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Abstract
Although normative systems, or social laws, have proved to be a highly influential approach to coordination in
multi-agent systems, the issue of compliance to such normative systems remains problematic. In all real systems, it
is possible that some members of an agent population will not comply with the rules of a normative system, even if
it is in their interests to do so. It is therefore important to consider the extent to which a normative system is robust,
i.e., the extent to which it remains effective even if some agents do not comply with it. We formalise and investigate
three different notions of robustness and related decision problems. We begin by considering sets of agents whose
compliance is necessary and/or sufficient to guarantee the effectiveness of a normative system; we then consider
quantitative approaches to robustness, where we try to identify the proportion of an agent population that must
comply in order to ensure success; and finally, we consider a more general approach, where we characterise the
compliance conditions required for success as a logical formula. We furthermore introduce a logic for specifying
properties of norm compliance in general and norm robustness in particular.
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1 Introduction
Normative systems, or social laws, have been widely promoted as an approach to coordinat-
ing multi-agent systems [2, 3, 15, 19, 26, 27]. The basic idea is that a normative system is a
set of constraints on the behaviour of agents in the system; after imposing these constraints,
it is intended that some desirable overall property will hold. One of the most important
issues associated with such normative systems – and one of the most ignored – is that of
compliance. Put simply, what happens if some system participants do not comply with the
regulations of the normative system? Non-compliance may be accidental (e.g., a message
fails and so some participants are not informed about the regulations). Alternatively, it may
be deliberate but rational (e.g., a participant chooses to ignore the norms because it does not
see them as being in its own best interests), or deliberately irrational (e.g., a computer virus).
Whatever the cause, it seems inevitable that, in real, large-scale systems, non-compliance
will occur, and it is therefore important to consider the consequences of non-compliance.
Existing research has addressed the issue of non-compliance in at least two ways.
First, one can design the normative system taking the goals and aspirations of system
participants into account, so that compliance is the rational choice for participants [3].
Using the terminology of mechanism design [22, p.179], we try to make compliance incentive
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compatible. Where this approach is available, it seems highly attractive. However, given some
desired objective for a normative system, it is not always possible to construct an incentive
compatible normative system that achieves some outcome, and even where it is possible, it
is still likely that large, open systems will fall prey to irrational behaviour.
Second, one can combine the normative system with some penalty mechanism, to punish
non-compliance [10]. The advantage of this approach is that it can be applied to most
scenarios, and that it is familiar (this is, after all, how normative systems often work in the
real world). There are many disadvantages, however. For example, it may be hard to detect
when non-compliance has occurred, and in large, Internet-like systems, it may be hard to
impose penalties (e.g., across national borders).
For these reasons, in this paper we introduce the notion of robustness for normative

systems. Intuitively, a normative system is robust to the extent to which it remains effective
in the event of non-compliance by some agents.
The starting point is models of multi-agent systems in the form of state-transition sys-

tems, a very common model used in computer science, artificial intelligence and multi-agent
systems. A normative system – a set of constraints on the behaviour of agents – is then
modelled by labelling a subset of the transitions as ‘‘illegal’’ or ‘‘bad’’ or ‘‘forbidden’’ or
‘‘red’’. This semantic device is not novel here – it is ‘‘frequently encountered in the deontic
logic literature’’ [25, p.223]. Meyer uses ‘‘illegal’’ labels on states, while Sergot and Craven
[24, 25] use ‘‘permitted’’ labels on both transitions and states. As said, in this paper we label
‘‘illegal’’ transitions, but we point out that the concepts we study would make sense also in
the alternative type of models where states where labelled as ‘‘illegal’’ instead of transitions.
However, we find it more natural to label transitions, since we are interested in constraints
on behaviour. Similar semantic models are used by Shoham and Tennenholtz in their seminal
work on social laws for coordinating multi-agent systems [26, 27], and are also further stud-
ied in [2, 3, 15, 19]. Note also that this model of normative systems have a high abstraction
level; they only describe ‘‘illegal’’ transitions and abstract away other aspects of normative
systems such as sanctions and penalties [17], mechanisms for run-time norm change [11],
the role of institutions [28], mechanisms for monitoring norm normative systems, and so on.
This is not because we assume that these aspects are not present in a normative system, but
we abstract away from them because the notion of ‘‘illegal’’ transitions is all that is needed
for the notion of robustness studied in this paper. By not making assumptions about the
details of other aspects, the results we obtain are more general. Furthermore, we point out
that we study normative systems from a semantic perspective here, on the level of models,
as contrasted with much of the literature on normative systems which study the specification
of normative systems [12], most often using some kind of deontic logic [9, 21, 29] (of course,
a logical specification would define a class of models).
Following an introduction to the technical framework of normative systems in Section 2,

we introduce and investigate three ways of characterising robustness. First, in Section 3,
we consider trying to identify coalitions whose compliance is necessary and/or sufficient to
ensure that the normative system is effective. We characterise the complexity of checking
these notions of robustness, and consider cases where verifying these notions of robustness
is easier. In addition to verification we consider the complexity of robust feasibility of a
normative system: given a reliable coalition, does there exist a normative system which is
effective whenever that coalition complies? We then, in Section 4, consider a more quantita-
tive notion of robustness, called k-robustness, where we try to identify the number of agents
that could deviate and still leave the normative system effective. With these two notions of
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robustness in mind, in Section 5 we introduce a formal logic called Norm Compliance CTL,
which can be used to specify properties of norm compliance in general and norm robustness
in particular. A formal logic opens the door for logical tools such as model checkers to be
used to, e.g., verify robustness properties of multi-agent systems. Finally, in Section 6, we
consider a third, more general, approach to characterising robustness. The logic introduced
in Section 5 is used to define a predicate over sets of agents, which characterises exactly
those sets of agents whose compliance will ensure the success of the normative system. We
conclude with a discussion, including some pointers to related and future work. An earlier
version of this paper appeared at the AAMAS 2008 conference [5].

2 Formal Preliminaries
In this section, we present the formal framework for normative systems that we use through-
out the remainder of the paper. This framework is essentially that of [2, 3, 19], which is in
turn descended from [26]. Although our presentation is self-contained, it is terse, and readers
are referred to [2, 3, 19] for further details and discussion.

Kripke Structures: We use Kripke structures as our basic semantic model for multi-agent
systems [14]. A Kripke structure is essentially a directed graph, with the vertex set S cor-
responding to possible states of the system being modelled, and the relation R⊆S×S cap-
turing the possible transitions of the system; s0∈S denotes the initial state of the system.
Intuitively, transitions are caused by agents in the system performing actions, although we
do not include such actions in our semantic model (see, e.g., [19, 26] for models which include
actions as first class citizens). An arc (s,s′)∈R corresponds to the execution of an atomic
action by one of the agents in the system. Note that we are therefore here not modelling
synchronous action. This assumption is not essential, but it simplifies the presentation. How-
ever, we find it convenient to include within our model the agents that cause transitions. We
therefore assume a set A of agents, and we label each transition in R with the agent that
causes the transition via a function α :R→A. Finally, we use a vocabulary "={p,q,...} of
Boolean variables to express properties of individual states S : we use a function V :S→2"
to label each state with the Boolean variables that are true (or satisfied) in that state.
Formally, an agent-labelled Kripke structure (over ") is a 6-tuple:

K=〈S ,s0,R,A,α,V 〉,

where: S is a finite, non-empty set of states; s0∈S is the initial state; R⊆S×S is a total
binary relation on S , which we refer to as the transition relation; A={1,...,n} is a set of
agents; α :R→A labels each transition in R with an agent; and V :S→2" labels each state
with the set of propositional variables true in that state.
We hereafter refer to an agent-labelled Kripke structure simply as a Kripke structure.

