
62 1541-1672/15/$31.00 © 2015 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

A I A N D G A M E T H E O R Y
Editor: Michael Wooldridge, University of Oxford, michael.wooldridge@cs.ox.ac.uk

Thinking Backward
with Professor Zermelo
Michael Wooldridge, University of Oxford

what constitutes a rational decision in strategic
settings, the models constructed by game theorists
attempt to capture all (and only) the information
about the setting that is germane to the decisions
that players must make, abstracting away as much
irrelevant detail as possible. One of the most im-
portant and intuitively familiar game models is in-
tended to capture situations where players make
a series of decisions over time, and where players
have information about previous players’ moves.
These games are called extensive form games. If
the games in question are fi nite (that is, they do
not go on forever), backward induction is a useful
technique for analyzing them. Backward induc-
tion is an extremely powerful technique that has
been applied not just to games but also to many
other problems in computer science, where it is
often known as Zermelo’s algorithm, after Ernst
Zermelo (1871–1953), who used it to analyze the
game of chess.2

In this article, I will introduce extensive games
of perfect information, the simplest and best-
studied class of extensive form games, and show
how backward induction can be used to analyze
such games. I conclude by discussing some of the
apparent paradoxes that can arise when using
backward induction to analyze games.

Extensive Form Games
This column has shared many examples of games,
but the most fundamental type of game is the
strategic form game. In such a game, each player
is presented with a set of possible choices and
must select just one of these, in complete igno-
rance of the other players’ choices. When all play-
ers have made their choices, the resulting collec-
tion of choices is the outcome of the game, which

 determines for each player a numeric utility indi-
cating how good or bad that outcome is for that
player. Strategic form games are usually described
as games of simultaneous moves, and this assump-
tion is often taken literally to mean that players
make their choices at the same time. In fact, the
assumption of simultaneous moves is really an in-
formational assumption, which is intended to de-
scribe the fact that players have no knowledge of
each other’s choices when they make their own.
Games like the prisoner’s dilemma and the game
of chicken are examples of strategic form games,
and hence games of simultaneous moves. In an ex-
tensive form game, the assumption is that players
do not make just one choice but possibly a series of
choices over time. Moreover, extensive form games
let us represent the information that agents have
about the choices made by other players when they
make their own choice. In the version of extensive
form games discussed in this article, the assump-
tion is that players have perfect information: that
is, a player is completely and correctly aware of all
the choices that were made preceding his choice.
I leave the discussion of imperfect information to
another day.

Extensive form games are perhaps best
understood through the notion of a game tree (see
Figure 1). In this game, there are two players, A
and B. Each player makes just one move in the
game, but unlike games of simultaneous moves,
they take turns to move, just as in a game like
chess. As shown in the right of the fi gure, A moves
fi rst, then B. There are four possible outcomes to
the game, and in each outcome, one of the players
is the winner (in this game, a draw is not possible).

More formally, the extensive form game in
Figure 1 is defi ned by a game tree consisting of
seven nodes, which are labeled n0 to n6:

There is a single node in an extensive form game
tree that has no incoming edges; in Figure 1,
this node is labeled n0. This root node indicates

Much of game theory (and indeed much of

economics in general) is concerned with

devising models of strategic scenarios.1 Because a

key concern in game theory is to try to understand

MARCH/APRIL 2015 www.computer.org/intelligent 63

where the game starts (that is, the
first choice, or move, in the game).
Edges that leave a node indicate the
possible choices that are available
when the game reaches that node.
Each such edge is labeled with a
possible choice. Thus, in the root
node n0, the possible moves are L
and R. In node n1, the choices are l
or r (similarly for node n2).
If a node has at least one outgo-
ing edge, it is called a decision
node. Each decision node is associ-
ated with a player—the player who
makes the choice when the game
reaches that node. In Figure 1, the
players responsible for making
choices are indicated at the right of
the figure—thus, A moves first, fol-
lowed by B. Agent A has just one
decision node (n0), whereas agent B
has two decision nodes (n1 and n2).
Nodes that are not terminal are
sometimes called interior nodes.
A node that has no outgoing edges
is called a terminal node, and it
corresponds to an outcome of the
game. There are four terminal
nodes for the game in Figure 1: n3,
n4, n5, and n6. Because terminal
nodes correspond to a game’s out-
come, they are labeled with the
payoffs that the players would re-
ceive if that outcome was reached.
The game in Figure 1 is a “win-
lose” game in the sense that in each
outcome of the game, one player
will be declared a winner. The la-
bels in nodes n3 through n6 indi-
cate which player wins in the cor-
responding outcome. Thus, in
n3, player A wins, whereas in n4,
player B wins.

Now, a strategy for each player i is
a rule that says for each of i’s decision
nodes what choice player i makes in
that node. When playing an extensive
form game, each player must choose
such a strategy.

