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robust and effi cient techniques to analyze and 
 understand the structure and operation of terror-
ist organizations. One key problem is that of iden-
tifying the key members of the organization using 
 information about the terrorist network’s topol-
ogy: this capability would enable security agencies 
to focus severely limited resources on just those key 
members.

To this end, many standard measures of centrality 
from the fi eld of social network analysis can be 
used. Centrality measures aim to give a numerical 
characterization of a node’s signifi cance in a 
network. For example, IBM’s Analyst Notebook—
a software package used worldwide by law 
enforcement and intelligence agencies—supports 
the degree, closeness, and betweenness centralities, 
which are probably the most widely used centrality 
measures. However, these measures have well-
known limitations, and the development of more 
sophisticated measures is currently a key research 
area. One important thread of current research is to 
apply techniques from the fi eld of cooperative game 
theory to this problem. In this article, we present a 
survey of this work.

Classic Measures of Centrality
The networks we are interested in are undirected 
weighted graphs: they consist of a set of nodes 
(vertices) and undirected edges that connect some 
nodes; each edge is associated with a numerical 
weight. The specifi c interpretation of the network 

will depend on the application domain, but in the 
analysis of terrorist networks, nodes are interpreted 
as members of the network, edges indicate links be-
tween them, and weights indicate the strength of the 
link (for example, the number of meetings between 
the two individuals). Centrality analysis aims to cre-
ate a principled ranking of the importance of nodes 
within such a network. Since “importance” depends 
on the problem at hand, researchers have consid-
ered many different centrality measures. Among 
them, degree centrality, closeness centrality, and be-
tweenness centrality are the most well-known and 
widely applied. According to weighted degree cen-
trality, a node’s importance is equal to the weight 
of that node’s adjacent edges (that is, the weighted 
degree of the node). For instance, in the network in 
Figure 1, nodes v1 and v2 are the most important ac-
cording to weighted degree centrality, because they 
have a weighted degree of 6 each, which is greater 
than that of any other node in the network. In con-
trast, according to closeness centrality, a node’s im-
portance is based on the average distance between 
that node and other nodes in the network. In Fig-
ure 1, for example, this measure considers node v8 
to be the most important in the network. Finally, 
betweenness centrality focuses on shortest paths 
between any two nodes in the network; the more 
shortest paths a given node belongs to, the higher 
its ranking. In Figure 1, node v11 is the most impor-
tant from the perspective of betweenness centrality.

All of these centralities can be defi ned on weighted, 
unweighted, directed, and undirected networks. For 
instance, the unweighted in-degree centrality of a 
node counts the total number of its incoming edges.

Clearly, all three measures expose a node’s 
different characteristics. For example, assume that 
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Figure 1 represents a network of 
cell-phone connections made by the 
members of a terrorist network; the 
weight of any given edge represents 
the number of calls made between the 
two ends of that edge. In this context, 
we can think of degree centrality as a 
simple tool to identify the terrorist(s) 
with the highest frequency of direct 
contacts. The hypothesis here is that 
such individuals are the most active 
within the network. Conversely, we can 
think of closeness centrality as a tool to 
identify the terrorist(s) whose message 
would spread fastest throughout the 
organization. Finally, betweenness 
centrality reveals the nodes that play a 
crucial role in passing the information 
from one individual in the network to 
another.

Although the standard measures in-
deed deliver nontrivial insights, they can-
not capture certain important aspects of 
centrality in a terrorist organization.

First, standard centrality measures 
are defined for networks in which 
we can consider at most a single real- 
valued weight for every node or edge. 
This assumption restricts the qualita-
tive analysis of terrorist organizations. 
For instance, it might be difficult or 
even impossible for a single weight to 
reflect the fact that a terrorist  possesses 

