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Abstract

Rational agents are important objects of study in several research communities, including economics,
philosophy, cognitive science, and most recently computer science and artificial intelligence. Crudely,
a rational agent is an entity that is capable of acting on its environment, and which chooses to act
in such a way as to further its own best interests. There has recently been much interest in the
use of mathematical logic for developing formal theories of such agents. Such theories view agents
as practical reasoning systems, deciding moment by moment which action to perform next, given
the beliefs they have about the world and their desires with respect to how they would like the
world to be. In this article, we survey the state of the art in developing logical theories of rational
agency. Following a discussion on the dimensions along which such theories can vary, we briefly
survey the logical tools available in order to construct such theories. We then review and critically
assess three of the best known theories of rational agency: Cohen and Levesque’s intention logic, Rao
and Georgeft’s BDI logics, and the KARO framework of Meyer et al. We then discuss the various roles
that such logics can play in helping us to engineer rational agents, and conclude with a discussion
of open problems.
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1 Introduction

Rational agents are the central objects of study in many research disciplines, including
economics [52], philosophy [17], cognitive science [73], and most recently, computer
science and artificial intelligence [79]. Put crudely, an agent is an entity that is situated
in some environment and is capable of acting upon it in order to modify, shape, and
control it; a rational agent is one that acts in its own best interests. The notion of
“best interest” is commonly captured by assuming that an agent has preferences over
possible outcomes — an agent is then rational if it chooses to act in such a way as to
optimise its outcome with respect to these preferences.

There has recently been much interest in the use of mathematical logic for devel-
oping formal theories of such agents. Much of this interest arises from the fact that
rational agents are increasingly being recognised as an important concept in com-
puter science and artificial intelligence [78, 40]. Logical theories of rational agency
view agents as practical reasoning systems, deciding moment by moment which action
to perform next, given the beliefs they have about the world and their desires with
respect to how they would like the world to be. In this article, we survey the state
of the art in developing logical theories of rational agency. Following a discussion on
the dimensions along which such theories can vary, we briefly survey the logical tools
available in order to construct such theories. We then review and critically assess
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three of the best known theories of rational agency: Cohen and Levesque’s inten-
tion logic, Rao and Georgeff’s BDI logics, and the KARO framework of Meyer et al.
We then discuss the various roles that such logics can play in helping us to engineer
rational agents, and conclude with a discussion of open problems.

1.1  Dimensions of Rational Agency

Agents are the producers of action. Agents perform actions in order to shape and
modify the environment they inhabit; they are not merely the passive recipients of
actions, but rather they are active and purposeful. In attempting to understand the
behaviour of agents in the everyday world, we frequently make use of folk psychology:

Many philosophers and cognitive scientists claim that our everyday or “folk”
understanding of mental states constitutes a theory of mind. That theory is
widely called “folk psychology” (sometimes “commonsense” psychology). The
terms in which folk psychology is couched are the familiar ones of “belief”
and “desire”, “hunger”, “pain” and so forth. According to many theorists,
folk psychology plays a central role in our capacity to predict and explain
the behavior of ourselves and others. However, the nature and status of folk
psychology remains controversial. [80]

For example, we use statements such as Michael intends to write a paper in order
to explain Michael’s behaviour. Once told this statement, we expect to find Michael
shelving other commitments and developing a plan to write the paper; we would
expect him to spend a lot of time at his computer; we would not be surprised to
find him in a grumpy mood; but we would be surprised to find him at a late night
party. The philosopher Dennett coined the phrase intentional system to refer to an
entity that is best understood in terms of folk-psychology notions such as beliefs,
desires, and the like [17]. This was also what Hofstadter was referring to already in
"81, when one of his characters, Sandy, puts the following forward in a Coffee House
Conversation ([36]):

But eventually, when you put enough feelingless calculations toghether in a
huge coordinated organization, you’ll get something that has properties on
another level. You can see it — in fact you have to see it— not as a bunch of
little calculations, but as a system of tendencies and desires and beliefs and so
on. When things get complicated enough, you're forced to change your level
of description. To some extend that’ already happening, which is why we use
words such as “want,” “think,” “try,” and “hope,” to describe chess programs
and other attempts at mechanical thought.

The intentional stance is essentially nothing more than an abstraction tool. It is
a convenient shorthand for talking about certain complex systems (such as people),
which allows us to succinctly predict and explain their behaviour without having to
understand or make claims about their internal structure or operation. Note that the
intentional stance has been widely discussed in the literature —let us just remark here
that Sandy of the Coffeeshop Conversation claims that the really interesting things
in AI will only begin to happen, ‘when the program itself adopts the intentional
stance towards itself’— and it is not our intention to add to this debate; see [77] for a
discussion and references.
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If we accept the usefulness of the intentional stance for characterising the properties
of rational agents, then the next step in developing a formal theory of such agents
is to identify the components of an agent’s state. There are many possible mental
states that we might choose to characterise an agent: beliefs, goals, desires, intentions,
commitments, fears, hopes, and obligations are just a few. We can identify several
important categories of such attitudes, for example:

Information attitudes: those attitudes an agent has towards information about its
environment. The most obvious members of this category are knowledge and
belief.

Pro attitudes: those attitudes an agent has that tend to lead it to perform actions.
The most obvious members of this category are goals, desires, and intentions.

Normative attitudes: including obligations, permissions and authorization.

Much of the literature on developing formal theories of agency has been taken up
with the relative merits of choosing one attitude over another, and investigating the
possible relationships between these attitudes. While there is no consensus on which
attitudes should be chosen as primitive, most formalisms choose knowledge or belief
together with at least goals or desires.

Figure 1 gives a summary of the main areas that have contributed to a logical
theory of rational agency.