Let’s now analyze this game using
backward induction. Because the
game is a win-lose game, we will use
backward induction to tell us which
player has a winning strategy—
that is, a strategy that guarantees to
win the game for the corresponding
player. The basic idea in backward
induction is to analyze the game
starting at the end, and then work
backward. Recall from Figure 1 that
each terminal node is labeled with the
outcome of the game—in the game
we are presently considering, the
outcome is simply which player won
the game. As we analyze the game, we
gradually extend this labeling, node
by node, working backward from
the end of the game to the beginning,
until we have finally labeled the root
node of the game: the label of the root
node indicates what the outcome of
the game will be, assuming rational
action by the players. The key idea
behind this process is that, if we
consider a node n in which all the
children of that node have been
labeled, from this we can deduce what
the player who makes a choice in node
n will do, and we can then label n
with the outcome that would result if
this choice was made. We can at that
point effectively ignore everything
below n—the label indicates what
the outcome of the game would be, if
the game ever reached n. By iterating

this process, we progressively work
from the end of the game back to the
beginning, until we label the root
node, at which point we know what
the outcome of the game will be.

In more detail, the backward
induction algorithm can be described
as follows:

1. Repeat the following…
2. For each unlabeled node n in the

game:
3. If all the children of n have been

labeled with an outcome, then:
4. Label node n with the outcome

from the child of n that would
be best for the player who makes
a decision at n (if there are mul-
tiple equally good outcomes, we
can choose any one of them—it
doesn’t matter which)

5. …until all nodes have been labeled.

Two observations are worth making.
First, because the game is finite, and
all terminal nodes are labeled, the al-
gorithm I just described is guaranteed
to terminate. Second, and perhaps less
obviously, the algorithm works in time
polynomial in the number of nodes in
the graph. The latter, in particular, is an
extremely desirable property.

So, let’s apply this algorithm to Fig-
ure 1. To help visualize the algorithm
at work, we follow common practice,
and when we have introduced a new

Figure 1. An extensive form game. The game is defined by a game tree comprising
seven nodes (n0 to n6). Node n0 is a decision node for player A; nodes n1 and n2 are
decision nodes for player B. All other nodes are terminal nodes.

B BA B

n 0

n 2n 1

n 3 n 4 n 5 n 6

L R

l r l r

} A chooses

} B chooses

64 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

label for a node, we delete the game
tree beneath that node, because it no
longer needs to be considered in the
algorithm. So, consider Figure 2:

We start with node n1 (see Fig-
ure 2a). This is a decision node for
player B, who must choose between
actions l (leading to a win for player
A) and r (leading to a win for player
B). Clearly, player B would choose
r, and so we label node n1 with B,
and delete the tree beneath n1. The
result is shown in Figure 2b.
We then consider node n2. Again, this
is a decision node for player B, who
must choose between l (a win for B)
and r (again, a win for B). It doesn’t
matter which action B chooses; they
are both equally good for him, so let’s
say he chooses l. We thus label node
n2 with B, and delete the tree below
n2, resulting in Figure 2c.
We now only have one unlabeled
node left to consider: n0. This is a de-
cision node for player A, who must
choose between L (resulting in a win
for B) and R (also resulting in a win
for B). These both represent bad out-
comes for A, of course, but neverthe-
less A must choose between them.
A is clearly going to be indifferent
about them, so let’s say A chooses
L; we therefore label n0 with B (see
 Figure 2d).

So, the backward induction tells us
that the result of the game is a win for
player B. We can read off B’s winning
strategy from the process of backward
induction: if the game reaches n1, the
player chooses r; if the game reaches
n2, the player chooses l. This strategy
will guarantee a win for player B no
matter what strategy player A chooses.

As I noted in the introduction,
mathematician Ernst Zermelo used
backward induction to analyze the
game of chess. The result he proved
applies to all two-player finite

Figure 2. Backward induction at work. We systematically label each node with the
outcome of the game that would result if we reach that node, considering each
node in which all children have been labeled. (a) The original game tree; (b) after
applying backward induction on node n1, nodes n3 and n4 are deleted; (c) after
applying backward induction on node n2, nodes n5 and n6 are deleted; and (d) after
applying backward induction on node n0, nodes n1 and n2 are deleted, and the
outcome of the game is that B wins.

B BA B

n 0

n 2n 1

n 3 n 4 n 5 n 6

L R

l r l r

B B

B

n 0

n 2n 1

n 5
n 6

L R

l r

BB

n 0

n 2n 1
L R

B
n 0

(a)

(b)

(c)

(d)

MARCH/APRIL 2015 www.computer.org/intelligent 65

 extensive form games of perfect in-
formation: he showed that in every
such game, one of the players must
have a winning strategy. This result
is now known as Zermelo’s theorem.

