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Abstract

We add a limited but useful form of quantification
to Coalition Logic, a popular formalism for rea-
soning about cooperation in game-like multi-agent
systems. The basic constructs ofQuantified Coali-
tion Logic (QCL) allow us to express properties as
“there exists a coalitionC satisfying propertyP
such thatC can achieveϕ”. We give an axioma-
tization of QCL, and show that while it is no more
expressive than Coalition Logic, it is exponentially
more succinct. The time complexity ofQCL model
checking for symbolic and explicit state represen-
tations is shown to be no worse than that of Coali-
tion Logic. We illustrate the formalism by show-
ing how to succinctly specify such social choice
mechanisms as majority voting, which in Coalition
Logic require specifications that are exponentially
long in the number of agents.

1 Introduction

Game theoretic models of cooperation has proved to be
a valuable source of techniques and insights for the field
of multi-agent systems, and cooperation logics such as
Alternating-time Temporal Logic (ATL ) [Alur et al., 2002]
and Coalition Logic (CL) [Pauly, 2001] have proved to be
powerful and intuitive knowledge representation formalisms
for such games. Many important properties of cooperative
scenarios requirequantification over coalitions. However,
existing cooperation logics provide no direct facility forsuch
quantification, and expressing such properties therefore re-
quires formulae that are exponentially long in the number of
agents. Examples include expressing the notion of aweak
veto player[Wooldridge and Dunne, 2004] in CL, or solu-
tion concepts from cooperative game theory such as non-
emptyness of the core in Coalitional Game Logic[Ågotnes
et al., 2006]. An obvious solution would be to extend, for ex-
ample,ATL , with a first-order-style apparatus for quantifying
over coalitions. In such a quantifiedATL , one might express
the fact that agenti is a necessary component of every coali-
tion able to achieveϕ by the following formula:

∀C : 〈〈C 〉〉♦ϕ→ (i ∈ C )

However, adding quantification in such a naive way leads to
undecidability over infinite domains (using basic quantifica-
tional set theory we can define arithmetic), and very high
computational complexity even over finite domains. The
question therefore arises whether we can add quantification
to cooperation logics in such a way that we can express use-
ful properties of cooperation in gameswithoutmaking the re-
sulting logic too computationally complex to be of practical
interest. Here, we answer this question in the affirmative.

We introduceQuantified Coalition Logic(QCL), by mod-
ifying the existing cooperation modalities ofCL in order to
enable quantification. InCL, the basic cooperation constructs
are〈C 〉ϕ, meaning that coalitionC can achieveϕ1; these op-
erators are in fact modal operators with a neighbourhood se-
mantics. InQCL, we replace these operators with expressions
〈P〉ϕ and [P ]ϕ; here,P is a predicate over coalitions, and
the two sentences express the fact thatthere exists a coalition
C satisfying propertyP such thatC can achieveϕ andall
coalitions satisfying propertyP can achieveϕ, respectively.
Thus we add a limited form of quantification toCL without
the apparatus of quantificational set theory. We show that the
resulting logic,QCL, is exponentially more succinct thanCL,
while being computationally no worse with respect to the key
problem of model checking.

The remainder of the paper is structured as follows. After
a brief review ofCL, we introduce a language for expressing
coalition predicates, and show that the satisfiability problem
for this language isNP-complete. We then introduceQCL, and
give its complete axiomatization. We show that whileQCL is
no more expressive than Coalition Logic, it is nevertheless
exponentially more succinct, in a precise formal sense. We
then extend the language of coalition predicates to talk about
the cardinality of coalitions, and show that the corresponding
completeness and succinctness results also hold forQCL over
this extended language. We illustrateQCL by showing how
it can be used to succinctly specify a social choice mecha-
nism, which inCL requires specifications that are exponen-
tially long in the number of agents; we then round off with
some conclusions.

1We adopt a notation which is in line with that inATL : we use
〈C 〉 for ‘there is a coalitionC such that . . . ’ where[Pauly, 2001]
uses[C ], and we write[C ] for Pauly’s〈C 〉.



2 Coalition Logic
Since QCL is based on Pauly’s Coalition LogicCL [Pauly,
2001], we first briefly introduce the latter.CL is a proposi-
tional modal logic, containing an indexed collection of unary
modal operators〈C 〉 and[C ], whereC is a coalition, i.e., a
subset of a given set of agentsAg. The intended interpreta-
tion of 〈C 〉ϕ is thatC can achieveϕ, or, thatC is effective
for ϕ. Formulae ofCL are defined by the following grammar
(with respect to a setΦ0 of Boolean variables, and a fixed set
Ag of agents):

ϕ ::= ⊤ | p | ¬ϕ | ϕ ∨ ϕ | 〈C 〉ϕ

wherep ∈ Φ0 is an atomic proposition andC a subset ofAg.
As usual, we use parentheses to disambiguate formulae where
necessary, and define the remaining connectives of classical
logic as abbreviations:⊥ ≡ ¬⊤, ϕ → ψ ≡ (¬ϕ) ∨ ψ and
ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ).

