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unrelated as biology and moral philosophy. There 
are two key reasons for this level of interest. First, 
the game-theoretic analysis of the prisoner’s di-
lemma leads to an outcome (noncooperation) that 
is worse for all participants than another outcome 
(cooperation). Second, the prisoner’s dilemma 
seems to refl ect many important real-world exam-
ples of multiagent interaction, and so the failure 
to rationally achieve a cooperative outcome seems 
to have worrying practical implications. Here, 
I explore how ideas from computer science can be 
brought to bear on the prisoner’s dilemma, and 
how these ideas can lead to rational cooperation in 
natural variants of this problem.

The Prisoner’s Dilemma
The prisoner’s dilemma has two players: Alex 
and Bob. Each player must choose between two 
actions: cooperation or defection. Depending on the 
combination of choices made, the play ers receive 
payoffs, as the payoff matrix in Figure 1 shows.

In the matrix, Bob is the row player because 
his choices correspond to the rows of the matrix, 
whereas Alex is the column player because his 
choices correspond to the columns of the matrix. 
Each cell in the matrix is a possible outcome of the 
game, corresponding to the combination of choices 
made by the players. The numbers in a matrix cell 
are the payoffs that the players receive in that out-
come: Bob’s fi rst, then Alex’s. Thus, if Alex cooper-
ates while Bob defects, we get the outcome in the 
top right cell of the matrix: Bob gets a payoff of 
4, whereas Alex gets a payoff of 1. Players prefer 
higher payoffs, so this is the best possible outcome 
for Bob and the worst possible outcome for Alex.

The standard game-theoretic analysis of the pris-
oner’s dilemma goes as follows (further discussion, 

references, and a gentle introduction to the termi-
nology used here are available elsewhere1). Con-
sider the game from Alex’s viewpoint. If Bob de-
fects, Alex can choose to defect (giving a payoff 
of 2) or cooperate (for a payoff of 1). In this case, 
Alex would do better to defect. If Bob cooperates, 
however, and Alex chooses to defect, then Alex 
would get a payoff of 4, whereas if he cooperates 
he would get 3. No matter what Bob does, the 
best response for Alex is to defect. Bob’s reason-
ing is identical. Both players thus conclude that, 
no matter what their counterpart does, their best 
response is to defect. Thus, both defect, leading to 
the mutual defection outcome in the top left cell of 
the payoff matrix. However, this outcome is worse 
for both players than the mutual cooperation out-
come in the bottom right of the payoff matrix. 
Thus, rational choice seems to lead to an outcome 
that is manifestly suboptimal for everybody. The 
(defect, defect) outcome is a Nash equilibrium, 
and it is the only Nash equilibrium in the prison-
er’s dilemma. What this means is that, assuming 
one player chooses to defect, the other can do no 
better than defect as well. In this article, I use 
Nash equilibrium as my basic analytical tool for 
determining what outcomes can rationally occur.

The structure of the prisoner’s dilemma seems 
to refl ect many real-world situations. For example, 
consider the tragedy of the commons. Villagers 
can use an area of common land to graze their cattle. 
If all the villagers overgraze the common land, it 
becomes barren; however, if the villagers exercise 
restraint, the land stays in reasonable shape. The 
best outcome for me is if you exercise restraint 
while I overgraze; but you reason likewise. The 
upshot is the land becomes overgrazed and barren, 
which is worse for all of us than if we had exer-
cised restraint.

The apparent paradox (that rational choice leads to 
an outcome that is strictly worse for everybody 
than another outcome), coupled with the fact 
that the prisoner’s dilemma seems to refl ect many 
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scenarios that occur in real life, has 
led to the game achieving a rather 
celebrated status in the game theory 
community. Many researchers have 
tried to find some way to recover  
cooperation—that is, to find some ar-
gument for how and why mutual co-
operation can rationally occur in the 
prisoner’s dilemma. I introduce two of  
the more successful such ideas; tech-
niques from computer science feature 
prominently in both.

Playing Games  
with Automata
The first idea for recovering cooper-
ation in the prisoner’s dilemma is to 
play the game more than once. In the 
iterated prisoner’s dilemma, the same 
two agents play a sequence of individ-
ual prisoner’s dilemma games. After 
each round, they can each see what 
the other player did in the previous 
round, and the payoffs for that round 
are as defined in the payoff matrix for 
the “one-shot” prisoner’s dilemma. 
In such a setting, one player can pun-
ish another: If you’re nasty to me by 
defecting today, I can be nasty to you 
tomorrow by defecting then. If I start 
by cooperating and you start by de-
fecting, this is good for you, but only 
in the short term. I can punish your 
naughtiness by defecting against you 
in all future rounds of the game. You 
might benefit in the short term, but 
you lose out in the long term, because 
you lose the opportunity to cooper-
ate with me in the future. This simple  
idea is sufficient to obtain mutual co-
operation as a rational outcome in 
the iterated prisoner’s dilemma.

