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The Joy of Matching

of the second set. For example, the fi rst set could 
be people looking for a job, while the second set 
might be employers looking for employees. Ele-
ments of both sets are assumed to have preferences 
over those with whom they could be paired. The 
problem is then how do we fi nd the best matching 
between individuals from both sets?

This problem was first studied in the early 
1960s, by David Gale and Lloyd S. Shapley.1 
They proposed a simple and elegant algorithm to 
solve the problem, and showed that this algorithm 
was, in a precise sense, optimal. For this founda-
tional work, Shapley was a joint recipient, with 
Alvin Roth, of the 2012 Nobel Prize in Econom-
ics (see the sidebar “Lloyd S. Shapley”). Sadly, 
Gale passed away before the award was given (see 
the sidebar “David Gale”). For computer scien-
tists, one intriguing aspect of Shapley’s award is 
that it was made, at least in part, for an algorith-
mic research contribution. Our aim in this arti-
cle is to give you a feel for what matching prob-
lems are, how the Gale-Shapley algorithm solves 
them, and some possible applications of matching 
techniques.

The Stable Marriage Problem
Let’s consider the basic problem2 that’s solved by 
the Gale-Shapley algorithm. The problem is one of 
fi nding stable matchings. Following the original 
paper on this subject (which is very readable and 
superbly clear),1 the problem is usually described 
in terms of matching potential husbands with 
potential wives. Although this “marriage market” 
scenario may not seem at fi rst sight to be terribly 
plausible, later we’ll see that in fact it refl ects the 

structure of many important real-world economic 
problems. Here’s how the problem was originally 
described:

A certain community consists of n men and n women. 

Each person ranks those of the opposite sex in accor-

dance with his or her preferences for a marriage partner. 

We seek a satisfactory way of marrying off all members 

of the community.… We call a set of marriages unsta-

ble if there are a man and a woman who are not mar-

ried to each other but prefer each other to their actual 

partner.1

A little more formally, we have two disjoint 
sets, the set of men M and the set of women W, 
each of size n. Each man has a personal ranking 
of the women, and each woman has a personal 
ranking of the men. To keep things simple, we can 
assume the rankings are simply linear lists of all 
members of the opposite sex, indicating most pre-
ferred down to least preferred. Consider the fol-
lowing example (taken from Gale and Shapley1). 
Suppose n = 3, and that the men M = {X, Y, Z} and 
women W = {A, B, C} have rankings as shown in 
Example 1.

Thus, X ranks A fi rst, then B, then C, while Y 
ranks B fi rst, then C, then A. The goal is to come 
up with a matching. A matching is just a map-
ping from men to women such that every man is 
mapped to a unique woman, and, conversely, ev-
ery woman is mapped to a unique man. In math-
ematical terms, a mapping is a bijective function 
m : M → W, and so m(m) = w means that under the 
matching m, man m is matched to woman w. The 
following is a matching for Example 1:

m(X) = A;  m(Y) = B; m(Z) = C.

This matching pairs man X with woman A, man 
Y with woman B, and man Z with woman C. 

Many problems in economics can be under-

stood as matchmaking problems, in the 

following sense. We have two sets, and we need 

to pair up elements of the fi rst set with elements 
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Because the mapping m is a bijection, 
we can safely cheat a little with our 
notation, and write m(w) = m to mean 
that woman w is matched up with man 
m; thus, m(B) = Y in this matching.

In contrast, the following isn’t a 
matching, since it associates the same 
woman (A) with two men:

m(X) = A; m(Y) = B; m(Z) = A.

Now, the goal of the matching pro-
cess isn’t just to find a matching, but 
to find a good matching. There are at 
least two properties that we look for 
in a good matching. The first is sta-
bility. A matching is said to be stable 
if there is no man-woman pair who 
would prefer each other to the part-
ners that they’re matched with. Ex-
pressed a little more formally, m is 

Few academics have made such a sustained and high-level 
contribution to their discipline as Lloyd S. Shapley. Born 
on 2 June 1923 to an academic family in Cambridge, Mas-

sachusetts, Shapley gained a Bronze Star for work on breaking 
enemy codes for the Army Air Corps during World War 2. Af-
ter the war, Shapley studied mathematics at Princeton, gaining 
his first degree in 1948. His PhD was supervised by Albert W. 
Tucker and he was awarded his research degree in 1953—just 
three years after game theory legend John Forbes Nash gained 
his PhD under the same supervisor. He then worked at the 
RAND Corporation (see the related sidebar) until 1981, when 
he joined the faculty of UCLA. He spent the remainder of his 
working life at UCLA, and he’s currently a professor emeritus.