A modelM for (overΦ0, Ag) is a tripleM = 〈S , E , π〉
where

• S = {s1, . . . , so} is a finite non-empty set ofstates;

• E : 2Ag × S → 22S

is an effectivity function, where
T ∈ E(C , s) is intended to mean that from states , the
coalition C can cooperate to ensure that the next state
will be a member ofT ; and

• π : S → 2Φ0 is a valuation function.

Call the set of all modelsgeneral models, denoted byGen.
It is possible to define a number of constraints on effectivity
functions, depending upon exactly which kinds of scenario
they are intended to model[Pauly, 2001, pp.24–39]. Unless
stated otherwise, we will assume that our modelsM areweak
playabilitymodelsM ∈ WP , where effectivity functions are
outcome monotonic, i.e.,∀C ⊆ Ag, ∀s ∈ S , ∀X ,Y ⊆ S , if
X ∈ E(C , s) andX ⊆ Y , thenY ∈ E(C , s), and moreover
that effectivity functions satisfy Pauly’sweak playabilitycon-
ditions[Pauly, 2001, p.30]. An interpretationfor CL is a pair
M, s whereM is a model ands is a state inM. The satisfac-
tion relation “|=CL” for CL holds between interpretations and
formulae ofCL. We say that coalitionC can enforceϕ in s if
for someT ∈ E(C , s), ϕ is true in allt ∈ T . That is,C can
make a choice such that, irrespective of the others’ choices,
ϕ will hold. Formally, the satisfaction relation is defined by
the following inductive rule (we assume the cases forp, ⊤,
negation and disjunction are clear):

M, s |=CL 〈C 〉ϕ iff ∃T ∈ E(C , s) such that∀t ∈ T ,
we haveM, t |=CL ϕ.

The notions of truth ofϕ in a model (M |=CL ϕ) and validity
in a class of modelsC (C |=CL ϕ) are defined as usual. The
inference relation⊢CL for CL is given in table 1 (taken from
[Pauly, 2001], but adapted to our notation): it is sound and
complete with respect to the class of weak playability models
WP ([Pauly, 2001, p. 55]).

3 Quantified Coalition Logic
If we haven agents inAg, and one wants to express thatsome
coalition can enforce some atomic propertyp, one needs to

Prop ⊢CL ψ
Ag⊥ ⊢CL ¬〈Ag〉⊥
⊤ ⊢CL ¬〈∅〉⊥ → 〈C 〉⊤
⊥ ⊢CL 〈C 〉⊥ → 〈C ′〉⊥
Ag ⊢CL ¬〈∅〉¬ϕ → 〈Ag〉ϕ
S ⊢CL (〈C1〉ϕ1 ∧ 〈C2〉ϕ2) → 〈C1 ∪ C2〉(ϕ1 ∧ ϕ2)

MP ⊢CL ϕ→ ψ, ⊢CL ϕ ⇒ ⊢CL ψ
Distr ⊢CL ϕ→ ψ ⇒ ⊢CL 〈C 〉ϕ→ 〈C 〉ψ

Table 1: Axioms and Rules for Coalition Logic. In (Prop), ψ
is a propositional tautology, in axiom (⊥), we requireC ′ ⊆
C , and for (S ), C1 ∩C2 = ∅.

enumerate2n disjunctions of the form〈C 〉p. The idea be-
hind Quantified Coalition Logic (QCL) is to avoid this blow-
up in the length of formulas. Informally,QCL is a proposi-
tional modal logic, containing an indexed collection of unary
modal operators〈P〉ϕ and[P ]ϕ. The intended interpretation
of 〈P〉ϕ is thatthere exists a set of agentsC , satisfying pred-
icateP , such thatC can achieveϕ. We refer to expressions
P ascoalition predicates, and we now define a language for
coalition predicates;QCL will then be parameterised with re-
spect to such a language. Of course, many coalition predicate
languages are possible, with different properties, and later we
will investigate another such language. Throughout the re-
mainder of this paper, we will assume a fixed, finite setAg of
agents.

