
March/aprIL 2012 1541-1672/12/$31.00 © 2012 IEEE 75
Published by the IEEE Computer Society

A I A N D G A M E T H E O R Y
Editor: Michael Wooldridge, University of Liverpool, mjw@liverpool.ac.uk

Computation and the
Prisoner’s Dilemma
Michael Wooldridge, University of Liverpool

unrelated as biology and moral philosophy. There
are two key reasons for this level of interest. First,
the game-theoretic analysis of the prisoner’s di-
lemma leads to an outcome (noncooperation) that
is worse for all participants than another outcome
(cooperation). Second, the prisoner’s dilemma
seems to refl ect many important real-world exam-
ples of multiagent interaction, and so the failure
to rationally achieve a cooperative outcome seems
to have worrying practical implications. Here,
I explore how ideas from computer science can be
brought to bear on the prisoner’s dilemma, and
how these ideas can lead to rational cooperation in
natural variants of this problem.

The Prisoner’s Dilemma
The prisoner’s dilemma has two players: Alex
and Bob. Each player must choose between two
actions: cooperation or defection. Depending on the
combination of choices made, the play ers receive
payoffs, as the payoff matrix in Figure 1 shows.

In the matrix, Bob is the row player because
his choices correspond to the rows of the matrix,
whereas Alex is the column player because his
choices correspond to the columns of the matrix.
Each cell in the matrix is a possible outcome of the
game, corresponding to the combination of choices
made by the players. The numbers in a matrix cell
are the payoffs that the players receive in that out-
come: Bob’s fi rst, then Alex’s. Thus, if Alex cooper-
ates while Bob defects, we get the outcome in the
top right cell of the matrix: Bob gets a payoff of
4, whereas Alex gets a payoff of 1. Players prefer
higher payoffs, so this is the best possible outcome
for Bob and the worst possible outcome for Alex.

The standard game-theoretic analysis of the pris-
oner’s dilemma goes as follows (further discussion,

references, and a gentle introduction to the termi-
nology used here are available elsewhere1). Con-
sider the game from Alex’s viewpoint. If Bob de-
fects, Alex can choose to defect (giving a payoff
of 2) or cooperate (for a payoff of 1). In this case,
Alex would do better to defect. If Bob cooperates,
however, and Alex chooses to defect, then Alex
would get a payoff of 4, whereas if he cooperates
he would get 3. No matter what Bob does, the
best response for Alex is to defect. Bob’s reason-
ing is identical. Both players thus conclude that,
no matter what their counterpart does, their best
response is to defect. Thus, both defect, leading to
the mutual defection outcome in the top left cell of
the payoff matrix. However, this outcome is worse
for both players than the mutual cooperation out-
come in the bottom right of the payoff matrix.
Thus, rational choice seems to lead to an outcome
that is manifestly suboptimal for everybody. The
(defect, defect) outcome is a Nash equilibrium,
and it is the only Nash equilibrium in the prison-
er’s dilemma. What this means is that, assuming
one player chooses to defect, the other can do no
better than defect as well. In this article, I use
Nash equilibrium as my basic analytical tool for
determining what outcomes can rationally occur.

The structure of the prisoner’s dilemma seems
to refl ect many real-world situations. For example,
consider the tragedy of the commons. Villagers
can use an area of common land to graze their cattle.
If all the villagers overgraze the common land, it
becomes barren; however, if the villagers exercise
restraint, the land stays in reasonable shape. The
best outcome for me is if you exercise restraint
while I overgraze; but you reason likewise. The
upshot is the land becomes overgrazed and barren,
which is worse for all of us than if we had exer-
cised restraint.

The apparent paradox (that rational choice leads to
an outcome that is strictly worse for everybody
than another outcome), coupled with the fact
that the prisoner’s dilemma seems to refl ect many

Since it was introduced in the middle of the last

century, the prisoner’s dilemma has aroused

huge interest in the academic community, attract-

ing comment from areas as diverse and seemingly

IS-27-02-Game.indd 75 4/26/12 12:40 PM

76 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

scenarios that occur in real life, has
led to the game achieving a rather
celebrated status in the game theory
community. Many researchers have
tried to find some way to recover
cooperation—that is, to find some ar-
gument for how and why mutual co-
operation can rationally occur in the
prisoner’s dilemma. I introduce two of
the more successful such ideas; tech-
niques from computer science feature
prominently in both.

