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Over the past decade, concepts and techniques from game theory have been both in� uential and 
successful in AI—and indeed, in computer science generally.

intelligent. But our decisions are rarely independent 
of those of others: to successfully operate as human 
beings in the everyday world, we must make deci-
sions knowing that other individuals are also mak-
ing decisions that will affect us and will have some 
bearing on the outcome of our decisions. Intelligent 
behavior requires us to take these other individu-
als into account, in particular the fact that they will 
make decisions based on their reasoning about how 
we will make decisions. If we want to build com-
puter programs that can operate in such multiagent 
domains, it is natural to look for models and theo-
ries of such multiagent decision making that we can 
perhaps adapt for our purposes.

Since the mid 1990s, game theory has increasingly 
been studied in AI, and computer science generally, 
as a collection of models and concepts that can be 
used to investigate such multiagent decision mak-
ing. Game theory originated in the fi rst half of the 
20th century from the study of games such as poker. 
(See the sidebar “The Founders of Game Theory.”) 
Contemporary game theory, however, has much 
wider scope than simply understanding recreational 
games. We can understand game theory as an at-
tempt to provide a mathematical theory through 
which to understand interactions in settings where 
the decision-makers are self-interested. This arti-
cle provides a short introduction to some of the key 
ideas and concepts from game theory. Future articles 
will explore some of the applications of these ideas in 
AI and computer science.

What Is a Game?
Before we go any further, let us skewer a common 
misconception about game theory. Game theory is 

not just concerned with recreational games such as 
chess and poker—it is the theory of rational inter-
action between self-interested agents. Settings in 
which self-interested agents interact are ubiquitous 
in the real world, from global superpowers negoti-
ating nuclear arms reduction treaties to you buy-
ing a second-hand iPod on eBay to you negotiating 
with your spouse about who should do the wash-
ing up. In this sense, the term “game” is a little 
unfortunate, because it seems to imply something 
trivial, of little consequence.

When game theorists use the term “game,” they 
mean a mathematical model of a scenario in which 
self-interested agents interact and that captures all 
the information that is available to make a deci-
sion and leaves out all detail that is not germane to 
the decisions. There are many models of games in 
the literature, but the simplest model (noncoopera-
tive games in strategic form) includes the follow-
ing components:

•	 a set of agents, which we call the players of the 
game;

•	 a set of choices for each player, called strategies
for historical reasons, representing the possible 
ways that the player can choose to act—think of 
these as the “moves” of the game;

•	 a set of possible outcomes for the game—all the 
ways that the game could pan out;

•	 a description of which outcome will result for 
every combination of choices made by players in 
the game; and

•	 a description of each player’s preferences over out-
comes, which captures the player’s self-interest. 
My preferences might well be different from 
yours, and yet the outcome depends on both our 
choices.

In a sense, the core problem of game theory is 
understanding what the right thing for a player to 

Artifi cial intelligence is, in a sense, all about 

decision making. After all, if you tend 

to make good decisions (however you measure 

“good”), then we might well be inclined to call you 
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do is. At one level, the answer is obvi-
ous: I should do whatever leads to the 
outcome I would be happiest with, ac-
cording to my preferences. But there  
are two difficulties with this:

•	 In general, the outcome will not 
depend just on my choices, but on 
the choices of all the players in the 
game. When deciding how I should 
act, I should therefore take into ac-
count the fact that others will be 
trying to bring about the best out-
come for themselves, and that they 
in turn will take into account the 
fact that I will be doing the same 
thing for myself.

•	 Finding the best action to perform 
is a kind of optimization problem, 
and optimization problems in gen-
eral are hard to solve (typically 
NP-hard).

The first issue requires us to for-
mulate a notion of rational out-
come in a strategic setting. In game 
theory, such rational outcomes are 
given by solution concepts. A solu-
tion concept identifies a subset of 
the outcomes of a game—the rational 

outcomes according to the notion of 
rationality embodied within the solu-
tion concept. Typically, solution con-
cepts capture some notion of equilib-
rium, or steady state—an outcome 
from which nobody has an incentive 
to deviate. As it turns out, there is no 
single good-for-all solution concept. 
Typical problems are that solution 
concepts sometimes fail to iden-
tify any outcomes of the game, and 
that they sometimes identify multi-
ple outcomes. The second problem, 
where there are multiple outcomes, 
is a coordination problem, because 
the players in the game must co-
ordinate on just one outcome. In  
the game theory literature, these 
are known as equilibrium selection 
problems.

