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Cooperative Game Theory: 
Basic Concepts and 
Computational Challenges

for yourself. In many such settings, you’re on your 
own: the choice you must make is yours and yours 
alone, because cooperation with other players 
is either impossible to implement or without any 
possible benefi ts. However, in some situations it is 
both possible and fruitful to cooperate with other 
players. Where players can make binding agree-
ments with each other, and there is some added 
value available by cooperating with others, then it 
can make sense for players to form coalitions that 
will work together to mutual advantage. Formal 
legal contracts are the most obvious mechanism 
available in the real world for implementing bind-
ing agreements. The fi eld of cooperative game the-
ory studies strategic decision-making in settings 
where binding agreements are possible and where 
agents can therefore act collectively. In this article, 
our aims are twofold: fi rst, to give a brief intro-
duction to the main concepts of cooperative game 
theory; and second, to describe some of the issues 
that arise when we want to apply these concepts 
in AI.

Characteristic-Function Games
The most widely studied model of cooperative 
games is that of characteristic-function games.
This surprisingly simple model turns out to be rich 
enough to capture the properties of many cooper-
ative scenarios. A characteristic-function game is 
given by a pair (N, v), where N = {1, …, n} is the 
set of players in the game, and v : 2N → R is a 
function that gives the real-numbered value, v(C), 

of every set of players C ⊆ N. The function v is 
called the characteristic function of the game. The 
idea is that v(C) is the amount that the coalition C
could earn should they choose to cooperate. The 
model doesn’t specify exactly how they earn this 
value, or indeed what “cooperate” means. These 
two components are assumed to be the only infor-
mation that players in the game have. Given this 
information, there are two fundamental questions 
that cooperative game theory considers:

•	Who will cooperate with whom—that is, which 
coalitions will form?

•	 After coalitions have formed and earned the 
value defi ned by the characteristic function, 
how will they divide this value amongst them-
selves? And in particular, how will they divide 
the value fairly?

Cooperative game theory suggests that a neces-
sary condition for coalition formation is that the 
coalition is stable, in the sense that no members of 
the coalition have any incentive to walk away from 
it. The best-known solution concept formalizing 
this idea is the core. With respect to the second 
question, a solution concept known as the Shapley 
value provides a unique way to divide coalitional 
value among players in such a way as to satisfy 
various fairness criteria.

If we want to use these models and solution con-
cepts in AI, then two further issues arise:

•	How can we compactly represent cooperative 
games? The issue here is that in practice, we 
cannot represent a cooperative game by listing 
every coalition C ⊆ N and its corresponding 
value v(C), because there are 2|N | such coalitions. 
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We thus need some representation 
for the characteristic function v 
that is of size polynomial in |N|.

•	How can we efficiently compute 
solution concepts for cooperative 
games?

To keep things simple, we will re-
strict our attention when consider-
ing solution concepts to the grand 
coalition: the set of all players, N. We 
will ask whether the grand coalition 
is stable and how we can fairly divide 
its value.

Stable Coalitions
The solution concept known as the 
core suggests that a necessary condi-
tion for the formation of a coalition 
is that no subset of players within the 
coalition have any incentive to devi-
ate from it. To understand how the 
core formalizes this idea, we need a 
bit of notation. A payoff vector is a 
tuple of real numbers x = (x1, …, xn) 
that divides the value v(N) among all 
the players in N; thus xi is the amount 
given to player i in this payoff vector. 
A coalition C ⊆ N objects to the payoff 
vector x if they could collectively earn 
more than x allocates them—that is, if

v C xi
i C

( ) .>
∈
∑

If this condition is satisfied, then 
the payoff vector x could not be im-
plemented, because C would not ac-
cept it; they would do better to work 
on their own, and could divide the 
surplus obtained among themselves. 
Now, the core of a game (N, v) is the 
set of payoff vectors to which no co-
alition has any objection in the sense 
we just described. If the core is empty, 
then this means that the coalition con-
sisting of all agents cannot form: there 
is no way of distributing the value 
v(N) to which there are no objections. 
Conversely, if the core of the game is 
nonempty, then there is some way of 

distributing the value v(N) to the play-
ers in N such that no coalition can 
reasonably object, in the sense that no 
coalition could do any better. Thus, 
the question, “Is the coalition consist-
ing of all agents stable?” reduces to 
the question, “Is the core of the game 
nonempty?” In computational terms, 
we generally want to answer one of 
two questions relating to the core:

•	whether the core of a given coop-
erative game (N, v) is non-empty 
(whether the grand coalition is sta-
ble), and

•	whether a given payoff vector x = 
(x1, …, xn) is in the core of a given 
game (N, v).