1.2 A Logical Toolkit

In attempting to axiomatise the properties of a rational agent in terms of (say) its
beliefs and desires, we will find ourselves attempting to formalise statements such as
the following

Wiebe believes Ajax are great.
Wiebe desires that Ajax will win. (1.2)

—~
—_
[t

~—

This suggests that a logical characterisation of these statements must include con-
structions of the form
; believes
desires v

where 7 is a term denoting an agent, and ¢ is a sentence. We immediately encounter
difficulties if we attempt to represent such statements in first-order logic. First of all,
the constructs mentioned above should definitely not be extensional-even if “Agent-
research in Utrecht” and “Agent-research in Liverpool” may accidentially both be
true, one can believe one without the other, desire the second but not the first, even
try to achieve one while hindering the other. Apart from this, representing such state-
ments in first-order logic — as binary predicates of the form Bel(i, ¢) and Desire(i, )
— will not work, because the second term is a sentence, and not a term. By fixing
the domain of the first-order language to be itself a language, we can get around this
problem, thereby obtaining a first-order meta-language. The meta-language approach
has been successfully adopted by a number of researchers, for example [75]. However,
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F1G. 1: The dimensions of rational agency: some of the fields that have contributed
to the study of rational agents.

meta-language approaches have also been widely criticised (see, e.g., [42] for a detailed
critique). Instead of choosing a meta-language approach, most researchers opt for a
modal approach, thereby folowing Moore’s early work on action and knowledge ([51]).
In such a modal approach, an agent’s beliefs, desires, and the like are represented by
an indexed collection of modal operators. The semantics of these operators are gen-
erally given in terms or Kripke structures, in the by-now familiar way [11, 59]. The
use of Kripke structures and their associated mathematics of correspondence theory
makes it possible to quickly generate a number of soundness results for axiomati-
zations of these logics. However, the combination of many modalities into a single
framework presents a significant challenge from a logical point of view. Complete-
ness results for logics that incorporate multiple modalities into a single framework are
comparatively few and far between, and this area of research is much at the leading
edge of contemporary modal logic research [48]. Moreover, for the few combinations
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for which completeness results are availaible, we also know that satisfiability problem
for many such enriched systems can easily become computationally hard [26].

Despite these problems, modal approaches dominate in the literature, and in this
article, we focus exclusively on such approaches.

In addition to representing an agent’s attitudes, logics of rational agency also typ-
ically incorporate some way of representing the actions that agents perform, and the
effects of these actions. Most researchers adapt techniques from dynamic logic in
order to represent actions and their effects [29], whereas others confine themselves
to a temporal set-up. Although there is some work in establishing the exact relation
between the two approaches, this issue still deserves a better investigation.

2 The State of the Art

In this section, we review three of the best-known formalisms for reasoning about
rational agents: Cohen and Levesque’s seminal intention logic [14], Rao and Georgeff’s
BDI framework [63], and the KARO framework of Linder et al [47]. In addition, we give
a brief survey of work on what we loosely characterise as “game logics”; the unifying
theme of these approaches is that they exploit the close relationship between games
(in the sense of game theory) and Kripke-like relational models for modal logics to
provide a principled foundation for reasoning about rational agents [6, 4, 19, 55, 2].

2.1 Cohen and Levesque’s Intention Logic

One of the best known, and most sophisticated attempts to show how the various
components of an agent’s cognitive makeup could be combined to form a logic of
rational agency is due to Cohen and Levesque [14]. Cohen and Levesque’s formalism
was originally used to develop a theory of intention (as in “I intended to...”), which
the authors required as a pre-requisite for a theory of speech acts (see next chapter
for a summary, and [15] for full details). However, the logic has subsequently proved
to be so useful for specifying and reasoning about the properties of agents that it
has been used in an analysis of conflict and cooperation in multi-agent dialogue [24],
[23], as well as several studies in the theoretical foundations of cooperative problem
solving [45, 38, 39]. This section will focus on the use of the logic in developing a
theory of intention. The first step is to lay out the criteria that a theory of intention
must satisfy.

When building intelligent agents — particularly agents that must interact with
humans — it is important that a rational balance is achieved between the beliefs,
goals, and intentions of the agents.

For example, the following are desirable properties of intention: An autonomous
agent should act on its intentions, not in spite of them; adopt intentions it be-
lieves are feasible and forego those believed to be infeasible; keep (or commit
to) intentions, but not forever; discharge those intentions believed to have been
satisfied; alter intentions when relevant beliefs change; and adopt subsidiary
intentions during plan formation. [14, p214]

Following Bratman [7, 8], Cohen and Levesque identify seven specific properties
that must be satisfied by a reasonable theory of intention:
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Operator Meaning

(Bel i v) agent i believes ¢

(Goal i ¢) agent 7 has goal of ¢
(Happens «)  action « will happen next
(Done «) action « has just happened

TABLE 1. Atomic modalities in Cohen and Levesque’s logic

1. Intentions pose problems for agents, who need to determine ways of achieving
them.

. Intentions provide a “filter” for adopting other intentions, which must not conflict.

w N

. Agents track the success of their intentions, and are inclined to try again if their
attempts fail.

. Agents believe their intentions are possible.
. Agents do not believe they will not bring about their intentions.
. Under certain circumstances, agents believe they will bring about their intentions.

N IR, TN

. Agents need not intend all the expected side effects of their intentions.

Given these criteria, Cohen and Levesque adopt a two tiered approach to the problem
of formalizing a theory of intention. First, they construct the logic of rational agency,
“being careful to sort out the relationships among the basic modal operators” [14,
p221]. On top of this framework, they introduce a number of derived constructs,
which constitute a “partial theory of rational action” [14, p221]; intention is one of
these constructs.

Syntactically, the logic of rational agency is a many-sorted, first-order, multi-modal
logic with equality, containing four primary modalities; see Table 1. The semantics of
Bel and Goal are given via possible worlds, in the usual way: each agent is assigned a
belief accessibility relation, and a goal accessibility relation. The belief accessibility
relation is euclidean, transitive, and serial, giving a belief logic of KD45. The goal rela-
tion is serial, giving a conative logic KD. It is assumed that each agent’s goal relation is
a subset of its belief relation, implying that an agent will not have a goal of something
it believes will not happen. Worlds in the formalism are a discrete sequence of events,
stretching infinitely into past and future. The system is only defined semantically,
and Cohen and Levesque derive a number of properties from that. In the semantics, a
number of assumptions are implicit, and one might vary on them. For instance, there
is a fixed domain assumption, giving us properties as Vz(Bel i p(z)) — (Bel iVzo(z)).
Also, agents ‘know what thime it is’, we immediately obtain from the semantics the
validity of formulas like 2 : 30PM/3/6/85 — Bel i 2 : 30PM/3/6/85.

The two basic temporal operators, Happens and Done, are augmented by some
operators for describing the structure of event sequences, in the style of dynamic logic
[28]. The two most important of these constructors are “;” and “?”:

a;a’  denotes a followed by o
w?  denotes a “test action” ¢

Here, the test must be interpreted as a test by the system; it is not a so-called
‘knowledge-producing action’ that can be used by the agent to acquire knowledge.
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The standard future time operators of temporal logic, {]” (always), and “{>”
(sometime) can be defined as abbreviations, along with a “strict” sometime operator,
Later:

Qa
Oa
(Later p)

3z - (Happens z; a?)
e
—p AP

A temporal precedence operator, (Before p ¢) can also be derived, and holds if p holds
before ¢. An important assumption is that all goals are eventually dropped:

(> 1> 1P

{—(Goal z (Later p))

The first major derived construct is a persistent goal.

