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Abstract

VSK logic is a family of multi-modal logics for reasoning about the information properties of compu-
tational agents situated in some environment. Using VSK logic, we can represent what is objectively
true of the environment, the information that is visible, or knowable about the environment, infor-
mation the agent perceives of the environment, and finally, information the agent actually knows
about the environment. The semantics of VSK logic are given in terms of a general, automata-like
model of agents. In this paper, we prove completeness for an axiomatisation of VSK logic, and
present correspondence results for a number of VSK interaction axioms in terms of the architectural
properties of the agent that they represent. The completeness proof is novel in that we are able to
prove completeness with respect to the automata-like semantics. In this sense, VSK logic is said to be
computationally grounded. We give an example to illustrate the formalism, and present conclusions
and issues for further work.

1 Introduction

When designing an agent to carry out a task in some environment, it is frequently
necessary to reason about the information properties of the agent and its environment.
For example, many tasks depend on an agent being able to access certain information
in the environment. If this information is not accessible, then we will not be able to
implement an agent to carry out the desired task. Similarly, knowing that a particular
piece of information is essential for some task gives us a functional requirement for any
agent that will carry out the task: the agent’s sensors must be capable of perceiving
this information. Finally, many applications demand the ability to store and reason
about information from the environment.

In this paper, we present a logic that allows us to capture such information prop-
erties. VSK logic allows us to represent what is objectively true of an environment,
what is wisible, or knowable about the environment, what an agent perceives of the
environment, and finally, what the agent actually knows about the environment. Syn-
tactically, VSK logic is a propositional multi-modal logic, containing modalities “V”,
“S§”, and “K”, where Vp means that the information ¢ is accessible in the current
environment state; Sy means that the agent perceives ¢; and K¢ means that the
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AGENT

F1G. 1. An overview of the framework.

agent knows .

A key feature of the modal system VSK is that it is computationally grounded [26].
By this we mean that its semantics is not given by traditional possible worlds, but
by a formalism that is more closely connected to the models of computation studied
in intelligent systems [26]. As we show later in the paper, this does not hinder the
possibility of studying formal properties of correspondence [2]; indeed, we are able to
show that some axioms formally correspond to intuitive structural properties of the
agent/environment computational coupling. Consider, for example, the VSK formula
schema V¢ = Sy, which says that if the information ¢ is accessible, then the agent
perceives . Intuitively, this axiom characterises agents equipped with “perfect”
sensors, i.e., sensors that obtain all the information from the environment that is
available. In the following, we present results that correspond exactly to this and
other intuitions. In addition, we give an axiomatisation of VSK logic, that we show
to be complete with respect to the most general model of agents and environments.
In this sense this result is novel. To illustrate the use of VSK logic, we present a
detailed worked example, and we conclude with a discussion of related work and open
problems.

2 A Semantic Framework

In this section, we present a semantic model of agents and the environments they
occupy. This model plays the role in VSK logic that interpreted systems play in
epistemic logic [6, pp103-107] — when we later prove completeness of a VSK ax-
iomatisation, we prove it with respect to this semantic model. We begin by defining
the components modelling the environment; we then define our model of agents; and
finally, we combine these to give the notion of a VSK system. A visual representation
of the framework is given in Figure 1.

Following [6], we use the term “environment” to denote all the components of a
system external to the agent. Sometimes environments can be represented as just
another agent of the system; more often they serve a special purpose, as they can
be used to model communication architectures, etc. We model an environment as a



2. A SEMANTIC FRAMEWORK 275

4-tuple containing a set of possible instantaneous states, a wisibility function, which
characterises the information content of any given environment state, a state trans-
former function, which characterises the effects that an agent’s actions have on the
environment, and, finally, an initial state.

Definition 2.1 (Environments) An environment is a tuple Env = (E,vis, T, eg),
where:

o E = {ej,ea,...} is a set of instantaneous local states for the environment.

e vis : E — 2P is the visibility function of the VSK system. It is assumed that the
function vis partitions E into mutually disjoint sets and that e € vis(e), for any
e € E. Elements of the codomain of the function vis are called visibility sets. We
say that vis is transparent if for any e € E we have that vis(e) = {e}.

e 7. : E x Act — E is a total state transformer function for the environment (cf.
[6, p154]), where Act is the set of actions for the agent (see Definition 2.2). The
function T, is assumed to be an injection.

e ¢ € E is the initial state of Env.