Playing Games
with Automata
The first idea for recovering cooper-
ation in the prisoner’s dilemma is to
play the game more than once. In the
iterated prisoner’s dilemma, the same
two agents play a sequence of individ-
ual prisoner’s dilemma games. After
each round, they can each see what
the other player did in the previous
round, and the payoffs for that round
are as defined in the payoff matrix for
the “one-shot” prisoner’s dilemma.
In such a setting, one player can pun-
ish another: If you’re nasty to me by
defecting today, I can be nasty to you
tomorrow by defecting then. If I start
by cooperating and you start by de-
fecting, this is good for you, but only
in the short term. I can punish your
naughtiness by defecting against you
in all future rounds of the game. You
might benefit in the short term, but
you lose out in the long term, because
you lose the opportunity to cooper-
ate with me in the future. This simple
idea is sufficient to obtain mutual co-
operation as a rational outcome in
the iterated prisoner’s dilemma.

One important assumption that we
make here relates to how many times
the two agents will play the prisoner’s
dilemma. We assume that they play
infinitely often. In practice, of course,
this isn’t possible, but we can justify
it as a modeling assumption by ob-
serving that it models situations in
which the players are uncertain about
exactly how many times they will
meet each other in the future. We will
comment on this issue again later.

If the players are to play the game
infinitely often, this raises the ques-
tion of how we measure their payoffs.
We know what each player will get in
each round of the repeated game—
one of the values in the prisoner’s di-
lemma payoff matrix. But simply add-
ing the payoffs received in each round
will yield infinity if we play the game
an infinite number of rounds. How
can we compare the success or failure
of two different strategies for play-
ing the iterated prisoner’s dilemma if
both yield an infinite payoff?

There are many ways to answer
this question. One possibility is to
use discounting, in which a payoff of
x received today is valued more than
a payoff of x received tomorrow (see
the “Discounting the Future” sidebar).
However, our approach is even
simpler: We consider the payoff an
agent receives on average over all
rounds of the game. As we’ll see, this
value is often easy to calculate.

The next issue we must consider
is what form the strategies chosen
by players will take. In the one-shot
prisoner’s dilemma, the players must
simply choose between cooperation

(which I’ll hereafter denote by C) and
defection (D). However, in the iter-
ated prisoner’s dilemma, the play-
ers must choose a long-term strat-
egy, which involves selecting C or D
at every round. Because we assume
that players can correctly perceive the
choices made by their counterpart in
the preceding round, a strategy for
the iterated prisoner’s dilemma can be
viewed as a function that maps histo-
ries of the game so far to a choice, C
or D, representing the choice made by
the player in the current round. We
can naturally model such strategies
as finite-state automata (technically,
as Moore machines).2 To understand
how this works, consider the simple
automaton in Figure 2a, which be-
haves rather naïvely in the iterated
prisoner’s dilemma.

The automaton in Figure 2a has
a single state, indicated by the oval.
The arrow that goes into this state
from the left indicates that this is
the initial state of the automaton.
When the game begins, the automa-
ton is in this state. Inside the state is
an action, which the automaton se-
lects when it’s in this state. Thus, ini-
tially, this automaton chooses to cooper-
ate (that is, the C inside the oval). The
two arrows coming from the state cor-
respond to the choices of the counter-
part. We follow the arrow labeled C
to find what this automaton will do if
its counterpart chooses C, and we fol-
low the arrow labeled D to find what
this automaton will do if its counterpart
chooses D. In fact, both arrows lead
back to the C state, so the overall
strategy defined by this automaton
is as follows: Initially, do C; then,
irrespective of whether my counter-
part chooses to do C or D, choose C
in all subsequent rounds. This strategy
is called ALLC (“always cooperate”).

I said that the ALLC strategy is
naïve, so now let’s see why. Con-
sider the equally simple automaton in

Figure 1. Payoff matrix for two players in the prisoner’s dilemma game. The result
pairs list Bob’s result first, then Alex’s.