(P-Goal i p) = (Goal i (Later p)) A
(Bel i —p) A
Before

((Bel i p) Vv (Bel i [J=p))
—(Goal i (Later p))

So, an agent has a persistent goal of p if:

1. It has a goal that p eventually becomes true, and believes that p is not currently
true.

2. Before it drops the goal, one of the following conditions must hold:
(a) the agent believes the goal has been satisfied;
(b) the agent believes the goal will never be satisfied.

It is a small step from persistent goals to a first definition of intention, as in “intending
to act”. Note that “intending that something becomes true” is similar, but requires
a slightly different definition; see [14]. An agent ¢ intends to perform action « if it
has a persistent goal to have brought about a state where it had just believed it was
about to perform «, and then did a.

(Intend i @) =  (P-Goal ¢
[Done i (Bel i (Happens «))?; ]

)

Cohen and Levesque go on to show how such a definition meets many of Bratman’s
criteria for a theory of intention (outlined above). In particular, by basing the defi-
nition of intention on the notion of a persistent goal, Cohen and Levesque are able to
avoid overcommitment or undercommitment. An agent will only drop an intention if
it believes that the intention has either been achieved, or is unachievable.

A critique of Cohen and Levesque’s theory of intention is presented in [72]; space
restrictions prevent a discussion here.

2.2 Rao and Georgeff’s BDI Logics

One of the best-known (and most widely misunderstood) approaches to reasoning
about rational agents is the belief-desire-intention (BDI) model [9]. The BDI model
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gets its name from the fact that it recognizes the primacy of beliefs, desires, and
intentions in rational action. The BDI model is particularly interesting because it
combines three distinct components:

e A philosophical foundation.
The BDI model is based on a widely respected theory of rational action in humans,
developed by the philosopher Michael Bratman [7].

e A software architecture.
The BDI model of agency does not prescribe a specific implementation. The model
may be realized in many different ways, and indeed a number of different imple-
mentations of it have been developed. However, the fact that the BDI model has
been implemented successfully is a significant point in its favor. Moreover, the
BDI model has been used to build a number of significant real-world applications,
including such demanding problems as fault diagnosis on the space shuttle.

e A logical formalisation.
The third component of the BDI model is a family of logics. These logics capture
the key aspects of the BDI model as a set of logical axioms. There are many
candidates for a formal theory of rational agency, but BDI logics in various forms
have proved to be among the most useful, longest-lived, and widely accepted.

Intuitively, an agent’s beliefs correspond to information the agent has about the
world. These beliefs may be incomplete or incorrect. An agent’s desires represent
states of affairs that the agent would, in an ideal world, wish to be brought about.
(Implemented BDI agents require that desires be consistent with one another, although
human desires often fail in this respect.) Finally, an agent’s intentions represent de-
sires that it has committed to achieving. The intuition is that an agent will not, in
general, be able to achieve all its desires, even if these desires are consistent. Ul-
timately, an agent must therefore fix upon some subset of its desires and commit
resources to achieving them. These chosen desires, to which the agent has some com-
mitment, are intentions [14]. The BDI theory of human rational action was originally
developed by Michael Bratman [7]. It is a theory of practical reasoning — the pro-
cess of reasoning that we all go through in our everyday lives, deciding moment by
moment which action to perform next. Bratman’s theory focuses in particular on the
role that intentions play in practical reasoning. Bratman argues that intentions are
important because they constrain the reasoning an agent is required to do in order to
select an action to perform. For example, suppose I have an intention to write a book.
Then while deciding what to do, I need not expend any effort considering actions that
are incompatible with this intention (such as having a summer holiday, or enjoying
a social life). This reduction in the number of possibilities I have to consider makes
my decision making considerably simpler than would otherwise be the case. Since
any real agent we might care to consider — and in particular, any agent that we can
implement on a computer — must have resource bounds, an intention-based model of
agency, which constrains decision-making in the manner described, seems attractive.

The BDI model has been implemented several times. Originally, it was realized in
IRMA, the Intelligent Resource-bounded Machine Architecture [9]. IRMA was intended
as a more or less direct realization of Bratman’s theory of practical reasoning. How-
ever, the best-known implementation is the Procedural Reasoning System (PRS) [25]
and its many descendants [21, 60, 18, 37]. In the PRS, an agent has data structures
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that explicitly correspond to beliefs, desires, and intentions. A PRS agent’s beliefs are
directly represented in the form of PROLOG-like facts [13, p.3]. Desires and intentions
in PRs are realized through the use of a plan library.! A plan library, as its name
suggests, is a collection of plans. Each plan is a recipe that can be used by the agent
to achieve some particular state of affairs. A plan in the PRS is characterized by a body
and an invocation condition. The body of a plan is a course of action that can be used
by the agent to achieve some particular state of affairs. The invocation condition of
a plan defines the circumstances under which the agent should “consider” the plan.
Control in the PRS proceeds by the agent continually updating its internal beliefs, and
then looking to see which plans have invocation conditions that correspond to these
beliefs. The set of plans made active in this way correspond to the desires of the
agent. Each desire defines a possible course of action that the agent may follow. On
each control cycle, the PRS picks one of these desires, and pushes it onto an execution
stack, for subsequent execution. The execution stack contains desires that have been
chosen by the agent, and thus corresponds to the agent’s intentions.

The third and final aspect of the BDI model is the logical component, which gives
us a family of tools that allow us to reason about BDI agents. There have been several
versions of BDI logic, starting in 1991 and culminating in Rao and Georgeff’s 1998
paper on systems of BDI logics [64, 68, 65, 66, 67, 61, 63]; a book-length survey was
published as [77]. We focus on [77].

Syntactically, BDI logics are essentially branching time logics (CTL or CcTL*, de-
pending on which version you are reading about), enhanced with additional modal
operators Bel, Des, and Intend, for capturing the beliefs, desires, and intentions of
agents respectively. The BDI modalities are indexed with agents, so for example the
following is a legitimate formula of BDI logic.

