synthesizesynchronizationskeletons
from branchingtime temporallogic (CTL) specifications.

CaseStudy: SituatedAutomata

Perhapsthe best-known exampleof this approachto agentdevelopmentis the situatedau-
tomataparadigmof RosenscheinandKaelbling [52, 31]. In this approach,an agenthastwo
maincomponents:

� a perceptionpart,which is responsiblefor observingtheenvironment,andupdatingthe
internalstateof theagent;and

� an action part, which is responsiblefor decidingwhat actionto perform,basedon the
internalstateof theagent.

RosenscheinandKaelblingdevelopedtwo programsto supportthedevelopmentof thepercep-
tion andactioncomponentsof anagentrespectively. The RULER programtakesa declarative
perceptionspecificationandcompilesit down to a finite statemachine.The specificationis
givenin termsof a theoryof knowledge.Thesemanticsof knowledgein thedeclarativespeci-
ficationlanguagearegivenin termsof possibleworlds,in thewaydescribedabove. Crucially,
however, thepossibleworldsunderlyingthis logic aregivena precisecomputationalinterpre-
tation,in termsof thestatesof afinite statemachine.It is thispreciserelationshipthatpermits
thesynthesisprocessto takeplace.

15



Theactionpartof anagentin RosenscheinandKaelbling’s framework is specifiedin terms
of goal reductionrules, which encodeinformationabouthow to achieve goals. The GAPPS

programtakesasinput a goalspecification,anda setof goalreductionrules,andgeneratesas
outputasetof situationactionrules, whichmaybethoughtof asa lookuptable,definingwhat
theagentshoulddo undervariouscircumstances,in orderto achieve thegoal. Theprocessof
decidingwhatto do is thenvery simplein computationalterms,involving no reasoningat all.
(A similar technique,calleduniversalplans, wasdevelopedby Schoppers[54].)

4.4 Discussion

Structuredbut informal refinementtechniquesarethe mainstayof real-world softwareengi-
neering. If agent-orientedtechniquesareever to becomewidely usedoutsidethe academic
community, theninformal, structuredmethodsfor agent-baseddevelopmentwill beessential.
Onepossibilityfor suchtechniques,followedby Luck andd’Inverno,is to useastandardspec-
ification technique(in their case,Z), and usetraditional refinementmethods(in their case,
object-orienteddevelopment)to transformthespecificationinto an implementation.This ap-
proachhastheadvantageof beingfamiliar to a muchlargeruser-basethanentirelynew tech-
niques,but suffers from thedisadvantageof presentingtheuserwith no featuresthatmake it
particularlywell-suitedto agentspecification.It seemscertainthat therewill be muchmore
work on manualrefinementtechniquesfor agent-basedsystemsin the immediatefuture, but
exactlywhatform thesetechniqueswill take is notclear.

Now considerthepossibilityof directlyexecutingagentspecifications.A numberof prob-
lems immediatelysuggestthemselves. The first is that of finding a concretecomputational
interpretationfor theagentspecificationlanguagein question.To seewhatwe meanby this,
considermodelsfor theagentspecificationlanguagein ConcurrentMETATEM. Thesearevery
simple: essentiallyjust lineardiscretesequencesof states.Temporallogic is (amongstother
things)simplya languagefor expressingconstraintsthatmusthold betweensuccessivestates.
Executionin ConcurrentMETATEM is thusa processof generatingconstraintsaspast-time
antecedentsaresatisfied,andthentrying to build a next statethat satisfiestheseconstraints.
Constraintsareexpressedin temporallogic, which implies that they may only be in certain,
regularforms. Becauseof this, it is possibleto deviseanalgorithmthatis guaranteedto build
anext stateif it is possibleto doso.Suchanalgorithmis describedin [3].