A path over a transition relation R is an infinite sequence of states π=s0,s1,... such that
∀u∈N: (su,su+1)∈R. If u∈N, then we denote by π[u] the component indexed by u in π (thus
π[0] denotes the first element, π[1] the second, and so on). A path π such that π[0]=s is
an s-path. Let $R(s) denote the set of s-paths over R; since it will usually be clear from
context, we often omit reference to R, and simply write $(s). We will sometimes refer to
and think of an s-path as a possible computation, or system evolution, from s.
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CTL: We use Computation Tree Logic (CTL), a well-known and widely used branching time
temporal logic, to express the objectives of normative systems [14]. Given a set "={p,q,...}
of atomic propositions, the syntax of CTL is defined by the following grammar, where p∈":

ϕ ::=)|p |¬ϕ |ϕ∨ϕ |E !ϕ |E(ϕUϕ) |A !ϕ |A(ϕUϕ)

The semantics of CTL are given with respect to the satisfaction relation ‘‘|=’’, which holds
between pointed structures K ,s, (where K is a Kripke structure and s is a state in K ), and
formulae of the language. The satisfaction relation is defined as follows:

K ,s |=);
K ,s |=p iff p∈V (s) (where p∈");
K ,s |=¬ϕ iff not K ,s |=ϕ;
K ,s |=ϕ∨ψ iff K ,s |=ϕ or K ,s |=ψ;
K ,s |=A !ϕ iff ∀π∈$(s) :K ,π[1] |=ϕ;
K ,s |=E !ϕ iff ∃π∈$(s) :K ,π[1] |=ϕ;
K ,s |=A(ϕUψ) iff ∀π∈$(s),∃u∈N, s.t. K ,π[u] |=ψ and ∀v,(0≤v<u) :K ,π[v] |=ϕ

K ,s |=E(ϕUψ) iff ∃π∈$(s),∃u∈N, s.t. K ,π[u] |=ψ and ∀v,(0≤v<u) :K ,π[v] |=ϕ

The remaining classical logic connectives (‘‘∧’’, ‘‘→’’, ‘‘↔’’) are defined as abbreviations in
terms of ¬,∨ in the conventional way. The remaining CTL temporal operators are defined:

A♦ϕ ≡ A()Uϕ) E♦ϕ ≡ E()Uϕ)
A ϕ ≡ ¬E♦¬ϕ E ϕ ≡ ¬A♦¬ϕ

We say ϕ is satisfiable if K ,s |=ϕ for some Kripke structure K and state s in K ; ϕ is valid
if K ,s |=ϕ for all Kripke structures K and states s in K . The problem of checking whether
K ,s |=ϕ for given K ,s,ϕ (model checking) can be done in deterministic polynomial time,
while checking whether a given ϕ is satisfiable or whether ϕ is valid is EXPTIME-complete [14].
We write K |=ϕ if K ,s0 |=ϕ, and |=ϕ if K |=ϕ for all K .
Later, we will make use of two fragments of CTL: the universal language Lu (with typical
element µ), and the existential fragment Le (typical element ε):

µ ::=)|⊥|p |¬p |µ∨µ |µ∧µ |A !µ |A µ |A(µUµ)
ε ::=)|⊥|p |¬p |ε∨ε |ε∧ε |E !ε |E ε |E(εU ε)

The key point about these fragments is as follows. Let us say, for two Kripke structures
K1=〈S ,s0,R1,A,α,V 〉 and K2=〈S ,s0,R2,A,α,V 〉 that K1 is a subsystem of K2 and K2 is a
supersystem of K1, (denoted K12K2), iff R1⊆R2. Then we have (cf. [19]).
Theorem 1 ([19]) Suppose K12K2, and s∈S. Then:

∀ε∈Le :K1,s |=ε ⇒ K2,s |=ε; and
∀µ∈Lu :K2,s |=µ ⇒ K1,s |=µ.

Normative Systems: For our purposes, a normative system (or ‘‘norm’’) is simply a set of
constraints on the behaviour of agents in a system [2]. More precisely, a normative system
defines, for every possible system transition, whether or not that transition is considered
to be legal or not. Different normative systems may differ on whether or not a transition
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is legal. Formally, a normative system η (w.r.t. a Kripke structure K=〈S ,s0,R,A,α,V 〉) is
simply a subset of R, such that R\η is a total relation. The requirement that R\η is total
is a reasonableness constraint: it prevents normative systems which lead to states with no
successor. Let N (R)={η :(η⊆R) & (R\η is total)} be the set of normative systems over R.
The intended interpretation of a normative system η is that (s,s′)∈η means transition (s,s′)
is forbidden in the context of η. We denote the empty normative system by η∅, i.e., η∅=∅.
Let A(η)={α(s,s′) |(s,s′)∈η} denote the set of agents involved in η.

Implementing Normative Systems: The effect of implementing a normative system on a
Kripke structure is to eliminate from it all transitions that are forbidden according to this
normative system (see [2, 19]). If K is a Kripke structure, and η is a normative system
over K , then K †η denotes the Kripke structure obtained from K by deleting transitions
forbidden in η. Formally, if K=〈S ,s0,R,A,α,V 〉, and η∈N (R), then let K †η=K ′ be the
Kripke structure K ′ =〈S ′,s0′,R′,A′,α′,V ′〉 where:
• S=S ′, s0=s0′, A=A′, and V =V ′;
• R′ =R\η; and
• α′ is the restriction of α to R′:

α′(s,s′)=
{

α(s,s′) if (s,s′)∈R′
undefined otherwise.

The next most basic question we can ask in the context of normative systems is as follows.
We are given a Kripke structure K , representing the state transition graph of our system,
and we are given a CTL formula ϕ, representing the objective of a normative system designer
(that is, the objective characterises what a designer wishes to accomplish with a normative
system). The feasibility problem is then whether or not there exists a normative system
η such that implementing η in K will achieve ϕ, i.e., whether K †η |=ϕ. We say that η is
effective for ϕ in K if K †η |=ϕ.

Restrictions on Normative Systems: We make use of an operator on normative systems
which corresponds to groups of agents ‘‘defecting’’ from the normative system. Formally, let
K=〈S ,s0,R,A,α,V 〉 be a Kripke structure, let C ⊆A be a set of agents over K , and let η

be a normative system over K . Then η!C denotes the normative system that is the same
as η except that it only contains the arcs of η that correspond to the actions of agents in C ,
i.e., η!C ={(s,s′) :(s,s′)∈η & α(s,s′)∈C }.

3 Necessity and Sufficiency
As we noted in the introduction, the basic intuition behind robust normative systems is that
they remain effective in the presence of deviation, or non-compliance, by some members
of the agent population. As we shall see, there are several different ways of formulating
robustness. Our first approach is to try to characterise ‘‘lynchpin’’ agents – those agents
whose compliance with the normative system is somehow crucial for the successful operation
of the system. This seems appropriate when there are ‘‘key players’’ in the normative system
– for example, where there is a single point of failure. In this section, we therefore consider
coalitions whose compliance is necessary and/or sufficient to ensure that the normative
system is effective.



[17:33 19/2/2010 jzp070.tex] Paper Size: a4 paper Job: JIGPAL Page: 9 4–30

Robust normative systems and a logic of norm compliance 9

We say that C ⊆A are sufficient for η in the context of K and ϕ if the compliance of C
with η is effective, i.e., iff:

∀C ′ ⊆A :(C ⊆C ′) ⇒ [K †(η!C ′) |=ϕ]. (1)

The following example illustrates this notion of sufficiency.

Example 1 Consider four agents who are attending a conference with an on-site computer
facility. This service centre has currently one printer, two scanners and three PCs available.
Agent a has tasks that require access to a printer and PC, agent b needs a printer and scanner,
agent c is in need of a scanner and PC and agent d will need a scanner only. The set of agents
is A={a,b,c,d}. They are interested in using resources of type R1,R2,R3, of each resource type
Rj there are j instances of each: R1={printer1}, R2={scanner1,scanner2}, R3={pc1,pc2,pc3}.
At a given point in time, a resource can be owned by an agent. The actions available to the
agents are making available a resource they currently own, or taking possession of a resource
which is available. We assume that the agents never act at exactly the same time; in particular
we assume that actions are turn-based – first a can perform some action, then b, and so on.
A state s is a tuple

s=〈Oa,Ob,Oc,Od ,i〉

where, for each i∈A, Oi is the set of resources currently owned by i.
The number of agents that own a resource of type j cannot be greater than j. Let, for

each resource Rj and state s, avail(j,s) be the number of resources of type j that are not
owned by an agent. The component i∈A of s denotes whose turn it is: we write turn(s)= i.
If Rj∩Oi 6=∅, we say that i owns a resource of type j and write Rj≺Oi.
Our agents are not equal. In order to fulfill his task, agent a would every now and then like

to use resources of type R1 and R3 simultaneously. We write Useful(a)={R1,R3}. Similarly,
Useful(b)={R1,R2}, Useful(c)={R2,R3} while Useful(d) ={R2}.
Let s=〈Oa,Ob,Oc,Od ,i〉 and s′ =〈O ′

a,O ′
b,O ′

c,O ′
d ,i ′〉 be two states. Then (s,s′)∈R iff

1. If i=a then i ′ =b; if i=b then i ′ =c; if i=c then i ′ =d; and if i=d then i ′ =a;
2. for all k 6= i and all j: Rj≺Ok⇔Rj≺O ′

k ;
3. if Rj≺O ′

i and Rj 6≺Oi then avail(j,s)>0.
Furthermore, α(s,s′)= i when turn(s)= i.
Let the starting state of the system be such that it is agent a’s turn, and nobody owns any

resource. If we call this system K0, then a first norm η0 we impose on K is that no agent (i)
owns two resources of the same type at the same time, (ii) takes possession of a resource that
he does not need, (iii) takes possession of two new resources simultaneously, and (iv) fails to
take possession of some useful resource if it is available when it is his turn:

η0=






(s,s′) |

turn(s)= i, and
(∃j : |O ′

i∩Rj |≥2, or
∃j : |O ′

i∩Rj |≥1 and Rj 6∈Useful(i), or
∃x,y :x 6=y,x,y∈O ′

i and x,y 6∈Oi, or
∀j :(Rj ∈Useful(i),|Oi∩Rj |=0,
avail(j,s)>0) ⇒|O ′

i∩Rj |=0).