Shapley’s contributions to game theory and econom-
ics have been wide-ranging and fundamentally important. 
Apart from his work on game-theoretic matching, which we 
describe in the main body of the article, Shapley’s best-known 
contribution is a “solution” for cooperative game theory— 
a solution that we now call the Shapley value. Roughly speak-
ing, the problem that Shapley considered was as follows: 
Suppose a group of agents work together, and cooperatively 
obtain some payoff, which can be shared among members of 
the team in any way that the team chooses. Then, what’s a 
fair way to divide the value a team obtains among members 
of that team?

Shapley’s approach was ingenious and hugely influential. 
First, he proposed a set of axioms, which he suggested that 
any fair payoff division scheme should satisfy. For example, 
he argued that players who are identical in terms of their con-
tributions should receive the same payoff, and that players 
who make no contribution should receive nothing. Then, he 
defined a particular payoff distribution scheme, and showed 
that in fact this scheme is the only payoff scheme that satis-
fies the axioms. The basic idea behind the Shapley value is, 
crudely, that a team participant should be paid his expected 
marginal contribution—the amount that the player could be 
expected to contribute, on average, to a team selected at 
random. By only paying players according to the amount they 
contribute, we ensure fairness. Shapley’s analysis remains at 
the heart of cooperative game theory, and has led to a huge 
body of subsequent research.

In October 2012, it was announced that the 89-year old 
Shapley would receive the 2012 Nobel Prize in Economics, 
jointly with Stanford economist Alvin E. Roth. The award cita-
tion was “for the theory of stable allocations and the practice 
of market design.” From a computer science perspective, this 
award was particularly interesting, because it was arguably  
the first time the citation for a Nobel prize referred to an  
algorithmic contribution: the algorithm in question being, of 
course, the Gale-Shapley algorithm.

Lloyd S. Shapley

David Gale (13 December 1921 to 7 March 2008) was a 
professor of mathematics at the University of California, 
Berkeley, and during his career he made fundamental 

contributions to mathematics, game theory, and convex analysis.
He was born in Manhattan and received his PhD from 

Princeton in 1949. He was, of course, the joint author with 
Lloyd Shapley of the seminal paper “College Admissions and 
the Stability of Marriage,” appearing in American Mathemat-
ical Monthly in 1962. Marilda Sotomayor, a long-standing 
colleague and friend of Gale, wrote that Gale realized in the 
1970s that the algorithm he first published with Shapley had 
in fact been used since 1951 to allocate medical interns to res-
idency positions in the United States.

Another important contribution of Gale was his “top trading 
cycles algorithm” that appeared in 1974 (in a paper authored  

by Shapley and Herbert Scarf). This algorithm has been of 
fundamental importance in economics and has been applied 
in the context of school choice and in the allocation of kidney 
donors to patients.

In 1980, David Gale shared the von Neumann Theory Prize 
with Harold Kuhn and Albert Tucker for their seminal role in 
laying the foundations of game theory, and linear and non-
linear programming.

According to an obituary by the University of California, 
Berkeley, in a note to Gale’s family following his death, Al 
Roth wrote that Gale “has had a giant influence in economics 
as well as in mathematics” and mentioned that he had nomi-
nated Gale and Shapley to the Nobel Committee for Econom-
ics. David Gale would surely have been a joint recipient in 
2012 had he lived longer.

David Gale

Example 1. Marriage market scenario.

Sets Rankings of the opposite sex

Men X: A  B  C

Y: B  C  A

Z: C  A  B

Women A: Y  Z  X

B: Z  X  Y

C: X  Y  Z

IS-28-02-Game.indd   82 6/6/13   2:01 PM



March/aprIL 2013 www.computer.org/intelligent 83

stable if there’s no man m and woman 
w such that:

•	m prefers w to m(m), and 
•	w prefers m to m(w).