Modelling an environment in terms of a set of states and a state transformer is quite
conventional (see, e.g., [6]). One point worthy of note is that we implicitly assume
environments evolve deterministically: there is no uncertainty about the result of per-
forming an action in some state. The requirement of 7, being an injection amounts
to considering each environment state as unique, i.e., each local state for the environ-
ment happens only once in its history. This is equivalent to assuming environments
have perfect recall of their history.

The use of the visibility function also requires some explanation. The visibility func-
tion defines what is in principle knowable about a VSK system; the idea is similar to
the notion of “partial observability” in POMDPs [12]. Intuitively, not all the informa-
tion in an environment state is in general accessible to an agent. So vis(e) = {e, €', e}
represents the fact that the environment states e, e’, e’ are indistinguishable to the
agent from e. This is so regardless of the agent’s efforts in performing the observation
— it represents the maximum amount of information that is in principle available to
the agent when observing the state e. The concept of transparency in Definition 2.1
captures “perfect” scenarios, in which all the information in a state is accessible to an
agent. Note that visibility functions are not intended to capture the everyday notion
of visibility as in “object z is visible to the agent”.

We adopt a simple, and, we argue, general model of agents, which makes only a
minimal commitment to an agent’s internal architecture. One important assumption
we do make is that agents have an internal state, although we make no assumptions
with respect to the actual structure of this state. Agents are assumed to be composed
of three functional components: some sensor apparatus, an action selection function,
and a next-state function.

Definition 2.2 (Agents) Given an environment, an agent is a tuple

Ag = (L, Act, see,do, 4, 1), where:

o L={ly,ls,...} is a set of instantaneous local states for the agent.
o Act = {a,d’,...} is a set of actions.
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e see : vis(E) — Perc is the perception function, mapping visibility sets to per-
cepts. Elements of the set Perc are denoted as p,p', ..., and so on. If see is an
injection into Perc then we say that see is perfect, otherwise we say it is lossy.

e do: L — Act is the action selection function, mapping local states to actions.

o7, : L x Perc — L is the state transformer function for the agent. We say
that 7, is complete if for any global states' g = (e,7a(I,p)),q' = (¢/,7(I',p"))
we have that 7,(1,p) = 1. (I',p") implies p = p', for every I,I' € L';e,e' €
E;p,p' € Perc. We say that 7, is local if for any global states g = (e, 74(l, p)),
g9 = (e, 7,(l', p)) we have that 14(1,p) = 7o', p) for every l,l' € L;e,e' € E;p €
Perc.

o | € L is the initial state for the agent.

Perfect perception functions distinguish between all visibility sets; lossy perception
functions are so called because they can map different visibility sets to the same per-
cept, thereby losing information. Note that we have implicitly made the simplifying
assumption that the environment evolves synchronously with the agent.

We now require a working definition of the states of a VSK system, or global states.

Definition 2.3 (Global states for a VSK system) A set of global states G =
{g9,9',...} for a VSK system is a subset of E x L.

We do not rule out G being equal to the Cartesian product of E and L; when this
happens, the VSK system is said to be in a hypercube configuration and it enjoys
some special properties (see [16, 14] for details). We can now define VSK systems.

Definition 2.4 (VSK systems) A VSK system is a pair S = (Env, Ag), where Env
is an environment, and Ag is an agent. The class of VSK systems is denoted by S.

Although the logics we discuss in this paper may be used to refer to static properties
of knowledge, visibility, and perception, the semantic model naturally allows us to
account for the temporal evolution of a VSK system. The behaviour of an agent
situated in an environment can be summarised as follows. The agent starts in state
1, the environment starts in state eg. At this point the agent “synchronises” with the
environment by performing an initial observation through the visibility function vis,
and generates a percept see(vis(eg)). The internal state of the agent is then updated,
and becomes Iy = 7,(1, see(vis(eg))). The synchronisation phase is now over and the
system starts its run from the initial state go = (eg,lo) = (eo, 7o (I, see(vis(eg))). An
action ay = do(lp) is selected and performed by the agent on the environment, whose
state is updated into e; = 7.(eg,ap). The agent enters another cycle, and so on.
A run of a system is thus a (possibly infinite) sequence of global states defined as
follows.