The agentspecificationlanguageuponwhich ConcurrentMETATEM is basedthushasa
concretecomputationalmodel,anda comparatively simpleexecutionalgorithm.Contrastthis
stateof affairs with the kinds of temporalmodalagentspecificationlanguagesdiscussedin
section3, wherewe have not only a temporaldimensionto the logic, but alsomodalitiesfor
referringto beliefs,desires,andsoon. In general,thesemodelshave ungroundedsemantics.
That is, thesemanticstructuresthatunderpintheselogics(typically accessibilityrelationsfor
eachof themodaloperators)have no concretecomputationalinterpretation.As a result,it is
notclearhow suchagentspecificationlanguagesmightbeexecuted.

Anotherobviousproblemis thatexecutiontechniquesbasedontheoremproving areinher-
ently limited whenappliedto sufficiently expressive(first-order)languages,asfirst-orderlogic
is undecidable.However, complexity is a problemevenin thepropositionalcase.For ‘vanilla’
propositionallogic, thedecisionproblemfor satisfiabilityis NP-complete[13, p72]; for linear
temporallogic, theproblemis PSPACE-complete[58]; for simplemodallogicsof knowledge,
theproblemis NP-complete,andfor morecomplex modallogicsof knowledge,theproblemis
EXPTIME-complete[13,p73]; for logicsthatcombinetemporaland(S5)modalaspects,thede-

16



cisionproblemvariesfrom PSPACE-completein thesimplestcaseto � �� -complete,(andhence
undecidable) in thepropositionalcase,dependingonwhatsemanticassumptionsaremade[13,
p289].

Turning to automaticsynthesis,we find that the techniquesdescribedabove have been
developedprimarily for propositionalspecificationlanguages.If we attemptto extendthese
techniquesto moreexpressive,first-orderspecificationlanguages,thenweagainfind ourselves
comingup againstthe undecidabilityof quantifiedlogic. Even in the propositionalcase,the
theoreticalcomplexity of theoremproving for modalandtemporallogics is likely to limit the
effectivenessof compilationtechniques:givenanagentspecificationof size1000,a synthesis
algorithmthatrunsin exponentialtimewhenusedoff-line is nomoreusefulthananexecution
algorithmwhich runsin exponentialtimeon-line.

Anotherproblemwith respectto synthesistechniquesis thatthey typically resultin finite-
state,automatalike machines,thatarestrictly lesspowerful thanTuring machines.In partic-
ular, thesystemsgeneratedby theprocessesoutlinedabove cannotmodify their behaviour at
run-time. In short,they cannotlearn.While for many applications,this is acceptable— even
desirable— for equallymany others,it is not. In expertassistantagents,of thetypedescribed
in [39], learningis prettymuchtheraisond’etre. Attemptsto addressthis issuearedescribed
in [30].

5 Verification

Oncewe have developeda concretesystem,we needto show that this systemis correctwith
respectto ouroriginalspecification.Thisprocessis known asverification, andit is particularly
importantif we have introducedany informality into thedevelopmentprocess.For example,
any manualrefinement,donewithout a formal proof of refinementcorrectness,createsthe
possibilityof a faulty transformationfrom specificationto implementation.Verificationis the
processof convincingourselvesthatthetransformationwassound.We candivideapproaches
to theverificationof systemsinto two broadclasses:(1) axiomatic; and(2) semantic(model
checking). In the subsectionsthat follow, we shall look at the way in which thesetwo ap-
proacheshaveevidencedthemselvesin agent-basedsystems.

5.1 Axiomatic Approaches

Axiomatic approachesto programverificationwerethefirst to enterthemainstreamof com-
puterscience,with thework of Hoarein the late1960s[24]. Axiomatic verificationrequires
that we cantake our concreteprogram,andfrom this programsystematicallyderive a logi-
cal theorythat representsthe behaviour of the program.Call this the programtheory. If the
programtheoryis expressedin thesamelogical languageastheoriginalspecification,thenver-
ification reducesto a proof problem:show thatthespecificationis a theoremof (equivalently,
is a logical consequenceof) theprogramtheory.