So, if a matching is stable, then there 
will be no man-woman pair who 
would prefer to elope with each other 
than be with their matched partner. 
Returning to Example 1, there are 
several stable matchings. For exam-
ple, consider the matching in which all 
the men are matched with their first  
choice women: m(X) = A, m(Y) = B, and 
m(Z) = C. Because every man gets his 
first choice, there can be no man-woman 
pair who would rather elope than be 
with the partner they’re matched with. 
By the same argument, the matching in 
which every woman is paired with her 
most-preferred man is also stable. How-
ever, not all matchings are stable for 
this scenario: consider m(X) = C, m(Y) = 
B, and m(Z) = A. In this case, X and B 
would prefer to elope.

Let’s see another example. In Ex-
ample 2, the matching with m(X) = B, 
m(Y) = A, and m(Z) = C is stable.

Stability forms our basic criterion for 
a good matching, but it isn’t the only one.  

In addition, we might consider optimal-
ity requirements to be important. How-
ever, formulating optimality is slightly 
tricky, because whether we judge a 
matching to be optimal can depend on 
whether we adopt the men’s or women’s 
perspective. We say a stable matching is 
M-optimal if it’s at least as good as any 
other stable matching for all the men; 
and similarly, we say a stable match-
ing is W-optimal if it’s at least as good 
as any other stable matching for all the 
women. For Example 1, the match-
ing where every man gets his most 
preferred woman is M-optimal but not  
W-optimal, while the matching in which 
every woman gets her first choice man is 
W-optimal but not M-optimal.

The Gale-Shapley Algorithm
Now we’ve seen the basic problem 
that we want to address: finding sta-
ble matchings between sets of indi-
viduals. However, we haven’t yet seen 
how to find such matchings, or even 
whether stable matchings always ex-
ist. Moreover, if there are n men and n 
women, there will be n! possible match-
ings in total, and so exhaustively search-
ing through the whole set of matchings  
won’t be practicable: this raises the 

question of whether we can find stable 
matchings in polynomial time. We now 
introduce the Gale-Shapley algorithm 
(also sometimes called the deferred ac-
ceptance algorithm), which has some 
remarkable properties. First, it demon-
strates that a stable matching always ex-
ists, and guarantees to always find such 
a matching. Second, it guarantees to 
find an M-optimal matching (or, with a 
simple tweak, a W-optimal matching). 
Third, it’s computationally efficient—it 
runs in linear time.

The algorithm is as follows:

1. Each man m proposes to his most 
preferred woman. Each woman 
who receives one or more proposals  
accepts the proposal of the man 
she prefers the most among those 

Example 2. Further marriage market.

Sets Rankings of the opposite sex

Men X: A  C  B

Y: A  C  B

Z: C  A  B

Women A: Y  Z  X

B: Z  X  Y

C: Z  X  Y

The RAND Corporation was founded in the aftermath of 
World War 2, with the laudable and seemingly innocu-
ous goal of promoting what we would now call tech-

nology transfer—taking theoretical ideas from mathematics, 
economics, logistics, and operations research, and applying 
them in real-world settings. An offshoot of the Douglas Air-
craft Company, RAND enjoyed a close relationship with the 
US military from its foundation. In the 1950s and 1960s, the 
public perception of RAND’s work became very closely linked 
with cold-war military doctrine. Many of the leading early 
proponents of game theory worked at RAND at some stage 
in their careers, including Lloyd Shapley, John Nash, John von 
Neumann, Kenneth Arrow, Thomas Schelling, Melvin Dresher, 
and Merill Flood, as well as hugely influential mathematicians 
such as Richard Bellman, the father of dynamic programming.