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Let K1=K0 †η0. Now, in order to formulate some objectives of the system, let aoj denote that
agent a owns a resource of type j and similarly for the other agents. Let

happy(i)=
∧

Rj∈Useful(i)
ioj

Thus happy(i) means that i is in possession of all his useful resources, simultaneously. Our
first objective is:

ϕ1=A
∧

i∈A
A♦happy(i).

The normative system that we will use for it is

η1={(s,s′) | turn(s)= i & Oi=Useful(i)& O ′
i 6=∅}

In words: if at some point an agent simultaneously owns all the resources that are useful for
him, then he will make them available if it is his turn. Which coalitions are sufficient for this
norm in the context of K1 and ϕ1? First of all, consider a coalition without agent a. If a does
not comply with norm η1, then he can grab the printer and hold on to it forever. Thus, agent b
will not be happy, because there is only one printer. The same argument holds for a coalition
without agent b. Thus, it seems that any sufficient coalition must include both agents a and
b. But {a,b} alone is not a sufficient coalition, as the following scenario illustrates: (1) a
grabs a PC; (2) b grabs the printer; (3) c grabs a scanner; (4) d grabs the other scanner.
Now, if c and d do not comply with η1, it might be that they never give up their scanners, in
which case b never will be happy. However, if a and b are joined by c in complying with η1,
the objective is obtained:

K1 †(η1 !{a,b,c}) |=ϕ1

– it is easy to see that in fact {a,b,c} is sufficient for η1 in the context of K1 and ϕ1. But {a,b,c}
and its extension {a,b,c,d} are not the only sufficient coalitions in this context: {a,b,d} is
also sufficient.

Now, associated with this notion is a decision problem: we are given K , η, ϕ, and C , and
asked whether C are sufficient for η in the context of K and ϕ. It may appear at first sight
that this is an easy decision problem: don’t we just need to check that K †(η!C ) |=ϕ? The
answer is no. For suppose the objective is an existential property ε∈Le. Then the fact that
K †(η!C ) |=ε and C ⊆C ′ does not guarantee that K †(η!C ′) |=ε. Intuitively, this is because,
if more agents than C comply, then this might eliminate transitions from K , causing the
existential property ε to be falsified.

Example 2 We continue Example 1. To demonstrate that sufficiency for a norm in the context
of a system and an objective is not monotonic in the coalition C , consider the following
existential objective:

ϕ2=E ¬happy(b)
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That is, it is possible that b is forever unhappy (we will not discuss why the designer of the
normative system might have such an objective). We have that:

K1 †(η1 !{b}) |=ϕ2.

That is, if b complies with the norm η1, the objective is true. This is because, for example,
agent a can block b’s access to the printer. However, as we saw in Example 1, K1 †(η1 !
{a,b,c}) |=¬ϕ2, so {b} is not sufficient for the objective ϕ2.

We can prove that, in general, checking sufficiency is computationally hard.

Theorem 2 Deciding C-sufficiency is co-NP-complete.

PROOF. Membership of co-NP is straightforward from the definitions of the problems. We
prove hardness by reducing TAUT, the problem of showing that a formula * of propositional
logic is a tautology, i.e., is true under all interpretations. Let x1,...,xk be the Boolean vari-
ables of *. The reduction is as follows. For each Boolean variable xi we create an agent
ai , and in addition create one further agent, d. We create 3k+3 states, and create the
transition relation R and associated agent labelling α and valuation V as illustrated in
Figure 1(a): inside states are the propositions true in that state, while arcs between states
are labelled with the agent associated with the transition. Let s0 be the initial state. We
have thus defined the Kripke structure K . For the remaining components, define C =∅,
η={(s0,s2),(s2,s3),(s3,s5),(s5,s6),...,(s3k+2,s3k+3)} (i.e., all the lower arcs in the figure), and
finally, define ϕ to be the formula obtained from * by systematically replacing each Boolean
variable xi by (E♦xi). Now, we claim that η is C -sufficient for ϕ in K iff * is a tautology.
First, notice that since C =∅, then for all C ′ ⊆A, we have C ⊆C ′, and so the problem reduces
to the following:

∀C ′ ⊆A : [K †(η!C ′) |=ϕ].

The correctness of the reduction is illustrated in Figure 1(b), where we show the Kripke
structure obtained when only agent 1 defects from the normative system; in this case, the
Kripke structure we obtain corresponds to a valuation of * which makes variable x1 true
and all others false.

However, the news is not all bad: for universal objectives, checking sufficiency is easy.

Corollary 1 Deciding C-sufficiency for objectives µ∈Lu is polynomial time decidable.
PROOF. Simply check that K †(η!C ) |=µ; since µ∈Lu , the fact that K †(η!C ′) |=µ for all
C ⊆C ′ ⊆A follows from Theorem 1.
Next, we consider the obvious counterpart notion to sufficiency; that of necessity. We say

that C are necessary for η in the context of K and ϕ iff C must comply with η in order for
it to be effective, i.e., iff:

∀C ′ ⊆A : [K †(η!C ′) |=ϕ] ⇒ (C ⊆C ′). (2)

The following example illustrates necessity.
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(a)

(b)

FIG. 1. Illustrating the reduction used in Theorem 2: (a) the Kripke structure produced in
the reduction; (b) how the construction corresponds to a valuation: if only agent 1 defects,
then the Kripke structure we obtain corresponds to a valuation in which x1 is true (a state in
which x1 is true is reachable in the resulting structure – E♦x1 in the objective we construct)
and all other variables are false (i.e., are true in unreachable states).

Example 3 We continue Example 1. We observed that {a,b,c} and {a,b,d} are sufficient for
η1 in the context of K1 and ϕ1. Indeed, {a,b} is necessary for η1 in the context of K1 and ϕ1.
Both a and b must comply with the norm for the objective to be satisfied.

Theorem 3 Deciding C-necessity is co-NP-complete.

PROOF. Membership of co-NP is obvious from the statement of the problem, so consider
hardness. Note that proof of Theorem 2 does not go through for this case: since we set C =∅
in the reduction, C are trivially necessary. However, we can use the same basic construction
as Theorem 2 to prove NP-hardness of the complement problem to C -necessity, i.e., the
problem of showing that

∃C ′ ⊆A : [K †(η!C ′) |=ϕ]∧¬(C ⊆C ′).

We reduce SAT. Given a SAT instance *, we follow the construction of Theorem 2, except
that set the input coalition C to be C ={d}. It is now easy to see, using a similar argument
to Theorem 2, that * is satisfiable iff ∃C ′ ⊆A : [K †(η!C ′) |=ϕ]∧¬(C ⊆C ′).

The following sums up some general properties of the concepts we have discussed so
far. Here, ‘‘sufficient’’ (‘‘necessary’’) means ‘‘sufficient (necessary) for η in the context
of K and ϕ’’.
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Proposition 1

1. Every coalition is sufficient if ϕ is a tautology, and no coalition is sufficient if ϕ is a
contradiction.

2. Every coalition is necessary if ϕ is a contradiction, but only the empty coalition is nec-
essary if ϕ is a tautology.