Definition 2.5 (Runs) A sequence (90,91, 92,--.) over G represents a run of an
agent Ag = (L, Act, see,do, T,,1) in an environment Env = (E,vis, T, o) if

e g0 = (e0,0),lo = 7o (1, see(vis(eg))).
o For all u, if gy = (ey,ly), then gyr1 = (€yr1,lur1) is defined by:

ISee Definition 2.3.
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eur1 = Te(ew,do(ly)) and
luyi = To(ly, see(vis(eysr))).

e For any | € L, there exists a g; such that g; = (e;,1). For any e € E, there exists
a g; such that g; = (e, 1;).

Note that, since 7, is an injection, two global states with the same environment
component never occur in a run.

Definition 2.6 (Reachable states) Given a VSK system S = (Env, Ag) we say
G C E x L is the set of global states generated by S whenever g € G if and only if g
occurs in the run of S.

When S = (Enw, Ag) is clear from the context we will refer to the set G of global states
generated by S = (Enwv, Ag) simply as the set of global states of the VSK system
S = (Env, Ag). Note that since both agents and environments are deterministic, a
VSK system has only a single run; in this, we differ from [6].

3 VSK Logic

We now introduce a language , which will enable us to represent the information
properties of VSK systems. In particular, it will allow us to represent first what is
true of the VSK system, then what is wvisible, or knowable of the system, then what
an agent perceives of the system, and finally, what it knows of the system.

ﬁVSIC

Definition 3.1 (Syntax of VSK Logic) Given a set P of propositional atoms, the
language LV of VSK logic is defined by the following BNF grammar:

(wff) ::= true | any element of P | =(wff) | (wff) A (wff) | V{wff) | S{wff) | K{wff).

The modal operator “)” allows us to represent the information that is instantaneously
visible or knowable about the state of the system. Thus, suppose the formula Vo
is true in some state ¢ € G. The intended interpretation of this formula is that
the property ¢ is knowable of the environment when it is in state ¢ — not only is
@ true of the environment, but any agent equipped with suitable sensor apparatus
would be able to perceive the information ¢. To put it another way, V¢ means that
an impartial external observer would say that in its current state, the environment
carried the information . If =V were true in some state, then no agent, no matter
how good its sensor apparatus was, would be able to perceive .

The fact that something is visible in a VSK system does not mean that an agent
actually sees it. What an agent does see is determined by its sensors. The modal
operator “S” will be used to represent the information that an agent “sees”. The idea
is as follows. Suppose an agent’s sensory apparatus (represented by the see function
in our semantic model above) was a video camera, and so the percepts being received
by the agent take the form of a video feed. Then Sy means that an impartial observer
would say that the video feed currently being supplied by the video camera carried
the information ¢ — in other words, ¢ is true all situations where the agent received
the same video feed.
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Finally, VSK logic allows us to represent an agent’s knowledge. We represent knowl-
edge by means of a third modal operator, “”. In line with the tradition that started
with Hintikka [9], we write K¢ to represent the fact that the agent has knowledge of
the formula represented by . Our model of knowledge is that popularised by Halpern
and colleagues [6]: an agent is said to know ¢ when in local state [, if ¢ is guaranteed
to be true whenever the agent is in state I. As with the V and S modalities, knowl-
edge is an external notion — an agent is said to know ¢ if an impartial, omniscient
observer would say that the agent’s state carried the information .

We now proceed to interpret our formal language. While it is entirely possible to
do so directly with respect to VSK systems, we will find it beneficial to use Kripke
semantics [13] in order to prove completeness of an axiomatisation. In particular, we
will use Kripke frames defined by three relations on their support set.

Definition 3.2 (Kripke frames and models)

A frame F is a tuple F = (W, Ry, Rs, Rx), where W is a non-empty set (whose
elements are called worlds), and Ry, Rs, R C W x W are binary relations on W. If
all relations are equivalence relations, the frame is an equivalence frame and we write
~uy sy Yk fOT' RV: RS; R’C-

We can define a mapping from the class of VSK systems to the class of Kripke
frames and we can make use of these images to interpret our formal language.