Two Problematic Games
Two well-known games illustrate 
these concepts and highlight some of 
the problems that arise in game the-
oretic analysis. The first is probably 
the most famous in the game the-
ory canon: the Prisoner’s Dilemma.  
The Prisoner’s Dilemma is usually in-
troduced by way of the following story.

Alex and Bob are collectively 
charged with a crime and held in sep-
arate cells, with no way of meeting or 
communicating. They know that

•	 if one of them confesses to the 
crime and the other does not, 
the confessor will be freed, and  
the other will be jailed for three 
years (in England, we call this “turn-
ing Queen’s evidence”—it tends  
to make you unpopular with other 
villains);

•	 if both confess, each will be jailed 
for two years; and

•	 if neither confesses, each will be 
jailed for one year.

The prisoners have to decide 
whether to cooperate (keep their 
mouths shut) or not cooperate (con-
fess to the crime). How should Alex 
and Bob rationally decide between 
the two available choices? To answer 
this question, consider the following 
line of reasoning, from Alex’s point 
of view:

•	 Suppose Bob confesses: if I confess, 
I would serve two years in prison, 

It is a curious quirk of history that several of the most influ-
ential researchers in the early days of computer science and 
AI were also influential in the foundations of game theory. 
The foundations of contemporary game theory are gener-
ally traced to the 1944 publication of John von Neumann 
and Oskar Morgenstern’s Theory of Games and Economic 
Behavior (see the “Further Reading” sidebar for details on 
this and other works described here). The Hungarian poly-
math John von Neumann (1903–1957) was, of course, ex-
tremely influential in the foundations of computer science. 
He was a key contributor to the architecture of modern-day 
computers, and we still refer to this architecture as the “von 
Neumann architecture.” In 1928, von Neumann proved the 
first key result in game theory—the Minimax Theorem—
and this remains one of the fundamentals of game theory 
to this day. The Minimax Theorem is, in a sense, the center-
piece of von Neumann and Morgenstern’s lengthy master-
work, but it also demonstrates the limits of this early work, 
as it is essentially applicable only to a limited class of games, 
two-person zero-sum games.

A decade after the publication of the Theory of Games 
and Economic Behavior came the work of troubled genius 

John Forbes Nash, Jr. He formulated the solution con-
cept that we now call Nash equilibrium. He also proved 
the key result, which states that every finite game has a 
Nash equilibrium if we permit randomization over strate-
gies (“mixed” strategies). Sadly, after proving his key re-
sults, Nash suffered from serious mental health problems, 
which dogged him for several decades. Fortunately, the 
story has a happy ending. In 1994, Nash was awarded a 
Nobel Prize for his work, and his life was immortalized 
in the 2001 Hollywood movie A Beautiful Mind. Inter-
estingly, Nash also had connections to the early days of 
AI. He was one of the 50-odd people invited to the 1956 
Dartmouth Conference organized by John McCarthy, the 
event to which we traditionally date the founding of the 
modern discipline of AI.

Alan Turing, the founder of contemporary theoreti-
cal computer science and the author of arguably the 
first serious research paper on AI, was also apparently 
interested in computers and games. He wrote a chess- 
playing program in 1948, but, lacking a computer to run 
the program on, was limited to simulating its execution 
on paper.

The Founders of Game Theory
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and if I keep quiet, I would serve 
three years. Thus, my best choice in 
this case would be to confess.

•	But suppose Bob keeps quiet: then, 
if I confess, I would go free, and if 
I keep quiet, I would spend a year 
in jail. My best choice in this case 
would also be to confess.

So, no matter what Bob does, 
Alex’s best course of action is to 
confess.

Now, the Prisoner’s Dilemma is 
symmetric: Bob will reason in the 
same way about Alex, and in the 
same way will conclude that no mat-
ter what choice Alex makes, his best 
choice would be to confess also. The 
upshot is that they both confess, and 
the overall outcome of the game is 
that Alex and Bob each serve two 
years in jail.