Alex

Defect Cooperate

Bob
Defect 2, 2 4, 1

Cooperate 1, 4 3, 3

IS-27-02-Game.indd 76 4/26/12 12:40 PM

March/aprIL 2012 www.computer.org/intelligent 77

Figure 2b. This automaton is struc-
turally similar to ALLC. It’s called
ALLD, because it always chooses to
defect, no matter what its counter-
part does. What happens when these
two automata play the iterated pris-
oner’s dilemma against each other?
Clearly, they generate the sequence in
the first two rows of Figure 3.

The value on the right-hand side
of Figure 3 is the average payoff per
round received by each strategy. So,
we analyze the (ALLC, ALLD) strat-
egy pair. Does it form a Nash equilib-
rium? If it does, no player would re-
gret his or her choice of automaton.
But (ALLC, ALLD) is not a Nash
equilibrium. The player who entered
ALLC would have done better by
entering ALLD, for example. This
choice would have given the player an
average payoff of 2, rather than the 1
obtained by playing ALLC.

If both players entered ALLD, the
history in the bottom two rows of
Figure 3 would be generated. The strat-
egy pair (ALLD, ALLD) is a Nash
equilibrium: Assuming one player
chooses ALLD, the other player can do
no better than choose ALLD as well.
Readers should convince themselves of
this fact before proceeding any further.

So, we’ve identified one Nash equi-
librium of the infinitely repeated

Figure 2. Simple automata for the prisoner’s dilemma (a) “always cooperate,” or
ALLC, and (b) “always defect,” or ALLD.

D

C

D

C

C

(a) (b)

D

How can we assess the value of an infinite sequence of pay-
offs? Simply summing the individual values won’t work, be-
cause a nonzero positive infinite sequence will sum to infin-
ity. A standard idea is to use discounting. The idea here is
that $1 in your hand today is worth more than $1 in your
hand tomorrow, so you should value a payoff of $1 today
more than you should value a payoff of $1 tomorrow. On
reflection, this seems a reasonable reflection of everyday re-
ality. After all, over time, monetary inflation will steadily re-
duce the value of money in your pocket; a pie that is fresh
today will not be so good tomorrow, and so on.

To formally capture this idea, we use the idea of a discount
factor, d, with 0 < d < 1. For example,

•	 If d = 1, a payoff of x tomorrow would be worth dx = x
today.

•	 If d = 0.5, a payoff of x tomorrow would be worth dx = 0.5x
today.

•	 If d = 0.1, a payoff of x tomorrow would be worth dx = 0.1x
today.

Thus, a player with discount factor d close to 0 is not greatly
concerned about the future, because the future has little
value for him. He is more focused on the payoff he will re-
ceive in the present. However, players whose discount factor
d is close to 1 will be prepared to take a long-term view, be-
cause future payoffs will be more significant to them.

Given a discount factor d, the value of an infinite sequence
of payoffs x0, x1, x2, x3, … is given by d 0x0 + d1x1 + d2x2 +
d3x3 + …. Now, in many cases, the sequence of values x0, x1,
x2, x3, … will have some structure. For example, all the values
xi might be the same, or they might consist of a repeated
sequence of values. In such cases, we can often derive a sim-
ple closed-form expression that gives the value of the infi-
nite sum. When the values xi are all the same, for example,
the sum comes out as xi/(1 - d).

Discounting the Future

Figure 3. Sequences generated when (top two rows) an ALLC and an ALLD
automaton play the iterated prisoner’s dilemma against each other, and (bottom
two rows) two ALLD automata play against each other.

Round 0 Round 1 Round 2 Round 3 … Average
payoff

ALLC C C C C 1

ALLD D D D D 4

ALLD D D D D 2

ALLD D D D D 2

IS-27-02-Game.indd 77 4/26/12 12:40 PM

78 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

prisoner’s dilemma, but it
isn’t a very interesting one.
Rather, it’s nothing more
than the unique Nash equi-
librium of the one-shot
game, repeated to infinity.
So, are there other Nash
equilibria, and in partic-
ular, are there more in-
teresting Nash equilibria
than this? Yes!