For both questions, a naïve exhaus-
tive algorithmic approach won’t be fea-
sible: for example, in the latter prob-
lem, we would need to check whether 
there exists a coalition C ⊆ N such that 
the value of C is greater than their cu-
mulative allocation in x. There will, of 
course, be 2|N| such coalitions, and so 
naïvely considering each possible coali-
tion in turn will not be practicable.

Fair Division Schemes
Suppose the grand coalition N forms, 
and they then obtain the value v(N). 
The next question to be answered is 
how the value v(N) should be divided 
among the players N. The Shapley 
value provides a principled way to do 
this. It proposes that each player i ∈ 
N should be given an amount ji that 
satisfies the following axioms:

•	Efficiency. The total value v(N) 
should be distributed.

•	Dummy player. Players who make no 
contribution should receive nothing.

•	 Symmetry. Players who make the 
same contribution should receive 
the same.

•	Additivity. The value should be ad-
ditive over the set of all games.

While the final property is argu-
ably somewhat technical (and the for-
mal definition is beyond the scope of 
this article), it is generally accepted 
that the other properties are easy to 
motivate from the point of view of 
fairness. Central to these axioms is 
the notion of a player’s contribution. 
Shapley argued that we can mea-
sure a player’s contribution by simply 
looking at the value the player adds 
to a coalition. Formally, player i’s 
contribution to a coalition C is simply 
v(C ∪ {i}) – v(C), or the amount ex-
tra that C could obtain if they ad-
mitted player i as a member. If this 
value is 0, then there is no benefit to 
be obtained. Given this definition, 
the symmetry axiom, for example, 
means that two players should receive 
the same value if they make the same 
contribution to all coalitions.

These axioms, however, say noth-
ing about how to compute such a 
value (or even whether there is any 
value that satisfies them). In a remark-
able result, Shapley showed that there 
is a unique solution to these axioms. 
The basic idea is this: imagine all the 
possible orders in which the grand 
coalition could form, one player at a 
time. If N = {1, 2, 3} then the grand 
coalition could form in six possible 
ways: 1-2-3, 1-3-2, 2-1-3, 2-3-1, 3-1-2, 
or 3-2-1.

Then, Shapley suggested, a player 
should receive the average contribu-
tion that he or she makes, over each 
of these orderings, to the set of players 
that precedes him or her in the order-
ing. If N = {1, 2, 3}, for example, then 
j1 is M/6, where M = [v({1}) − v(Ø)] + 
[v({1}) − v(Ø)] + [v({2, 1}) − v({2})] + 
[v({2, 3, 1}) − v({2, 3})] + [v({3, 1}) − 
v({3})] + [v({3, 2, 1}) − v({3, 2})].

Now, if we compute the Shapley 
values ji in this way, the resulting pay-
off vector (j1, …, jn) satisfies the four 
axioms; and what is more, it’s the only 
payoff vector that satisfies them.
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As this example illustrates, there’s 
some fearsome combinatorial com-
plexity inherent in the Shapley value: 
if there are n players in the game, we 
must average over n! orderings of the 
players. In this example, we have to 

average over 3! = 6 orderings; and 
even in this trivial case the arithmetic 
starts to become tedious. So, comput-
ing the Shapley value by directly aver-
aging a player’s contribution over all 
orderings of the players is not going 
to be practicable in general.

Compact Representations
Because a naïve representation of coop-
erative games isn’t feasible, much effort 
has been devoted to developing and in-
vestigating compact representations for  
cooperative games—representations  
of games that require space at most 
polynomial in the number of players n. 
However, a general rule of thumb is 
that the more compact a represen-
tation is, the higher the complexity  
of the associated computational prob-
lems. We therefore seek representations 
that strike a practical balance among 
compactness, representational power, 
and computational tractability. In this 
section, we examine a few representa-
tions that have been proposed in the 
literature.