Thedevelopmentof a programtheoryis madefeasibleby axiomatizingtheprogramming
languagein which the systemis implemented.For example,Hoarelogic givesus moreor
lessan axiom for every statementtype in a simple PASCAL-like language.Oncegiven the
axiomatization,theprogramtheorycanbederivedfrom theprogramtext in asystematicway.

Perhapsthemostrelevantwork from mainstreamcomputerscienceis thespecificationand
verificationof reactive systemsusingtemporallogic, in theway pioneeredby Pnueli,Manna,

17



and colleagues[40]. The idea is that the computationsof reactive systemsare infinite se-
quences,which correspondto modelsfor linear temporallogic4. Temporallogic canbeused
both to developa systemspecification,andto axiomatizea programminglanguage.This ax-
iomatizationcanthenbeusedtosystematicallyderivethetheoryof aprogramfromtheprogram
text. Boththespecificationandtheprogramtheorywill thenbeencodedin temporallogic, and
verificationhencebecomesaproofproblemin temporallogic.

Comparatively little work hasbeencarriedout within theagent-basedsystemscommunity
onaxiomatizingmulti-agentenvironments.Weshallreview justoneapproach.

CaseStudy: Axiomatizing two Multi-Agent Languages

In [63], an axiomaticapproachto the verificationof multi-agentsystemswasproposed.Es-
sentially, theideawasto usea temporalbelief logic to axiomatizethepropertiesof two multi-
agentprogramminglanguages.Givensuchanaxiomatization,a programtheoryrepresenting
thepropertiesof thesystemcouldbesystematicallyderivedin theway indicatedabove.

A temporalbelieflogic wasusedfor two reasons.First,atemporalcomponentwasrequired
because,aswe observed above, we needto capturethe ongoingbehaviour of a multi-agent
system.A belief componentwasusedbecausetheagentswe wish to verify areeachsymbolic
AI systemsin their own right. That is, eachagentis a symbolic reasoningsystem,which
includesa representationof its environmentanddesiredbehaviour. A belief componentin the
logic allowsusto capturethesymbolicrepresentationspresentwithin eachagent.

Thetwo multi-agentprogramminglanguagesthatwereaxiomatizedin thetemporalbelief
logic wereShoham’s AGENT0 [57], andFisher’sConcurrentMETATEM(seeabove). Thebasic
approachwasasfollows:

1. First,asimpleabstractmodelwasdevelopedof symbolicAI agents.Thismodelcaptures
the fact that agentsaresymbolic reasoningsystems,capableof communication.The
modelgivesan accountof how agentsmight changestate,andwhat a computationof
sucha systemmight look like.

2. Thehistoriestracedout in theexecutionof suchasystemwereusedasthesemanticbasis
for a temporalbelief logic. This logic allowsusto expresspropertiesof agentsmodelled
at stage(1).

3. The temporalbelief logic wasusedto axiomatizethe propertiesof a multi-agentpro-
gramminglanguage.This axiomatizationwasthenusedto developtheprogramtheory
of amulti-agentsystem.

4. The proof theoryof the temporalbelief logic wasusedto verify propertiesof the sys-
tem[65].

Note that this approachrelieson the operationof agentsbeingsufficiently simple that their
propertiescanbeaxiomatizedin thelogic. It worksfor Shoham’s AGENT0 andFisher’s Con-
currentMETATEM largelybecausetheselanguageshaveasimplesemantics,closelyrelatedto
rule-basedsystems,which in turn have a simplelogical semantics.For morecomplex agents,

4Thesetof all computationsof areactivesystemis atree-likestructure,correspondingtoamodelfor branching
time temporallogic [11].

18



anaxiomatizationis not sostraightforward. Also, capturingthesemanticsof concurrentexe-
cutionof agentsis not easy(it is, of course,anareaof ongoingresearchin computerscience
generally).