certain critical resources and/or skills, 
such as financial endowments or ex-
pertise in explosives. To illustrate this 
point, let us assume that node v1 in 
Figure 1 represents the terrorist who 
 provides funding to the entire organiza-
tion, while nodes v2, v6, and v11 repre-
sent the available bomb experts. Now, 
let us try to express the fact that the 
funding and bomb expertise are both 
critical to carry out an attack, and that 
the former skill is possessed by a sin-
gle individual, while the latter skill by 
three. To this end, we could for instance 
assign a weight of 10 to v1, a weight of 
5 to every bomb expert, and a weight 
of 1 to every other node. Then, if an at-
tack requires the funds, one bomb ex-
pert, and at least two other members, 
we can set a threshold of 17 on the 
total weight of the terrorists needed 
to carry out an attack. Unfortunately, 
such a solution would not work, be-
cause a group of three bomb experts 
and two other members (other than the 
one providing the funds) would cross 
this threshold, although they are unable 
to carry out any attack. This simple ex-
ample illustrates how it could be hard 
for a quantitative analysis to replace a 
qualitative one. 

The second deficiency of standard 
centrality measures is that they assess 

the importance of each node by fo-
cusing only on the role that this node 
plays by itself in the network. How-
ever, in many applications, such an 
approach is inadequate as it fails to 
capture any positive or negative syn-
ergies that might exist among differ-
ent groups of nodes. To illustrate this 
point, let us consider the problem 
of finding a group of two individu-
als that together have the highest in-
fluence in the network. As a possible 
solution to this problem, let us fo-
cus on unweighted degree centrality. 
With this measure, because nodes v1 
and v2 have five neighbors each, and 
because no other node has that many 
neighbors, then v1 and v2 each have 
the highest centrality. One might then 
conclude that {v1, v2} is the most influ-
ential pair in the network. However, 
it is easy to observe that their spheres 
of influence (that is, their neighbor-
hoods) overlap. In particular, both 
v1 and v2 are linked to v6, v7, and v8. 
Thus, nodes v1 and v2 together have 
only 7 unique neighbors, not 5 + 5 = 
10 neighbors. To put it differently, in 
this example there is a negative syn-
ergy between v1 and v2 due to their 
overlapping spheres of influence. Tak-
ing such synergies into consideration, 
we find that the most influential pair 
is in fact {v1, v11}, not {v1, v2}, because 
v1 and v11 together have eight unique 
neighbors. This is despite the fact that 
v11 is actually ranked lower than v2.

To account for such synergies, and 
to quantify the importance of groups 
of nodes more accurately, Martin 
 Everett and Steve Borgatti introduced 
the notion of group centrality.1 Intu-
itively, group centrality is derived in 
the same way as standard centrality, 
but now we consider the functioning 
of a group of nodes rather than an 
individual node. For instance, as we 
have already established in Figure 1,  
the unweighted degree centrality 
of group {v1, v2} is 7, whereas the 

Figure 1. Sample network of 13 nodes with weighted edges. The letter F represents 
a terrorist with the necessary funds, and the letter B represents a terrorist with 
bomb expertise.
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 unweighted degree centrality of group 
{v1, v11} is 8.

Unfortunately, the notion of group 
centrality has the following inherent 
drawback: given a network of size n, 
there are 2n groups of nodes to consider. 
Not only is this computationally prohib-
itive, but it is also unclear how to con-
struct a coherent ranking of individual 
nodes using such an exponential num-
ber of group-wise results. For instance, 
we could consider the most impor-
tant nodes to be those belonging to the 
most important group. Alternatively, we 
could rank individual nodes according 
to the average importance of the groups 
they belong to. In fact, one can think 
of an endless list of such alternatives. 
Things become even more complicated 
if, for instance, we are only interested in 
groups of nodes that are connected (that 
is, they induce a connected subgraph).

In summary, on top of evaluating 
the role that each node plays in a net-
work’s topology, we have identified 
the following desirable properties to 
have in a centrality measure:

1. It should be able to account for 
the individual properties of each 
node and/or edge (expressed either 
quantitatively or qualitatively).

2. It should be able to consider not 
only the functioning of individual 
nodes but also the positive or neg-
ative synergies that might exist in 
different groups of nodes.

3. It should be able to aggregate all 
the above information in an in-
formed and meaningful way to 
produce a coherent ranking of in-
dividual nodes.

By adapting the standard central-
ity measures to account for qualitative 
properties of the nodes and/or edges, 
and by extending those measures to 
groups, we can address properties 1 
and 2. The third property, however, 
 remains elusive. In the next section, we 

argue that the game-theoretic approach 
to centrality measures has all the above 
properties, including the third property.