Definition 3.3 (Generated Kripke structures)
Given a VSK system S = (Env, Ag), the Kripke frame Fg = (W, ~,, ~s, ~) gener-
ated by S is defined as follows:

o W = G, where G is the set of global states reachable by the system S,
o ~, is defined by: (e,l) ~, (e',1') if € € vis(e),

o ~ is defined by: (e,l) ~s (e',1') if see(vis(e)) = see(vis(e')),

o ~y is defined by: (e,l) ~p (e/,1") if L=1".

The class of frames generated by the class of VSK system S will be denoted by Fs;
similarly Fg will denote the frame generated by the system S. As might be expected,
the generated frames are equivalence frames.

Lemma 3.4 Given any VSK system S € S, the frame Fs generated by S is an
equivalence frame.

With Definition 3.3 we have effectively built a bridge between VSK systems and
Kripke frames. In what follows, we assume the standard definitions of satisfaction
and validity for Kripke frames and Kripke models defined by three relations on the
support set — we refer the reader to [11, 8] for a detailed exposition of the subject.
Following [6] and [14], we define the concepts of truth and validity on Kripke models
that are generated by VSK systems.

Definition 3.5 (Satisfaction on VSK systems) Given an interpretation 7 : W —
2P we say that a formula o € LYSK is satisfied at a point g € G on a VSK system
S if the model Mg = (Fg,m) built on the generated frame Fg by use of w is such that
Mg =4 ¢. The propositional connectives are assumed to be interpreted as usual and
the modal operators V,S,K are assumed to be interpreted in the standard way (see
for example [11]) by means of the equivalence relations ~.,, ~s, and ~y, respectively.
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We are especially interested in the properties of a VSK system as a whole. The
notion of validity is appropriate for this analysis.

Definition 3.6 (Validity on VSK systems) A formula ¢ € LYK is valid on a
VSK system S if Fs = ¢. A formula ¢ € LYK is valid on a class T of VSK systems
if for any system S € T, we have that Fs = ¢.

4 Axiomatising VS Systems

In this section we study various VSK systems from an axiomatic perspective. This
analysis will let us explore in more detail the properties of visibility, knowledge, and
perception of VSK systems. We begin by presenting correspondence results; we then
report completeness of an axiomatisation with respect to the most general class of
VSK systems. We do not report proofs for the correspondence results which are
presented in [29].

Let us first note that the class Fs of frames generated by VSK systems is a proper
subclass of equivalence frames. Indeed, the following holds.

Lemma 4.1 For any frame F € Fs, we have ~,Cr~y,.

Lemma 4.2 Fs = Sp = Vp if and only if ~,Cr~s.

In view of these lemmas, any VSK system validates the formula below.
Corollary 4.3 Given any S we have S |= Sp = Vp.

Corollary 4.3 is in line with our intuitions about visibility and perception: it says that
an agent cannot see something that it is not visible.

We now proceed to give basic correspondence results (see [3] for a detailed exposi-
tion of the subject) for axioms relating visibility, perception, knowledge with respect
to the architectural classes of VSK systems described in Section 2. Note that our
correspondence results are not simply given with respect to the Kripke frames but to
architectural features of VSK systems.

Lemma 4.4 1. S = p= Vp if and only if the system S is transparent.

2. 5 |E p= Sp if and only if the system S is transparent and the perception function
of the agent Ag in S is perfect.

Lemma 4.4 makes precise the intuition given in the semantics of VSK systems about
transparency and perfect perception. In particular, in order for the agent to be able
to perceive everything that is true, it is not enough for it to have a perfect perception
function: it also needs to inhabit a system with a transparent visibility function.

We now investigate interaction axioms between visibility, perception, and knowl-
edge. First, recall from Corollary 4.3 that on any generated frame the implication
between perception and visibility is valid. Here we turn to the converse direction: if a
fact is visible, then it is seen by the agent — in other words, the agent sees everything
visible. Intuitively, this axiom characterises agents with “perfect” sensory apparatus,
i.e., a see function that never loses information. Indeed, as the next lemma shows,
this axiom corresponds formally to the perception function of the agent being perfect
(as defined in Definition 2.2).
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Lemma 4.5 S = Vp = Sp if and only if the perception function see of the agent Ag
in S in perfect.