However, the researcher who probably did the most to de-
fine the public perception of RAND was Herman Kahn. Born 
in 1922, Kahn was a futurist, who gained notoriety for trying 
to think rationally about something that most people regard 
as unthinkable: nuclear war. His 1960 book On Thermo nuclear 
War set out his views on the subject, and it was perhaps the 

suggestion in this book that such a war was winnable that 
subsequently made it notorious. Many people believed it 
was only the idea that nuclear war was unwinnable that pre-
vented the military from using nuclear weapons; the idea 
that the RAND Corporation was apparently undertaking seri-
ous studies into how a nuclear war might be fought was for 
many an appallingly cold-hearted prospect.

Kahn’s views became widely associated with RAND, even 
to the point where they were parodied in Hollywood movies 
and made the subject of popular songs. In Stanley Kubrick’s 
blistering cold-war satire Dr. Strangelove, a mad scientist en-
thusiastically refers to a study by “The BLAND Corporation.” 
Folk singer Pete Seeger’s 1961 protest song RAND Hymn 
claimed “they think all day long for a fee/they sit and play 
games about going up in flames.” So strong was the popu-
lar association between RAND, game theory, and nuclear war 
that this association ultimately contorted public perceptions 
of the discipline of game theory itself.1

Reference
 1. W. Poundstone, Prisoner’s Dilemma, Oxford Univ. Press, 1992.

The RAND Corporation
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who propose to her; she rejects all 
the others. Men whose propos-
als are rejected remain single for 
the time being. When a man has 
a proposal accepted, we say the 
man and corresponding woman 
are engaged. Engagement is not in 
any way binding at this stage.

2. Each man who remains single after 
the previous stage proposes to the 
woman he most prefers among those 
he hasn’t previously proposed to (in 
other words, he goes to the next 
woman on his list). Each woman 
who isn’t currently engaged who 
receives proposals accepts the pro-
posal of the most preferred man, and 
rejects the rest. Each woman who is 
currently engaged accepts the pro-
posal of whoever she most prefers, 
from the set of men she receives pro-
posals from and the man she’s cur-
rently engaged to; she rejects the rest 
(this may mean rejecting the person 
she’s currently engaged to). Rejected 
men are then single.

3. Repeat stage (2) until everybody is 
engaged, at which point the set of 
current engagements becomes the 
final matching.

If we run the algorithm with pref-
erences as in Example 1, we see that 
the men each make proposals to their 
most desired women, which are all 
accepted; everybody is then engaged, 
and the algorithm then terminates.

If we run the algorithm with pref-
erences as in Example 2, then on the 
first round, X proposes to A, Y pro-
poses to A, and Z proposes to C. 
The proposals of Y and Z will be ac-
cepted, but the proposal of X will be 
rejected. Thus, X and B remain sin-
gle; on the next round, X proposes to 
C but is rejected because C’s current 
engagement to Z is preferred by C. In the 
next round, X proposes to B and is  
accepted. The matching we end up with 
is m(X) = B, m(Y) = A, and m(Z) = C.

Let’s consider the algorithm’s proper-
ties. First, it’s easy to see that it’s guar-
anteed to terminatethe worst case 
would require O(n2) rounds, and so 
the algorithm runs in polynomial time. 
(With an appropriate choice of data 
structures, this algorithm can be imple-
mented to run in linear time.) Also, it 
should be obvious that the matching 
produced is stable. Otherwise, there 
would be some man-woman pair who 
would rather be with each other than 
with the partner they’re paired with in 
the final set of engagements. But since 
the man prefers the woman over his 
final engagement, he must have pre-
viously proposed to her and been re-
jected. So the woman cannot prefer 
the man over her final engagement. By 
a similar argument, we can see that the 
matching produced is M-optimal. To 
find a W-optimal matching, we sim-
ply swap the roles of men and women, 
so that the women are the ones making  
proposals.

Matching Problems  
in Practice
In their original paper on stable match-
ing, Gale and Shapley wrote:

In making the special assumptions needed 

in order to analyze our problem math-

ematically, we [eventually] abandoned re-

ality altogether and entered the world of 

mathematical make-believe. The practical-

minded reader may rightfully ask whether 

any contribution has been made toward an 

actual solution of the original problem.1

Interestingly, not only has the Gale-
Shapley algorithm since been put to 
use in a wide range of application do-
mains in many countries worldwide, 
but also, when they wrote their paper, 
Gale and Shapley were unaware that 
their algorithm was in fact already in 
use on a large scale, and had been so 
utilized for some 11 years prior to the 
publication of their paper!