Game Theory for  
Network Analysis
This direction of research is based on 
the following observation: by having an 
exponential number of groups of nodes, 
each with an assigned value reflecting 
its centrality, we end up with exactly 
the same combinatorial structure as a 
coalitional game (see the “Coalitional 
Games” sidebar). As such, we can con-
sider the network’s nodes to be the play-
ers of a coalitional game, with the value 
of each group, or “coalition,” of nodes 
being equal to its group centrality. With 
this analogy, we can capitalize on de-
cades of research in cooperative game 
theory, which focuses on analyzing the 
values of different coalitions to deter-
mine each individual’s worth. In par-
ticular, a coalitional game representing 
the network, along with an adopted so-
lution concept, produce what we call a 
game-theoretic network centrality mea-
sure, whereby a node’s centrality is the 
payoff of that node in the correspond-
ing coalitional game; this payoff is com-
puted according to the adopted solution 
concept, such as the Shapley value or the 
Myerson value. Let us  consider a few 
examples.

Example 1: Detecting the Top-k 
Most Influential Terrorists
Given an unweighted and undirected 
network, one might represent such 
a setting with a coalitional game in 
which the value of a group of nodes, C, 
is computed as follows:

value(C) = the number of nodes in C + 
the number of neighbors of C

Consider coalition {v1, v9} in Fig-
ure 1, for example. This coalition has 
a total of 7 neighbors—namely, v2, 
v3, v4, v5, v6, v7, and v8—and the size 

of the coalition itself is 2. Therefore, 
value({v1, v9}) = 7 + 2 = 9. This charac-
teristic function can be interpreted as 
a function that counts the nodes that 
are directly influenced by a given co-
alition; those nodes are the members 
themselves, as well as their neighbors. 
Having specified how to evaluate dif-
ferent coalitions in the game, we now 
must specify how to compute the pay-
off of each player in the game; that is, 
we need to specify a suitable solution 
concept. Let that solution concept be 
the Shapley value, for example. Re-
call that the Shapley value of a node 
vi is a weighted average of its marginal 
contributions. Now, given the above 
characteristic function, the marginal 
contribution of vi to any given coali-
tion is the change in the coalition’s in-
fluence that occurs when vi joins that 
coalition. In Figure 1, for example, 
the marginal contribution of v8 to co-
alition {v1, v9} equals 1, because add-
ing v8 to {v1, v9} brings one additional 
node—namely, v11—under the coali-
tion’s  influence. Formally, value({v1, 
v8, v9}) – value({v1, v9}) = 1. Thus, by 
interpreting the Shapley value of vi as 
its centrality, we end up with a mea-
sure with which the ranking of vi is 
proportional to the change in group 
influence that vi causes when joining 
different groups.

Example 2: The Myerson  
Value-Based Centrality
In the previous example, whether a coali-
tion was connected or not did not have 
a direct bearing on the coalition’s value. 
Conversely, in this example, we will con-
sider a Myerson’s graph-restricted game 
with the characteristic function defined 
as follows:2
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For instance, the value of the 
connected coalition {v1, v5} in Figure 
1 is 2, and the value of the connected 
coalition {v2, v3, v9, v10} is 2/3. In 
contrast, the coalition {v1, v2, v3, v5, 
v9, v10} is disconnected, meaning 
that the terrorists involved cannot 
communicate, and so they will proceed 
with their activities as two independent 
groups. Consequently, our graph-
restricted game assigns the value of 2 
+ 2/3 to {v1, v2, v3, v5, v9, v10}.