5.2 SemanticApproaches:Model Checking

Ultimately, axiomaticverificationreducesto a proof problem. Axiomatic approachesto ver-
ification are thus inherentlylimited by the difficulty of this proof problem. Proofsarehard
enough,even in classicallogic; the addition of temporaland modal connectives to a logic
makesthe problemconsiderablyharder. For this reason,moreefficient approachesto verifi-
cationhave beensought.Oneparticularlysuccessfulapproachis thatof modelchecking. As
the namesuggests,whereasaxiomaticapproachesgenerallyrely on syntacticproof, model
checkingapproachesarebasedon thesemanticsof thespecificationlanguage.

Themodelcheckingproblem,in abstract,is quitesimple:givenaformula � of languageL,
anda modelM for L, determinewhetheror not � is valid in M, i.e., whetheror not M 	 
 L � .
Model checking-basedverificationhasbeenstudiedin connectionwith temporallogic [35].
Thetechniqueonceagainreliesuponthecloserelationshipbetweenmodelsfor temporallogic
and finite-statemachines. Supposethat � is the specificationfor somesystem,and  is a
programthatclaimsto implement� . Then,to determinewhetheror not  truly implements� ,
weproceedasfollows:

� take  , and from it generatea modelM ! that correspondsto  , in the sensethat M !
encodesall thepossiblecomputationsof  ;

� determinewhetheror not M !"	
#� , i.e., whetherthespecificationformula � is valid in
M ! ; theprogram satisfiesthespecification� just in casetheansweris ‘yes’.

The main advantageof modelcheckingover axiomaticverificationis in complexity: model
checkingusingthe branchingtime temporallogic CTL ([8]) canbe donein polynomialtime
(O
� 	$��	&%'	M 	(� , where 	$��	 is the sizeof the formula to be checked,and 	M 	 is the sizeof the

modelagainstwhich � is to bechecked— thenumberof statesit contains)5.

CaseStudy: Model CheckingBDI Systems

In [50], RaoandGeorgeff presentanalgorithmfor modelcheckingAOPsystems.More pre-
cisely, they give an algorithmfor taking a logical model for their (propositional)BDI agent
specificationlanguage,anda formulaof thelanguage,anddeterminingwhethertheformulais
valid in themodel. The techniqueis closelybasedon modelcheckingalgorithmsfor normal
modallogics[21]. They show thatdespitetheinclusionof threeextra modalities,(for beliefs,
desires,andintentions),into theCTL branchingtimeframework, thealgorithmis still quiteeffi-
cient,runningin polynomialtime. Sothesecondstepof thetwo-stagemodelcheckingprocess
describedabovecanstill bedoneefficiently. However, it is notclearhow thefirst stepmightbe
realisedfor BDI logics. Wheredoesthelogical modelcharacterizinganagentactuallycomes
from — canit bederivedfrom anarbitraryprogram , asin mainstreamcomputerscience?To
do this,we wouldneedto takeaprogramimplementedin, say, PASCAL, andfrom it derive the

5Perhapssurprisingly, modelcheckingfor linear temporallogic is actuallymorecomplex thanfor branching
time(PSPACE-complete).

19



belief,desire,andintentionaccessibilityrelationsthatareusedto givea semanticsto theBDI
componentof thelogic. Because,aswenotedearlier, thereis noclearrelationshipbetweenthe
BDI logic andtheconcretecomputationalmodelsusedto implementagents,it is notclearhow
suchamodelcouldbederived.

5.3 Discussion

Axiomatic approachesto the verificationof multi-agentsystemssuffer from two main prob-
lems. First, the temporalverificationof reactive systemsreliesupona simplemodelof con-
currency, wheretheactionsthatprogramsperformareassumedto beatomic.Wecannotmake
this assumptionwhenwe move from programsto agents.The actionswe think of agentsas
performingwill generallybemuchmorecoarsegrained.As a result,we needa morerealistic
modelof concurrency. Onepossibility, investigatedin [64], is to modelagentexecutioncycles
asintervalsover the realnumbers,in thestyleof the temporallogic of reals[4]. Thesecond
problemis thedifficulty of theproof problemfor agentspecificationlanguages.As we noted
in section3, thetheoreticalcomplexity of proof for many of theselogicsis quitedaunting.

