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what constitutes a rational decision in strategic 
settings, the models constructed by game theorists 
attempt to capture all (and only) the information 
about the setting that is germane to the decisions 
that players must make, abstracting away as much 
irrelevant detail as possible. One of the most im-
portant and intuitively familiar game models is in-
tended to capture situations where players make 
a series of decisions over time, and where players 
have information about previous players’ moves. 
These games are called extensive form games. If 
the games in question are fi nite (that is, they do 
not go on forever), backward induction is a useful 
technique for analyzing them. Backward induc-
tion is an extremely powerful technique that has 
been applied not just to games but also to many 
other problems in computer science, where it is 
often known as Zermelo’s algorithm, after Ernst 
Zermelo (1871–1953), who used it to analyze the 
game of chess.2

In this article, I will introduce extensive games 
of perfect information, the simplest and best-
studied class of extensive form games, and show 
how backward induction can be used to analyze 
such games. I conclude by discussing some of the 
apparent paradoxes that can arise when using 
backward induction to analyze games.

Extensive Form Games
This column has shared many examples of games, 
but the most fundamental type of game is the 
strategic form game. In such a game, each player 
is presented with a set of possible choices and 
must select just one of these, in complete igno-
rance of the other players’ choices. When all play-
ers have made their choices, the resulting collec-
tion of choices is the outcome of the game, which 

 determines for each player a numeric utility indi-
cating how good or bad that outcome is for that 
player. Strategic form games are usually described 
as games of simultaneous moves, and this assump-
tion is often taken literally to mean that players 
make their choices at the same time. In fact, the 
assumption of simultaneous moves is really an in-
formational assumption, which is intended to de-
scribe the fact that players have no knowledge of 
each other’s choices when they make their own. 
Games like the prisoner’s dilemma and the game 
of chicken are examples of strategic form games, 
and hence games of simultaneous moves. In an ex-
tensive form game, the assumption is that players 
do not make just one choice but possibly a series of 
choices over time. Moreover, extensive form games 
let us represent the information that agents have 
about the choices made by other players when they 
make their own choice. In the version of extensive 
form games discussed in this article, the assump-
tion is that players have perfect information: that 
is, a player is completely and correctly aware of all 
the choices that were made preceding his choice. 
I leave the discussion of imperfect information to 
another day.

Extensive form games are perhaps best 
understood through the notion of a game tree (see 
Figure 1). In this game, there are two players, A 
and B. Each player makes just one move in the 
game, but unlike games of simultaneous moves, 
they take turns to move, just as in a game like 
chess. As shown in the right of the fi gure, A moves 
fi rst, then B. There are four possible outcomes to 
the game, and in each outcome, one of the players 
is the winner (in this game, a draw is not possible).

More formally, the extensive form game in 
Figure 1 is defi ned by a game tree consisting of 
seven nodes, which are labeled n0 to n6:

There is a single node in an extensive form game 
tree that has no incoming edges; in Figure 1, 
this node is labeled n0. This root node indicates 
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where the game starts (that is, the 
first choice, or move, in the game).
Edges that leave a node indicate the 
possible choices that are available 
when the game reaches that node. 
Each such edge is labeled with a 
possible choice. Thus, in the root 
node n0, the possible moves are L 
and R. In node n1, the choices are l 
or r (similarly for node n2).
If a node has at least one outgo-
ing edge, it is called a decision 
node. Each decision node is associ-
ated with a player—the player who 
makes the choice when the game 
reaches that node. In Figure 1, the 
players responsible for making 
choices are indicated at the right of 
the figure—thus, A moves first, fol-
lowed by B. Agent A has just one 
decision node (n0), whereas agent B 
has two decision nodes (n1 and n2). 
Nodes that are not terminal are 
sometimes called interior nodes.
A node that has no outgoing edges 
is called a terminal node, and it 
corresponds to an outcome of the 
game. There are four terminal 
nodes for the game in Figure 1: n3, 
n4, n5, and n6. Because terminal 
nodes correspond to a game’s out-
come, they are labeled with the 
payoffs that the players would re-
ceive if that outcome was reached. 
The game in Figure 1 is a “win-
lose” game in the sense that in each 
outcome of the game, one player 
will be declared a winner. The la-
bels in nodes n3 through n6 indi-
cate which player wins in the cor-
responding outcome. Thus, in 
n3, player A wins, whereas in n4, 
player B wins.