(Bel i (Intend j A{>p)) = (Bel i (Des j Adp))

This formula says that if 7 believes that 7 intends that p is inevitably true eventually,
then i believes that j desires p is inevitable. Although they share much in common
with Cohen-Levesque’s intention logics, the first and most obvious distinction between
BDI logics and the Cohen-Levesque approach is the explicit starting point of CTL-like
branching time logics. However, the differences are actually much more fundamental
than this. The semantics that Rao and Georgeff give to BDI modalities in their logics
are based on the conventional apparatus of Kripke structures and possible worlds.
However, rather than assuming that worlds are instantaneous states of the world,
or even that they are linear sequences of states, it is assumed instead that worlds
are themselves branching temporal structures: thus each world can be viewed as
a Kripke structure for a cTL-like logic. While this tends to rather complicate the
semantic machinery of the logic, it makes it possible to define an interesting array of
semantic properties, as we shall see below.

Before proceeding, we summarise the key semantic structures in the logic. Instan-
taneous states of the world are modelled by time points, given by a set T'; the set
of all possible evolutions of the system being modelled is given by a binary relation
RC TxT. A world (over T and R) is then a pair (17, R’), where 7" C T is a
non-empty set of time points, and R’ C R is a branching time structure on T’. Let

1In this description of the Prs, I have modified the original terminology somewhat, to be more in line with contem-
porary usage; I have also simplified the control cycle of the pPRrs slightly.
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W be the set of all worlds over T'. A pair (w,t), where w € W and t € T, is known
as a situation. If w € W, then the set of all situations in w is denoted by S,,. We
have belief accessibility relations B, D, and Z, modelled as functions that assign to
every agent a relation over situations. Thus, for example:

B : Agents — p(W x T x W)

We write B}’ () to denote the set of worlds accessible to agent i from situation (w, t):
Br(i) = {w' | (w,t,w") € B(4)}. We define DY and Z;* in the obvious way. The
semantics of belief, desire and intention modalities are then given in the conventional
manner:

o (w,t) = (Bel i o) iff (w',t) | ¢ for all w’ € B (i).
o (w,t) = (Des i ) iff (w’,t) = ¢ for all w’ € D (1).
o (w,t) = (Intend i ) iff (w',t) = ¢ for all w’ € L (4).

The primary focus of Rao and Georgeff’s early work was to explore the possible inter-
relationships between beliefs, desires, and intentions from the perspective of semantic
characterisation. In order to do this, they defined a number of possible interrelation-
ships between an agent’s belief, desire, and intention accessibility relations. The most
obvious relationships that can exist are whether one relation is a subset of another:
for example, if D/ (i) C I}(3) for all ¢, w, ¢, then we would have as an interaction
axiom (Intend i ¢) = (Des i ¢). However, the fact that worlds themselves have
structure in BDI logic also allows us to combine such properties with relations on
the structure of worlds themselves. The most obvious structural relationship that
can exist between two worlds — and the most important for our purposes — is that
of one world being a subworld of another. Intuitively, a world w is said to be a
subworld of world w’ if w has the same structure as w’ but has fewer paths and is
otherwise identical. Formally, if w, w’ are worlds, then w is a subworld of w’ (written
w C w') iff paths(w) C paths(w’) but w, w’ agree on the interpretation of predicates
and constants in common time points.

The first property we consider is the structural subset relationship between ac-
cessibility relations. We say that accessibility relation R is a structural subset of
accessibility relation R if for every R-accessible world w, there is an R-accessible
world w’ such that w is a subworld of w’. Formally, if R and R are two accessibility
relations then we write R Cg,p R to indicate that if w’ € R}*([i]), then there exists
some w” € R¥([i]) such that v’ C w”. If R Csp R, then we say R is a structural
subset of R.

We write R Cg,p R to indicate that if w’ € RP([i]), then there exists some w’ €
R¥([i]) such that w” C w’. If R Cg, R, then we say R is a structural superset of R.
In other words, if R is a structural superset of R, then for every R-accessible world
w, there is an R-accessible world w’ such that w’ is a subworld of w.

Finally, we can also consider whether the intersection of accessibility relations is
empty or not. For example, if B (i) NZ{* (i) # 0, for all 4, w,t, then we get the
following interaction axiom.

(Intend @ ) = —(Bel i =)

This axiom expresses an inter-modal consistency property. Just as we can under-
take a more fine-grained analysis of the basic interactions among beliefs, desires, and
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Name Semantic Corresponding Formula Schema
Condition
BDI-S1 B Csup D Csup I

BDI-S2 BCeup DCoup T
BDI-S3 BCDCT

BDI-R1 7T Cgyp D Cyyp B
BDI-R2 7 Coup D Cyup B

Intend i E(p)) = (Des i E(p)) = (Bel i E(¢))
Intend i A(p)) = (Des i A(p)) = (Bel i A(p))
Intend i ¢) = (Des i ¢) = (Bel i @)
Bel i E(¢)) = (Des i E(p)) = (Intend i E(y))
Bel i A(p)) = (Des i A(¢)) = (Intend i A(p))
BDIFR3 ZTCDCHB Bel i ¢) = (Des i ¢) = (Intend i @)

(
(Int
(
(
(
(
BDI-W1 BNy D #0 (Bel i A(p)) = —(Des i =A(y))
DNeup L #0 (Des i A(p)) = —(Intend i —=A(p))
(
(
(
(
(
(
(

BNsup Z#0 Bel i A(p)) = —(Intend i =A(p))
BDI-W2  BNgp D #0 Bel i E(¢)) = —(Des i —=E(yp))

DNsup L #0 Des i E(¢)) = —(Intend i —E(y))

BNgup Z#0 Bel i E(p)) = —(Intend i =E(yp))
BDI-W3 BND#0 Bel i ¢) = —(Des i —p)

DNI #0 Des i ) = —(Intend i —¢)

BNI#0 Bel i ¢) = —(Intend i —p)

TABLE 2. Systems of BDI logic. (Source: [63, p.321].)

intentions by considering the structure of worlds, so we are also able to undertake
a more fine-grained characterization of inter-modal consistency properties by taking
into account the structure of worlds. We write R ([i]) Nsup R ([i]) to denote the
set of worlds w’ € R ([i]) for which there exists some world w” € R ([i]) such that
w’' € w”. We can then define Ny, in the obvious way.

Putting all these relations together, we can define a range of BDI logical systems.
The most obvious possible systems, and the semantic properties that they correspond
to, are summarised in Table 2

2.8 The KARO Framework

The KARO-framework (for Knowledge, Actions, Results and Opportunities) is an at-
tempt to develop and formalise the ideas of Moore [51], who realized that dynamic
and epistemic logic can be perfectly combined into one modal framework. The basic
framework comes with a sound and complete axiomatization [47]. Also, results on
automatic verification of the theory are known, both using translations to first order
logic, as well as in a clausal resolution approach. The core of KARO is a combination
of epistemic (the standard knowledge operator K; is an S5-operator) and dynamic
logic; many extensions have also been studied.