Coalition Predicates: Syntactically, we introduce two
atomic predicatessubseteq andsupseteq, and derive a stock
of other predicate forms from these. Formally, the syntax of
coalition predicates is given by the following grammar:

P ::= subseteq(C ) | supseteq(C ) | ¬P | P ∨ P

whereC ⊆ Ag is a set of agents. One can think of the
atomic predicatessubseteq(C ) andsupseteq(C ) as a stock
of 2|Ag|+1 propositions, one for each coalition, which are then
to be evaluated in a given coalitionCo. The circumstances
under which a concrete coalitionCo satisfies a coalition pred-
icateP , are specified by a satisfaction relation “|=cp”, defined
by the following four rules:

Co |=cp subseteq(C ) iff Co ⊆ C

Co |=cp supseteq(C ) iff Co ⊇ C

Co |=cp ¬P iff not Co |=cp P

Co |=cp P1 ∨ P2 iff Co |=cp P1 or Co |=cp P2

Now we can be precise about what it means that “a coalition
Co satisfiesP ”: it just meansCo |=cp P . We will assume
the conventional definitions of implication (→), biconditional
(↔), and conjunction (∧) in terms of¬ and∨.

Coalitional predicatessubseteq(·) and supseteq(·) are
in fact not independent. They are mutually definable –
due to the fact that the set of all agentsAg is assumed
to be finite. We then have that ([Ågotnes and Wal-
icki, 2006]) subseteq(C ) ≡

∧
i∈Ag\C ¬supseteq({i}) and

supseteq(C ) ≡
∧

C ′⊆Ag,C 6⊆C ′ ¬subseteq(C ′). The reason



that we include both types of predicates as primitives is a
main motivating factor of this paper: we are interested insuc-
cinctlyexpressing quantification in coalition logic.

We find it convenient to make use of the following derived
predicates:

eq(C ) ≡ subseteq(C ) ∧ supseteq(C )
subset(C ) ≡ subseteq(C ) ∧ ¬eq(C )
supset(C ) ≡ supseteq(C ) ∧ ¬eq(C )

incl(i) ≡ supseteq({i})
excl(i) ≡ ¬incl(i)

any ≡ supseteq(∅)
nei(C ) ≡

∨
i∈C incl(i)

ei(C ) ≡ ¬nei(C )

The reader may note an obvious omission here: we have not
introduced any explicit way of talking about thecardinality
of coalitions; such predicates will be discussed in Section4.

We say that a coalition predicateP is Ag-consistentif for
someCo ⊆ Ag, we haveCo |=cp P , andP is Ag-valid if
Co |=cp P for all Co ⊆ Ag.

Themodel checking problem for coalition predicatesis the
problem of checking whether, for givenCo andP , we have
Co |=cp P [Clarkeet al., 2000]. It is easy to see that this
problem is decidable in polynomial time. Thesatisfiability
problem for coalition predicatesis the problem of deciding
whetherP is consistent. We get the following.

Theorem 1 The satisfiability problem for coalition predi-
cates isNP-complete.

Quantified Coalition Logic: We now presentQCL. Its for-
mulae are defined by the following grammar:

ϕ ::= ⊤ | p | ¬ϕ | ϕ ∨ ϕ | 〈P〉ϕ | [P ]ϕ

Modelsfor CL andQCL are the same. The satisfaction relation
for the new operators is as follows.

M, s |=QCL 〈P〉ϕ iff ∃C ⊆ Ag: C |=cp P and∃T ∈
E(C , s) such that∀t ∈ T , we haveM, t |=QCL ϕ.

M, s |=QCL [P ]ϕ iff ∀C ⊆ Ag: C |=cp P implies
∃T ∈ E(C , s) such that∀t ∈ T , M, t |=QCL ϕ.

Readers familiar with modal logic may wonder why we did
not introduce the universal coalition modality[P ]ϕ as the
dual¬〈P〉¬ϕ. In fact such a definition would not serve the
desired purpose. Consider the pattern of quantifiers in the
semantics of〈·〉: ∃∃∀. Taking the dual¬〈·〉¬ would yield
the quantifiers∀∃∃, rather than the desired∀∃∀ pattern. Of
course, this does not mean that[P ]ϕ is not definable from
〈P〉ϕ (and the propositional connectives) in someotherway.
In fact:

[P ]ϕ ≡
∧

{C |C |=pcP}

〈eq(C )〉ϕ

Thus, for expressiveness,〈C 〉 together with the proposition-
als are adequate connectives, and[P ]ϕ is definable. The rea-
son we introduce the box cooperation modality as a separate
construct is one of the main motivations in this paper, as dis-
cussed before for the different predicate operators: succinct-
ness of expression.