3. If a coalition is sufficient, then so is any superset of it.
4. If a coalition is necessary, then so is any subset of it.
5. There might be no sufficient coalitions.
6. There is always a necessary coalition: the empty coalition.
7. There might be two disjoint sufficient coalitions.
8. There might be no non-empty necessary coalitions.
9. If C is necessary and C ′ sufficient, then C ⊆C ′.
10. If there are two disjoint sufficient coalitions, then there is no non-empty necessary coali-
tion.

PROOF.

1. If ϕ is a tautology, then each coalition’s compliance will ensure it. And if ϕ is a contra-
diction, no matter who complies with η, ϕ will not be achieved.

2. If ϕ is a contradiction, the condition of C being necessary becomes ∀C ′ ⊆A), which is
true. If ϕ is a tautology, the condition of necessity becomes ∀C ′ ⊆A :C ⊆C ′, which is
only true for C =∅.

3. Let C1⊆C2. Now use (1) and observe that if all extensions C ′ ⊇C1 satisfy some property,
then also all extensions C ′ ⊇C2 satisfy it.

4. Let C1⊆C2. Now use (2) and observe that if some property of C ′ implies that C2⊆C ′,
then that property also implies that C1⊆C ′.

5. Take, e.g., a system consisting of a single state with a self-loop and where p is true, and
let ϕ=E !¬p. η must be empty, and ϕ can never be true.

6. Immediate.
7. Take again the system from point 5, and let ϕ=E !p. Both {a} and {b} are sufficient,
for any a 6=b.

8. Take the system and formula in the previous point.
9. Let C be necessary and C ′ sufficient. From sufficiency of C ′ we have that K †(η!C ′) |=ϕ,
and from necessity of C it follows that C ⊆C ′.

10. Immediate from the above point.

Note that point 9 above implies that every necessary coalition is contained in the inter-
section of all sufficient coalitions. Does the other direction hold, i.e., is the intersection of
all sufficient coalitions necessary? In the general case the answer is ‘‘no’’, as the following
example illustrates.

Example 4 Take the system in Figure 2, and let ϕ=E !A !p. It is easy to see that:
• {a} is sufficient;
• K †(η!{b}) |=ϕ;
• None of {b}, {c} or {b,c} are sufficient.
From the first and last point it follows that {a} is the intersection of all sufficient coalitions;
from the second point it follows that {a} is not necessary.
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FIG. 2. A normative system. The dashed lines indicate ‘‘illegal’’ transitions. The uppermost
state is the single initial state.

However, for universal objectives the greatest necessary coalition is exactly the intersection
of the sufficient coalitions:

Lemma 1 When the objective is a formula in Lu, the intersection of all sufficient coalitions
is a necessary coalition.

PROOF. Let ϕ∈Lu and let C =⋂
C ′ sufficientC

′. Assume that K †(η!C2) |=ϕ; we must show
that C ⊆C2. From Theorem 1 we have K †(η!C3) |=ϕ for any C3 such that C2⊆C3. It follows
that C2 is sufficient. But then C ⊆C2.
Thus, for the case of universal objectives the necessary coalitions are exactly the subsets of
the intersection of the sufficient coalitions. Indeed, in Example 1 we saw that the intersection
of the sufficient coalitions, consisting of agents a and b, is a necessary coalition.

3.1 Feasibility of Robust Normative Systems
So far, our technical results have focused on verifying robustness properties of normative
systems. However, an equally important question is that of feasibility. As we noted earlier,
feasibility basically asks whether there exists some normative system such that, if this law
was imposed (and, implicitly, everybody complies), then the desired effect of the normative
system would be achieved. In the context of robustness, we ask whether a normative system
is robustly feasible. In more detail, we can think about robust feasibility as follows. Suppose
we know that some subset C of the overall agent population is ‘‘reliable’’, in that we are
confident that C can be relied upon to comply with a normative system. Then instead of
asking whether there exists an arbitrary normative system η that is effective for our desired
objective ϕ, we can ask whether there exists a normative system η such that C is sufficient for
η in the context of ϕ. We call this property C-sufficient feasibility1. Formally, this question
is as follows:

∃η∈N (R) :(K †η |=ϕ)∧
∀C ′ ⊆A :(C ⊆C ′)⇒[K †(η!C ′) |=ϕ].

1It may at first sight seem strange that we consider this problem: why not simply look for a normative system
η such that A(η)=C? Our rationale is that the worst case corresponds to only C complying with the normative
system; it may well be that we get better results if more agents comply.
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It turns out that, under standard complexity theoretic assumptions, checking this property
is harder than the (co-NP-complete) verification problem.

Theorem 4 Deciding C-sufficient feasibility is +
p
2-complete.

PROOF. We deal with the complement of the problem, which we show to be $
p
2-complete.

The complement problem is that of deciding:

∀η∈N (R) :(K †η |=ϕ)⇒
∃C ′ ⊆A :(C ⊆C ′)∧(K †(η!C ′) 6|=ϕ).

Membership is immediate from the definition of the problem. For hardness, we reduce the
problem of determining whether QBF2,∀ formulae are true [20, p.96]. An instance of QBF2,∀ is
given by a quantified Boolean formula with the following structure:

∀x̄1 ∃x̄2χ(x̄1,x̄2) (3)

in which x̄1 and x̄2 are disjoint sets of Boolean variables, and χ(x̄1,x̄2) is a propositional logic
formula (the matrix) over these variables. Such a formula is true if for all assignments to
Boolean variables x̄1, there exists an assignment to x̄2, such that χ(x̄1,x̄2) is true under the
overall assignment. An example of a QBF2,∀ formula is:

∀x1∃x2[(x1∨x2)∧(x1∨¬x2)] (4)

The reduction is related to that of Theorem 2, although slightly more involved. Let x̄=
{x1,...,xg} be the universally quantified variables in the input formula, let ȳ={y1,...,yh} be
the existentially quantified variables, and let χ(x̄,ȳ) be the matrix. We create a Kripke
structure with 3(3(g+h)+3) states and g+h agents. We create variables corresponding to
x̄ and ȳ, and in addition to these, we create a variable end. The overall structure is defined
to be as shown in Figure 3; note that end is true only in the final state of the structure. We
set C ={1,...,g}, and create the objective ϕ to be

ϕ=̂(¬E♦end)∨(¬χ∗(x̄,ȳ))

where χ∗(x̄,ȳ) is the CTL formula obtained from the propositional formula χ(x̄,ȳ) by system-
atically substituting (E♦v) for each variable v∈ x̄∪ ȳ. Correctness follows from construction.
Since the complement problem is $

p
2-complete, C -sufficient feasibility is +

p
2-complete.

4 k-Robustness
The notions of robustness described above are based on identifying some ‘‘critical’’ coalition,
whose compliance is either necessary and/or sufficient for the correct functioning of the
overall normative system. In this section, we explore a slightly different notion, whereby
we instead quantify the extent to which a normative system is resistant to non-compliance.
We introduce the notion of k-robustness, where k ∈N: intuitively, saying that a normative
system is k-robust will mean that it remains effective as long as k arbitrary agents comply.
As with C -compliance, we can consider k-compliance from the point of view of both
sufficiency and necessity. Where k≥1, we say a normative system η is k-sufficient (w.r.t.
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FIG. 3. Illustrating the reduction used in Theorem 4.

some K , ϕ) if the compliance of any arbitrary k agents is sufficient to ensure that the
normative system is effective with respect to ϕ. Formally, this involves checking that:

∀C ⊆A :(|C |≥k) ⇒ (K †(η!C )) |=ϕ. (5)

As with checking C -sufficiency, checking k-sufficiency is hard.

Theorem 5 Deciding k-sufficiency is co-NP-complete.
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PROOF. Membership of co-NP is obvious from the problem definition; for hardness, we reduce
TAUT, constructing the Kripke structure, normative system, and objective as in the proof of
Theorem 2; and finally, we set k=0. The correctness argument is then as in Theorem 2.
We define the resilience of a normative system η (w.r.t. K , ϕ) as the largest number of
non-compliant agents the system can tolerate. Formally, the resilience is the largest number
k, k≤n, such that

∀C ⊆A :(|C |≤k) ⇒ (K †(η!A\C )) |=ϕ. (6)

where n is the number of agents. It is easy to see that the resilience of η is the largest
number k such that η is (n−k)-sufficient. Observe that the resilience is undefined iff the
objective does not hold even if all agents comply to the norm (K †η 6|=ϕ). Also, note that
if ϕ is a tautology, then the resilience of a normative system is n: all agents may ignore η

while ϕ is still true. It is immediate that computing the resilience of a normative system is
co-NP-complete with respect to Turing reductions.