Consider the GRIM
automaton in Figure 4. It
starts by cooperating, and
will continue to cooperate as long
as its counterpart cooperates. How-
ever, if its counterpart ever defects, it
will switch to the punishment state,
in which it defects, and it will never
leave this state. It will continue to de-
fect forever, no matter what its coun-
terpart does. Strategies like this are
called trigger strategies, for obvious
reasons. They capture the essence of
the idea that “I’ll cooperate as long as
you do, but I’ll punish you (by defec-
tion) as soon as you defect.” The top
two rows of Figure 5 show what hap-
pens when GRIM is played against
ALLD.

Although GRIM got the sucker’s
payoff on the first round, it flipped
to its “punishment” state and stayed
there. Its average payoff is 2. The one
lost utility point on the first round

effectively counts for nothing com-
pared to the infinite number of rounds
on which it receives a payoff of 2.

The middle two rows of Figure 5
show what happens when GRIM
plays against itself. In this case,
both players continue to sustain co-
operation with each other and receive
an overall average payoff of 3 each.
Now, crucially, the strategy pair
(GRIM, GRIM) forms a Nash equi-
librium. If you use the GRIM strat-
egy, I can do no better than use the
same strategy. For if there was a strat-
egy yielding a higher payoff, at some
point this strategy would have to de-
fect (otherwise it would obtain the
same payoff as using GRIM), and this
defection would trigger your punish-
ment behavior. My overall average
payoff would then be at best 2, as

opposed to the 3 I would
have obtained had I used
GRIM. Thus, mutual co-
operation can be ratio-
nally sustained in the it-
erated prisoner’s dilemma
through the use of trigger
strategies such as GRIM.
It is important to note
that this is rational co-
operation. The strategy
pair (ALLC, ALLC) gen-
erates sustained coopera-
tion, but (ALLC, ALLC)

is not a Nash equilibrium. If I choose
ALLC, you would do better choosing
ALLD rather than ALLC.

This result is one of a general class
of results called Nash folk theorems.
The Nash folk theorems are con-
cerned with the equilibria that can
be obta ined in repeated games.
Put very crudely, the Nash Folk The-
orems say something like this: In in-
finitely repeated games, outcomes
in which each player gets on av-
erage at least as much as they could
ensure for themselves in the compo-
nent game can be obtained as equi-
libria. Trigger strategies such as
GRIM are key to obtaining these
results, just as we have seen in the
prisoner’s dilemma. A detailed dis-
cussion is available elsewhere.3

The (GRIM, GRIM) strategy pair
is not the only Nash equilibrium
strategy pair in the infinitely repeated
iterated prisoner’s dilemma. We’ve al-
ready seen that (ALLD, ALLD) forms
a Nash equilibrium, leading to sus-
tained mutual defection.

The bottom two rows of Figure 5
show what happens when GRIM
plays against ALLC. Although we
get sustained mutual cooperation,
(GRIM, ALLC) is not a Nash equi-
librium. The player entering GRIM
would have done better to enter
ALLD, which would yield an overall
average payoff of 4, as opposed to 3.

Figure 4. The GRIM automaton cooperates as long as its
counterpart does, but once it switches to defection, it stays in
that state forever.

C D

C

D

D

C

Figure 5. Sequences generated when (top two rows) a GRIM automaton plays against
an ALLD automaton, (middle two rows) two GRIM automata play against each
other, and (bottom two rows) a GRIM automaton plays against an ALLC automaton.

Round 0 Round 1 Round 2 Round 3 … Average
payoff

ALLD D D D D 2

GRIM C D D D 2

GRIM C C C C 3

GRIM C C C C 3

GRIM C C C C 3

ALLC C C C C 3

IS-27-02-Game.indd 78 4/26/12 12:40 PM

March/aprIL 2012 www.computer.org/intelligent 79

The use of a trigger strategy makes sus-
tained rational cooperation possible—
but only by the threat of wielding a
big stick, in the form of unforgiving,
relentless defection. The real world
contains genuinely grim examples of
trigger strategies, which have impor-
tant consequences for us all (see “The
World of Dr. Strangelove” sidebar).

