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Game Theory and Evolution

evolution have begun to be applied with great suc-
cess in economics. Here, we describe the key con-
cepts from the area now known as evolutionary 
game theory, and introduce some important appli-
cations of these concepts.

Hawks and Doves
Evolutionary game theory is usually introduced 
by way of a simple scenario, known as the Hawk-
Dove Game.1 The game is as follows. Imagine we 
have a very large population of individuals, which 
come in two variants: Hawks and Doves (we aren’t 
thinking of the species of birds that go by these 
names, by the way—these terms refer to innate 
predispositions towards aggressive or passive be-
havior). These two variants play the role of strat-
egies in conventional game theory. Note that, in 
a biological context, we don’t imagine an individ-
ual consciously deciding whether to be a Hawk or 
a Dove: each variant refl ects a genetically hard-
wired behavior.

Individuals will reproduce over time, but in the 
Hawk-Dove game, reproduction is asexual—an 
individual doesn’t need a partner to reproduce, 
and if an individual reproduces, then it begets 
offspring of the same type. Thus, when a Hawk 
reproduces it creates a Hawk, and when a Dove 
reproduces it creates a Dove (in a very large popu-
lation, we can consider the effect of random mu-
tation to be negligible). The key attribute of an 
individual that determines how likely they are to 
reproduce is a numeric value that we’ll call their 
fi tness. In evolutionary terms, the fi tness of an in-
dividual is a measure of how likely that individ-
ual is to be able to reproduce and pass on their 

genes: an individual with a high fi tness value will 
be likely to be able to reproduce and pass on their 
genes, while an individual with low fi tness is un-
likely to do so.

In the Hawk-Dove Game, individuals can in-
crease their fi tness by obtaining a particular re-
source from the environment. For example, if we 
think of the resource as being food or water in the 
animal kingdom, then this is a natural interpreta-
tion: animals that succeed in obtaining food and 
water are surely more likely to survive and repro-
duce than those that don’t.

In our game, individuals are in competition with 
others to obtain resources. We think of the Hawks 
as being fi erce and unafraid to fi ght for resources, 
while the Doves are timid and reluctant to fi ght. 
The rules defi ning what happens when Hawks and 
Doves compete are then as follows:

When a Hawk competes with a Dove, the Hawk 
takes the whole of the resource. (The Dove is 
afraid to fi ght and backs down, leaving the 
whole of the resource to the Hawk.)
When a Dove competes with a Dove, they share 
the resource equally.
When a Hawk competes with a Hawk, then they 
fi ght, and have an equal chance of obtaining the 
resource or being injured.

Let V denote the value of the resource: this is 
the increase in fi tness that an individual would 
gain by obtaining the resource. Let C denote the 
cost of injury—this is the amount by which fi t-
ness would decrease if an individual fought for 
the resource and lost. So, the changes in fi tness 
resulting from an encounter in the game are as 
follows:

When a Hawk meets a Hawk: they fi ght, and 
have an equal chance of increasing their fi tness 
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by V or decreasing their fitness by 
C; on average, this will result in an 
increase of fitness by (V – C)/2.
When a Dove meets a Dove, they 
share the resource equally, each 
obtaining an increase of fitness of 
V/2.
When a Hawk meets a Dove, the 
Hawk takes the whole of the re-
source, resulting in an increase of 
fitness of V for the Hawk, while the 
Dove has no change in fitness.

To calculate the fitness of the 
Hawks and the Doves in our popu-
lation, we imagine that the individu-
als in the population encounter each 
other several times before they repro-
duce. We model this by “mixing” the 
population; randomly chosen pairs of 
individuals are picked from the pop-
ulation, and we repeat this several 
times, choosing a new pair on each it-
eration. On each encounter, the two 
individuals compete with each other, 
obtaining an improvement in fitness 

for each individual as described by 
the aforementioned rules. We then 
calculate the average fitness improve-
ment of all of the Hawks, and corre-
spondingly for the Doves.