Example 5 We continue Example 3. While both {a,b,c} and {a,b,d} are sufficient coalitions,
η1 is not 3-sufficient w.r.t. K1,ϕ1 because not every three-agent coalition is sufficient. It is
4-sufficient (the objective is satisfied if the grand coalition complies). Thus, the resilience is
equal to 0.
Now consider the situation where a has left the computer facility; b,c,d remains. Let
K ′
1,η

′
1,ϕ

′
1 be the corresponding variants of K1,η1 and ϕ1. Now, each of {b,c}, {b,d} and {c,d}

are sufficient. Thus, η′1 is 2-sufficient w.r.t. K ′
1,ϕ

′
1, and the resilience is 1.

We then define k-necessity in the obvious way – η is k-necessary (w.r.t. K , ϕ) iff:

∀C ⊆A :(K †(η!C )) |=ϕ ⇒ (|C |≥k). (7)

Theorem 6 Deciding k-necessity is co-NP-complete.
PROOF. Membership of co-NP is again obvious from the problem definition; for hardness, we
reduce SAT to the complement problem, proceeding as in Theorem 3; where l is the number
of Boolean variables in the SAT instance, we set k= l+1. Correctness of the reduction is then
straightforward.

We say that η is k-robust, k≥1, if it is both k-sufficient and k-necessary. In other words, η
is k-robust if it is effective exactly in the event of non-compliance of any arbitrary coalition
of up to n−k agents: η is k-robust iff

∀C ⊆A :(|C |≤n−k) ⇔ (K †(η!A\C )) |=ϕ.

where n is the number of agents. From the results above, it is immediate that checking
k-robustness is co-NP-complete.

Example 6 We continue Example 5. While {a,b} is the largest necessary coalition, η1 is 3-
necessary w.r.t. K1,ϕ1 because at least three agents must comply (in this case, either {a,b,c}
or {a,b,d}). It is not k-robust for any k, because it is 4-sufficient but not 3-sufficient, and
3-necessary but not 4-necessary.

η′1 is both 2-sufficient and 2-necessary w.r.t. K ′
1,ϕ

′
1. It is thus 2-robust. Thus, the objective

will be maintained if and only if at least 2 agents comply.
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Example 7 We continue Example 6. Consider yet another variant: the agents are again all
four a,b,c,d, but their needs have changed. Now each agent only needs a PC, i.e., Useful(a)=
Useful(b)=Useful(c)=Useful(d)={R3}. Now we have that no singleton coalition is sufficient
and every two-agent coalition is sufficient. The system is 2-sufficient, 2-necessary, 2-robust
and its resilience is 4−2=2.
The following sums up some general properties of the concepts of k-robustness. Here, ‘‘k-

sufficient’’ (‘‘k-necessary’’) means ‘‘k-sufficient (k-necessary) in the context of K and ϕ’’.

Proposition 2

1. Any system is 0-necessary.
2. If the system is k-sufficient, then C is sufficient for any C such that |C |≥k.
3. If C is necessary, then the system is |C |-necessary.
4. If the system is k-sufficient for k<n, then no non-empty coalition is necessary.
5. k-robustness is unique: if the system is k-robust and k ′-robust, then k=k ′.
PROOF.

1.-3. Immediate.
4. Let k<n and assume that the system is k-sufficient and that C 6=∅ is necessary. Let C ′

be a coalition such that |C ′|≥k. By k-sufficiency, K †(η!C ′) |=ϕ, and by necessity of
C , C ⊆C ′. Since C ′ was arbitrary, we have that C ⊆⋂

|C ′ |≥j C ′. Assume that a∈C . Let
|C1|=k. a∈C1. Now let b∈A\C1 (b exists because k<n=|A|), and let C2=C1\{a}∪
{b}. |C2|=k, but a 6∈C2 which contradicts the assumption that a∈C . Thus, C must be
empty.

5. If the system is k-robust and k ′-robust for k>k ′ and C ′ is a coalition of size k ′, then
by k ′-sufficiency (K †(η!C )) |=ϕ and by k-necessity it follows that |C |≥k which is not
the case.

5 A Logic of Compliance
In this section we introduce a logic for that allows us to express properties of normative
systems in general and robustness in particular within the object language. Formulae ϕ in
the language are interpreted in the context of a Kripke structure K and a normative system
η over K ; K ,η |=ϕ means that the combination of the structure K and the normative system
η has the property ϕ. The potential advantages of such a logical language are many-fold.
First, it will allow us to formally reason about the logical principles of robustness – such
as those mentioned in Propositions 1 and 2. Second, it would allow us specify normative
systems, ‘‘the system should have the property ϕ’’, and to make use of standard tools to,
e.g.,

• verify normative systems: does the normative system η have the property ϕ? Logically,
this is the model checking problem, taking K ,η,ϕ as input and checking whether or not
K ,η |=ϕ;
• synthesise normative systems: construct a normative system with property ϕ.

Third, it will give us a vocabulary for defining other, perhaps more sophisticated, robustness
concepts than the ones we have already discussed. In this section we introduce a logic called
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Norm Compliance CTL (NCCTL), and show how it can be used to reason about compliance
and robustness. In the next section we discuss how it can be used to specify general forms
of robustness
We first define the language and semantics of NCCTL, before we show how it can be used
to express robustness properties, investigate some logical properties of norm compliance in
general and robustness in particular, and discuss relationships to other logics.

5.1 Language and Semantics
The language and semantics of Norm Compliance CTL (NCCTL) are defined as follows. The
language extends the CTL language with an operator 〈P〉 where P is a coalition predicate. The
intuitive meaning of a formula of the form 〈P〉ϕ is that there exists a coalition C satisfying
the predicate P, and if C cooperate in complying with the normative system, ϕ will be true.
Coalition predicates were originally introduced in [4] as a way of quantifying over coalitions.
A coalition predicate, as the name suggests, is simply a predicate over coalitions: if P is a
coalition predicate, then it denotes a set of coalitions – those that satisfy P.
We first introduce the language of coalition predicates (from [4]), before we define the
full language of NCCTL. Syntactically, the language of coalition predicates is built from three
atomic predicates subseteq, supseteq, and geq, and we derive a stock of other predicate forms
from these. Formally, the syntax of coalition predicates over a set of agents A is given by
the following grammar:

P ::=subseteq(C ) |supseteq(C ) |geq(n) |¬P |P∨P

where C ⊆A is a set of agents and n∈N is a natural number.
The circumstances under which a coalition C0⊆A satisfies a coalition predicate P are
specified by the satisfaction relation ‘‘|=cp’’, defined by the following rules:
C0 |=cp subseteq(C ) iff C0⊆C
C0 |=cp supseteq(C ) iff C0⊇C
C0 |=cp geq(n) iff |C0|≥n
C0 |=cp¬P iff not C0 |=cp P
C0 |=cp P1∨P2 iff C0 |=cp P1 or C0 |=cp P2

We assume the conventional definitions of implication (→), biconditional (↔), and con-
junction (∧) in terms of ¬ and ∨. We also find it convenient to make use of the derived
predicates defined in Table 1.
Note that we could have chosen a smaller base of predicates to work with, deriving the
remaining predicates from these. In fact, the eq predicate alone would do, in the sense that
any predicate P can be expressed solely in terms of eq:

|=cp P↔(
∨

C |=cpP
eq(C ))

However, using only eq would not give succinct characterisations – the number of disjuncts
in the expression above could be exponential in the number of agents in the system – see
the discussion in [4].
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eq(C ) =̂ subseteq(C )∧supseteq(C )
subset(C ) =̂ subseteq(C )∧¬eq(C )
supset(C ) =̂ supseteq(C )∧¬eq(C )
incl(i) =̂ supseteq({i})
excl(i) =̂ ¬incl(i)
any =̂ supseteq(∅)

nei(C ) =̂ ∨
i∈C incl(i)

ei(C ) =̂ ¬nei(C )
gt(n) =̂ geq(n+1)
lt(n) =̂ ¬geq(n)
leq(n) =̂ lt(n+1)
maj(n) =̂ geq(>(n+1)/2?)
ceq(n) =̂ (geq(n)∧ leq(n))

TABLE 1. Derived coalition predicates.