The fraction in the above character-
istic function was proposed by Linde-
lauf and colleagues, who provided the 
following rationale: “A terrorist orga-
nization will try to shield its impor-
tant players by keeping the frequency 
and duration of their interaction with 
others to a minimum. However, to be 
able to coordinate and control the at-
tack, an important player needs to 
maintain relationships with other in-
dividuals in the network.”3 Although 

those authors focused on the Shapley 
value, Skibski and colleagues showed 
that the Myerson value has more in-
teresting properties as a centrality 
measure.2

Example 3: Centrality with Skills
Let us again consider the situation 
when the critical skills of nodes v1, 
v2, v6, and v11 are known to the in-
vestigators. Michalak and colleagues 
proposed the Myerson value-based 

A cooperative game models scenarios where individuals, 
or players, benefit from cooperation, and where bind-
ing agreements are possible. This means it is possible 

for players to agree on which groups, or coalitions, to form, 
and on how the payoff, or value, of the formed coalitions 
shall be divided among the members. A coalition’s value is 
often assumed to depend entirely on the identities of the co-
alition members. In such games, the function that assigns a 
value to every coalition is called the characteristic function, 
and is denoted by v.

The vector that specifies each player’s share is called the 
payoff vector. The main question here is which payoff vector 
should we adopt? One common way of addressing this 
question is to carefully select a number of desirable properties, 
and then prove that there exists only one possible payoff vector 
that satisfies all of those properties. The selected properties are 
then called the axioms of this unique vector. In this context, 
Shapley focused on scenarios where the players form the grand 
coalition—that is, one big coalition containing all players in the 
game.1 He proposed the following axioms:

Efficiency. The grand coalition value is divided entirely 
among the players (that is, there are no leftovers).
Null player. The share is zero for every “null player”—that 
is, a player whose membership in any coalition does not 
affect the value of that coalition.
Symmetry. All “symmetric” players receive equal shares, 
where any two players are symmetric if replacing one with 
the other in any coalition makes no impact on that coali-
tion’s value.
Additivity. Given two games, G1 and G2, that involve the 
same set of players, and given a third game, G3, in which 
a coalition’s value is the sum of its value in G1 and in G2, 
the share of a player in G3 should be the sum of its share 
in G1 and in G2.

Shapley proved that there is a unique payoff vector satis-
fying all of the above, whereby the share of a player i, called 
“the Shapley value of i,” is

Shapley value
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The Shapley value of i is a weighted average of player i’s 
marginal contributions, where the marginal contribution 
of i to a coalition C is v (C ∪ {i }) − v(C). More precisely, for 
any permutation of players, let us consider the marginal 
contribution of vi to the coalition consisting of all players 
that appear before it in the permutation. Then, the Shapley 
value is simply the average such marginal contribution taken 
over all permutations.

Myerson followed a similar approach, but for games 
defined on a graph G in which nodes represent players and 
edges represent communication channels.1 Thus, every 
coalition can be thought of as a subgraph of G. Myerson 
assumed that if a coalition, or a subgraph, C was not 
connected in G, then the value of C is simply the sum of the 
values of the connected components in C. The intuition is that 
disconnected components cannot communicate with one 
another, and so there is no value added when considering 
their union. Formally, the value of C is
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For such scenarios, Myerson proposed the following 
axioms:

Component efficiency. The payoff of every connected 
component is divided entirely among its members (that is, 
there are no leftovers).
Fairness. Any two connected players benefit equally from 
the bilateral connection between them.

Myerson proved that there is a unique payoff vector 
satisfying the above axioms, whereby the share of a player i, 
called the Myerson value of i, is

Myerson value Shapley valuei
v

i
w_ _= .
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centrality measure that accounts for 
such qualitative data.4 Specifically, 
they proposed the following charac-
teristic function, where F denotes a 
terrorist capable of funding multiple 
attacks, B denotes a terrorist capable 
of handling bombs, and M denotes a 
terrorist skilled in martial arts:

value
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Intuitively, this qualitative charac-
teristic function represents scenarios in 
which every attack requires a terrorist 
with the necessary funding, in addition 
to one bomb expert and two terrorists 
skilled in martial arts. This can be gener-
alized to more than just a single attack—
for example, the terrorist providing the 
funds, combined with two bomb experts 
and four martial artists, can carry out 
two attacks. Naturally, the numbers and 
skills specified in the above function can 
be adjusted to better reflect the scenario 
under investigation. Note that, for each 
attack, the group must be connected to 
be able to coordinate its activities.