The Kidnap Game
The example given earlier is a win-
lose game, but more generally in
game theory, we think of outcomes
to games as being labeled not with
winning players, but with payoff pro-
files—that is, a list of numeric values,
one for each player, which indicates
how good or bad the outcome is for
that player. For such games, the rele-
vant question is not whether a game
is a “win” for a particular player but
what strategies form a Nash equilib-
rium. Recall that a Nash equilibrium
is a collection of strategies, one for
each player, such that no player could
benefit by doing anything other than
his part of the strategy profile.

Let’s see another extensive form
game, this time one that includes pay-
offs for players. The game is called
the kidnap game. The story used to
illustrate it is slightly morbid and
possibly not in the best of taste—
apologies for that.

Anne has kidnapped Bob and de-
manded a ransom for his safe return.
The ransom has been paid, and A now
has to choose between releasing B as
agreed or murdering him. If B is re-
leased, he can choose between telling
the police about A’s identity or keep-
ing quiet. B has promised A that if he
is freed, he will keep quiet: he will not
inform the police about A’s identity.
Clearly, being murdered is the worst
outcome for B; the best outcome for B
would be to be released and to inform
the police about A (because A’s capture
would prevent further kidnappings).
The worst outcome for A would be if B
was released and informed the police.

Figure 3a illustrates the game.
There are just two decision nodes:

n0 (a decision node for A) and n1
(a decision node for B). Backward in-
duction proceeds exactly as before:

Consider node n1. B has a choice
between keeping quiet (giving him
a payoff of 1) or telling the police

Figure 3. The kidnap game. Anne has kidnapped Bob and received a ransom
payment for his safe return. Does it make sense for her to return him safely, or
should she take a more grisly course of action? (a) The original game tree; (b) after
applying backward induction on node n1; and (c) after applying backward induction
on node n0, the outcome of the game is that Anne will murder Bob.

Anne: 2
Bob: 1

release
murder

keep quiet tell the
police

Anne: 0
Bob: 2

Anne: 1
Bob: 0

n 0

n 1

(a)

(b)

(c)

release murder

Anne: 0
Bob: 2

Anne: 1
Bob: 0

n 0

Anne: 1
Bob: 0

66 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

(payoff of 2). Clearly, he would
prefer the payoff of 2, so we label
n1 with the payoffs corresponding
to telling the police and delete the
child nodes of n1.
Now consider n0, a decision node
for A (Figure 3b). The choices are
“release” or “murder”; releasing
would give A a payoff of 0, and
murdering would give A a payoff of
1. Clearly, A would prefer a payoff
of 1. We therefore label n0 with the
 payoffs corresponding to the murder
outcome (Figure 3c).

So, the gruesome outcome of the
kidnap game, according to back-
ward induction, is that Anne will
murder Bob. The strategies we ob-
tain through backward induction
(Anne murders; Bob tells the po-
lice) form a Nash equilibrium pair.
And, indeed, an attractive property
of backward induction is that the
strategies we obtain by applying this
technique are guaranteed to be Nash
equilibria.

Alert readers will notice that the
strategies we obtained when applying

backward induction in this scenario
have a slightly strange property:
they say that Bob should tell the po-
lice in node n1 even though this node
will not be reached when playing the
game. Technically, we say that n1 is
not on the equilibrium path. This
situation seems odd, but the point
is that when formulating a strategy
for Anne, she needs to take into ac-
count what Bob would do if node n1
were reached. This kind of reason-
ing (about a scenario that does not
in fact occur) is called counterfactual
reasoning.

Note that a Nash equilibrium iden-
tifies a single path in the game—the
equilibrium path—and only requires
that the players’ choices are ration al
for choices on the equilibrium path.
Off the equilibrium path, Nash
 equilibria may suggest suboptimal
moves. This observation motivated
Reinhard Selten to propose a refine-
ment of the Nash equilibrium solu-
tion concept for extensive form games,
which is now known as subgame per-
fect equilibrium. Informally, a collec-
tion of strategies is a subgame per-
fect equilibrium if they form a Nash
equilibrium at every node in the ex-
tensive form game tree (technically, if
they form a Nash equilibrium at ev-
ery subgame). For this work, Selten
was a joint recipient of the 1994 No-
bel Memorial Prize in Economic Sci-
ences, along with John Nash and John
 Harsanyi. Now, an important prop-
erty of backward induction when ap-
plied to extensive form games of the
type we have considered here is that,
not only does it guarantee to find
Nash equilibrium strategies, back-
ward induction in fact guarantees
to give subgame perfect equilibrium
strategies.