With respectto model-checkingapproaches,the mainproblem,aswe indicatedabove, is
againthe issueof ungroundedsemanticsfor agentspecificationlanguages.If we cannottake
anarbitraryprogramandsay, for thisprogram,whatits beliefs,desires,andintentionsare,then
it is notclearhow wemightverify thatthisprogramsatisfiedaspecificationexpressedin terms
of suchconstructs.

6 Conclusions

Agent-basedsystemsarea promisingdevelopment,not just for AI, but for computerscience
generally. If intelligent agenttechnologysucceeds,then it will provide a solution to many
importantbut difficult softwareproblems.Thechallengenow beforetheintelligentagentcom-
munity is to ensurethatthetechniquesdevelopedparticularlyover thepastdecadefor building
rationalagentsmakeasmoothtransitionfrom theresearchlabto thedeskof theeverydaycom-
puterworker. This is by no meanseasy, astheexpertsystemsexperiencedemonstrates.If the
communityis to succeedin thisendeavour, thenit will needto takeveryseriouslythecomment
by OrenEtzioni, thatopenedthis paper:agentsaremorea problemof computerscienceand
softwareengineeringthanAI.

In thispaper, wehavesetouta roadmapfor work in agent-basedsoftwareengineering.We
have examinedthe fundamentalproblemsof specification,implementation,and verification
from thepoint of view of agent-basedsystems.Throughout,we have beencarefulto draw as
many parallelsaspossiblewith moremainstreamsoftwareengineering.

Acknowledgments

I would like to thankMichaelFisherfor the(many) discussionswehavehadonsoftwareengi-
neeringfor agent-basedsystems,andalsoAdamKellettandNick Jenningsfor theircomments
on thispaper. Thiswork wassupportedby theEPSRC undergrantGR/K57282.

20



References

[1] G. Agha. ACTORS:A Model of Concurrent Computationin DistributedSystems. The
MIT Press:Cambridge,MA, 1986.

[2] J.F. Allen. Towardsageneraltheoryof actionandtime.Artificial Intelligence, 23(2):123–
154,1984.

[3] H. Barringer, M. Fisher, D. Gabbay, G. Gough,andR. Owens.METATEM: A framework
for programmingin temporallogic. In REXWorkshopon StepwiseRefinementof Dis-
tributedSystems:Models,Formalisms,Correctness(LNCSVolume430), pages94–129.
Springer-Verlag:Heidelberg, Germany, June1989.

[4] H. Barringer, R. Kuiper, andA. Pnueli. A really abstractconcurrentmodelandits tem-
poral logic. In Proceedingsof theThirteenthACM Symposiumon thePrinciplesof Pro-
grammingLanguages, pages173–183,1986.

[5] N. BelnapandM. Perloff. Seeingto it that: a canonicalform for agentives. Theoria,
54:175–199,1988.

[6] A. H. BondandL. Gasser, editors.Readingsin DistributedArtificial Intelligence. Morgan
KaufmannPublishers:SanMateo,CA, 1988.

[7] B. Chellas. Modal Logic: An Introduction. CambridgeUniversity Press:Cambridge,
England,1980.

[8] E.M. ClarkeandE.A. Emerson.Designandsynthesisof synchronizationskeletonsusing
branchingtime temporallogic. In D. Kozen,editor, Logicsof Programs— Proceedings
1981(LNCSVolume131), pages52–71.Springer-Verlag:Heidelberg, Germany, 1981.

[9] P. R. CohenandH. J. Levesque.Intentionis choicewith commitment.Artificial Intelli-
gence, 42:213–261,1990.

[10] D. C. Dennett.TheIntentionalStance. TheMIT Press:Cambridge,MA, 1987.