When the population reproduces, 
the fraction of each variant increases 
at a rate proportional to its current 
fitness relative to the rest of the pop-
ulation. The exact rules defining the 
proportions of Hawks and Doves 
are known as the replicator dynam-
ics of the game: see the related side-
bar for a detailed explanation of the 
replicator dynamics for the Hawk-
Dove scenario. The basic idea is that 
if, for example, Hawks have improved 
their average fitness more than Doves, 
then the proportion of Hawks in the 
next time step will be increased ac-
cordingly. Similarly, if Doves in-
crease their average fitness more than 
Hawks, then the proportion of Doves 
will increase. This process proceeds 
iteratively, and can continue indefi-
nitely unless the population reaches 

an  equilibrium in which the propor-
tions are unchanging.

Figure 1 shows how the popula-
tion of Hawks and Doves changes 
over time for a typical instance of 
the game. The proportion of Hawks 
in the population starts as only 1/10 
of a percent of the population, but 
grows over successive generations, 
and eventually Hawks completely 
eliminate the Dove population. To 
see why this is, suppose there was just 
one Hawk in the population, and 999 
Doves. Initially, that Hawk would be 
guaranteed to compete with a Dove, 
taking the whole of the value V, 
while  every other Dove would com-
pete with a Dove, sharing the value 
V equally. The fitness of Hawks in-
creases dramatically compared to 
Doves, and the proportion of Hawks 
in the next generation increases ac-
cordingly, while the proportion of 
Doves decreases. This growth contin-
ues, with Hawks essentially preying 
on the Dove population. But  observe 

The replicator dynamics of a scenario in  evolutionary 
game theory describe how the proportion, or frequency, 
of different variants changes over time in response to  

their fitness. The subtlety here is that a variant’s fitness also 
depends on its frequency (in the terminology of mathemat-
ical biology, we say that fitness is frequency- dependent). 
The model we present here is the standard model for the 
Hawk-Dove game, as developed by John Maynard Smith 
(1920–2004).1

Recall that V is the value that would be gained by obtain-
ing the resource, C is the cost that would be incurred by a 
Hawk if it fought another Hawk and lost, and P is the initial 
frequency of Hawks in the population. Thus, if P " 0, then 
there are no Hawks in the initial population, while if P " 1, 
then the population is initially composed entirely of Hawks. 
If we imagine that reproduction occurs at discrete time steps, 
then at each step we compute the average fitness of Hawks 
and Doves. Let W(H) and W(D) denote the average fitness of 
Hawks and Doves. Taking Hawks first, we have

W(H) " P((V � C)/2) � ((1 � P)V).

The first term is the fitness that Hawks obtain by compet-
ing with Hawks; the second term is the increase in fitness 
 resulting from encounters with Doves.

The corresponding equation for Doves is simpler, because 
we don’t need a term describing the increase in fitness that a 

Dove would obtain from encountering a Hawk: we know this 
will be 0, and all we need is to describe the increase in fitness 
obtained by Doves encountering Doves:

W(D) " (1 � P)(V/2).

The final element we need in our replicator dynamics de-
scribes how the frequencies of different variants change over 
time in response to these fitness values. The idea is that the fre-
quency of a variant in a population will increase at a rate that’s 
proportional to their fitness compared with the average fitness 
of the population as a whole. Thus, if Hawks increase their av-
erage fitness by 2, and Doves also increase their average fitness 
by 2, then the frequency of Hawks and Doves in the next time 
step will remain the same. However, if Hawks increase their fit-
ness more than Doves, then there will be proportionally more 
Hawks. Formally, we let Pe denote the frequency of Hawks pres-
ent in the next time period, and let W " PW(H) � (1 � P)W(D) 
denote the average fitness of an individual in the population. 
The new frequency of Hawks is then given by
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+ −

P P
W H PW H

PW H P W D
( ) ( )

( ) ( ) ( )
.

W 1

Reference
 1. J.M. Smith, Evolution and the Theory of Games, Cambridge 

Univ. Press, 1982.