Before we leave repeated games,
let’s pause to consider what happens
when we play the game a finite number
of times. Suppose you and I agree to
play 100 rounds of the prisoner’s di-
lemma game. Can mutual coopera-
tion be rationally sustained? No. It’s
easy to see why, using a standard
technique called backward induction.

Imagine we are in the last round.
I know I won’t be meeting you again,
so in that round, we’re simply playing
a one-shot prisoner’s dilemma, and of
course in the one-shot prisoner’s di-
lemma, mutual defection will occur.
So, in the 100th round, both players
will defect. But this means that the
last “real” round is the 99th round;
but again, this means the 99th round
is a one-shot prisoner’s dilemma. Fol-
lowing this chain of argument, we
conclude that mutual defection will
occur throughout if we play the pris-
oner’s dilemma a fixed, finite, pre-
determined, and commonly known
number of rounds.

Cooperation in
the One-Shot
Prisoner’s Dilemma
The analysis so far doesn’t help us
with our original problem: the one-
shot prisoner’s dilemma. This is be-
cause trigger strategies rely on the
threat of future punishment, and in
the one-shot prisoner’s dilemma there
is no future. In the one-shot prisoner’s
dilemma, we must choose between C
and D, whereas what we really want
to do is to make a conditional com-
mitment to cooperation. Specifically,
we want to make our commitment to
cooperate conditional on our coun-
terpart’s cooperation—that is, “I’ll
cooperate if he will.” The difficulty
is making this idea precise. In a 2004
paper, Moshe Tennenholtz suggested
an ingenious solution to this problem,
which directly uses ideas from com-
puter science.4

Tennenholtz proposed that in-
stead of choosing just C or D, play-
ers should be able to enter a program
strategy. Such a program strategy is
a computer program that takes as in-
put all the program strategies entered
by the players in the game. That is,
the program strategies of all the play-
ers are passed as string parameters
to all the players in the game. A pro-
gram strategy can then make its deci-
sion (either C or D) conditional upon

the other players’ program strategies.
Then, Tennenholtz suggested, sup-
pose you enter the following program
(in honor of Tennenholtz, we will call
this program Moshe):

If HisProgram == MyProgram then
 do (C);
else
 do (D);
end.

Here, HisProgram is a string vari-
able containing the program text
(source code) of the counterpart’s
program strategy, whereas MyPro-
gram is a string variable containing
the program text of my own pro-
gram (that is, the sequence of char-
acters above), and “==” is an ordi-
nary string comparison. Now, if I
enter Moshe, what should you do?
Suppose you enter the following pro-
gram (which for obvious reasons we
will call ALLD):

do (D);

In this case, the string comparison
test in my program Moshe will fail,
and I will choose to defect; you of
course will also defect. The upshot is
we both get a payoff of 2. But sup-
pose you had also entered the pro-
gram strategy Moshe. Then the string

Stanley Kubrick’s acclaimed 1968 black comedy Dr. Strange-
love is a film about a trigger strategy. The film is set in the
Cold War era, when nuclear war between the USA and USSR
seemed a daily possibility. In the movie, a rogue US general
initiates a nuclear attack on the USSR. While the US military
desperately tries to recall the attack, it transpires that the
USSR has secretly installed a doomsday bomb: a device that
would be automatically triggered by a nuclear attack and
would destroy all life on earth. Their rationale was that the
doomsday device would act as a deterrent against possible
nuclear attacks, but frustratingly, they had not quite got
around to telling anybody about the device before the rogue
attack was launched. “The whole point of a doomsday device
is lost if you keep it a secret!” exclaims the eponymous US sci-
entist Dr. Strangelove. The film does not have a happy ending.