[11] E. A. EmersonandJ. Y. Halpern. ‘Sometimes’and‘not never’ revisited: on branching
timeversuslineartime temporallogic. Journalof theACM, 33(1):151–178,1986.

[12] O.Etzioni. Moving uptheinformationfoodchain:Deploying softbotsontheworld-wide
web. In Proceedingsof the ThirteenthNational Conferenceon Artificial Intelligence
(AAAI-96), Portland,OR,1996.

[13] R. Fagin,J. Y. Halpern,Y. Moses,andM. Y. Vardi. ReasoningAboutKnowledge. The
MIT Press:Cambridge,MA, 1995.

[14] M. Fisher. A survey of ConcurrentMETATEM — the languageandits applications.In
D. M. GabbayandH. J.Ohlbach,editors,Temporal Logic —Proceedingsof theFirst In-
ternationalConference(LNAI Volume827), pages480–505.Springer-Verlag:Heidelberg,
Germany, July1994.

[15] M. Fisher. Executabletemporallogic. TheKnowledgeEngineeringReview, 1996.

21



[16] M. FisherandM. Wooldridge.Executabletemporallogic for distributedA.I. In Proceed-
ingsof theTwelfthInternationalWorkshoponDistributedArtificial Intelligence(IWDAI-
93), pages131–142,HiddenValley, PA, May 1993.

[17] M. R. GeneserethandS. P. Ketchpel. Softwareagents. Communicationsof the ACM,
37(7):48–53,July1994.

[18] M. P. Georgeff andA. L. Lansky. Reactivereasoningandplanning.In Proceedingsof the
SixthNationalConferenceon Artificial Intelligence(AAAI-87), pages677–682,Seattle,
WA, 1987.

[19] R. V. GuhaandD. B. Lenat. Enablingagentsto work together. Communicationsof the
ACM, 37(7):127–142,July1994.

[20] J.Y. Halpern.Knowledgeandcommonknowledgein adistributedenvironment.Journal
of theACM, 37(3),1990.

[21] J.Y. HalpernandM. Y. Vardi. Model checkingversustheoremproving: A manifesto.In
V. Lifschitz, editor, AI andMathematicalTheoryof Computation— Papers in Honor of
JohnMcCarthy. AcademicPress,1991.

[22] D. Harel. Dynamiclogic. In D. GabbayandF. Guenther, editors,Handbookof Philo-
sophicalLogic VolumeII — Extensionsof ClassicalLogic, pages497–604.D. Reidel
PublishingCompany: Dordrecht,TheNetherlands,1984.(Syntheselibrary Volume164).

[23] F. Hayes-Roth,D. A. Waterman,and D. B. Lenat, editors. Building Expert Systems.
Addison-Wesley: Reading,MA, 1983.

[24] C. A. R. Hoare.An axiomaticbasisfor computerprogramming.Communicationsof the
ACM, 12(10):576–583,1969.

[25] C. A. R. Hoare. Communicatingsequentialprocesses.Communicationsof the ACM,
21:666–677,1978.

[26] P. Jackson.Introductionto ExpertSystems. Addison-Wesley: Reading,MA, 1986.

[27] N. R. Jennings,J.Corera,I. Laresgoiti,E. H. Mamdani,F. Perriolat,P. Skarek,andL. Z.
Varga.UsingARCHONto developreal-world DAI applicationsfor electricitytransporta-
tion managementandparticleacceleratorcontrol. IEEEExpert, dec1996.

[28] N. R. JenningsandM. Wooldridge.Applying agenttechnology. AppliedArtificial Intel-
ligence, 9(6):357–370,1995.

[29] C. B. Jones. SystematicSoftware DevelopmentusingVDM (secondedition). Prentice
Hall, 1990.

[30] L. P. Kaelbling.Learningin EmbeddedSystems. TheMIT Press:Cambridge,MA, 1993.