We can now define the language of NCCTL. Formally, the formulae ϕ of the language are
defined, over a set " of primitive propositions and a set A of agents, as follows:

ϕ ::= )|p |¬ϕ |ϕ∨ϕ |E !ϕ |E(ϕUϕ) |A !ϕ |A(ϕUϕ) | 〈P〉ϕ

where p∈" and P is a coalition predicate over A. The usual abbreviations are used. An
objective formula is purely propositional formula (no temporal or cooperation operators); a
non-temporal formula is a formula without any temporal operators.
The language is interpreted in a triple K ,η,s where K is a Kripke structure, η is a nor-

mative system over K and s is a state of K . The notion that K ,η,s |=ϕ is defined as follows.
First, the clause for the new operator is as follows:

K ,η,s |=〈P〉ϕ iff ∃C ⊆A(C |=cp P and K †(η!C ),η,s |=ϕ) (8)

The other clauses are then defined as in the CTL case, carrying the normative system η in
the context. For example,

K ,η,s |=A !ϕ iff ∀π∈$(s) :K ,η,π[1] |=ϕ

We write [P]ϕ as shorthand for the dual ¬〈P〉¬ϕ. Observe that:

K ,η,s |=[P]ϕ⇔ for all C ⊆A (C |=cp P⇒K †(η!C ),η,s |=ϕ)

So 〈P〉ϕ means that there is a coalition which satisfies P, and when they comply to the
norm η, the objective ϕ is guaranteed. Similarly, [P]ϕ means that compliance to η of any
coalition that satisfies P will guarantee ϕ. Note how η on the left hand side holds the overall
norm, and the 〈P〉 operator is then used to determine who complies with it. For simplicity
of notation, we also write

〈C 〉 for 〈eq(C )〉

and similarly for [C ], and sometimes we will drop the braces in the set notation and write,
e.g., 〈a,b〉 for 〈{a,b}〉 when a,b∈A are agents.
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As usual, K ,η |=ϕ means that K ,η,s0 |=ϕ. We say that a formula ϕ is valid, denoted |=ϕ,
when K ,η |=ϕ for all K and η over K .

Example 8 Continuing Example 1, we have that

K1,η1 |=[supseteq({a,b,c})]ϕ1∧〈eq({a,b,d})〉ϕ1∧¬〈eq({b,c,d})〉ϕ1

saying that compliance of all supersets of {a,b,c} to η guarantees the objective ϕ1, whereas
compliance of {a,b,d} would also ensure the objective, contrary to the compliance of {b,c,d}
only.

5.2 Expressing Robustness Properties
We say that a formula ϕ expresses a property of normative systems if it is satisfied by exactly
the normative systems with that property, in other words if for any normative system η over
any Kripke structureK it is the case thatK ,η |=ϕ iff η has the property. As a simple example,
recall that A is the set of all agents; then 〈eq(A)〉ϕ expresses that the norm η is effective for
ϕ (see page 8). Likewise, 〈eq(A)〉ϕ∧[subset(A)]¬ϕ would express that η is an effective, but
at the same time a vulnerable norm for ϕ: it only takes one agent's non-compliance to make
the objective ϕ fail. As a final general example, note that 〈)〉ϕ means that there is some
coalition whose compliance will ensure the objective ϕ.
The language of NCCTL can in particular be used to express properties related to robust-
ness. For example, the fact that coalition C are sufficient for η in the context of K and ϕ is
expressed by the following formula.

[supseteq(C )]ϕ (9)

This says that if any superset of C complies, ϕ will be true. Conversely, the fact that C are
necessary for η in the context of K and ϕ can be expressed as follows.

[¬supseteq(C )]¬ϕ (10)

This formula says that if any coalition not containing C complies, ϕ will not be true.
Moving on to k-robustness, the following expresses the fact that η is k-sufficient w.r.t. K
and ϕ.

[geq(k)]ϕ (11)

The fact that the resilience of a normative system (w.r.t. K ,ϕ) is k can now be expressed
as follows (where n=|A| is the number of agents).

[geq(n−k)]ϕ∧〈ceq(n−k−1)〉¬ϕ (12)

(Compliance of any coalition of at least n−k members will ensure ϕ, but this is not true for
n−k−1.)
Similarly to sufficiency and necessity for C , the following expresses the fact that η is

k-necessary w.r.t. K and ϕ.

[¬geq(k)]¬ϕ (13)
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Obviously, k-robustness is expressed by the following.

[geq(k)]ϕ∧[¬geq(k)]¬ϕ (14)

For further sufficiency properties, recall that there need not exist sufficient coalitions. The
formula

〈eq(A)〉ϕ (15)

(where A is the set of all agents) expresses the fact that there exists some sufficient coalition
(in the context of ϕ). To see this, observe that if there exists a sufficient coalition, the grand
coalition is also sufficient (Proposition 1.3) and it follows that 〈eq(A)〉ϕ holds. Conversely,
if 〈eq(A)〉ϕ holds, then A is trivially sufficient (it has no proper supersets). An alternative
way to express the existence of a sufficient coalition (in the context of ϕ) is

〈any〉[any]ϕ (16)

which is true if there exists a coalition such that if that coalition complies, any additional
compliance by any other coalition will ensure ϕ. Formally, observe that K ,η,s |=〈any〉[any]ϕ
iff there exists a coalition C such that K †(η!C ),η,s |=[any]ϕ iff, by the fact that (η!C )!
D=η!(C ∪D), there exists C such that for any D, K †(η!(C ∪D),η,s |=ϕ iff there is a C
such that for any C ′ ⊇C it is the case that K †(η!C ′),η,s |=ϕ which means that there exists
some coalition (C ) which is sufficient.
Notice that (16) can be generalised to the following:

〈P〉[any]ϕ (17)

This expresses the fact that there exists a sufficient coalition satisfying P. For example,
〈ceq(1)〉[any]ϕ expresses the fact that there exists a sufficient single-agent coalition.
The fact that there exists two disjoint sufficient coalitions (in the context of ϕ) can be
expressed by:

∨

C⊆A
([supseteq(C )]ϕ∧〈supseteq(A\C )〉[any]ϕ) (18)

This formula can be read as follows: there is some coalition C which is sufficient (the first
conjunct), and there exists another disjoint coalition D such that if D complies then ϕ will
be true no matter which other agents comply (i.e., D is also sufficient).
Moving back to necessity properties, the fact that there exist non-empty necessary coali-
tions (recall that the empty coalition is always necessary) is expressed by

¬
∧

i∈A
〈¬supseteq(i)〉ϕ (19)

These formula schemes clearly demonstrate that the language can be used to specify the
robustness properties of normative systems, and hence that logical tools and techniques
such as model checking can thus be used to verify and analyse such properties of particular
systems. We conclude with a slightly more detailed example.
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Example 9 Going back to examples 1–6, we have that:

• K1,η1 |=[supseteq(a,b,c)]ϕ1 (a,b,c are sufficient)
• K1,η1 |=[supseteq(a,b,d)]ϕ1 (a,b,d are sufficient)
• K1,η1 |=[eq(b)]ϕ2∧¬[supseteq(b)]ϕ2 (ϕ2 is true if only b complies, but {b} is still not
sufficient)
• K1,η1 |=[¬supseteq(a,b)]¬ϕ1 (a,b are necessary)
• K1,η1 |=¬[geq(3)]ϕ1∧[geq(4)]ϕ1 (η1 is 4-sufficient but not 3-sufficient)
• K1,η1 |=[¬geq(3)]¬ϕ1 (η1 is 3-necessary)

5.3 Logical Principles of Compliance and Robustness
Let us first look at some general NCCTL validities. The first validity below again shows
that for expressiveness we could have taken 〈C 〉 as primary and dispense with the coalition
predicates, but the main motivations for including the latter are succinctness and clarity of
expressions, as well as enabling expressions which are independent of the number of agents
in the system.

Proposition 3 The following are all valid.