Weighted Graph
The first representation was pro-
posed in 1994.1 The idea is to repre-
sent the characteristic function v as 
a weighted graph, in which vertices 
correspond to players. For example, 
suppose we have four players, N = {A, 
B, C, D}. Figure 1 represents a char-
acteristic function for such a game.

The idea is that the edges represent 
synergies between players. To com-
pute the value of a coalition, we add 
together the weights of all the edges 
in the subgraph corresponding to that 
coalition.

For example, suppose we want to 
compute the value v(S) of the coali-
tion S = {A, B, D}. First, we take the 
subgraph induced by this set of ver-
tices: we eliminate from the original 
graph all vertices not in S, and all the 
edges that these eliminated vertices are  

connected to. Figure 2 shows the result. 
To get the value of coalition S = {A, 
B, D}, we add together the weights on 
all the edges that remain: v({A, B, D}) = 
2 + 6 + 2 = 10.

Figure 3 shows the subgraph for a 
different coalition S = {A, C, D}. The 
value of this new coalition is v({A, C, 
D}) = 6 + 4 = 10.

This representation is compact: 
for a game with n players, we only 
need to record at most n2 edges and 
their weights—for example, by us-
ing an adjacency matrix. However, 
the representation is not complete, 
in the sense that there are coopera-
tive games that the induced subgraph 
scheme can’t represent.

What about computing the solu-
tion concepts? It turns out that, for 
this representation, the problem of 
checking whether a particular pay-
off vector is in the core of the game 
is computationally hard—that is, co-
NP–complete. However, computing 
the Shapley value for this represen-
tation is easy. We can divide a graph 
containing m edges down into m 
component games, one for each edge. 
In the original example, there are 
four edges, and so there are four edge 
games. We can compute the Shapley 
value of a player in each edge game, 
and simply add these together to get 
the Shapley value of the player in the 
overall game. The justification for do-
ing so directly follows from one of 
Shapley’s axioms: additivity.

It remains to compute the Shapley 
value of a player in an edge game. 
But it is easy to see that the value a 
player gets from an edge is 0 if the 
player isn’t connected to the edge, 
and half the weight of the edge if it 
is connected. This latter fact follows 
from Shapley’s efficiency and sym-
metry axioms. Thus, the Shapley 
value of a player in the induced sub-
graph representation is half the sum 
of the weights on the edges to which 

Figure 1. A weighted graph for a 
four-player game. The lines represent 
synergies between pairs of players.
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Figure 2. A three-player coalition. Player 
C is not involved.

Figure 3. A three-player coalition. Player 
B is not involved.
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that player is connected, and is hence 
computable in polynomial time. For 
the original example graph we gave 
previously therefore, the Shapley 
value jA of player A is (2 + 6)/2 = 4, 
while the Shapley value jD of player 
D is (6 + 4 + 2)/2 = 6, and so on. This 
result is particularly interesting be-
cause it directly appeals to Shapley’s 
axioms in order to compute the Shap-
ley value.

Rule-Based Representations
A similar trick can be used for other 
additive representations. One such 
representation is called marginal-
contribution nets (MC-nets).2 In the 
MC-nets representation, we describe 
the characteristic function via a set of 
rules, of the form pattern ⟼ value.

Here, pattern is a Boolean condi-
tion over players, and value is a real 
number. To compute the value of a 
coalition S using this representation, 
we sum up the right-side values over 
all the rules whose left side is satisfied 
by S. As an example, consider the fol-
lowing rules:

A ^ B ⟼ 2

B ^ D ⟼ 7

A ^ B ^ C ⟼ 6

To compute the value v(S) of the 
coalition S = {A, B, D}, two rules ap-
ply: the first (because the coalition S 
contains all the agents listed on the 
left side of the rule) and the second 
(for the same reason). The third rule 
doesn’t apply because the coalition 
S doesn’t contain the agent C. Thus 
v({A, B, D}) = 2 + 7 = 9. In the same 
way, the value of the coalition {A, B, 
C} is 2 + 6 = 8, while the value of the 
grand coalition N = {A, B, C, D} is 
2 + 7 + 6 = 15. (All three rules apply 
to the grand coalition.)