[31] L. P. Kaelbling and S. J. Rosenschein.Action and planningin embeddedagents. In
P. Maes,editor, DesigningAutonomousAgents, pages35–48.TheMIT Press:Cambridge,
MA, 1990.

22



[32] D. Kinny, M. Georgeff, andA. Rao. A methodologyandmodellingtechniquefor sys-
temsof BDI agents. In W. Van de Veldeand J. W. Perram,editors,AgentsBreaking
Away: Proceedingsof theSeventhEuropeanWorkshoponModellingAutonomousAgents
in a Multi-AgentWorld, (LNAI Volume1038), pages56–71.Springer-Verlag:Heidelberg,
Germany, 1996.

[33] K. Konolige. A DeductionModel of Belief. PitmanPublishing: LondonandMorgan
Kaufmann:SanMateo,CA, 1986.

[34] H. J.Levesque,P. R.Cohen,andJ.H. T. Nunes.Onactingtogether. In Proceedingsof the
Eighth National Conferenceon Artificial Intelligence(AAAI-90), pages94–99,Boston,
MA, 1990.

[35] O.LichtensteinandA. Pnueli.Checkingthatfinite stateconcurrentprogramssatisfytheir
linearspecification.In Proceedingsof theEleventhACM SymposiumonthePrinciplesof
ProgrammingLanguages, pages97–107,1984.

[36] M. Luck andM. d’Inverno. A formal framework for agency andautonomy. In Proceed-
ings of the First InternationalConferenceon Multi-Agent Systems(ICMAS-95), pages
254–260,SanFrancisco,CA, June1995.

[37] M. Luck, N. Griffiths,andM. d’Inverno.Fromagenttheoryto agentconstrution:A case
study. In Intelligent AgentsIII — Proceedingsof the Third InternationalWorkshopon
AgentTheories,Architectures,andLanguages(ATAL-96). Springer-Verlag: Heidelberg,
Germany, 1997.

[38] P. Maes. Situatedagentscan have goals. In P. Maes,editor, DesigningAutonomous
Agents, pages49–70.TheMIT Press:Cambridge,MA, 1990.

[39] P. Maes. Agentsthat reducework and informationoverload. Communicationsof the
ACM, 37(7):31–40,July1994.

[40] Z. MannaandA. Pnueli. Temporal Verificationof ReactiveSystems— Safety. Springer-
Verlag:Heidelberg, Germany, 1995.

[41] Z. MannaandP. Wolper. Synthesisof communicatingprocessesfrom temporallogic
specifications.ACM TransactionsonProgrammingLanguagesandSystems, 6(1):68–93,
January1984.

[42] J. J.Ch.Meyer andR. J.Wieringa,editors.DeonticLogic in ComputerScience— Nor-
mativeSystemSpecification. JohnWiley & Sons,1993.

[43] C. Morgan. Programmingfrom Specifications(secondedition). PrenticeHall Interna-
tional: HemelHempstead,England,1994.

[44] Inc. NeXT Computer. Object-OrientedProgrammingand the ObjectiveC Language.
Addison-Wesley: Reading,MA, 1993.

[45] A. Pnueli.Specificationanddevelopmentof reactivesystems.In InformationProcessing
86. Elsevier SciencePublishersB.V.: Amsterdam,TheNetherlands,1986.

23



[46] A. PnueliandR. Rosner. On thesynthesisof a reactive module. In Proceedingsof the
SixteenthACM SymposiumonthePrinciplesof ProgrammingLanguages(POPL), pages
179–190,January1989.

[47] A. S.RaoandM. Georgeff. BDI Agents:from theoryto practice.In Proceedingsof the
First InternationalConferenceonMulti-AgentSystems(ICMAS-95), pages312–319,San
Francisco,CA, June1995.

[48] A. S. RaoandM. P. Georgeff. Modeling rationalagentswithin a BDI-architecture.In
R. FikesandE. Sandewall, editors,Proceedingsof Knowledge RepresentationandRea-
soning(KR&R-91), pages473–484.MorganKaufmannPublishers:SanMateo,CA, April
1991.