We can summarize the Prisoner’s 
Dilemma using a standard piece of  

notation called a payoff matrix. 
Figure 1 shows the payoff matrix for 
the prisoner’s dilemma:

Alex is the column player, so 
called because in making his choice, 
he chooses the column in which the 
outcome of the game will appear; 
Bob is the row player, who chooses 
the row in which the outcome of the 
game will appear. The four cells in 
the matrix represent the possible out-
comes of the game. The values in the 
cells represent the utility obtained by 
each player from the corresponding 
outcome. Utility is simply a numeric 
measure of preferences: the idea is to 
attach a numeric value to outcomes, 
and we prefer outcomes with a higher 
utility value. In this case, the utilities 
correspond to the number of years in 
prison; the more years locked away, 
the worse the outcome for that player. 

For example, the top right cell of 
the matrix is the outcome in which 

the column player, Alex, keeps quiet 
(cooperates), while the row player, 
Bob, confesses. This is the best pos-
sible outcome for Bob: he goes free, 
thereby obtaining a utility of 0 (no 
time in prison). However, it is the 
worst outcome for Alex (three years 
in jail, giving a utility of –3).

So, why is the Prisoner’s Dilemma 
called a dilemma? Because if we con-
sider the possibilities again, we can 
see that if both had kept quiet, the 
outcome would have been the cell in 
the bottom right of the payoff matrix, 
giving them each one year in prison—
which is better for both of them than 
the mutual confession outcome. And 
the Prisoner’s Dilemma is more trou-
bling by the fact that it seems to cor-
respond to many real-world scenarios.

For example, the tragedy of the 
commons seems to be a Prisoner’s  
Dilemma. The tragedy of the commons 
occurs when there is some resource 
that can be shared by multiple agents 
but degrades rapidly if it is overused. 
One example is a piece of common 
land on which people can graze cat-
tle. If everyone uses the common land 
carefully, the land will stay in good 
shape, but if it is overused, it becomes 
barren and is no good to anyone. The 
tragedy of the commons is a Prisoner’s 
Dilemma because the best outcome for 

Figure 1. Payoff matrix for the Prisoner’s Dilemma. The result pairs list Bob’s result 
first, then Alex’s.

Alex

Confess Keep quiet

Bob
Confess –2, –2 0, –3

Keep quiet –3, 0 –1, –1

A standard criticism of game theory is that solution concepts 
often fail to predict how people actually behave. One goal 
of behavioral economics is to try to understand how humans 
make decisions and to consider how such decision making 
relates to game-theoretic and other economic models. Dan 
Ariely recently popularized work in this area in his bestsell-
ing book Predictably Irrational (see the “Further Reading” 
sidebar). One short article cannot do justice to the whole of 
Ariely’s hugely entertaining study of human irrationality, but 
this example gives the flavor of the kind of experiment he 
studies. 

Ariely’s aim was to study how “free” items affect human 
decision making. To investigate this, he offered students 
two types of chocolate for sale. One was a high-quality 
chocolate truffle, with a market value of 30 cents per piece; 
the other was a low-cost candy with a market value of only a 
couple of cents. When offered these chocolates at the price 

of 15 cents and 1 cent respectively, most students chose 
the truffle. They got a very good deal, effectively saving 15 
cents on each truffle. This was the utility-maximizing choice: 
in both cases the students would benefit, but if they chose a 
truffle they would gain more. Then, Ariely reduced the price 
of both items by a cent, selling the truffle for 14 cents and 
giving the low-cost chocolate away for free. Presented with 
such an offer, students overwhelmingly chose the free item, 
despite the fact that the truffle clearly remained the util-
ity-maximizing choice. The presence of a free item clearly 
seems to perturb our decision-making abilities away from 
the outcome that an economic/decision-theoretic analysis 
would suggest. Of course, this kind of irrational behavior is 
by no means limited to situations in which we are offered 
an item for free. Ariely investigates a range of situations in 
which human decision making seems to be skewed against 
rational outcomes.

Are We Rational?
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me is if I overuse the land but everyone 
else uses it carefully. But if we all act 
like this, we all overuse the land, and it 
becomes barren and no good for any-
body. International fishing seems to be 
a rather sad contemporary example of 
the tragedy of the commons.

Nuclear arms reduction treaties are 
a (famous) example of the Prisoner’s 
Dilemma. Suppose two countries, A 
and B, agree to eliminate their nu-
clear weapons. The best outcome 
for A would be that B gets rid of its 
weapons while A holds onto its weap-
ons. But B will reason similarly, so 
both end up holding on to their weap-
ons, despite the fact that they would 
both have been better off if they had 
gotten rid of them.