Now, a strategy for each player i is 
a rule that says for each of i’s decision 
nodes what choice player i makes in 
that node. When playing an extensive 
form game, each player must choose 
such a strategy.

Let’s now analyze this game using 
backward induction. Because the 
game is a win-lose game, we will use 
backward induction to tell us which 
player has a winning strategy—
that is, a strategy that guarantees to 
win the game for the corresponding 
player. The basic idea in backward 
induction is to analyze the game 
starting at the end, and then work 
backward. Recall from Figure 1 that 
each terminal node is labeled with the 
outcome of the game—in the game 
we are presently considering, the 
outcome is simply which player won 
the game. As we analyze the game, we 
gradually extend this labeling, node 
by node, working backward from 
the end of the game to the beginning, 
until we have finally labeled the root 
node of the game: the label of the root 
node indicates what the outcome of 
the game will be, assuming rational 
action by the players. The key idea 
behind this process is that, if we 
consider a node n in which all the 
children of that node have been 
labeled, from this we can deduce what 
the player who makes a choice in node 
n will do, and we can then label n 
with the outcome that would result if 
this choice was made. We can at that 
point effectively ignore everything 
below n—the label indicates what 
the outcome of the game would be, if 
the game ever reached n. By iterating 

this process, we progressively work 
from the end of the game back to the 
beginning, until we label the root 
node, at which point we know what 
the outcome of the game will be.

In more detail, the backward 
induction algorithm can be described 
as follows:

1. Repeat the following…
2. For each unlabeled node n in the 

game:
3. If all the children of n have been 

labeled with an outcome, then:
4. Label node n with the outcome 

from the child of n that would 
be best for the player who makes 
a decision at n (if there are mul-
tiple equally good outcomes, we 
can choose any one of them—it 
doesn’t matter which)

5. …until all nodes have been labeled.  

Two observations are worth making. 
First, because the game is finite, and 
all terminal nodes are labeled, the al-
gorithm I just described is guaranteed 
to terminate. Second, and perhaps less 
obviously, the algorithm works in time 
polynomial in the number of nodes in 
the graph. The latter, in particular, is an 
extremely desirable property.

So, let’s apply this algorithm to Fig-
ure 1. To help visualize the algorithm 
at work, we follow common practice, 
and when we have introduced a new 

Figure 1. An extensive form game. The game is defined by a game tree comprising 
seven nodes (n0 to n6). Node n0 is a decision node for player A; nodes n1 and n2 are 
decision nodes for player B. All other nodes are terminal nodes.

B BA B

n 0

n 2n 1

n 3 n 4 n 5 n 6

L R

l r l r

} A chooses

} B chooses



64  www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

label for a node, we delete the game 
tree beneath that node, because it no 
longer needs to be considered in the 
algorithm. So, consider Figure 2:

We start with node n1 (see Fig-
ure 2a). This is a decision node for 
player B, who must choose between 
actions l (leading to a win for player 
A) and r (leading to a win for player 
B). Clearly, player B would choose 
r, and so we label node n1 with B, 
and delete the tree beneath n1. The 
result is shown in Figure 2b.
We then consider node n2. Again, this 
is a decision node for player B, who 
must choose between l (a win for B) 
and r (again, a win for B). It doesn’t 
matter which action B chooses; they 
are both equally good for him, so let’s 
say he chooses l. We thus label node 
n2 with B, and delete the tree below 
n2, resulting in Figure 2c.
We now only have one unlabeled 
node left to consider: n0. This is a de-
cision node for player A, who must 
choose between L (resulting in a win 
for B) and R (also resulting in a win 
for B). These both represent bad out-
comes for A, of course, but neverthe-
less A must choose between them. 
A is clearly going to be indifferent 
about them, so let’s say A chooses 
L; we therefore label n0 with B (see 
 Figure 2d).

So, the backward induction tells us 
that the result of the game is a win for 
player B. We can read off B’s winning 
strategy from the process of backward 
induction: if the game reaches n1, the 
player chooses r; if the game reaches 
n2, the player chooses l. This strategy 
will guarantee a win for player B no 
matter what strategy player A chooses.