One important assumption that we 
make here relates to how many times 
the two agents will play the prisoner’s 
dilemma. We assume that they play 
infinitely often. In practice, of course, 
this isn’t possible, but we can justify 
it as a modeling assumption by ob-
serving that it models situations in 
which the players are uncertain about 
exactly how many times they will 
meet each other in the future. We will 
comment on this issue again later.

If the players are to play the game 
infinitely often, this raises the ques-
tion of how we measure their payoffs. 
We know what each player will get in 
each round of the repeated game—
one of the values in the prisoner’s di-
lemma payoff matrix. But simply add-
ing the payoffs received in each round 
will yield infinity if we play the game 
an infinite number of rounds. How 
can we compare the success or failure 
of two different strategies for play-
ing the iterated prisoner’s dilemma if 
both yield an infinite payoff?

There are many ways to answer 
this question. One possibility is to 
use discounting, in which a payoff of 
x received today is valued more than 
a payoff of x received tomorrow (see 
the “Discounting the Future” sidebar). 
However, our approach is even 
simpler: We consider the payoff an 
agent receives on average over all 
rounds of the game. As we’ll see, this 
value is often easy to calculate.

The next issue we must consider 
is what form the strategies chosen 
by players will take. In the one-shot 
prisoner’s dilemma, the players must 
simply choose between cooperation 

(which I’ll hereafter denote by C) and 
defection (D). However, in the iter-
ated prisoner’s dilemma, the play-
ers must choose a long-term strat-
egy, which involves selecting C or D 
at every round. Because we assume 
that players can correctly perceive the 
choices made by their counterpart in 
the preceding round, a strategy for 
the iterated prisoner’s dilemma can be 
viewed as a function that maps histo-
ries of the game so far to a choice, C 
or D, representing the choice made by 
the player in the current round. We 
can naturally model such strategies 
as finite-state automata (technically, 
as Moore machines).2 To understand 
how this works, consider the simple 
automaton in Figure 2a, which be-
haves rather naïvely in the iterated 
prisoner’s dilemma.

The automaton in Figure 2a has 
a single state, indicated by the oval. 
The arrow that goes into this state 
from the left indicates that this is 
the initial state of the automaton. 
When the game begins, the automa-
ton is in this state. Inside the state is 
an action, which the automaton se-
lects when it’s in this state. Thus, ini-
tially, this automaton chooses to cooper-
ate (that is, the C inside the oval). The 
two arrows coming from the state cor-
respond to the choices of the counter-
part. We follow the arrow labeled C 
to find what this automaton will do if 
its counterpart chooses C, and we fol-
low the arrow labeled D to find what 
this automaton will do if its counterpart  
chooses D. In fact, both arrows lead 
back to the C state, so the overall 
strategy defined by this automaton 
is as follows: Initially, do C; then,  
irrespective of whether my counter-
part chooses to do C or D, choose C 
in all subsequent rounds. This strategy 
is called ALLC (“always cooperate”).

I said that the ALLC strategy is 
naïve, so now let’s see why. Con-
sider the equally simple automaton in  

Figure 1. Payoff matrix for two players in the prisoner’s dilemma game. The result 
pairs list Bob’s result first, then Alex’s.

Alex

Defect Cooperate

Bob
Defect 2, 2 4, 1

Cooperate 1, 4 3, 3
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Figure 2b. This automaton is struc-
turally similar to ALLC. It’s called 
ALLD, because it always chooses to 
defect, no matter what its counter-
part does. What happens when these 
two automata play the iterated pris-
oner’s dilemma against each other? 
Clearly, they generate the sequence in 
the first two rows of Figure 3.

The value on the right-hand side 
of Figure 3 is the average payoff per 
round received by each strategy. So, 
we analyze the (ALLC, ALLD) strat-
egy pair. Does it form a Nash equilib-
rium? If it does, no player would re-
gret his or her choice of automaton. 
But (ALLC, ALLD) is not a Nash 
equilibrium. The player who entered 
ALLC would have done better by 
entering ALLD, for example. This 
choice would have given the player an 
average payoff of 2, rather than the 1 
obtained by playing ALLC.