The doomsday bomb of Dr. Strangelove is, in our termi-
nology, nothing more than a trigger strategy. Every day the

US and USSR had to choose between cooperation (no attack)
and defection (attack). If you attack, the doomsday bomb
will punish you forever (once you are dead, you stay dead).
The threat keeps you in line. The doomsday bomb was in
fact a parody of the entirely serious Cold War doctrine of
“mutually assured destruction”—the idea that no side would
dare launch a nuclear first strike because the counterattack
would ensure that they too were obliterated. I am no expert
on Cold War international relations, or indeed on military
strategy, but it does seem plausible that the threat of mu-
tual destruction helped to keep the peace during the Cold
War era—or at least, helped to prevent the nuclear trigger
from being pulled. However, as Dr. Strangelove points out,
such trigger strategies can only work if your counterpart
knows you are using one. And, of course, trigger strategies
can only act as a deterrent if the players of the game are
rational …

The World of Dr. Strangelove

IS-27-02-Game.indd 79 4/26/12 12:40 PM

80 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

comparison would have succeeded,
and we would both have cooperated,
yielding mutual cooperation. And
the program strategy pair (Moshe,
Moshe) forms an equilibrium: Nei-
ther of us can do better than enter
Moshe, assuming the other player en-
ters Moshe! Because if you entered
any other program, you would trigger
my defection, leaving you with a pay-
off of at best 2, as opposed to the 3
you would obtain by entering Moshe.
We thus get cooperation as a rational
outcome in a (kind of) one-shot pris-
oner’s dilemma.

As in the iterated prisoner’s di-
lemma, this is not the only equilib-
rium. The pair (ALLD, ALLD) is
also an equilibrium: If you are going
to defect no matter what, I can do no
better than to defect no matter what.

On examination, it should be clear
that Moshe is a trigger strategy with

a structure similar to the GRIM
automaton: It punishes its counter-
part for failing to exhibit the desired
structure. Using such trigger strate-
gies, Tennenholtz was able to prove a
version of the Nash folk theorems for
one-shot games.

Tennenholtz used the term pro-
gram equilibrium to refer to the
kinds of equilibria that can be ob-
tained using program strategies as
described earlier. Program equi-
libria are a relatively new area of
research. Program equilibria pres-
ent many interesting questions
for computer scientists and AI re-
searchers. For example, what hap-
pens if we allow richer, semantic
comparisons of program strate-
gies, rather than the simple string
comparison of source code as in
Moshe? What other kinds of equi-
libria can we obtain using such

techniques? And what other kinds
of applications do program strate-
gies have?

References
 1. M. Wooldridge, “The Triumph of Ratio-

nality,” IEEE Intelligent Systems, vol. 27,

no. 1, 2012, pp. 60–64.

 2. A. Rubinstein, “Finite Automata Play

the Repeated Prisoner’s Dilemma,”

J. Economic Theory, vol. 39, no. 1,

1986, pp. 83–96.

 3. M. Osborne and A. Rubinstein,

A Course in Game Theory, MIT Press,

1994.

 4. M. Tennenholtz, “Program Equilib-

rium,” Games and Economic Behavior,

vol. 49, no. 2, 2004, pp. 363–373.

Michael Wooldridge is a professor of com-

puter science at the University of Liverpool.

Contact him at mjw@liverpool.ac.uk.

Advertising Personnel

Marian Anderson: Sr. Advertising Coordinator
Email: manderson@computer.org
Phone: +1 714 816 2139 | Fax: +1 714 821 4010

Sandy Brown: Sr. Business Development Mgr.
Email: sbrown@computer.org
Phone: +1 714 816 2144 | Fax: +1 714 821 4010

Advertising Sales Representatives (display)

Central, Northwest, Far East:
Eric Kincaid
Email: e.kincaid@computer.org
Phone: +1 214 673 3742
Fax: +1 888 886 8599

Northeast, Midwest, Europe, Middle East:
Ann & David Schissler
Email: a.schissler@computer.org, d.schissler@computer.org
Phone: +1 508 394 4026
Fax: +1 508 394 1707

Southwest, California:
Mike Hughes
Email: mikehughes@computer.org
Phone: +1 805 529 6790

Southeast:
Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 973 585 7070
Fax: +1 973 585 7071

Advertising Sales Representatives (Classified Line)

Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 973 585 7070
Fax: +1 973 585 7071

Advertising Sales Representatives (Jobs Board)

Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 973 585 7070
Fax: +1 973 585 7071

AdvertiSer informAtion • mArch/April 2012

IS-27-02-Game.indd 80 4/26/12 12:40 PM