Given Corollary 4.3, we can strengthen the above as follows.

Corollary 4.6 S = Vp < Sp if and only if the perception function see of the agent
Ag in S in perfect.

Suppose we have an agent which assumes that if it cannot see ¢, then ¢ must be false.
Such an agent is employing a kind of strict closed world assumption. We formally
analyse the contrapositive of it.

Lemma 4.7 S = -S—p = Vp if and only if system S is transparent and the visibility
function is perfect.

We now turn to the relationship between what an agent perceives and what it knows.
Recall from Definition 2.2 that complete transformer functions characterise agents
that never lose information when they update their internal state. The following
holds.

Lemma 4.8 S |= Sp = Kp if and only if the state transformer function 7, is com-
plete.

Suppose that an agent’s internal state at any moment is determined solely by the
percept it receives at that moment — the agent chooses its next state by ignoring
its current local state, and only taking into account the percept that it is currently
receiving. This is the locality property of the state transformer function 7, as described
in Definition 2.2. For such agents, knowledge is determined solely by the current state
of the environment. Indeed, we have the following.

Lemma 4.9 S = Kp = Sp if and only if the state transformer function 7, of system
S is local.

So far we have identified certain classes of VSK systems. In particular we were able
to report that some architectural features of particular VSK systems are reflected
in the validity of some axioms expressing implications between visibility, perception,
and knowledge. We now turn our attention to the issue of completeness.

Many different VSK systems are worth exploring. As discussed above, the envi-
ronment can be transparent or not, the agent’s perception function can be perfect or
otherwise, the agent’s next state function can be complete, local or neither of the two,
and so on. While we reported correspondence results, these are in general not enough
to provide completeness, and each semantic class needs its own appropriate analysis.
In this article we focus on a basic VSK logic: we prove that this logic axiomatises the
most general class of VSK systems.

Definition 4.10 The logic Ly sk is the set of formulas generated by the following
aziomatisation.

Taut Frvsx D, where p is any propositional tautology
Kk Fovse K(p = q) = (Kp = Kq)
TIC |_LVSK ]Cp =P
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4y I_LVSK Kp = ICICp

Sk Frlovsx 7Kp = K-K-p

Ky FLvsk V(p = q) = (Vp = VQ)
Ty FLyse VP =P

4y, |_LVSK Vp=VVp

Sy |_LVSK -Vp = V-V-p

Ks FLyse S(p = @) = (Sp = Sq)
Ts FLysk SP=p

45 |—LV5K Sp = SSp

5s |_LVSK =Sp = §-S—p

Ints_y tryge Sp=Vp

US IfFry ok 0, then Fry o @W1/P1,- - Un/Pn)
MP Ifbr e wand b1, o @ = Y, then b, o ¥
Neck  IfFr,sx @, then i, o Ko

Necy  IfbL,gx @, then br, o Vo

Necs Iftr,sx @, thenbr, o S

It is immediately apparent that each of the VSK modalities enjoy the properties of
an S5 modal logic: they each validate analogues of the modal logic axioms K'T45 [11,
8]. The appropriateness of S5 as a logic of (idealised) knowledge has been discussed
at length in the literature, and is now widely accepted [6, pp30—-36]; for this reason,
we will not motivate the S5 logic of knowledge. However, the appropriateness of S5
for the V and S modalities requires some justification.

Consider the V modality first. Recall the intended interpretation of a formula V:
that Vy is true in some state if an impartial observer would say that this state carried
the information ¢. Taking the axioms KT45 in turn, Ky seems unproblematic: if the
information p = ¢ and p is carried by a state, then ¢ must also be carried by that
state. Axiom Ty, simply says that if information p is carried by a state, then p must
be true. This is a desirable property, since it would seem unreasonable to say that a
state really carried some information if that information were false. Axiom 4,, says
that if we can conclude that a state carries information p, then we also have some
additional (although arguably not terribly helpful) information: that it carries the
information that it carries the information p. Since we have axiom Ty, it follows
that Vp & VVp will be an axiom: we can remove repeated occurrences of the V
modality without affecting the truth of a formula. Finally, axiom 5y, says that if we
can conclude that a state does not carry the information p, then we can conclude that
the state carries the information that it does not carry the information p. Axioms 4y
and 5y thus extend our information about a state from understanding the limits to
the information carried by that state.