To describe this interesting chro-
nology in more detail, we rewind to 
the first half of the 20th Century, 
where in the United States medical 
interns sought positions at hospitals 
as part of their postgraduate medical 
education. The hospitals had more 
open positions than there were interns, 
resulting in a competition for the latter. 
As a consequence, many problems en-
sued: for example, prospective interns 
were being signed up for an intern-
ship years before they started.  Several 
solutions were proposed and tried, all 
with very limited success. The break-
through came at the beginning of the 
1950s with a voluntary program called 
the National Intern Matching Program 
(NIMP), designed by J.M. Stalnaker 
and F.J. Mullin.  Medical students and 
hospitals could now submit their pref-
erences over one another, and an algo-
rithm was then used to produce the al-
location of students to hospitals.

In the 1970s, it was observed that 
this algorithm was essentially equiv-
alent to the “hospital-proposing” ver-
sion of the Gale-Shapley algorithm 
(see the “David Gale” sidebar).  Here, 
the algorithm is an extension of the 
one previously described for the “sta-
ble marriage” problem, which Gale 
and Shapley presented in the con-
text of assigning students to colleges. 
However, the model involving the as-
signment of medical residents to hos-
pitals is entirely equivalent to the 
problem solved by the Gale-Shapley  
algorithm.

NIMP, now known as the National 
Resident Matching Program (NRMP), 
survives to this day. In 2012, no fewer 
than 38,777 aspiring medical resi-
dents applied for 26,772 available 
residency positions via the NRMP. 
Counterparts of the NRMP are in 
existence in many other countries— 
including Canada, Japan, and the UK. 
It’s the stability of the constructed 
matching that’s seen as being crucial 
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to the success of the NRMP and other 
similar centralized matching schemes.

The Gale-Shapley algorithm is also 
used in many other contexts—for ex-
ample, in public school admissions 
in Boston and New York. The inputs 
include the preferences of pupils’ par-
ents over schools, and school “prefer-
ences” are determined through prior-
ity levels for pupils based on factors 
such as geographical location, a sib-
ling already at the school, and so on.

Previously in Boston and New 
York, so-called priority-based mech-
anisms were used, which led to wide-
spread strategic behavior on the part 
of the applicants, since it was often 
unsafe for applicants to submit their 
true preferences. This led to much 
uncertainty and dissatisfaction with 
the mechanism on the part of parents 
(and other stakeholders). One major  
advantage of the applicant-proposing  
Gale-Shapley algorithm is that it’s 
strategy-proof for that side of the mar-
ket. This means that it’s safe for an ap-
plicant to reveal their true preferences, 
because they can’t obtain a better out-
come by falsifying their preferences.

In New York, around 90,000 stu-
dents enter high school each year. 
Prior to the mechanism being changed 
to the Gale-Shapley algorithm in 2003, 
around 30,000 students were allocated 
to schools that they hadn’t ranked on 
their preference list. In the first year of 
the new scheme’s operation, this num-
ber dropped to around 3,000.

The Gale-Shapley algorithm has 
been applied in many other settings, 
such as

•	 assigning children to daycare places 
in Denmark;

•	 admitting higher education students 
in Hungary and Spain;

•	 recruiting university faculty in 
France;

•	 placing military cadets in branches 
in the USA;

•	 placing new rabbis in the US and Israel;
•	 online dating in the US and online 

matrimony in India; and
•	 auction mechanisms for sponsored 

search in Internet search engines.

It’s likely that, with the increasing 
tendency for administrative processes 
to be handled online, and given the 
relative ease with which participants’ 
preferences can be collected, the po-
tential for deploying the Gale-Shapley 
algorithm within centralized clear-
inghouses will only grow further.

A t first sight, the matchmaking 
problems discussed here might seem 
almost too simple to be of interest to 
theoreticians, and too unrealistic to be 
applicable in real-world settings. And 
yet, such problems turn out not only to 
be fascinating to work with from the 
point of view of mathematics and com-
puting, but they also have many practi-
cal and important applications.3
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