These examples demonstrate that  
game-theoretic centrality  measures 
account for individual  properties of 
nodes and edges, expressed both quan-
titatively and qualitatively (property 
1). They also analyze all groups (that 
is, subsets) of nodes (property 2).  
Finally, they use all those pieces of 
information to construct a coherent 
ranking of individual nodes (prop-
erty 3). On top of this, by drawing 
parallels between networks and co-
alitional games, we can build on a 
large body of literature on game-the-
oretic solution concepts. Importantly, 
the game-theoretic approach to cen-
trality places no assumptions on the 
coalition-evaluation function, nor the 
adapted solution concept, nor even 
the form of the game (see the “Flex-
ibility of Game-Theoretic Central-
ity” sidebar); these can be adjusted as 
necessary, thus providing a desirable 
degree of flexibility to capture a wide 
range of scenarios.

But alas, every rose has its thorns. 
All the advantages of game-theoretic 
centrality measures might never ma-
terialize if we cannot compute those 
measures in the first place. Next, we 
discuss recent works that address 
this issue.

The Computational Challenge
Unfortunately, due to their inher-
ent combinatorial nature, comput-
ing solution concepts for coalitional 
games is often computationally chal-
lenging. In fact, already the size of the 
input (that is, the number of  elements 
of the characteristic function) grows 
exponentially with the number of 
players. Luckily, in many cases the 
coalition values in the coalitional 
game have some underlying structure, 
which makes it possible to represent 
the characteristic function compactly. 
This has led to an important research 
direction in algorithmic game theory, 
aimed at identifying classes of games 
that admit such a compact represen-
tation, and determining whether and 
how certain solution concepts are 
computable in polynomial time.

In the context of game-theoretic cen-
trality, the underlying coalitional game is 
defined over the network, and is some-
how influenced by the network topol-
ogy. This suggests that, in some cases, 
such coalitional games can be (but do 
not have to be) represented compactly. 
For instance, this is the case for the 
games in Examples 1, 2, and 3 given ear-
lier. However, having a compact repre-
sentation does not necessarily imply that 

An interesting property of game-theoretic centrality is 
its flexibility. Specifically, it can be adapted to a partic-
ular application, along three general dimensions.

The form of the game. The game is usually assumed to be in 
characteristic function form—that is, a coalition’s value de-
pends solely on the identities of its members. However, other 
forms may better model the application at hand. For in-
stance, partition function games allow for a coalition’s value 
to be influenced by the way nonmembers are partitioned. Al-
ternatively, generalized characteristic function games assume 
that the members of a coalition are ordered, and allow for a 
coalition’s value to be influenced by the order of its members.
The coalition-value function. Usually, an arbitrary coali-
tion-value function is assumed. Thus, one can pick the 
function that best represents the worth of a coalition 
given the application at hand. For instance, Michalak and 
colleagues consider alternative such functions when study-
ing the problem of information  diffusion in networks.1

The solution concept. This concept specifies the criteria the 
players use to decide which coalitions to form and which 
payoff vector to adopt. Different solution concepts are based 
on different prescriptive and normative considerations. Ex-
amples include the Shapley value and Myerson value (see the 
“Coalitional Games” sidebar), which focus on fairness, and 
the core and the nucleolus, which focus on stability.2

A recent overview on the literature on game-theoretic 
centrality can be found in Tarkowski and colleagues.3
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the solution concept of interest is com-
putable in polynomial time. In this re-
spect, we can summarize the available 
results in the literature as follows:

•	 On one hand, negative results were 
obtained for game-theoretic cen-
tralities in which, in the spirit of 
 Myerson’s graph-restricted games, 
the value of a coalition explicitly 
depends on whether this coalition is 
connected or not. For instance, both 
the Myerson value-based centrality 
measures in Examples 2 and 3 are 
hard to compute.2

•	 On the other hand, positive results 
were obtained for various game-
theoretic centralities in which, in 
the spirit of Everett and Borgatti, 
the value of a coalition of nodes is 
simply equal to its group centrality, 
meaning that whether the coalition 
is connected or not does not have an 
explicit bearing on its value.5