Replicator Dynamics

IS-28-04-Game.indd   77 16/10/13   7:50 PM



78  www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

the shape of the graph in Figure 1: at 
around the eleventh generation, the 
rate of increase in the proportion of 
Hawks starts to decrease sharply. 
This is because at this point Hawks 
increasingly encounter other Hawks 
in the population, rather than Doves, 
and have to fight for resources.

In the terminology of evolution-
ary game theory, we say that in the 
scenario illustrated in Figure 1, the 
Hawk population invades the Dove 
population. Now, for this scenario, 
Hawks are able to invade the Dove 
population even starting from a low 
initial proportion of the popula-
tion. In fact, as long as the value of 
the resource is greater than the cost 
of conflict (that is, as long as V # C), 
then having just one Hawk in the ini-
tial population is sufficient to guar-
antee that eventually the Doves will 
be wiped out. Of course, in this sce-
nario, Doves won’t be able to invade 
a Hawk population.

This brings us to the main ana-
lytical concept in evolutionary game 

theory, which plays a role analogous 
to that played by Nash equilibrium 
in classical game theory. Let’s say a 
strategy is evolutionarily stable if a 
population consisting of almost en-
tirely that strategy can’t be invaded by 
any other strategy. In the Hawk-Dove 
game, Hawk is an evolutionary stable 
strategy if V # C. It’s not hard to see 
this: if V # C, then being a Hawk is 
always going to be more successful 
than being a Dove: in the worst case, 
if you meet another Hawk, you’ll still 
get some positive improvement in fit-
ness. A related sidebar presents some 
more discussion of evolutionary sta-
ble strategies.

So, when we analyze a scenario 
in terms of evolutionary game the-
ory, instead of asking “What are the 
Nash equilibrium strategies?” we ask 
“What are the evolutionarily stable 
strategies?” In informal terms, this 
means asking which strategies will 
prosper over time, in an evolutionary 
setting, taking into account the other 
strategies present in the environment.

Axelrod’s Tournament
The Hawk-Dove game nicely illus-
trates the basic ideas of evolutionary 
game theory, but it’s a little abstract, 
so let’s consider a more concrete (and 
much more famous) scenario. In the 
late 1970s, a political scientist called 
Robert Axelrod was pondering the 
question of how cooperation could 
emerge in a society of purely self- 
interested individuals.2 To shed some 
light on this question, he organized a 
tournament in which interested par-
ties from around the world were in-
vited to submit computer programs to 
play a game called the Iterated Pris-
oner’s Dilemma. As the name sug-
gests, the tournament is based on 
the well-known game called the Pris-
oner’s Dilemma. To recap (and with 
apologies to regular readers of this 
column, who will have seen this ex-
planation before), the Prisoner’s Di-
lemma game has two players: Alex 
and Bob. Each player must choose 
between two actions: cooperation or 
defection. Depending on the combi-
nation of choices made, the payers 
receive payoffs, as defined in the fol-
lowing payoff matrix (see Table 1).

We read this payoff matrix as fol-
lows. Bob is the row player, so called 
because his possible choices cor-
respond to the matrix rows, while 

Informally, a strategy S is said to evolutionarily stable if a 
population consisting almost entirely of S can’t be invaded 
over time by another strategy. It turns out that we can 

characterize exactly the conditions required for S to be evolu-
tionarily stable. There are two requirements.

The first and most basic property is that for S to be an evo-
lutionarily stable strategy, there can be no other strategy 
that does better when played against S than S does itself. If 
S didn’t have this property, then some other strategy—call 
it T—would be able to invade a population of S individuals. 
Imagine on the first generation of population of 999 S individ-
uals and one T. The T is guaranteed to meet with an S and do 
better, while all the other S individuals meet with other S indi-
viduals. The one T individual will thus have an improvement in 
fitness greater than the S individuals, and will begin to invade 
the S population, just as Hawks invade a population of Doves 
in the Hawk-Dove game (see Figure 1 in the main text).