If both players entered ALLD, the 
history in the bottom two rows of  
Figure 3 would be generated. The strat-
egy pair (ALLD, ALLD) is a Nash 
equilibrium: Assuming one player 
chooses ALLD, the other player can do 
no better than choose ALLD as well. 
Readers should convince themselves of 
this fact before proceeding any further.

So, we’ve identified one Nash equi-
librium of the infinitely repeated  

Figure 2. Simple automata for the prisoner’s dilemma (a) “always cooperate,” or 
ALLC, and (b) “always defect,” or ALLD.

D

C

D

C

C

(a) (b)

D

How can we assess the value of an infinite sequence of pay-
offs? Simply summing the individual values won’t work, be-
cause a nonzero positive infinite sequence will sum to infin-
ity. A standard idea is to use discounting. The idea here is 
that $1 in your hand today is worth more than $1 in your 
hand tomorrow, so you should value a payoff of $1 today 
more than you should value a payoff of $1 tomorrow. On 
reflection, this seems a reasonable reflection of everyday re-
ality. After all, over time, monetary inflation will steadily re-
duce the value of money in your pocket; a pie that is fresh 
today will not be so good tomorrow, and so on.

To formally capture this idea, we use the idea of a discount 
factor, d, with 0 < d < 1. For example,

•	 If d = 1, a payoff of x tomorrow would be worth dx = x 
today.

•	 If d = 0.5, a payoff of x tomorrow would be worth dx = 0.5x 
today.

•	 If d = 0.1, a payoff of x tomorrow would be worth dx = 0.1x 
today.

Thus, a player with discount factor d close to 0 is not greatly 
concerned about the future, because the future has little 
value for him. He is more focused on the payoff he will re-
ceive in the present. However, players whose discount factor 
d is close to 1 will be prepared to take a long-term view, be-
cause future payoffs will be more significant to them.

Given a discount factor d, the value of an infinite sequence 
of payoffs x0, x1, x2, x3, … is given by d 0x0 + d1x1 + d2x2 + 
d3x3 + …. Now, in many cases, the sequence of values x0, x1, 
x2, x3, … will have some structure. For example, all the values 
xi might be the same, or they might consist of a repeated 
sequence of values. In such cases, we can often derive a sim-
ple closed-form expression that gives the value of the infi-
nite sum. When the values xi are all the same, for example, 
the sum comes out as xi/(1 - d ).

Discounting the Future

Figure 3. Sequences generated when (top two rows) an ALLC and an ALLD 
automaton play the iterated prisoner’s dilemma against each other, and (bottom 
two rows) two ALLD automata play against each other.

Round 0 Round 1 Round 2 Round 3 … Average 
payoff

ALLC C C C C 1

ALLD D D D D 4

ALLD D D D D 2

ALLD D D D D 2
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prisoner’s dilemma, but it 
isn’t a very interesting one. 
Rather, it’s nothing more 
than the unique Nash equi-
librium of the one-shot 
game, repeated to infinity. 
So, are there other Nash 
equilibria, and in partic-
ular, are there more in-
teresting Nash equilibria 
than this? Yes!

Consider the GRIM 
automaton in Figure 4. It 
starts by cooperating, and 
will continue to cooperate as long 
as its counterpart cooperates. How-
ever, if its counterpart ever defects, it 
will switch to the punishment state, 
in which it defects, and it will never 
leave this state. It will continue to de-
fect forever, no matter what its coun-
terpart does. Strategies like this are 
called trigger strategies, for obvious 
reasons. They capture the essence of 
the idea that “I’ll cooperate as long as 
you do, but I’ll punish you (by defec-
tion) as soon as you defect.” The top 
two rows of Figure 5 show what hap-
pens when GRIM is played against 
ALLD.

Although GRIM got the sucker’s 
payoff on the first round, it flipped 
to its “punishment” state and stayed 
there. Its average payoff is 2. The one 
lost utility point on the first round  

effectively counts for nothing com-
pared to the infinite number of rounds 
on which it receives a payoff of 2.

The middle two rows of Figure 5  
show what happens when GRIM 
plays against itself. In this case, 
both players continue to sustain co-
operation with each other and receive 
an overall average payoff of 3 each. 
Now, crucially, the strategy pair 
(GRIM, GRIM) forms a Nash equi-
librium. If you use the GRIM strat-
egy, I can do no better than use the 
same strategy. For if there was a strat-
egy yielding a higher payoff, at some 
point this strategy would have to de-
fect (otherwise it would obtain the 
same payoff as using GRIM), and this 
defection would trigger your punish-
ment behavior. My overall average  
payoff would then be at best 2, as 

opposed to the 3 I would 
have obtained had I used 
GRIM. Thus, mutual co-
operation can be ratio-
nally sustained in the it-
erated prisoner’s dilemma 
through the use of trigger 
strategies such as GRIM. 
It is important to note 
that this is rational co-
operation. The strategy 
pair (ALLC, ALLC) gen-
erates sustained coopera-
tion, but (ALLC, ALLC) 

is not a Nash equilibrium. If I choose 
ALLC, you would do better choosing 
ALLD rather than ALLC.