Next, we will analyze the Shapley 
value-based measure from Example 1, 
which is an instance of the above posi-
tive results. After that, we will briefly 
discuss the state-of-the-art algorithm to 
compute the Myerson value-based cen-
trality, which has exponential worst-
case complexity. In practice, however, 
it solves problems of sparse networks 
with about 50 nodes in a matter of 
minutes on a modern workstation. 
Furthermore, for bigger problems, an 
efficient albeit inexact Monte Carlo 
sampling algorithm can be used.5

The Shapley Value-Based Centrality 
Computable in Polynomial Time
Let us now see how the game-theoretic 
centrality from Example 1 can be com-
puted in polynomial time.5 Recall that 
the Shapley value can be interpreted 
as the average marginal contribution 
taken over all possible permutations 
of players (nodes) (see the “Coali-
tional Games” sidebar). In particular, 

to compute the Shapley value of vi, 
we first identify all possible permu-
tations of nodes in which vi makes a 
positive marginal contribution to the 
coalition C consisting of all the nodes 
that appear before vi in the permuta-
tion. To this end, if vj is a neighbor of 
vi, we must ask what is the necessary 
and sufficient condition for node vi to 
“marginally contribute” its neighbor vj 
to C? This clearly happens if and only 
if neither vj nor any of its neighbors 
are present in C (in this case, when vi 
joins C, its neighbor vj becomes under 
the influence of C). In Figure 1, for ex-
ample, v2 marginally contributes its 
neighbor v9 to a coalition C if and only 
if neither v9 nor any of its neighbors 
(that is, v2 and v3) are members of C. 
Now, let us count the number of pos-
sible permutations in which v2 margin-
ally contributes its neighbor v9 to the 
coalition C consisting of all the nodes 
that appear before v2 in the permuta-
tions. To do so,

•	 We randomly choose |{v2, v3, v9}| = 
3 positions in a permutation consist-
ing of all 13 nodes from Figure 1. 

•	 This can be done in 
13

3

⎛
⎝⎜

⎞
⎠⎟

 ways. We 

	 place v2 in the first position, and 
place v3 and v9 randomly in the re-
maining two positions. This can be 
done in 2! ways.

•	 The remaining elements can be ar-
ranged in (13 – 3)! = 10! ways.

Thus, there are in total 
13

3

⎛
⎝⎜

⎞
⎠⎟

 
2!10! = 

2075673600 permutations in which v2 
marginally contributes v9. Given that 
there are in total 13! = 6227020800 
permutations, the fraction of the Shap-
ley value of v2 that is due to contrib-
uting v9 is 1/3. To compute the total 
value of the Shapley value of v2, we 
should perform the above procedure 

for v2 and every neighbor of v2. The 
general formula is as follows:

ShapleyValue
degree of

degree of
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The algorithm that implements 
this expression for all nodes in the 
network iterates exactly once through 
all nodes and their neighbors. Thus, 
its running time is O(|V|	+ |E|) , where 
|V|	 is the number of nodes and |E| is 
the number of edges in the network.

Recall that the Shapley value is 
used as a centrality measure in our ex-
ample. Thus, by looking at the above 
formula, one can see where a node’s 
centrality comes from. In particular, 
if a node has a high degree, the num-
ber of terms in its Shapley value sum-
mation is high. However, the terms 
themselves will be inversely related 
to the degree of neighboring nodes. 
Thus, a node has high centrality not 
only when its degree is high, but also 
whenever the degree of its neighbor-
ing nodes is low. To put it differently, 
the power comes from being con-
nected to many who are powerless—
a phenomenon well-recognized in the 
centrality literature.

An Algorithm for the Myerson 
Value-Based Centrality
When computing game-theoretic cen-
tralities based on Myerson’s graph- 
restricted games, the most critical 
operations are the enumeration of 
induced connected subgraphs, and 
the identification of cut vertices. Al-
though researchers studied both op-
erations independently, until recently 
there was no dedicated algorithm 
that performs both at the same time. 
Moreover, the state-of-the-art algo-
rithm for each operation was differ-
ent than the other algorithm in the 
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way it traversed the graph; enumerat-
ing all induced connected subgraphs 
required breadth-first search (BFS), 
whereas identifying cut vertices re-
quired depth-first search (DFS).