As I noted in the introduction, 
mathematician Ernst Zermelo used 
backward induction to analyze the 
game of chess. The result he proved 
applies to all two-player finite 

Figure 2. Backward induction at work. We systematically label each node with the 
outcome of the game that would result if we reach that node, considering each 
node in which all children have been labeled. (a) The original game tree; (b) after 
applying backward induction on node n1, nodes n3 and n4 are deleted; (c) after 
applying backward induction on node n2, nodes n5 and n6 are deleted; and (d) after 
applying backward induction on node n0, nodes n1 and n2 are deleted, and the 
outcome of the game is that B wins.
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 extensive form games of perfect in-
formation: he showed that in every 
such game, one of the players must 
have a winning strategy. This result 
is now known as Zermelo’s theorem.

The Kidnap Game
The example given earlier is a win-
lose game, but more generally in 
game theory, we think of outcomes 
to games as being labeled not with 
winning players, but with payoff pro-
files—that is, a list of numeric values, 
one for each player, which indicates 
how good or bad the outcome is for 
that player. For such games, the rele-
vant question is not whether a game 
is a “win” for a particular player but 
what strategies form a Nash equilib-
rium. Recall that a Nash equilibrium 
is a collection of strategies, one for 
each player, such that no player could 
benefit by doing anything other than 
his part of the strategy profile.

Let’s see another extensive form 
game, this time one that includes pay-
offs for players. The game is called 
the kidnap game. The story used to 
illustrate it is slightly morbid and 
possibly not in the best of taste—
apologies for that.

Anne has kidnapped Bob and de-
manded a ransom for his safe return. 
The ransom has been paid, and A now 
has to choose between releasing B as 
agreed or murdering him. If B is re-
leased, he can choose between telling 
the police about A’s identity or keep-
ing quiet. B has promised A that if he 
is freed, he will keep quiet: he will not 
inform the police about A’s identity. 
Clearly, being murdered is the worst 
outcome for B; the best outcome for B 
would be to be released and to inform 
the police about A (because A’s capture 
would prevent further kidnappings). 
The worst outcome for A would be if B 
was released and informed the police.

Figure 3a illustrates the game. 
There are just two decision nodes: 

n0 (a decision node for A) and n1  
(a  decision node for B). Backward in-
duction proceeds exactly as before:

Consider node n1. B has a choice 
between keeping quiet (giving him 
a payoff of 1) or telling the police 

Figure 3. The kidnap game. Anne has kidnapped Bob and received a ransom 
payment for his safe return. Does it make sense for her to return him safely, or 
should she take a more grisly course of action? (a) The original game tree; (b) after 
applying backward induction on node n1; and (c) after applying backward induction 
on node n0, the outcome of the game is that Anne will murder Bob.
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(payoff of 2). Clearly, he would 
prefer the payoff of 2, so we label 
n1 with the payoffs corresponding 
to telling the police and delete the 
child nodes of n1.
Now consider n0, a decision node 
for A (Figure 3b). The choices are 
“release” or “murder”; releasing 
would give A a payoff of 0, and 
murdering would give A a payoff of 
1. Clearly, A would prefer a payoff 
of 1. We therefore label n0 with the 
 payoffs corresponding to the murder 
outcome (Figure 3c).

So, the gruesome outcome of the 
kidnap game, according to back-
ward induction, is that Anne will 
murder Bob. The strategies we ob-
tain through backward induction 
(Anne murders; Bob tells the po-
lice) form a Nash equilibrium pair. 
And, indeed, an attractive property 
of backward induction is that the 
strategies we obtain by applying this 
technique are guaranteed to be Nash 
equilibria.

Alert readers will notice that the 
strategies we obtained when applying 

backward induction in this scenario 
have a slightly strange property: 
they say that Bob should tell the po-
lice in node n1 even though this node 
will not be reached when playing the 
game. Technically, we say that n1 is 
not on the equilibrium path. This 
situation seems odd, but the point 
is that when formulating a strategy 
for Anne, she needs to take into ac-
count what Bob would do if node n1 
were reached. This kind of reason-
ing (about a scenario that does not 
in fact occur) is called counterfactual 
reasoning.

Note that a Nash equilibrium iden-
tifies a single path in the game—the  
equilibrium path—and only requires 
that the players’ choices are ration al 
for choices on the equilibrium path. 
Off the equilibrium path, Nash 
 equilibria may suggest suboptimal 
moves. This observation motivated 
Reinhard Selten to propose a refine-
ment of the Nash equilibrium solu-
tion concept for extensive form games, 
which is now known as subgame per-
fect equilibrium. Informally, a collec-
tion of strategies is a subgame per-
fect equilibrium if they form a Nash 
equilibrium at every node in the ex-
tensive form game tree (technically, if 
they form a Nash equilibrium at ev-
ery subgame). For this work, Selten 
was a joint recipient of the 1994 No-
bel Memorial Prize in Economic Sci-
ences, along with John Nash and John 
 Harsanyi. Now, an important prop-
erty of backward induction when ap-
plied to extensive form games of the 
type we have considered here is that, 
not only does it guarantee to find 
Nash equilibrium strategies, back-
ward induction in fact guarantees 
to give subgame perfect equilibrium 
strategies.