This result is one of a general class 
of results called Nash folk theorems. 
The Nash folk theorems are con-
cerned with the equilibria that can 
be obta ined in repeated games. 
Put very crudely, the Nash Folk The-
orems say something like this: In in-
finitely repeated games, outcomes 
in which each player gets on av-
erage at least as much as they could 
ensure for themselves in the compo-
nent game can be obtained as equi-
libria. Trigger strategies such as 
GRIM are key to obtaining these 
results, just as we have seen in the 
prisoner’s dilemma. A detailed dis-
cussion is available elsewhere.3

The (GRIM, GRIM) strategy pair 
is not the only Nash equilibrium 
strategy pair in the infinitely repeated 
iterated prisoner’s dilemma. We’ve al-
ready seen that (ALLD, ALLD) forms 
a Nash equilibrium, leading to sus-
tained mutual defection.

The bottom two rows of Figure 5  
show what happens when GRIM 
plays against ALLC. Although we 
get sustained mutual cooperation, 
(GRIM, ALLC) is not a Nash equi-
librium. The player entering GRIM 
would have done better to enter 
ALLD, which would yield an overall 
average payoff of 4, as opposed to 3.

Figure 4. The GRIM automaton cooperates as long as its 
counterpart does, but once it switches to defection, it stays in 
that state forever.

C D

C

D

D

C

Figure 5. Sequences generated when (top two rows) a GRIM automaton plays against 
an ALLD automaton, (middle two rows) two GRIM automata play against each 
other, and (bottom two rows) a GRIM automaton plays against an ALLC automaton.

Round 0 Round 1 Round 2 Round 3 … Average 
payoff

ALLD D D D D 2

GRIM C D D D 2

GRIM C C C C 3

GRIM C C C C 3

GRIM C C C C 3

ALLC C C C C 3
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The use of a trigger strategy makes sus-
tained rational cooperation possible—
but only by the threat of wielding a 
big stick, in the form of unforgiving, 
relentless defection. The real world 
contains genuinely grim examples of 
trigger strategies, which have impor-
tant consequences for us all (see “The 
World of Dr. Strangelove” sidebar).

Before we leave repeated games, 
let’s pause to consider what happens 
when we play the game a finite number  
of times. Suppose you and I agree to 
play 100 rounds of the prisoner’s di-
lemma game. Can mutual coopera-
tion be rationally sustained? No. It’s 
easy to see why, using a standard 
technique called backward induction. 

Imagine we are in the last round.  
I know I won’t be meeting you again, 
so in that round, we’re simply playing 
a one-shot prisoner’s dilemma, and of 
course in the one-shot prisoner’s di-
lemma, mutual defection will occur. 
So, in the 100th round, both players 
will defect. But this means that the 
last “real” round is the 99th round; 
but again, this means the 99th round 
is a one-shot prisoner’s dilemma. Fol-
lowing this chain of argument, we 
conclude that mutual defection will 
occur throughout if we play the pris-
oner’s dilemma a fixed, finite, pre-
determined, and commonly known 
number of rounds.

Cooperation in  
the One-Shot  
Prisoner’s Dilemma
The analysis so far doesn’t help us 
with our original problem: the one-
shot prisoner’s dilemma. This is be-
cause trigger strategies rely on the 
threat of future punishment, and in 
the one-shot prisoner’s dilemma there 
is no future. In the one-shot prisoner’s 
dilemma, we must choose between C 
and D, whereas what we really want 
to do is to make a conditional com-
mitment to cooperation. Specifically, 
we want to make our commitment to 
cooperate conditional on our coun-
terpart’s cooperation—that is, “I’ll 
cooperate if he will.” The difficulty 
is making this idea precise. In a 2004 
paper, Moshe Tennenholtz suggested 
an ingenious solution to this problem, 
which directly uses ideas from com-
puter science.4

Tennenholtz proposed that in-
stead of choosing just C or D, play-
ers should be able to enter a program 
strategy. Such a program strategy is 
a computer program that takes as in-
put all the program strategies entered 
by the players in the game. That is, 
the program strategies of all the play-
ers are passed as string parameters 
to all the players in the game. A pro-
gram strategy can then make its deci-
sion (either C or D) conditional upon 

the other players’ program strategies. 
Then, Tennenholtz suggested, sup-
pose you enter the following program 
(in honor of Tennenholtz, we will call 
this program Moshe):

If HisProgram == MyProgram then
 do (C);
else
 do (D);
end.