1. 〈P〉ϕ↔∨{〈C 〉ϕ :C |=cp P}
2. 〈C 〉α↔α α an objective formula
3. 〈C 〉〈D〉ϕ↔〈C ∪D〉ϕ
4. 〈C 〉¬ϕ↔¬〈C 〉ϕ
5. ϕ↔〈∅〉ϕ
6. 〈C 〉(ϕ1∧ϕ2)↔(〈C 〉ϕ1∧〈C 〉ϕ2)
7. 〈C 〉(ϕ1∨ϕ2)↔(〈C 〉ϕ1∨〈C 〉ϕ2)
8. 〈C 〉ϕ→〈C ′〉ϕ C ⊆C ′ and ϕ universal
9. 〈C ′〉ϕ→〈C 〉ϕ C ⊆C ′ and ϕ existential
10. 〈C 〉(〈C ′〉ϕ↔〈C ′ \C 〉ϕ)
Note that a property like 〈C 〉α↔α (with α objective) cannot be directly generalised to
arbitrary predicate modalities giving the formula scheme 〈P〉α↔α. This is because 〈P〉α
implies that there is a coalition that satisfies P. We do have 〈P〉)→(〈P〉α↔α), though.
We briefly mention some other properties of 〈P〉:

Proposition 4 The following hold.

1. 〈P〉)↔A 〈P〉) (properties of coalitions do not depend on the Kripke structure)
2. 〈P〉〈Q〉ϕ→〈)〉ϕ (two coalitions that together can ensure ϕ, imply that there is a coalition
that can ensure ϕ)

3. If |=cp P→Q then |=〈P〉ϕ→〈Q〉ϕ (If C is a coalition satisfying P that is can ensure ϕ,
there is, by assumption, a coalition satisfying Q which can ensure ϕ)

4. 6|=〈P〉〈P〉ϕ→〈P〉ϕ (counterexample: suppose 4 agents are needed for compliance, and P
denotes coalitions of exactly two members)

The NCCTL validities discussed above are logical principles of norm compliance in general.
Let us move on to principles more explicitly related to robustness. Using the robustness
expressions we discussed in Section 5.2 to logically characterise the robustness properties
from Propositions 1 and 2, we get the following.
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Corollary 2

1. |=〈eq(Ag)〉ϕ↔〈any〉[any]ϕ, for any ϕ (two equivalent expressions of sufficiency, see
Section 5.2)

2. |=[subseteq(C )]ϕ∧¬[supseteq(C )]¬ϕ, for any C when ϕ is a tautology (Proposition 1.1)
3. |=[¬subseteq(C )]¬ϕ∧¬[¬supseteq(D)]ϕ, for any C and D 6=∅ when ϕ is a contradiction
(Proposition 1.2)

4. |=[supseteq(C )]ϕ→[supseteq(D)]ϕ, for any ϕ and C ⊆D (Proposition 1.3)
5. |=[¬supseteq(C )]¬ϕ→[¬supseteq(D)]¬ϕ, for any ϕ and D⊆C (Proposition 1.4)
6. 6|=[eq(Ag)]ϕ, for some ϕ (Proposition 1.5)
7. |=[¬supseteq(∅)]¬ϕ, for any ϕ (Proposition 1.6)
8. 6|=¬∨

C⊆A([supseteq(C )]ϕ∧〈supseteq(A\C )〉[any]ϕ), for some ϕ (Proposition 1.7)
9. 6|=∧

i∈A〈¬supseteq(i)〉ϕ, for some ϕ (Proposition 1.8)
10. Two equivalent ways to express Proposition 1.9:

(a) |=[¬supseteq(C )]¬ϕ→¬[supseteq(C ′)]ϕ, for any C and C such that C 6⊆C ′ and
any ϕ

(b) |=[¬supseteq(C )]¬ϕ→[¬supseteq(C )]¬[any]ϕ, for any ϕ. The formula says that
if C is necessary, then any C ′ which does not contain C is not sufficient.

11. |=∨
C⊆A([supseteq(C )]ϕ∧〈supseteq(A\C )〉[any]ϕ)→∧

i∈A〈¬supseteq(i)〉ϕ, for any ϕ

(Proposition 1.10)
12. |=[¬geq(0)]¬ϕ, for any ϕ (Proposition 2.1)
13. |=[geq(k)]ϕ→[geq(k)][any]ϕ, for any ϕ (Proposition 2.6)
14. |=[¬supseteq(C )]¬ϕ→[¬geq(|C |)]¬ϕ, for any ϕ (Proposition 2.7)
15. |=[geq(k)]ϕ→∧

i∈A〈¬supseteq(i)〉ϕ, for any ϕ and k<n (Proposition 2.8)
16. |=([geq(k)]∧[¬geq(k)]¬ϕ)→¬([geq(k ′)]ϕ∧[¬geq(k ′)]¬ϕ), for any ϕ and k 6=k ′
(Proposition 2.9)

5.4 Temporal Compliance
There is one feature of NCCTL that we have not addressed much yet, viz. the nesting of
compliance operators in the scope of temporal operators. Since NCCTL is motivated by the
desire to have a way to reason about robustness directly in the object language, this feature
did not come to the fore yet. But in NCCTL one can express properties such as ‘‘in order
to guarantee ϕ, it is sufficient that in the first k execution steps of the system, coalition
C complies, while after that also D has to comply’’. We might formalise this in a formula
〈C 〉 !k〈D〉ϕ (where !k indicates k repetitions of !). Note that in our framework, we can
only reason about ‘accumulated compliance’, i.e., the compliance of a coalition in a nested
occurrence of 〈〉 always is assumed to be added to the compliance already induced by the
earlier occurrences of 〈〉. This property of ‘‘irrevocable’’ compliance is further discussed in
the next section.

5.5 Relationships to Other Logics
Another logic interpreted in the context of the type of normative systems we have considered
here is Normative Temporal Logic NTL [2]. The main constructs of NTL are of the form Pη

!ϕ
and Oη

!ϕ (tense operators ♦, , U can also be used in place of !), where η denotes a
normative system, meaning that !ϕ is permitted, resp. obligatory, in the context of η. It is
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not possible to refer to agents or coalitions in the object language, which is a key feature of
NCCTL.
Let us move on to logics with similar languages, possibly interpreted over different struc-
tures. If we want to discuss to what extent such logics are similar to NCCTL we need to look
at the possibility of mappings between the semantic structures. A key notion here is validity:
if the validities of the logics differ, then we can conclude that we cannot view structures of
one type as structures of the other type satisfying the same formulae.
The language of NCCTL is obtained by combining the language of CTL with that of Quan-

tified Coalition Logic (QCL) [4]. QCL extends Coalition Logic (CL) [23] with coalition predi-
cates. The key construct of CL is of the (now familiar) form 〈C 〉ϕ2, where C is a coalition. A
well known combination of coalition modalities 〈C 〉3 and branching time tense modalities is
Alternating-time Temporal Logic ATL [8], having expressions such as 〈C 〉♦ϕ – C can ensure
that ϕ will be true sometime in the future. A variant even closer to NCCTL is ATL∗ which
unlike (ATL) does not require that every tense modality is preceded by a coalition modal-
ity. The interpretation, however, is radically different from NCCTL. CL and ATL formulae are
interpreted in Kripke structures where a strategic game form or, equivalently, an effectivity
function, is associated with each state. 〈C 〉ϕ is true in a state iff each member in C can
choose an action such that no matter how the other agents (outside C ) act, ϕ will be true.
The two main differences between these logics and NCCTL are that, first, in the former coali-
tional ability is defined by ‘‘there are some actions for C such that no matter what the other
agents do, …’’ (so-called α effectivity) while in the latter it is defined by the simpler ‘‘there
are some actions for C such that …’’, and, second, that in the latter, unlike the former,
the meaning of 〈C 〉 is defined by model updates. These two differences give different logical
properties. Take the following formula:

〈C 〉(〈C ′〉ϕ↔〈C ′ \C 〉ϕ) (20)

It is valid in NCCTL, but not in CL, QCL or ATL∗. Conversely, the formula

(〈a〉E !p∧〈b〉E !p)→〈a,b〉E !p (21)

is valid in CL, QCL and ATL∗ (it is an instance of super-additivity), but not in NCCTL.
There is in fact a variant of ATL using model update semantics – Irrevocable ATL (IATL)

[6] and its variant IATL∗. The formula (20) is in fact valid in IATL∗ (in a sense it can be seen
as an axiom of the model update semantics of coalitional ability). However, the formula

(〈a〉ϕ∧〈a〉ψ)→〈a〉(ϕ∧ψ) (22)

where a is an agent is valid in NCCTL, but not in IATL∗ (nor in CL, QCL or ATL∗). And the
formula (21), non-valid in NCCTL, is valid also in IATL∗.
In summary, NCCTL has features from ATL∗ (combines coalition operators with branching

time temporal operators), IATL (model update semantics) and QCL (coalition predicates),
but differs from all of them in that ability is not taken to be α effectivity (‘‘no matter what