This first condition is, however, not enough to  guarantee 
that S will survive and prosper over successive generations. 
This is because there might be other strategies that do no 
better when played against S than S does, but do better 
when playing against themselves than S does when played 
against them. They thus benefit compared to S when they 
play against themselves. So, the second condition required 
for an evolutionarily stable strategy is that S does better 
when played against every alternative strategy T than T does 
when played against itself.

In the terminology of conventional game theory, the first 
condition amounts to saying that S playing against S is a con-
ventional Nash equilibrium (in fact, a symmetric Nash equi-
librium). The second condition ensures that it’s a refinement 
of the ordinary notion of a Nash equilibrium. It ensures that 
other strategies can’t prosper, compared to S, when they 
meet themselves.

Evolutionarily Stable Strategies

Table 1. Payoff matrix.

Alex

Defect Cooperate

Bob
Defect 2, 2 4, 1

Cooperate 1, 4 3, 3
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Alex is the column player, so called 
because his choices correspond to 
the matrix columns. Each cell in the 
matrix is a possible outcome of the 
game, corresponding to the combina-
tion of choices made by the players. 
The numbers in a matrix cell are the 
payoffs that the players receive in that 
outcome: Bob’s is listed first, then the 
payoff for Alex. Thus, if Alex coop-
erates while Bob defects, we obtain 
the outcome in the matrix’s top right 
cell: Bob gets a payoff of 4, while 
Alex gets a payoff of 1. Players prefer 
higher payoffs, so this outcome is the 
best possible outcome for Bob, and 
the worst possible outcome for Alex.

It’s easy to see that, no matter 
what Bob does, Alex’s best response 
would be to defect, while no matter 
what Alex does, Bob’s best response 
would be to defect. Thus both play-
ers choose to defect, each receiving 
a payoff of 2 (in the matrix’s top left 
cell), although in fact both players 
would have done better to cooperate, 
which would give each of them a pay-
off of 3 (bottom right cell).

In the Iterated Prisoner’s Dilemma, 
the same two players will meet and 
play a certain number of rounds of 
the Prisoner’s Dilemma; their payoffs 
on each round are summed to find 
their overall payoff. At each round, 
both players are able to see what 
their counterpart did on the previ-
ous round. It was this game that was 
played by the computer programs 
submitted to Axelrod’s tournament. 
Before proceeding, let’s see some of 
the 63 strategies that were submitted 
to the tournament:

ALLD: Defect on every round, no 
matter what your counterpart does.
ALLC: Cooperate on every round, 
no matter what your counterpart 
does.
TIT-FOR-TAT: On the first round, 
cooperate; on subsequent rounds, 

simply copy whatever your coun-
terpart did on the preceding round.
JOSS: As TIT-FOR-TAT, except 
that it defects 10 percent of the 
time instead of cooperating.
FRIEDMAN: Start by cooperating, 
and repeat cooperation as long as 
your counterpart does; but if ever 
your counterpart defects, then de-
fect forever after. (In the literature, 
this strategy is sometimes called 
GRIM or GRIM TRIGGER.)
RANDOM: Choose between coop-
eration and defection randomly.

In Axelrod’s tournament, every 
submitted strategy got to play the It-
erated Prisoner’s Dilemma for 200 
rounds against every other submitted 
entry. The overall score for a strategy 
was then the sum of its scores over 
each individual contest. Thus, ALLD 
played the Iterated Prisoner’s Di-
lemma for 200 rounds against ALLC, 
200 rounds against TIT-FOR-TAT, 
and so on. It’s important to remem-
ber in what follows that a strategy 
got to compete against all other strat-
egies, and that its overall score took 

into account how it performed in all 
of these individual contests.