Here, HisProgram is a string vari-
able containing the program text 
(source code) of the counterpart’s 
program strategy, whereas MyPro-
gram is a string variable containing 
the program text of my own pro-
gram (that is, the sequence of char-
acters above), and “==” is an ordi-
nary string comparison. Now, if I 
enter Moshe, what should you do? 
Suppose you enter the following pro-
gram (which for obvious reasons we 
will call ALLD):

do (D);

In this case, the string comparison 
test in my program Moshe will fail, 
and I will choose to defect; you of 
course will also defect. The upshot is 
we both get a payoff of 2. But sup-
pose you had also entered the pro-
gram strategy Moshe. Then the string 

Stanley Kubrick’s acclaimed 1968 black comedy Dr. Strange-
love is a film about a trigger strategy. The film is set in the 
Cold War era, when nuclear war between the USA and USSR 
seemed a daily possibility. In the movie, a rogue US general 
initiates a nuclear attack on the USSR. While the US military 
desperately tries to recall the attack, it transpires that the  
USSR has secretly installed a doomsday bomb: a device that 
would be automatically triggered by a nuclear attack and 
would destroy all life on earth. Their rationale was that the 
doomsday device would act as a deterrent against possible 
nuclear attacks, but frustratingly, they had not quite got 
around to telling anybody about the device before the rogue 
attack was launched. “The whole point of a doomsday device 
is lost if you keep it a secret!” exclaims the eponymous US sci-
entist Dr. Strangelove. The film does not have a happy ending.

The doomsday bomb of Dr. Strangelove is, in our termi-
nology, nothing more than a trigger strategy. Every day the  

US and USSR had to choose between cooperation (no attack) 
and defection (attack). If you attack, the doomsday bomb 
will punish you forever (once you are dead, you stay dead). 
The threat keeps you in line. The doomsday bomb was in 
fact a parody of the entirely serious Cold War doctrine of 
“mutually assured destruction”—the idea that no side would 
dare launch a nuclear first strike because the counterattack 
would ensure that they too were obliterated. I am no expert 
on Cold War international relations, or indeed on military 
strategy, but it does seem plausible that the threat of mu-
tual destruction helped to keep the peace during the Cold 
War era—or at least, helped to prevent the nuclear trigger 
from being pulled. However, as Dr. Strangelove points out, 
such trigger strategies can only work if your counterpart 
knows you are using one. And, of course, trigger strategies 
can only act as a deterrent if the players of the game are  
rational …

The World of Dr. Strangelove
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comparison would have succeeded, 
and we would both have cooperated, 
yielding mutual cooperation. And 
the program strategy pair (Moshe, 
Moshe) forms an equilibrium: Nei-
ther of us can do better than enter 
Moshe, assuming the other player en-
ters Moshe! Because if you entered 
any other program, you would trigger 
my defection, leaving you with a pay-
off of at best 2, as opposed to the 3 
you would obtain by entering Moshe. 
We thus get cooperation as a rational 
outcome in a (kind of) one-shot pris-
oner’s dilemma.

As in the iterated prisoner’s di-
lemma, this is not the only equilib-
rium. The pair (ALLD, ALLD) is 
also an equilibrium: If you are going  
to defect no matter what, I can do no 
better than to defect no matter what.

On examination, it should be clear 
that Moshe is a trigger strategy with 

a structure similar to the GRIM  
automaton: It punishes its counter-
part for failing to exhibit the desired 
structure. Using such trigger strate-
gies, Tennenholtz was able to prove a 
version of the Nash folk theorems for 
one-shot games.

Tennenholtz used the term pro-
gram equilibrium to refer to the 
kinds of equilibria that can be ob-
tained using program strategies as 
described earlier. Program equi-
libria are a relatively new area of 
research. Program equilibria pres-
ent many interesting questions 
for computer scientists and AI re-
searchers. For example, what hap-
pens if we allow richer, semantic 
comparisons of program strate-
gies, rather than the simple string 
comparison of source code as in 
Moshe? What other kinds of equi-
libria can we obtain using such 

techniques? And what other kinds 
of applications do program strate-
gies have?
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