[49] A. S. RaoandM. P. Georgeff. An abstractarchitecturefor rationalagents.In C. Rich,
W. Swartout,andB. Nebel,editors,Proceedingsof Knowledge RepresentationandRea-
soning(KR&R-92), pages439–449,1992.

[50] A. S.RaoandM. P. Georgeff. A model-theoreticapproachto theverificationof situated
reasoningsystems.In Proceedingsof the ThirteenthInternationalJoint Conferenceon
Artificial Intelligence(IJCAI-93), pages318–324,Chamb́ery,France,1993.

[51] A. S. RaoandM. P. Georgeff. Formalmodelsanddecisionproceduresfor multi-agent
systems.TechnicalNote61, AustralianAI Institute,Level 6, 171La TrobeStreet,Mel-
bourne,Australia,June1995.

[52] S. Rosenscheinand L. P. Kaelbling. The synthesisof digital machineswith provable
epistemicproperties. In J. Y. Halpern,editor, Proceedingsof the 1986Conferenceon
Theoretical Aspectsof ReasoningAboutKnowledge, pages83–98.MorganKaufmann
Publishers:SanMateo,CA, 1986.

[53] S. RussellandP. Norvig. Artificial Intelligence: A ModernApproach. Prentice-Hall,
1995.

[54] M. J. Schoppers.Universalplansfor reactive robotsin unpredictableenvironments. In
Proceedingsof theTenthInternationalJoint ConferenceonArtificial Intelligence(IJCAI-
87), pages1039–1046,Milan, Italy, 1987.

[55] K. Segerberg. Bringing it about.Journalof PhilosophicalLogic, 18:327–347,1989.

[56] Y. Shoham.ReasoningAboutChange: TimeandCausationfromtheStandpointof Arti-
ficial Intelligence. TheMIT Press:Cambridge,MA, 1988.

[57] Y. Shoham.Agent-orientedprogramming.Artificial Intelligence, 60(1):51–92,1993.

[58] A. P. SistlaandE. M. Clarke. The complexity of propositionallinear temporallogics.
Journalof theACM, 32(3):733–749,1985.

[59] R. M. Smullyan.First-OrderLogic. Springer-Verlag:Heidelberg, Germany, 1968.

[60] M. Spivey. TheZ Notation(secondedition). PrenticeHall International:HemelHemp-
stead,England,1992.

24



[61] M. Y. Vardi and P. Wolper. Reasoningaboutinfinite computations. Informationand
Computation, 115(1):1–37,1994.

[62] P. Wolper. The tableaumethodfor temporallogic: An overview. Logiqueet Analyse,
110–111,1985.

[63] M. Wooldridge.TheLogical Modellingof ComputationalMulti-AgentSystems. PhDthe-
sis,Departmentof Computation,UMIST, Manchester, UK, October1992. (Also avail-
able as TechnicalReportMMU–DOC–94–01,Departmentof Computing,Manchester
MetropolitanUniversity, ChesterSt.,Manchester, UK).

[64] M. Wooldridge. This is MYWORLD: The logic of an agent-orientedtestbedfor DAI.
In M. WooldridgeandN. R. Jennings,editors,Intelligent Agents: Theories,Architec-
tures,andLanguages(LNAI Volume890), pages160–178.Springer-Verlag:Heidelberg,
Germany, January1995.

[65] M. WooldridgeandM. Fisher. A decisionprocedurefor a temporalbelief logic. In D. M.
GabbayandH. J. Ohlbach,editors,Temporal Logic — Proceedingsof the First Inter-
national Conference(LNAI Volume827), pages317–331.Springer-Verlag: Heidelberg,
Germany, July1994.

[66] M. WooldridgeandN. R. Jennings.Intelligentagents:Theoryandpractice.TheKnowl-
edgeEngineeringReview, 10(2):115–152,1995.

25