Turning to the S modality, we should first emphasise that S is not intended to form
a logic of perception in the sense of, for example, Hintikka’s [10, pp151-183]. Rather,
S captures an objective notion of perception, (what an omniscient impartial observer
would say you are seeing), rather than a subjective view of perception (what you
believe you are seeing). Thus S means that if the agent is receiving some percept p,
then whenever it receives percept p, formula ¢ is guaranteed to be true. In this sense,
the percept the agent receives is carrying the information ¢. We argue that under this
interpretation, the S5 axioms capture reasonable properties of the S modality. The
most controversial of these axioms for § is Ts, and it is therefore worth examining
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this axiom in more detail. It says that if an agent “sees” p, then p must be true. If we
were attempting to capture the everyday sense of human perception, then this axiom
would not be acceptable — there are many obvious reasons why, if you perceive p,
you could be wrong. However, under our interpretation, we say that Sp means that
in every state where you receive the same percept that you are currently receiving, p
is true — in particular, p must be true in the current state. We can argue similarly
for axioms 45 and 5s.

We can prove that Definition 4.10 represents a sound and complete axiomatisation
for the most general class of VSK systems.

Theorem 4.11 The logic Lysk is sound and complete with respect to the class of
VSK systems S.

PROOF. (Outline) It is straightforward to show that Ly sk is sound with respect to the
class of systems S. In order to prove completeness, it suffices to show that Ly gk F ¢
implies S £ ¢, for any ¢ € LY. By carrying out a routine proof via the canonical
model method (cf., e.g., [20]) one can show that the logic Ly sk is complete with
respect to the class G of equivalence frames F' = (U, ~,, ~5, ~), where ~,C~;. But
it can be proven that given any frame G = (W, ~,,~s, ~) € G, one can define a
system S € S such that its generated frame Fls is the domain of a p-morphism onto
G. The construction of S is somehow cumbersome and not reported here (see [29] for
details).

Suppose then Ly sk I/ ¢, then by the completeness result above we have G [~ ¢
for some G € G; but then by constructing S as suggested above, we can prove that,
because of considerations on the transfer of validity to p-morphic images (e.g., see
[8, page 11] for details on the mono-modal case), Fis [~ ¢. So S £ ¢, hence S | ¢,
where S is the class of VSK systems. [ |

5 A Case Study

To illustrate the formalism, we present a simple case study, adapted from Russell and
Norvig’s vacuum world [24, p58]. A robot agent occupies an environment with two
rooms, room 1 and room 2. The rooms are connected by a single door, which may
be open or closed. Initially, the robot is in room 1. There may be dirt on the floor
in either or both of these rooms. The robot can detect whether the door is open
or closed, and whether it is in the same room as some dirt, but that is all. It has
a vacuum cleaner, which, if operated, will suck dirt from underneath it. It is also
capable of opening the door and moving from one room to the other. When the door
is closed, it is #mpossible to tell whether there is dirt in the other room. However,
when the door is open, an agent with sufficiently powerful sensory equipment could
in principle detect dirt in the other room. Our agent is not capable of this. To
characterise the properties of the environment, we use five primitive propositions: d;
(where i = 1, 2) indicates that dirt is in room 4; ag; (where ¢ = 1, 2) indicates that the
agent is in room ¢; and door indicates whether the door is open. The possible states
of the environment are E = {ey, ..., e15}, and are summarised in Figure 2. Note that
we encode in the environment the physical position of the agent. We discuss how to
code its internal state later on.
We can represent the environment’s visibility function, vis, as follows:
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State di? d2? ag1? age:? door?
o N N Y N N
ee N Y Y N N
es N N Y N Y
e3 N Y Y N Y
ey4 Y N Y N N
es Y Y Y N N
eg Y N Y N Y
er Y Y Y N Y
es N N N Y N
e N Y N Y N
ev N N N Y Y
ew N Y N Y Y
ek Y N N Y N
ez Y Y N Y N
e14 Y N N Y Y
ers Y Y N Y Y

TABLE 1. Possible states of the Vacuum World.
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room

room 2

ﬂ@ es Q €9

EZQJ
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vis(e;)

F1G. 2. The vacuum world.