The Centipede Game
I hope by now I have convinced
you that backward induction is a

A: 2
B: 2

D

R

D

R
A: 0
B: 3

A: 1
B: 1n 0

n 1

D

n 2

A: 1
B: 4

R

R

A: 3
B: 3

n 3

{A chooses

{A chooses

{B chooses

B chooses {

D

Figure 4. The centipede game. In this classic extensive form game, backward
induction yields strategies that seem to be paradoxical.

MARCH/APRIL 2015 www.computer.org/intelligent 67

 powerful and convincing technique
for analyzing extensive form games.
But, as with all game theoretic so-
lution concepts, it is possible to find
situations under which backward in-
duction yields seemingly paradoxical
results. To illustrate this point, con-
sider the centipede game (see Figure
4). Our backward induction analysis
proceeds as follows:

Node n3 is a decision node for B,
who has a choice of R (giving pay-
off of 4 to B) and D (giving payoff
of 3). Clearly, B would choose R,
and so we label n3 with payoffs (A:
1, B: 4).
Node n2 is a decision node for A,
who has a choice between R (pay-
off of 2) and D (payoff of 1); so, A
will choose R, and we label n2 with
(A: 2, B: 2).
Node n1 is a decision node for B,
who has a choice between R (pay-
off of 3) and D (payoff of 2). So, B
will choose R, and we label n1 with
(A: 0, B: 3).
Finally, n0 is a decision node for
A, who must choose between R
(payoff of 1) and D (payoff of 0).
Clearly, A will choose R, and so we
label n0, the root node of the game,
with (A: 1, B: 1).

Thus, the subgame perfect equilib-
rium strategies for this game result
in the game ending after one move:
player A chooses R on the first move,
and both players receive a payoff of
1. Why is this paradoxical? First, and
most obviously, they would both have
benefited by reaching the bottom-
most outcome, in which they would
both have received a payoff of 3. This
is an example of where game theo-
retic analysis leads to the selection
of an outcome that is socially unde-
sirable (another well-known exam-
ple is the prisoner’s dilemma). Sec-
ond, experimental results indicate

that human players don’t in fact play
subgame perfect strategies in the cen-
tipede game. Although the version
given earlier contains only four de-
cisions, the basic game structure can
be continued for an arbitrary number
of rounds, and for large numbers of
rounds, human players will tend to
play D for at least a few rounds be-
fore someone plays R.

Zermelo’s Algorithm
beyond Game Theory
Zermelo’s backward induction algo-
rithm is not just one of the corner-
stone algorithms in game theory—it
has applications across the whole of
computer science. It is a classic ex-
ample of dynamic programming, in
which a solution to an overall prob-
lem is systematically built up from
the solutions to smaller problems.
Two particularly important uses
of Zermelo’s algorithm are worth
highlighting.

First, Zermelo’s algorithm is one of
the fundamental algorithms in model
checking, which is a research do-
main concerned with verifying that
computer systems satisfy specifica-
tions expressed as temporal logic for-
mulas.3 In model checking, a graph
structure called a Kripke structure is
used to represent a computer system’s
behavior, and the goal is to label
states within this structure with the
temporal logic formulae true at those
states. Backward induction is used
to build this labeling, working in
exactly the same way as described
earlier.

Second, Zermelo’s algorithm cor-
responds to a technique called value
 iteration, which is a fundamental
 algorithm in the area of Markov de-
cision processes (MDPs) and con-
trol theory.4 Crudely, value iteration
builds an optimal policy for control-
ling an MDP. Value iteration com-
putes the policy backward: if we know

what the optimal policy is for what
we should do tomorrow onward, we
can easily compute a policy for act-
ing today onward. The equations
that make this technique possible are
known as Bellman equations.

Zermelo’s algorithm can be used
to compute, in polynomial time,
subgame perfect equilibrium strat-
egies in extensive form games. Al-
though the scenarios examined in
this article are rather small, precisely
the same technique can be applied
to extensive form games with arbi-
trary numbers of players and moves.
Zermelo’s backward induction algo-
rithm is one of the cornerstone al-
gorithms in game theory, but it also
has applications in many areas of
computer science.

References
 1. M.J. Osborne and A. Rubinstein, A

Course in Game Theory, MIT Press,
1994, p. 6.

 2. U. Schwalbe and P. Walker, “Zermelo
and the Early History of Game Theo-
ry,” Games and Economic Behavior,
vol. 34, no. 1, 2001, pp. 123–137.

 3. E.M. Clarke, O. Grumberg, and D.
Peled, Model Checking, MIT Press,
1999, pp. 35–39.

 4. M.L. Puterman, Markov Decision
Processes, Wiley, 1994, pp. 158–164.

Michael Wooldridge is a professor in the
Department of Computer Science at the Uni-
versity of Oxford. Contact him at michael.
wooldridge@cs.ox.ac.uk.

Selected CS articles and columns
are also available for free at

http://ComputingNow.computer.org.