2In [23] [C ] is used where we use 〈C 〉.
3In [8] 〈〈C 〉〉 is used where we use 〈C 〉.
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all other agents do…’’) and that ability has a concrete interpretation which is implicit in
the Kripke structure, namely the ability to refrain from taking actions. One logic with a
coalitional ability operator, with an interpretation closer to that of the coalitional ability
operator of NCCTL, is Group Announcement Logic GAL [7]. In GAL, 〈C 〉ϕ means that C can
make a public announcement such that ϕ will be true. Formally, this is defined as: for each
agent i∈C , there exists a formula ϕi known by i (agents can have incomplete information),
and in the model updated by the formula

∧
i∈C Kiϕi (Ki is a knowledge operator for i) ϕ is

true. This interpretation is more similar to the interpretation of NCCTL because, first, the
same simple form of ability is used, ‘‘there are some actions for C ’’ rather than ‘‘there are
some actions for C such that no matter what the other agents do…’’, and, second, that
the semantics are defined using permanent model updates. Indeed, it tempting to view the
NCCTL 〈C 〉 operator as a public announcement of a normative statement, where C make the
(truthful) announcement ‘‘we will behave!’’. However, the two logics turn out to be quite
different. While the two languages share the coalition modalities, they differ in that GAL has
knowledge modalities (as well as announcement modalities 〈ϕ〉), while NCCTL has temporals.
When restricted to only coalition modalities and atomic propositions, both logics collapse
to propositional logic. Looking at schemata, we have that (22) is not valid in GAL (but valid
in NCCTL). Conversely, the schema

ϕ→〈C 〉ϕ (23)

is valid in GAL, but not in NCCTL.
The relationship to the nC+ action language [25] is discussed in Section 7.

6 Logical Characterisations of General Robustness
We have thus far seen two different ways in which we might want to consider robustness:
try to identify some ‘‘lynchpin’’ coalition (Section 3) or try to ‘‘quantify’’ the robustness
of the normative system in terms of the number of agents whose compliance is required to
make the normative system effective (Section 4). Often, however, robustness properties will
not take either of these forms. For example, here is an argument about robustness that one
might typically see: ‘‘the system will not overheat as long as at least one sensor works and
either one of the relief valves is working or the automatic shutdown is working’’. Clearly,
such an argument does not fit any of the types of robustness property that we have seen so
far. The logic NCCTL introduced in Section 5 can be used to characterise such properties.
Let P be a predicate, and take the following formula:

ϕP≡[P]ϕ∧[¬P]¬ϕ (24)

Given a Kripke structure K , normative system η, objective ϕ, and coalition predicate P,
observe that

K ,η |=ϕP

iff

∀C ⊆A : (C |=cp P) ⇔ ((K †(η!C )) |=ϕ).
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i.e., the coalitions satisfying P are exactly those whose compliance with η is effective (w.r.t.
K , ϕ). Thus, we say that P characterises the robustness of η (w.r.t. K ) iff the formula (24)
holds in K ,η.
As a simple example, consider the following simple coalition predicate.

supseteq(C ) (25)

We have that (25) characterises the robustness of a normative system η w.r.t. K , ϕ iff:

∀C ′ ⊆A : (C ⊆C ′) ⇔ ((K †(η!C )) |=ϕ),

in other words, iff C are necessary and sufficient. As another simple example, the predicate
geq(k) characterises the robustness of η iff η is k-robust.
The decision problem of P-characterisation is that of checking whether for a given coali-
tion predicate P, Kripke structure K and normative system η over K , K ,η |=[P]ϕ∧[¬P]¬ϕ.
Since we can use P-characterisation to express necessary and sufficient coalitions, we have
the following.

Corollary 3 Deciding P-characterisation is co-NP-complete.

Notice that P-characterisation is fully expressive with respect to robustness properties, in
that any robustness property can be characterised with a coalition predicate of the form:

eq(C1)∨eq(C2)∨···∨eq(Cu).

for some u∈N. In the worst case, of course, we may need a coalition predicate where u may
be exponential in the number of agents.
Let us consider some example coalition predicates, and what they say about robustness.
Recall the informal example we used in the introduction to this section. Let S be a set
of sensors, let R be the set of relief valves, and let a be the automatic shutdown system.
Then the following coalition predicate characterises the robustness property expressed in
that argument.

nei(S)∧(nei(R)∨incl(a))

The coalition predicate any characterises the property that the normative system is trivial,
in the sense that it is robust against any deviation (in which case it is unnecessary, since the
objective will hold of the original system). The coalition predicate ¬any characterises the
property that the normative system will fail w.r.t. its objective irrespective of who complies
with it.

7 Conclusions
We have investigated three types of robustness: necessary and/or sufficient coalitions; the
number of non-compliant agents that can be tolerated; and, more generally, a logical char-
acterisation of robustness.
Fitoussi and Tennenholz [15] formulate two criteria when choosing between different social
laws. Simplicity tries to minimise, for each agent, the differences between states in terms
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of the allowed actions. The idea behind minimality is to reduce the number of forbidden
actions that are not necessary to achieve the objective. Obviously, these two criteria typically
conflict: one may sacrifice one in favour of the other. One would expect that there is a trade-
off between minimality and robustness, and that minimality of η would coincide with the
grand coalition A being necessary for it. This match is not perfect, however: first of all, if the
latter condition holds, there still may be more transitions forbidden for A than necessary to
guarantee the objective ϕ. Secondly, it might be that not all agents in A are constrained by η.
But what we do have is that a minimal norm η must have A(η) (the agents involved in it)
as a necessary coalition.
Recently, French et al. proposed a temporal logic of robustness [16]. A brief description

of the main ideas, using our formalisms, is as follows. Let η be a norm. A path π complies
with η if for no n∈N, (π[n],π[n+1])∈η, i.e., no step in π is forbidden. Let Oϕ mean that
ϕ is obligatory: it is true in s if for all η-compliant s-paths, ϕ holds. Pϕ (ϕ is permitted) is
¬O¬ϕ. Given an s-path π, let

-1s(π) = {π′ |π′ is s-path ,∃j ∈N∀i< jπ(i)=π′(i) &
π′[j+1]π′[j+2]... complies with η}

In words: π′ ∈-1s if it is like π up to some point j , in j it may do an illegal step, but from
then on complies with the norm. French et al. then define an operator "ϕ (‘robustly, ϕ’)
which is true on a path π, if for all paths in -1s(π), and π itself, ϕ is true. So, "ϕ is true in a
η-compliant path, if it is true in all paths that have at most one η-forbidden transition. This
is a way of bringing robustness in to the object language. However, note that in [16], there
is no notion of agency: only the system can deviate from or comply with a norm. If ϕ is a
universal formula, then K ,s0 |=P"ϕ would imply (in our framework) that there is a single
agent i such that A\{i} is sufficient for Eϕ, given K and η. Although it seems a good idea
for future work to incorporate such ‘deontic-like’ operators in the object language, even the
semantics of [16] is quite different from ours: whereas [16] focuses on the number of illegal
transitions, we are concerned with the number of compliant agents, or compliant coalitions.
Sergot and Craven [25] extend the action language C+ [18], which is used to define labelled

transition systems, into nC+, with constructs for defining ‘‘illegal’’ – or, in their terminology,
‘‘red’’ as opposed to ‘‘green’’ – transitions and states. The transition models are a little more
sophisticated than the ones used in the current paper, in that both transitions and states
are labelled as ‘‘illegal’’ or ‘‘permitted’’ – and the interplay between the two is studied.
However, C+ and nC+ are not formal logics, but rather ‘‘languages for defining specific
instances of labelled transitions systems […and …] other languages – we refer to them as
‘query languages’ – can then be interpreted on these structures’’ [25, p.223]. NCCTL is, of
course, one such language, and the interpretation of NCCTL formulae against nC+ specified
models is an interesting opportunity for future work.
Other future work w.r.t. NCCTL include a more complete study of meta-logical properties
such as axiomatisation and the complexity of key decision problems. In Section 5.4 we briefly
touched upon the issue of more complex temporal notions of compliance. As further discussed
above, the model update semantics for the compliance operator means that compliance
can never be revoked. However, it might be useful to be able to express properties such
as ‘‘if C complies for the three next steps, and then D (but not necessarily C ) complies
for one step, the goal will be true’’. This could possibly be achieved by extending NCCTL
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with explicit ‘‘release’’ operators for compliance, similar to release operators for strategic
commitment [1, 13].
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