Along with the notion of the result of events, the notions of ability and opportunity
are among the most discussed and investigated in analytical philosophy. Ability plays
an important part in various philosophical theories, as for instance the theory of free
will and determinism, the theory of refraining and seeing-to-it, and deontic theories.
Following Kenny [41], the authors behind KARO consider ability to be the complex
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of physical, mental and moral capacities, internal to an agent, and being a positive
explanatory factor in accounting for the agent’s performing an action. Opportunity on
the other hand is best described as circumstantial possibility, i.e., possibility by virtue
of the circumstances. The opportunity to perform some action is external to the agent
and is often no more than the absence of circumstances that would prevent or interfere
with the performance. Although essentially different, abilities and opportunities are
interconnected in that abilities can be exercised only when opportunities for their
exercise present themselves, and opportunities can be taken only by those who have
the appropriate abilities. From this point of view it is important to remark that
abilities are understood to be reliable (cf. [10]), i.e. having the ability to perform a
certain action suffices to take the opportunity to perform the action every time it
presents itself. The combination of ability and opportunity determines whether or
not an agent has the (practical) possibility to perform an action.

Let ¢ be a variable over a set of agents {1,...,n}. Actions in the set Ac are either
atomic actions (Ac = {a,b,...}) or composed («,3,...) by means of confirmation
of formulas (confirm @), sequencing («; (), conditioning (if ¢ then « else ) and
repetition (while ¢ do «). These actions a can then be used to build new formulas
to express the possible result of the execution of « by agent i (the formula [do; ()]
denotes that ¢ is a result of i’s execution of «), the opportunity for ¢ to perform
a ({(do;(a))T) and i’s capability of performing the action « (A;«). The formula
(do;(a))¢ is shorthand for —[do; ()], thus expressing that one possible result of
performance of « by 4 implies .

With these tools at hand, one has already a rich framework to reason about agent’s
knowledge about doing actions. For instance, an infamous properties like perfect recall

K;[doi(a)]p — [doi(a)]Kip

can now be enforced for particular actions o. Also, the core KARO already guaran-
tees a number of properties, of which we list a few:

1. Ajconfirmp < ¢

2. Ajag;a0 — Ajag Afdos(aq)]Asas or Ajar;as > Ao A{(doi(aq))Asas

3. A;if pthenaj elseasfi « ((p AAja1) V (mp A Ajaz))

4. A;whilepdoaod < (—p V (p A Ao A [do;(a)]A;while p do avod))
orA;whilepdoaod < (mp V (p A Ao A (do;(a))A,;while pdo o od))

For a discussion about the problems with the ability to do a sequential action (the
possible behaviour of the items 2 and 4 above), we refer to [47], or to a general solution
to this problem that was offered in [35].

Practical possibility is considered to consist of two parts, viz. correctness and fea-
sibility: action « is correct with respect to ¢ iff (do;(«))¢ holds and « is feasible iff
A ;o holds.

PracPoss;(a, ) 2 (

do;(a))p N Ao

The importance of practical possibility manifests itself particularly when ascribing
— from the outside — certain qualities to an agent. It seems that for the agent
itself practical possibilities are relevant in so far as the agent has knowledge of these
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possibilities. To formalise this kind of knowledge, KARO comes with a Can-predicate
and a Cannot-predicate. The first of these predicates concerns the knowledge of
agents about their practical possibilities, the latter predicate does the same for their
practical impossibilities.

Can;(q, p) 2 K,;PracPoss;(a, ¢) and Cannot;(a, ) 2 K,;—PracPoss;(a, v)

The Can-predicate and the Cannot-predicate integrate knowledge, ability, oppor-
tunity and result, and seem to formalise one of the most important notions of agency.
In fact it is probably not too bold to say that knowledge like that formalised through
the Can-predicate, although perhaps in a weaker form by taking aspects of uncer-
tainty into account, underlies all acts performed by rational agents. For rational
agents act only if they have some information on both the possibility to perform the
act, and its possible outcome. It therefore seems worthwhile to take a closer look at
both the Can-predicate and the Cannot-predicate. The following propperties focus
on the behaviour of the means-part of the predicates, which is the « in Can,(c, )
and Cannot;(a, ¢).

. Can;(confirmep,¢) « K;(p A1)
. Cannot,(confirmy, 1)) < K;(-p V —))
. Can;(a1; ag, ) < Can, (a1, PracPoss; (a2, ¢))
. Can;(a; ag, ) — {(do;(a1))Can;(aq, ¢) if ¢ has perfect recall regarding ay
. Can;(if pthenaj elseas fi, ) AK,;p « Can;(ai,¥) ANK;p
. Can;(if pthenaj elseas fi, ) A K;—p < Can,;(asz, ) NK;~p
(while pdo aod, ) AK,;¢ < Can;(«, PracPoss;(while pdo aod, 9))AK,;¢

N O U W N

. Cani

In Actions that make you change your mind ([46]), the authors of KARO look at
specific atomic actions Atthat the agents can perform, i.e., doxastic actions of ex-
panding, contracting or revising its beliefs (we have now both knowledge (K;) and
belief (B;). Those actions are assumed to have the following general properties:

o |= (doi(a)) T realizability
e |= (do;(a))x — [doi(a)]x determinism
o = (do;(a; a))x < (doi(a))x idempotence

Realizability of an action implies that agents have the opportunity to perform the
action regardless of circumstances; determinism of an action means that performing
the action results in a unique state of affairs, and idempotence of an action implies that
performing the action an arbitrary number of times has the same effect as performing
the action just once.