The outcome of Axelrod’s tourna-
ment was that the clear overall win-
ner was TIT-FOR-TAT. Axelrod gives 
a compelling analysis of how and why 
TIT-FOR-TAT did so well in his emi-
nently readable 1984 book describing 
the tournament (on p. 54):

What accounts for TIT-FOR-TAT’s ro-
bust success is its combination of being 
nice, retaliatory, forgiving and clear. Its 
niceness [the fact that it starts by co-
operating] prevents it from getting into 
unnecessary trouble. Its retaliation [the 
fact that it punishes defection by imme-
diate defection] discourages the other 
side from persisting whenever defection 
is tried. Its forgiveness [the fact that it 
reciprocates cooperation even after pre-
vious defections] helps restore mutual 
co-operation. And its clarity makes it 
intelligible to the other player, thereby 
eliciting long-term co-operation.2

Axelrod’s work deservedly received 
widespread acclaim. Many readers 
interpreted the results as “solving” 

Figure 1. Population dynamics in a Hawk-Dove game. Hawks invade a population 
of Doves, starting from a low proportion of the population. The x-axis shows the 
generation, and the y-axis shows the proportion of the population that are Hawks 
at the corresponding time. As the proportion of Hawks begins to dominate, the 
rate of increase in the Hawk population decreases; this is because as Doves are 
eliminated from the population, Hawks find themselves increasingly competing 
with Hawks, reaping smaller improvements in fitness than when they were 
competing with Doves. The initial proportion of Hawks for the scenario in this graph 
was 0.001. The initial fitness for both Hawks and Doves was 2, with V " 4 and C " 3.
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the Prisoner’s Dilemma, and TIT-
FOR-TAT was even promoted as a 
model for cooperation between na-
tions. However, some commenta-
tors were critical: game theorists in 
particular pointed out that the fact 
that cooperation can be rationally 
sustained in some iterated versions 
of the Prisoner’s Dilemma had been 
well-known for several decades pre-
viously, and highlighted a range of 
methodological issues with the tour-
nament, which spurred much future 
research.

Important though this debate is, 
our present purpose is to focus on 
Axelrod’s tournament in the context 
of evolutionary game theory. Notice 
that a key reason why TIT-FOR-TAT 
did well is that it was able to meet 
a range of other strategy types. In 
particular, when it met other “nice” 
strategies (those that start by coop-
erating, and reciprocate cooperation) 
it was able to benefit from this. Now, 
given our earlier discussion, a very 
natural evolutionary interpretation 
of Axelrod’s tournament suggests it-
self. Instead of having just two types 
of individuals (Hawk and Dove) in 
the population, we have 63—the 
strategies that were submitted to the 
tournament. Let’s suppose these are 
initially present in the population 
in equal proportions. We then com-
pute fitness as being the score that 
the strategy achieves in the tourna-
ment played with those individuals 
currently in the environment. We can 
then use a similar model of replica-
tor dynamics to those presented in 
the “Replicator Dynamics” sidebar 
to compute the populations of strate-
gies in the next generation, and then 
we can look to see which strategies 
prosper and which don’t, over suc-
cessive generations. The dynamics 
of this process for Axelrod’s tourna-
ment are fascinating (see pp. 50–51 
of his book):

The first thing that happens is that the 
lowest-ranking eleven entries fall to half 
their initial size by the fifth generation 
while the middle-ranking entries tend 
to hold their own and the top-ranking 
entries gradually grow in size. By the 
fiftieth generation, the [strategies] that 
ranked in the bottom third of the tourna-
ment have virtually disappeared, while 
most of those in the middle third have 
started to shrink, and those in the top 
third are continuing to grow. The process 
simulates survival of the fittest. A [strat-
egy] that is successful on average with 
the current distribution of [strategies] in 
the population will become an even larg-
er proportion of the environment … in 
the next generation. At first, a rule that 
is successful with all sorts of rules will 
proliferate, but later as the unsuccessful 
rules disappear, success requires success 
with other successful rules.2

As in the overall tournament, TIT-
FOR-TAT was the best-performing 
strategy in the evolutionary model. 
Although it isn’t technically an evo-
lutionarily stable strategy, over time, 
TIT-FOR-TAT came to be the domi-
nant strategy in the environment. For 
Axelrod, one of the crucial aspects of 
this result is the following: Starting 
with the initial distribution of strate-
gies, and then simply applying some 
easily motivated reproduction rules, 
we eventually end up with a popula-
tion of cooperating individuals. And 
note that no guiding hand, outside 
force, or even deep reasoning was re-
quired to get there: we get to mutually  
sustained cooperation just by apply-
ing basic evolutionary principles.