To address this issue, Skibski and 
colleagues proposed the first algo-
rithm that performs both opera-
tions simultaneously.2 The main 
trick is to perform the first operation 
 (enumerating all induced connected 
subgraphs) using DFS rather than BFS, 
thus making it compatible with the 
other  operation’s performance (iden-
tifying cut vertices). Broadly speak-
ing, the DFS enumeration algorithm 
starts with a subgraph consisting of 
a single node, and gradually expands 
the subgraph to (some of) its neigh-
boring nodes in a DFS manner. This is 
done using a divide-and-conquer tech-
nique, which works as follows: when-
ever a neighbor is found that has not 
yet been visited by the algorithm, the 
calculations are split into two parts, 
the first with the neighbor added to 
the subgraph, and the second with the 
neighbor marked as forbidden. This 
entire process is repeated recursively 
such that eventually all induced sub-
graphs are enumerated without any 
redundancies (that is, without per-
forming an operation twice). For a 
detailed description of the algorithm, 
as well as the pseudocode, see Oskar 
Skibski and colleagues2

Case Study: World Trade 
Center, 9/11
In the already classic work, Valdis E. 
Krebs constructed the World Trade 
Center 9/11 terrorist network from 
publicly available sources and used 
standard centrality measures to de-
termine the key terrorists.6 Let us fo-
cus on the core of the 9/11 network 
composed of 19 hijackers with 32 
relationships, as illustrated in Fig-
ure 2. To hijack the four planes on 11 
 September 2001, the terrorists needed 

to split into four groups. Each group 
had to contain at least one terrorist 
with pilot training (P) and some ter-
rorists skilled in martial arts (M) in 
order to take control over the crew 
and the cabin. To fulfill these require-
ments, terrorists S.  Suqami and A.A.  
Al-Omari took part in martial arts 
training in the weeks before the attack; 
it is unknown who else was skilled in 
martial arts. Therefore, we assigned 
this skill to seven other  terrorists 
 chosen uniformly at random, and 

 assumed that two terrorists with such 
skills were needed per flight.

Let us now consider a qualita-
tive characteristic function similar to 
that of Example 3, but now modified 
such that a P-terrorist (pilot) and two  
M-terrorists (martial arts) are needed 
to carry out a single attack. Table 1 
compares the (qualitative) Myerson-
value-based centrality with the other 
standard centralities for Figure 2. We 
 observe that, as expected, the new cen-
trality measure promotes the  terrorist 
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Figure 2. World Trade Center 9/11 terrorist network.3,6 The letter P stands for a 
pilot, and the letter M indicates a terrorist skilled in martial arts.
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with the necessary skills. Interest-
ingly, the M-terrorist A.A. Al-Omari is 
ranked higher than the P-terrorist M. 
Atta. In other words, when consider-
ing the positions (in the network) and 
the skills of different terrorists, it turns 
out that the martial arts skill of A.A. 
Al-Omari is more often indispensable 
to increasing the attack capabilities 
of connected coalitions of terrorists 
than the pilot skills of M. Atta. Con-
versely, N. Alhazmi—the terrorist with 
no skills, who is ranked at the top by 
all three standard centrality measures 
(unable to recognize skills)—is now 
ranked ninth.

The problem of identifying key 
members of a terrorist network is 
an important topic in the literature; 
it has attracted significant interest 
within the social network analysis 
community and well beyond. In this 
article, we argued that this problem 
requires a centrality measure that can 

account for the properties of each ter-
rorist, compute the synergies in vari-
ous groups (that is, subsets) of those 
terrorists, and aggregate all this in-
formation into a coherent ranking 
of individual terrorists. This was not 
possible until recently, when game-
theoretic centrality measures were 
proposed. We showed how these new 
measures capitalize on decades of re-
search in cooperative game theory, 
thus providing a rich pool of solu-
tion concepts to evaluate individuals 
on the basis of their performance in 
different groups. Unfortunately, these 
new measures are inherently com-
plex and raise various computational 
challenges, even for relatively small 
networks. However, we showed how 
to overcome some of these computa-
tional challenges, following recent re-
sults from algorithmic game theory. 
Hopefully, the further development 
of these measures will shed more light 
on the dark nature of covert terrorist 
organizations. 
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