Then, specific definitions for the three actions are given, and related to the AGM
framework of belief revision ([1]). As an illustration, we list some properties, written
in one object language, of the action of revising one’s beliefs (here, ¢ is an objective
formula):

e [do;(revise ¢)|B;p
e [do;(revise ¢)|B;¥ — [do;(expand ¢)|B;9
e -B,—¢ — ([do;(expand ¢)|B;¥ < [do;(revise ¢)|B;9)
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e K,—¢ < [do;(revise ¢)|B; L
e K,(p < ¢) — ([do;(revise ¢)|B;¥ < [do;(revise ¢)|B;1)

In [50], the KARO-authors show how motivational attitudes can be incorporated in
their framework. The most primitive notion here is that agent i wishes ¢ (W;p),
from which it has to select some (if so, C;¢ becomes true). In order to define what a
goal is, a higher order notion of implementability is first defined:

O < Ik € INTaq,. .., a; € AtPracPoss;(as;. . .; ap, ¢))

Now the notion of a goal in KARO is as follows:

Goal;p 2 WipA-pA<;0NACip

It is easily seen that this definition of a goal does not suffer from effects as being
closed under consequence. In [50], these motivational attitudes are also ‘dynamized’,
in the sense that actions, like committing and decommitting are added, with which
an agent can change its motivational attitudes. Semantically, this is supported by
letting the agents maintain an “agenda”. Space does not permit us to investigate this
issue further.

2.4  Game Logics

The final class of work we review involves a formulation of rational agents in logic by
making use of the techniques of game theory [5, 53]. This class of work is arguably less
well established than the alternative tradition as exemplified by our previous reviews,
and for this reason we will only give some pointers into the literature. It is hard to
precisely identify the origins of this class of work, but many researchers have noted
the link between Kripke structures and the extensive form of games; a good example
is Parikh’s seminal work on the dynamic logic of games [54]; another example is the
branching time logic of protocols developed by Ladner et al [44]. More recently, there
has been renewed interest in this area. Bonnano has investigated the relationship
between various branching time logic and game models [6], while van Benthem has
investigated the link between Kripke strcutures, modal logic, and extensive form
games (for example by using bisimulation notions to define a notion of equivalence
over games) [4], Ditmarsch’s work on the use of epistemic dynamic logic to analyse
board games [19] and work on modal characterisation of gamne logic concepts such
as Nash equilibrium [30, 2].

As an example of the kind of work being done in this area, we will focus on the
coalition logic of Pauly [55, 57, 56]. Put crudely, coalition logic is a modal logic of
cooperative ability. Coalition logic thus extends propositional logic with a collection
of unary modal connectives of the form [C], where C is an expression denoting a set
of agents. A formula [C]y is intended to mean that the coalition C' can cooperate to
ensure that ¢ is true. The semantics of coalition modalities are given in terms of an
effectivity function, which defines for every coalition C the sets of states for which C'
is effective. This leads to the following notion of ability:

e s = [Clp iff 3S € E(C) such that s’ = ¢ for all s’ such that s’ € S.
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The semantics of coalition modalities thus corresponds to our intuitions of coalitions
being able to “force” states of affairs. Pauly investigates various classes of coalition
logic, corresponding to a variety of constraints on effectivity functions, and gives
complete axiomatizations of a range of coalition logics. In addition, shows that the
computational complexity of the satisfiability problem for coalition logic varies from
NP-complete to PSPACE-complete (depending upon what assumptions are made with
respect to the semantics); he also shows that the model checking problem for coalition
logics can be solved in deterministic polynomial time.

One of the fascinating aspects of coalition logic is its use in social choice theory, and
in particular in the specification, development, and verification of voting procedures.
Consider the following scenario, adapted from [55].

Two individuals, A and B, are to choose between two outcomes, p and g. We
want a procedure that will allow them to choose that will satisfy the following
requirements. First, we definitely want an outcome to be possible — that is,
we want the two agents to bring about either p or ¢. We do not want them
to be able to bring about both outcomes simultaneously. Similarly, we do not
want either agent to dominate: we want them both to have equal power.

The first point to note is that we can naturally axiomatize these requirements using
coalition logic:

A, Blx z€{p,q}

ﬂ[’AvB](pA q)
-lz]lp z€{A4,B}
—-lz]lg =z € {A, B}

It should be immediately obvious how these axioms capture the requirements as stated
above. Now, given a particular voting procedure, a model checking algorithm can be
used to check whether or not this procedure implements the specification correctly.
Moreover, a constructive proof of satisfiability for these axioms might be used to
synthesise a procedure; or else announce that no implementation exists.

2.5 Discussion

Undoubtedly, formalizing the informational and motivational attitudes in a contex
with evolving time or where agents can do actions, have greatly helped to improve
our understanding of complex systems. At the same time, admittedly, there are many
weaknesses and open problems with such approaches.

To give one example of how a formalisation can help us to become more clear about
the interrelationship between the notions defined here, recall that Rao and Georgeff
assume the notion of belief-goal compatibility, saying

Goal;p — B;p

for formulas ¢ that refer to the future.
Cohen and Levesque, however, put a lot of emphasis on their notion of realizability,
stating exactly the opposite:

B,y — Goal;p
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By analyzing the framework of Cohen and Levesque more closely, it appears that they
have a much weaker property in mind, which is

Goal;p — -B;—¢

To mention just one aspect in which the approach mentioned here are still far from
completed, we reall that the three frameworks allow one to reason about many agents,
but are in essence still one-agent systems. Where notions as distributed and common
knowledge are well understood epistemic notions in multi-agent systems, their moti-
vational analogues seem to be much harder and are yet only partially understood (see
Cohen and Levesque’s [16] or Tambe’s [74] on teamwork). Moreover, there is much
research going on in the area that incoroporates epistemic actions and epistemic group
notions ([2]) where our property of perfect recall is even more subtle:

K;[do;(a)]p — [Kido; ()] K,

expressing that, if the agent knows that performing some (learning) action leads it to
know ¢, then, if the agent knows that « is performed, it indeed gets to know ¢.

3 Agent Theory and Agent Practice

Much of the interest in logical formalisations of rational agency arises because authors
are interested in building artificial agents. This then begs the question of what these
various logics might buy us in the development of such agents. Broadly speaking,
logic has played a role in three aspects of software development.

e as a specification language;
e as a programming language; and
e as a verification language.

In the sections that follow, we will discuss the possible use of logics of rational agency
in these three processes.

3.1 Specification

The software development process begins by establishing the client’s requirements.
When this process is complete, a specification is developed, which sets out the func-
tionality of the new system. Temporal and dynamic logics have found wide applica-
bility in the specification of systems. An obvious question is therefore whether logics
of rational agency might be used as specification languages.

A specification expressed such a logic would be a formula ¢. The idea is that such a
specification would express the desirable behavior of a system. To see how this might
work, consider the following formula of BDI logic (in fact from [77]), intended to form
part of a specification of a process control system.

(Bel i Open(valve32)) = (Intend i (Bel j Open(valve32)))

This formula says that if ¢ believes valve 32 is open, then i should intend that j believes
valve 32 is open. A rational agent 7 with such an intention can select a speech act
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to perform in order to inform j of this state of affairs. It should be intuitively clear
how a system specification might be constructed using such formulae, to define the
intended behavior of a system.