The Centipede Game
I hope by now I have convinced 
you that backward induction is a 
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Figure 4. The centipede game. In this classic extensive form game, backward 
induction yields strategies that seem to be paradoxical.
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 powerful and convincing technique 
for analyzing extensive form games. 
But, as with all game theoretic so-
lution concepts, it is possible to find 
situations under which backward in-
duction yields seemingly paradoxical 
results. To illustrate this point, con-
sider the centipede game (see Figure 
4). Our backward induction analysis 
proceeds as follows:

Node n3 is a decision node for B, 
who has a choice of R (giving pay-
off of 4 to B) and D (giving payoff 
of 3). Clearly, B would choose R, 
and so we label n3 with payoffs (A: 
1, B: 4).
Node n2 is a decision node for A, 
who has a choice between R (pay-
off of 2) and D (payoff of 1); so, A 
will choose R, and we label n2 with 
(A: 2, B: 2).
Node n1 is a decision node for B, 
who has a choice between R (pay-
off of 3) and D (payoff of 2). So, B 
will choose R, and we label n1 with 
(A: 0, B: 3).
Finally, n0 is a decision node for 
A, who must choose between R 
(payoff of 1) and D (payoff of 0). 
Clearly, A will choose R, and so we 
label n0, the root node of the game, 
with (A: 1, B: 1).

Thus, the subgame perfect equilib-
rium strategies for this game result 
in the game ending after one move: 
player A chooses R on the first move, 
and both players receive a payoff of 
1. Why is this paradoxical? First, and 
most obviously, they would both have 
benefited by reaching the bottom-
most outcome, in which they would 
both have received a payoff of 3. This 
is an example of where game theo-
retic analysis leads to the selection 
of an outcome that is socially unde-
sirable (another well-known exam-
ple is the prisoner’s  dilemma). Sec-
ond, experimental results indicate 

that human players don’t in fact play 
subgame perfect strategies in the cen-
tipede game. Although the version 
given earlier contains only four de-
cisions, the basic game structure can 
be continued for an arbitrary number 
of rounds, and for large numbers of 
rounds,  human players will tend to 
play D for at least a few rounds be-
fore someone plays R.

Zermelo’s Algorithm  
beyond Game Theory
Zermelo’s backward induction algo-
rithm is not just one of the corner-
stone algorithms in game theory—it 
has applications across the whole of 
computer science. It is a classic ex-
ample of dynamic programming, in 
which a solution to an overall prob-
lem is systematically built up from 
the solutions to smaller problems. 
Two particularly important uses 
of Zermelo’s algorithm are worth 
highlighting.

First, Zermelo’s algorithm is one of 
the fundamental algorithms in model 
checking, which is a research do-
main concerned with verifying that 
computer systems satisfy specifica-
tions expressed as temporal logic for-
mulas.3 In model checking, a graph 
structure called a Kripke structure is 
used to represent a computer system’s 
behavior, and the goal is to  label 
states within this structure with  the 
temporal logic formulae true at those 
states. Backward induction is used 
to build this labeling, working in 
exactly the same way as described 
earlier.

Second, Zermelo’s algorithm cor-
responds to a technique called value 
 iteration, which is a fundamental 
 algorithm in the area of Markov de-
cision processes (MDPs) and con-
trol theory.4 Crudely, value iteration 
builds an optimal policy for control-
ling an MDP. Value iteration com-
putes the policy backward: if we know  

what the optimal policy is for what 
we should do tomorrow onward, we 
can easily compute a policy for act-
ing today onward. The equations 
that make this technique possible are 
known as Bellman equations.

Zermelo’s algorithm can be used 
to compute, in polynomial time, 
subgame perfect equilibrium strat-
egies in extensive form games. Al-
though the scenarios examined in 
this article are rather small, precisely 
the same technique can be applied 
to extensive form games with arbi-
trary numbers of players and moves. 
Zermelo’s backward induction algo-
rithm is one of the cornerstone al-
gorithms in game theory, but it also 
has applications in many areas of 
computer science. 
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