{eo,e1} ife;=epore; =e;
{es,e5} ife;=esore; =es

= {68,612} if €; = €g Or ¢; = €19
{69,613} if €; = €9 Or ¢; = €13
{ei} otherwise.

283
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The see function for the agent is defined as:

po if X ={eg,e1} or X = {es,e12}
see(X) _ P1 if X = {64,65} or X = {69,613}
p2 if X € {{ea},{es},{e10},{e1a}}
ps if X € {{es},{er}, {ewr}, {e1s}}

Notice that see is lossy. We leave the reader to see that:

e Percept pg carries the information that the door is closed and either the agent is
in room 1 and there is no dirt in room 1, or the agent is in room 2 and there is
no dirt in room 2, i.e.,

=door A ((agi A —d1) V (aga A —ds)) (5.1)

Notice that the percept does not indicate which room the agent is in.

o Percept p; carries the information that the door is closed and that either the agent
is in in room 1 and there is dirt in room 1, or the agent is in room 2 and there is
dirt in room 2, i.e.,

—door A ((ag1 Ady) V (aga A d2)) (5.2)

e Percept p, carries the information that the door is open and that either the agent
is in in room 1 and there is no dirt in room 1, or the agent is in room 2 and there
is no dirt in room 2, i.e.,

door A ((agy A —d1) V (aga A —ds)) (5.3)

e Percept p3 carries the information that the door is open and that either the agent
is in in room 1 and there is dirt in room 1, or the agent is in room 2 and there is
dirt in room 2, i.e.,

door A ((ag1 Adi) V (agz A d2)) (5.4)

We now describe the evolution of the agent. First we need to define its local
states. For the sake of this example, all we need to code is the representation of
the environment in the internal states of the agent. To this end we consider a set
L = {l,lo,11,ls,13}, where [ is the initial state, lo the state coding the door being
closed, and no dirt being present; /; the state corresponding to the door being closed,
and dirt being present; l5 the state referring to the door being open, and no dirt being
present; I3 the state in which the door is supposed open, and some dirt is present.
The evolution function 7, function is defined as:

lo if pj =po

N — l1 if Pi = P1

T, (lzapj) - lg if pj = p2
ls if pj=ps

Notice that 7, is local. The do function is defined:
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<€5,12) su_c)k <€1,l1) op_e)n <63,l3> mﬁ;}e <€11,l4) sgk <610,13) mg}e <€2,l3) mﬁ;)e s
—— —— N——r —— ———r~ N——r
go 91 92 93 94 95

Fic. 3. The history of the vacuum world.

null  ifl=1
open ifl =1l
move ifl =1,
suck ifl=1Iliorl=1I

do(l) =

Define now the VSK system S = (Env, Ag), with environment and agent as defined
above. Suppose that initially, there is dirt in both rooms, but the door is closed; i.e.,
that the environment begins in state e;. Agent and environment, then synchronise
producing the initial state go = (es,l2). Then we can deterministically compute the
run traced out by the agent when placed in the environment: this is pictured in
Figure 3.

Define now the generated model Mg = (F,w), where Fg is the frame generated
from system S according to Definition 3.3, and 7 is an interpretation for the atoms
that complies to that described in Figure 1. It is now easy to verify that (for brevity,
and by abusing the syntax we use the labels of the formulas above, rather than copying
them):

Observation 5.1 Mg =4, di Ads AVdi A =Vdy AS(5.2) A K(5.2)

In state g1, there is no longer any dirt in room 1. We can see that this situation
corresponds to the following.

Observation 5.2 Mg =4, (=di) Ada AV—dy A—=Vdy A S(5.1) AK(5.1)

The agent then performs the open action. The fact that there is dirt in room 2 then
becomes visible, even though the agent does not see it.

Observation 5.3 Mg =,, (—=di) Ada AV(d2 A —di) AS(5.3) AK(5.3)
The agent then executes a move action, moving to room 2.
Observation 5.4 Ms =g, (-di) Ada A (Vda A —dy) AS(5.4) AK(5.4)

After the agent performs a “suck” action the environment is transformed to e;q. We
can characterise the salient features of g4 as follows.