One of the main desirable features of a software specification language is that it
should not dictate how a specification should be satisfied by an implementation. It
should be clear that the specification above has exactly these properties. It does not
dictate how agent 7 should go about making j aware that valve 32 is open. We simply
expect i to behave as a rational agent given such an intention.

There are a number of problems with the use of such logics for specification. The
most worrying of these is with respect to their semantics. The semantics for the modal
connectives (for beliefs, desires, and intentions) are given in the normal modal logic
tradition of possible worlds [11]. So, for example, an agent’s beliefs in some state
are characterized by a set of different states, each of which represents one possibility
for how the world could actually be, given the information available to the agent.
In much the same way, an agent’s desires in some state are characterized by a set of
states that are consistent with the agent’s desires. Intentions are represented similarly.
There are several advantages to the possible worlds model: it is well studied and well
understood, and the associated mathematics of correspondence theory is extremely
elegant. These attractive features make possible worlds the semantics of choice for
almost every researcher in formal agent theory. However, there are also a number
of serious drawbacks to possible worlds semantics. First, possible worlds semantics
imply that agents are logically perfect reasoners, (in that their deductive capabilities
are sound and complete), and they have infinite resources available for reasoning. No
real agent, artificial or otherwise, has these properties.

Second, possible worlds semantics are generally ungrounded. That is, there is usu-
ally no precise relationship between the abstract accessibility relations that are used
to characterize an agent’s state, and any concrete computational model. As we shall
see in later sections, this makes it difficult to go from a formal specification of a system
in terms of beliefs, desires, and so on, to a concrete computational system. Similarly,
given a concrete computational system, there is generally no way to determine what
the beliefs, desires, and intentions of that system are. If temporal modal logics of
rational agency are to be taken seriously as specification languages, then this is a
significant problem.

3.2 Implementation

Once given a specification, we must implement a system that is correct with respect to
this specification. The next issue we consider is this move from abstract specification
to concrete computational system. There are at least two possibilities for achieving
this transformation that we consider here:

1. somehow directly execute or animate the abstract specification; or

2. somehow translate or compile the specification into a concrete computational form
using an automatic translation technique.

In the sub-sections that follow, we shall investigate each of these possibilities in turn.
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Directly Executing Agent Specifications

Suppose we are given a system specification, ¢, which is expressed in some logical
language L. One way of obtaining a concrete system from ¢ is to treat it as an
executable specification, and interpret the specification directly in order to generate
the agent’s behaviour. Interpreting an agent specification can be viewed as a kind of
constructive proof of satisfiability, whereby we show that the specification ¢ is satis-
fiable by building a model (in the logical sense) for it. If models for the specification
language L can be given a computational interpretation, then model building can
be viewed as executing the specification. To make this discussion concrete, consider
the Concurrent METATEM programming language [22]. In this language, agents are
programmed by giving them a temporal logic specification of the behaviour it is in-
tended they should exhibit; this specification is directly executed to generate each
agent’s behaviour. Models for the temporal logic in which Concurrent METATEM
agents are specified are linear discrete sequences of states: executing a Concurrent
METATEM agent specification is thus a process of constructing such a sequence of
states. Since such state sequences can be viewed as the histories traced out by pro-
grams as they execute, the temporal logic upon which Concurrent METATEM is based
has a computational interpretation; the actual execution algorithm is described in [3].

Note that executing Concurrent METATEM agent specifications is possible primar-
ily because the models upon which the Concurrent METATEM temporal logic is based
are comparatively simple, with an obvious and intuitive computational interpretation.
However, agent specification languages in general (e.g., the BDI formalisms of Rao and
Georgeff [62]) are based on considerably more complex logics. In particular, they are
usually based on a semantic framework known as possible worlds [11]. The techni-
cal details are somewhat involved for the purposes of this article: the main point is
that, in genmeral, possible worlds semantics do not have a computational interpreta-
tion in the way that Concurrent METATEM semantics do. Hence it is not clear what
“executing” a logic based on such semantics might mean.

In response to this, a number of researchers have attempted to develop executable
agent specification languages with a simplified semantic basis, that has a computa-
tional interpretation. An example is Rao’s AgentSpeak(L) language, which although
essentially a BDI system, has a simple computational semantics [60]. The 3APL
project ([32]) is also an attempt to have a agent programmng language with a well-
defined semantics, based on transition systems. One advantage of having a thorough
semantics is that it enables one to compare different agent programming languages,
such as AgentSpeak(L) with 3APL ([31]) or AGENT-0 and 3APL ([33]). One compli-
cation in bridging the gap between the agent programming paradigm and the formal
systems of Section 2, is that the former usually take goals to be procedural (a plan),
whereas goals in the latter are declarative (a desired state). A programming language
that tries to bridge the gap in this respect is the language GOAL ([43]).

Compiling Agent Specifications

An alternative to direct execution is compilation. In this scheme, we take our abstract
specification, and transform it into a concrete computational model via some auto-
matic synthesis process. The main perceived advantages of compilation over direct
execution are in run-time efficiency. Direct execution of an agent specification, as in



3. AGENT THEORY AND AGENT PRACTICE 151

Concurrent METATEM, above, typically involves manipulating a symbolic represen-
tation of the specification at run time. This manipulation generally corresponds to
reasoning of some form, which is computationally costly. Compilation approaches aim
to reduce abstract symbolic specifications to a much simpler computational model,
which requires no symbolic representation. The ‘reasoning’ work is thus done off-line,
at compile-time; execution of the compiled system can then be done with little or no
run-time symbolic reasoning.

Compilation approaches usually depend upon the close relationship between mod-
els for temporal/modal logic (which are typically labeled graphs of some kind), and
automata-like finite state machines. For example, Pnueli and Rosner [58] synthe-
sise reactive systems from branching temporal logic specifications. Similar techniques
have also been used to develop concurrent system skeletons from temporal logic spec-
ifications. Perhaps the best-known example of this approach to agent development
is the situated automata paradigm of Rosenschein and Kaelbling [70]. They use an
epistemic logic (i.e., a logic of knowledge [20]) to specify the perception component of
intelligent agent systems. They then used an technique based on constructive proof
to directly synthesise automata from these specifications [69].