These outcomes, in which both play-
ers have an option that is the best re-
sponse to all possible choices of the 
other player, are examples of a domi-
nant strategy equilibrium solution con-
cept. Dominant strategy equilibria do 
not always exist in games, but where 
they do, it is hard to see how any other 
outcome could rationally occur.

The Prisoner’s Dilemma seems to be 
common, and the fact that the rational 
outcome, according to a game theo-
retic analysis, is worse for both players 
than another outcome has led many to 
claim that the game theoretic analysis 
must in some sense be wrong. (See the 

sidebar “Are We Rational?”) A typical 
argument goes something like this: the 
game theoretic analysis says the only 
rational outcome is to confess rather 
than cooperate; but people do man-
age to cooperate in such situations, so 
the game theoretic analysis must be 
wrong.

Attempts to dismiss game theory 
on the basis of such analyses are of-
ten built on a misunderstanding of 
the scenario or what game theory 
has to say about it. In fact, there are 
quite natural variations of the Pris-
oner’s Dilemma in which mutual co-
operation can occur rationally—for 
example, if the participants play the 
game more than once. Intuitively, this 
is because players who do not “coop-
erate” can be “punished” in the fu-
ture. However, we cannot possibly 
do justice to the substantial body of 
work here; Robert Axelrod, in The 
Evolution of Cooperation, provides 
one of the most influential discussions 
(see the “Further Reading” sidebar).

The second game, the game of 
Matching Pennies, is problematic for 
quite different reasons. In this case, 
Alex and Bob each have a coin, and 
each coin has two faces: heads and 
tails. They play a game in which each 
of them must simultaneously show 
just one side of his coin:

•	 If both coins show the same face, 
Bob wins: Alex pays Bob $1.

•	 If the coins show different faces, 
Alex wins: Bob pays Alex $1.

What should Alex and Bob do?
Figure 2 shows the payoff matrix 

for Matching Pennies.
There is no dominant strategy for 

Matching Pennies. If Bob shows 
heads, Alex’s best response is to 
show tails, but if Bob shows tails, 
Alex’s best response is to show heads. 
Similar reasoning applies for Bob’s  
decision: neither choice is the best 
response to all choices of the other 
player.

Alex

Heads Tails

Bob
Heads 1, –1 –1, 1

Tails –1, 1 1, –1

Figure 2. Payoff matrix for Matching Pennies. The result pairs list Bob’s result first, 
then Alex’s.
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So, is there another solution con-
cept that we can apply here? Yes: 
the most famous solution concept 
of them all, known as Nash equi-
librium. Intuitively, a Nash equilib-
rium is an outcome in which nobody 
wishes they had made a different 
choice, assuming that the other play-
ers stay with their choices. Nash 
equilibria thus capture the idea of a 
collection of individual choices be-
ing mutually the best response to 
each other. At first, it might appear 
that there is no Nash equilibrium in 
the game of Matching Pennies: if the 
coins are the same, Alex will regret 
his choice, whereas if they are differ-
ent, Bob will regret his choice. How-
ever, the story is more subtle than 
this. Suppose both players random-
ize their choices; that is, play heads 

and tails with equal probability. This 
collection of strategies is, it turns 
out, a Nash equilibrium. In fact, 
John Nash demonstrated, in a fa-
mous result, that every game with a 
finite number of players and choices 
has a Nash equilibrium if we allow 
such randomization. (Technically, 
strategies in which we randomize in 
this way are called mixed strategies.) 
This is a powerful result indeed, and 
has led to Nash equilibria being re-
garded as the cornerstone of contem-
porary game theory research.

This brief article has introduced 
some of the main concepts of game  
theory—preferences, utilities, outcomes,  
solution concepts, dominant strategies,  

and Nash equilibria—and two of the 
best-known games in the game the-
ory canon. These simple concepts are 
the foundations upon which contem-
porary game theory is built. Future 
articles will demonstrate how these 
concepts have been applied in AI, 
and also how AI has contributed to 
game theory itself. In the meantime, 
the “Further Reading” sidebar lists 
some of the most useful and influen-
tial books in the field.
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