Observation 5.5 Mg =,, =(d1 V d2) AV=(d1 V da) AS(5.3) AK(5.3)

We leave it to the reader to characterise state gs similarly.

6 Related Work

Since the mid 1980s, Halpern and colleagues have used modal epistemic logic for
reasoning about multi-agent systems [6]. In this work, they demonstrated how inter-
preted systems could be used as models for such logics. Interpreted systems are very
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close to our agent-environment systems: the key differences are that they only record
the state of agents within a system, and hence do not represent the percepts received
by an agent or distinguish between what is true of an environment and what is visible
of that environment. Halpern and colleagues have established a range of significant
results relating to such logics, in particular, categorisations of the complexity of vari-
ous decision problems in epistemic logic, the circumstances under which it is possible
for a group of agents to achieve “common knowledge” about some fact, and most
recently, the use of such logics for directly programming agents [7]. Comparatively
little effort has been devoted to characterising “architectural” properties of agents.
The only obvious examples are the temporal properties of no learning, perfect recall,
and so on [6, pp281-307]. In their “situated automata” paradigm, Kaelbling and
Rosenschein directly synthesised agents (in fact, digital circuits) from epistemic spec-
ifications of these agents [23]. While this work clearly highlighted the relationship
between epistemic theories of agents and their realisation, it did not explicitly inves-
tigate axiomatic characterisations of architectural agent properties. Finally, recent
work has considered knowledge-theoretic approaches to robotics [4].

Many other formalisms for reasoning about intelligent agents and multi-agent sys-
tems have been proposed over the past decade [28]. Following the pioneering work
of Moore on the interaction between knowledge and action [19], most of these for-
malisms have attempted to characterise the “mental state” of agents engaged in var-
ious activities. Well-known examples of this work include Cohen-Levesque’s theory
of intention [5], and the ongoing work of Rao-Georgeff on the belief-desire-intention
(BDI) model of agency [21, 27]. The emphasis in this work has been more on axiomatic
characterisations of architectural properties; for example, in [22], Rao-Georgeff discuss
how various axioms of BDI logic can be seen to intuitively correspond to properties of
agent architectures. However, this work is specific to BDI architectures, and in addi-
tion, the correspondence is an intuitive one: they establish no formal correspondence,
in the sense of VSK logic. In this sense, BDI logics (and most of their close relatives)
are not computationally grounded. The notion of computationally grounded theories
of agency is discussed in [26].

A number of author have considered the problem of reasoning about actions that
may be performed in order to obtain information. Again building on the work of
Moore [19], the goal of such work is typically to develop representations of sensing
actions that can be used in planning algorithms [1]. An example is [25], in which Scherl
and Levesque develop a representation of sensing actions in the situation calculus [17].
These theories focus on giving an account of how the performance of a sensing action
changes an agent’s knowledge state. Such theories are purely axiomatic in nature —
no architectural correspondence is established between axioms and models that they
correspond to.

7 Conclusions

In this paper, we have introduced VSK logic as a formalism for representing and
reasoning about the information properties of agents and their environments. Using
VSK logic, we are able to represent what is objectively true of some environment,
what is accessible or visible of the environment, what an agent sees of the environ-
ment, and finally, what an agent knows. The semantics of VSK logic were presented
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with respect to a simple and general model of agents and their environments. We
were able to prove correspondence results for a number of possible axioms of VSK
logic with respect to this model of agents and environments, thus demonstrating that
certain axioms captured quite intuitive architectural properties of agent/environment
systems. Finally, we gave an axiomatisation of VSK logic, and proved completeness
of this logic with respect to the formal model of agents and environments. It is worth
stressing that completeness was shown with the grounded semantics of Section 2 and
that Kripke models are only used as a vehicle to achieve the result.

There are many avenues for future work: temporal extensions and multi-agent
extensions are two of the most important. Completeness results for all basic VSK
systems are another area of work. Finally, decidability and complexity results are
desirable, perhaps by using the results of [6, pp62-76].

Finally, it is worth noting that other formalisms — such as [18, 15] — have been
explored to represent automata-like models of computation on which epistemic lan-
guages can be defined in similar way. Although the notion of perception can be
represented there, it is not clear that also the notion of visibility can also be coded. A
comparison between this and the formalism of this paper is clearly a topic for further
investigation.
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