If we assume that the left sides of 
rules are in the simple form of the ex-
ample (conjunctions of players), then 

we can easily compute the Shapley 
value using a similar trick as for the 
weighted-graph representation. We 
treat each rule as a component game, 
and the Shapley value of a player in the 
overall game is the sum of the Shapley 
values for that player in the compo-
nent games. To compute the Shapley 
value in a component game, we again 
appeal to Shapley’s efficiency and 
symmetry axioms: the players listed 
on the left side of a rule share the 
value on the right side equally among 
themselves. Thus, for example, the 
Shapley value of player A in the exam-
ple game is (2/2) + (6/3) = 1 + 2 = 3, 
while the Shapley value of player D is 
7/2 = 3.5. However, core-related prob-
lems are hard for MC-nets, as in the 
weighted-graph representation, be-
cause MC-nets are a generalization 
of the weighted-graph representation. 
(Every edge in a weighted graph trans-
lates to a rule with just two agents on 
the left side.) Thus, the hardness re-
sults for the weighted-graph repre-
sentation carry over immediately to 
MC-nets.

Patterns on the left side of rules 
could in principle be any Boolean 
condition over the set of players—
we aren’t restricted to conjunctions 
of positive literals as in the example 
rules. If we allow for richer repre-
sentations, then this representation 
is complete, in the sense that every 
cooperative game (N, v) can be rep-
resented as a set of rules. This is ap-
parent from the fact that we can have 
one rule for every possible coali-
tion C ⊆ N: the left side of the rule 
is constructed so that it only matches 
the coalition C, while the right side 
is simply the value v(C). However, 
if we use these richer conditions, it 
becomes computationally hard to 
compute the Shapley value. It then 
becomes an interesting research ques-
tion to consider how rich we can al-
low patterns on the left side of rules 

to be without losing the attractive 
computational properties of simple 
conjunctive conditions.

Weighted-Voting Games
Our final representation is particu-
larly interesting because it plays a 
significant role in our everyday lives. 
A weighted-voting game is a type 
of simple cooperative game: a game 
where every coalition either gets the 
value 0 (they are “losing”) or 1 (“win-
ning”). In a weighted-voting game, 
each player i ∈ N is associated with a 
weight, wi, and the overall game has 
a quota, given by a real number q. 
A coalition C ⊆ N is then said to be 
winning if the sum of their weights 
meets or exceeds the quota and losing 
otherwise:

v C
w qii C( ) =

≥




∈∑1

0

if

otherwise.

Clearly, weighted-voting games 
have a compact representation: we 
just need to represent the weights and 
overall quota. Computing the Shap-
ley value for weighted-voting games 
turns out to be NP-hard, but check-
ing whether an outcome is in the core 
for weighted-voting games is compu-
tationally easy.3

Weighted-voting games are par-
ticularly important because they are 
widely used in real-world voting sce-
narios. For example, consider a polit-
ical voting system, such as the House 
of Commons in the UK or the Sen-
ate in the US. In such settings, the 
players are the political parties, the 
weight of a voter corresponds to how 
many votes that party has (how many 
seats they hold), and the quota is the 
number of votes required for a vote to 
succeed. In such settings, the Shap-
ley value has an interesting interpre-
tation: it measures how much power 
parties have—their ability to influ-
ence the overall decision.
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Cooperative game theory is con-
cerned with strategic decision-making  
in settings where binding agree-
ments are possible. In such situa-
tions, coalitions can form to exploit 
the benefits of cooperation. In this 
brief article, we hope to have given 
a flavor of the kinds of models used 
to study cooperative games, the 
kinds of solution concepts proposed 
by cooperative game theory, and 
some of the issues that arise when 
we use cooperative game theory in 
AI and computer science. For fur-
ther reading, Martin Osborne and 
Ariel Rubinstein provide a good 
treatment of cooperative game the-
ory, setting it clearly in the wider 
context and concerns of game the-
ory.4 And we have written a graduate-
level introduction to cooperative 
game theory, focusing particularly 

on the concerns of AI and computer  
science.5
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