Lest we get overly excited about the 
success of TIT-FOR-TAT, it’s impor-
tant to note that its success greatly  
depends on its initial environment. 
For example, if we consider a pop-
ulation consisting of all possible 
 strategies that can be represented by 
finite automata with just two states 

 (TIT-FOR-TAT is such a strategy), 
then the FRIEDMAN strategy does 
better. 

Learning and Equilibrium 
Selection
Although evolutionary game the-
ory was originally formulated to un-
derstand problems in biology, it has 
found applications in many other 
fields. This is because the underlying 
mathematics also applies in scenar-
ios where individuals learn from one 
another.

For example, let’s revisit the Hawk 
versus Dove scenario—however, this 
time we’ll think of the individuals in 
the population as people who are al-
lowed to switch between two differ-
ent strategies (and correspondingly 
replace the fitness values with mone-
tary payoffs). Now also imagine that 
these people are somewhat pushed for 
time, and rather than sitting down to 
work out the optimal behavior de-
ductively, instead they use a heuristic 
rule of thumb which says “if someone 
else appears to be doing better than 
you, then copy their strategy.” If we 
also assume that the probability of 
actually noticing that somebody else 
is doing better is proportional to the 
relative payoff between the two strat-
egies, then the changes in the pro-
portion of people using each strategy 
over time will be governed in ex-
actly the same way as for the evolu-
tionary case. We can therefore think 
of the replicator dynamics not just 
as a model of genetic evolution, but 
more generally as a model of social 
learning, or alternatively as cultural 
evolution.3

Remarkably, it also turns out that 
replicator dynamics are a good ap-
proximation of learning even if we 
drop the assumption that people imi-
tate each other’s strategies, and instead 
assume that they learn by trial and er-
ror by gradually reinforcing  behaviors, 
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which yield good payoff to themselves. 
Thus, ideas from evolutionary game 
theory have been used in AI research 
to understand how systems com-
prised of multiple autonomous sys-
tems can learn to perform tasks with 
or against each other. For example, 
this conceptualization of evolutionary 
game theory provides an answer to the 
equilibrium selection problem. The 
equilibrium selection problem can be 
illustrated by the following scenario.

Alice and Bob like each other but are too 
shy to speak to one another. They know 
that both like to go to pubs in the eve-
ning, and there are two pubs in town, the 
Turf and the Anchor. Ann and Bob each 
have to independently decide which pub 
to go to—they can’t go to both. If they 
go to the same pub, both will be happy; 
if they go to different pubs, both will be 
miserable.

Problems like this, where both play-
ers must independently make mutu-
ally consistent choices, are known 
as coordination problems. The diffi-
culty is that there are two equilibria 
in this game: one in which both go to 

the Turf, and one in which both go to 
the Anchor. But if there’s nothing to 
distinguish these equilibria, the play-
ers don’t communicate, and nobody 
dictates the outcome, how should 
they choose? Evolutionary game the-
ory can provide an answer. The idea 
is that rather than deliberating and 
rationalizing between strategies, the 
players apply a trial-and-error pro-
cess over time, being more likely to 
favor strategies that prove successful. 
By learning over time, they can ulti-
mately coordinate.

Evolutionary game theory provides 
a fundamentally different view on 
strategy selection to that proposed by 
classical game theory. In evolutionary 
game theory, we don’t think of indi-
viduals engaged in complex deductive 
reasoning while they try to decide 
what to do. Instead, strategies are 
selected over time by the inexorable 
process of evolution.

These ideas were originally  applied 
to understanding biological evolu-
tion, but they apply more generally 
to scenarios where players reason 

 inductively by preferring strategies 
that have performed well over those 
that haven’t. Thus, evolutionary game 
theory can be used to understand not 
only how intelligent systems evolve, 
but also how they learn.
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