The general approach of automatic synthesis, although theoretically appealing, is
limited in a number of important respects. First, as the agent specification language
becomes more expressive, then even offline reasoning becomes too expensive to carry
out. Second, the systems generated in this way are not capable of learning, (i.e.,
they are not capable of adapting their “program” at run-time). Finally, as with
direct execution approaches, agent specification frameworks tend to have no concrete
computational interpretation, making such a synthesis impossible.

3.8  Verification

Once we have developed a concrete system, we need to show that this system is cor-
rect with respect to our original specification. This process is known as verification,
and it is particularly important if we have introduced any informality into the de-
velopment process. We can divide approaches to the verification of systems into two
broad classes: (1) aziomatic; and (2) semantic (model checking). In the subsections
that follow, we shall look at the way in which these two approaches have evidenced
themselves in agent-based systems.

Axiomatic Approaches

Axiomatic approaches to program verification were the first to enter the mainstream of
computer science, with the work of Hoare in the late 1960s [34]. Axiomatic verification
requires that we can take our concrete program, and from this program systematically
derive a logical theory that represents the behaviour of the program. Call this the
program theory. If the program theory is expressed in the same logical language as
the original specification, then verification reduces to a proof problem: show that the
specification is a theorem of (equivalently, is a logical consequence of) the program
theory. The development of a program theory is made feasible by axiomatizing the
programming language in which the system is implemented. For example, Hoare
logic gives us more or less an axiom for every statement type in a simple PASCAL-like
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language. Once given the axiomatization, the program theory can be derived from
the program text in a systematic way.

Perhaps the most relevant work from mainstream computer science is the specifi-
cation and verification of reactive systems using temporal logic, in the way pioneered
by Pnueli, Manna, and colleagues [49]. The idea is that the computations of reactive
systems are infinite sequences, which correspond to models for linear temporal logic.
Temporal logic can be used both to develop a system specification, and to axiomatize
a programming language. This axiomatization can then be used to systematically
derive the theory of a program from the program text. Both the specification and
the program theory will then be encoded in temporal logic, and verification hence
becomes a proof problem in temporal logic.

Comparatively little work has been carried out within the agent-based systems
community on axiomatizing multi-agent environments. We shall review just one ap-
proach. In [76], an axiomatic approach to the verification of multi-agent systems was
proposed. Essentially, the idea was to use a temporal belief logic to axiomatize the
properties of two multi-agent programming languages. Given such an axiomatization,
a program theory representing the properties of the system could be systematically
derived in the way indicated above. A temporal belief logic was used for two reasons.
First, a temporal component was required because, as we observed above, we need
to capture the ongoing behaviour of a multi-agent system. A belief component was
used because the agents we wish to verify are each symbolic Al systems in their own
right. That is, each agent is a symbolic reasoning system, which includes a repre-
sentation of its environment and desired behaviour. A belief component in the logic
allows us to capture the symbolic representations present within each agent. The
two multi-agent programming languages that were axiomatized in the temporal belief
logic were Shoham’s AGENTO [71], and Fisher’s Concurrent METATEM (see above).
Note that this approach relies on the operation of agents being sufficiently simple
that their properties can be axiomatized in the logic. It works for Shoham’s AGENTO
and Fisher’s Concurrent METATEM largely because these languages have a simple
semantics, closely related to rule-based systems, which in turn have a simple logical
semantics. For more complex agents, an axiomatization is not so straightforward.
Also, capturing the semantics of concurrent execution of agents is not easy (it is, of
course, an area of ongoing research in computer science generally).

Semantic Approaches: Model Checking

Ultimately, axiomatic verification reduces to a proof problem. Axiomatic approaches
to verification are thus inherently limited by the difficulty of this proof problem.
Proofs are hard enough, even in classical logic; the addition of temporal and modal
connectives to a logic makes the problem considerably harder. For this reason, more
efficient approaches to verification have been sought. One particularly successful
approach is that of model checking [12]. As the name suggests, whereas axiomatic
approaches generally rely on syntactic proof, model checking approaches are based on
the semantics of the specification language.

The model checking problem, in abstract, is quite simple: given a formula ¢ of lan-
guage L, and a model M for L, determine whether or not ¢ is valid in M, i.e., whether
or not M = ¢. Model checking-based verification has been studied in connection
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with temporal logic. The technique once again relies upon the close relationship be-
tween models for temporal logic and finite-state machines. Suppose that ¢ is the
specification for some system, and 7 is a program that claims to implement ¢. Then,
to determine whether or not 7 truly implements ¢, we take 7, and from it generate
a model M, that corresponds to 7, in the sense that M, encodes all the possible
computations of 7; determine whether or not M, |= ¢, i.e., whether the specification
formula ¢ is valid in M, ; the program 7 satisfies the specification ¢ just in case the
answer is ‘yes’. The main advantage of model checking over axiomatic verification
is in complexity: model checking using the branching time temporal logic CTL ([12])
can be done in polynomial time, whereas the proof problem for most modal logics is
quite complex.

In [67], Rao and Georgeff present an algorithm for model checking agent systems.
More precisely, they give an algorithm for taking a logical model for their (proposi-
tional) BDI agent specification language, and a formula of the language, and deter-
mining whether the formula is valid in the model. The technique is closely based on
model checking algorithms for normal modal logics [27]. They show that despite the
inclusion of three extra modalities, (for beliefs, desires, and intentions), into the CTL
branching time framework, the algorithm is still quite efficient, running in polynomial
time. So the second step of the two-stage model checking process described above can
still be done efficiently. However, it is not clear how the first step might be realised
for BDI logics. Where does the logical model characterizing an agent actually comes
from — can it be derived from an arbitrary program 7, as in mainstream computer
science? To do this, we would need to take a program implemented in, say, PASCAL,
and from it derive the belief, desire, and intention accessibility relations that are used
to give a semantics to the BDI component of the logic. Because, as we noted earlier,
there is no clear relationship between the BDI logic and the concrete computational
models used to implement agents, it is not clear how such a model could be derived.

4 Conclusions

In this paper, we have motivated and introduced a number of logics of rational agencys;
moreover, we have investigated the role(s) that such logics might play in the devel-
opment of artificial agents. We hope to have demonstrated that logics for rational
agents are a fascinating area of study, at the confluence of many different research
areas, including logic, artificial intelligence, economics, game theory, and the philoso-
phy of mind. We also hope to have illustrated some of the popular approaches to the
theory of rational agency.

There are far too many research challenges open to identify in this article. In-
stead, we simply note that the search for a logic of rational agency poses a range
of deep technical, philosophical, and computational research questions for the logic
community. We believe that all the disparate research communities with an interest
in rational agency can benefit from this search.
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