Example QCL Expressions: To get a flavour of the kind
of properties we can express inQCL, we present some exam-
ple QCL formulae. First, note that the conventionalCL/ATL
ability expression is defined simply as:〈C 〉ϕ ≡ 〈eq(C )〉ϕ.
We can also succinctly express properties such as the solution
concepts fromQualitative Coalitional Games[Wooldridge
and Dunne, 2004]. For example, aweak veto playerfor ϕ
is an agent that must be present in any coalition that has the
ability to bring aboutϕ: WVETO(C , ϕ) ≡ ¬〈excl(i)〉ϕ.
Of course, ifno coalition has the ability to achieveϕ, then
this means thateveryagent is a veto player forϕ. A strong
veto playerfor ϕ is thus an agent that is both a weak veto
player forϕ and that is a member ofsomecoalition that can
achieveϕ: VETO(i , ϕ) ≡ WVETO(i , ϕ) ∧ 〈incl(i)〉ϕ.
A coalitionC is weakly minimal forϕ if no subset ofC can
achieveϕ: WMIN (C , ϕ) ≡ ¬〈subset(C )〉ϕ. And C are
simply minimal if they are weakly minimal and also able to
bring aboutϕ: MIN (C , ϕ) ≡ 〈C 〉ϕ ∧ WMIN (C , ϕ). Fi-
nally,GC (C ) says thatC is thegrandcoalition:GC (C ) ≡
[supset(C )]⊥.

Model Checking: Model checkingis currently regarded as
perhaps the most important computational problem associ-
ated with any temporal/modal logic, as model checking ap-
proaches for such logics have had a substantial degree of suc-
cess in industry[Clarkeet al., 2000]. Theexplicit state model
checking problemfor QCL is as follows:

Given a modelM, states in M, and formulaϕ of
QCL, is it the case thatM, s |=QCL ϕ?

Notice that in this version of the problem, we assume that
the components of the modelM areexplicitly enumerated
in the input. It is known that the corresponding problem for
Coalition Logic may be solved in polynomial timeO(|M| ·
|ϕ|) [Pauly, 2001, p.50] (as may the explicit stateATL model
checking problem[Alur et al., 2002]). Perhaps surprisingly,
theQCL model checking problem is no worse:

Theorem 2 The explicit state model checking problem for
QCL may be solved in polynomial time.

Of course, this result is not terribly useful, since it assumes
a representation ofM that is not feasible, since it is expo-
nentially large in the number of agents and Boolean vari-
ables in the system. Implemented model checkers usesuc-
cinct languages for defining models; for example, theREAC-
TIVE MODULES LANGUAGE (RML) of Alur et al [Alur and
Henzinger, 1999]. Assuming anRML representation, Coali-
tion Logic model checking isPSPACE-complete[Hoeket al.,
2006], and thus no easier than theorem proving in the same
logic [Pauly, 2001, p.60]. It is therefore more meaningful to
ask what the model checking complexity ofQCL is for such
a representation. We only give a very brief summary ofRML
– space restrictions prevent a complete description; see[Alur
and Henzinger, 1999; Hoeket al., 2006] for details.

In REACTIVE MODULES, a system is specified as a col-
lection of modules, which correspond to agents. Here is a
(somewhat simplified) example of anRML module:



module toggle controls x
init []⊤ ; x ′ := ⊤

[]⊤ ; x ′ := ⊥
update []x ; x ′ := ⊥

[](¬x ) ; x ′ := ⊤

This agenttoggle, controls a single Boolean variable,x . The
choicesavailable to the agent at any given time are defined
by theinit andupdate rules. Theinit rules define the
choices available to the agent with respect to the initialisation
of its variables, while theupdate rules define the agent’s
choices subsequently. Theinit rules define two choices for
the initialisation of this variable: assign it the value⊤ or the
value⊥. Both of these rules can fire initially, as their condi-
tions (⊤) are always satisfied; in fact, only one of the avail-
able rules will everactuallyfire, corresponding to the “choice
made” by the agent on that decision round. With respect to
update rules, the first rule says that ifx has the value⊤,
then the corresponding choice is to assign it the value⊥,
while the second rule ‘does the opposite’. In other words,
the agent non-deterministically chooses a value forx initially,
and then on subsequent rounds toggles this value.

The following can be proved by an adaption and extension
of the proof in[Hoeket al., 2006].

Theorem 3 The model checking problem forQCL assuming
an RML representation for models isPSPACE-complete.

This result, we believe, is potentially much more interesting
than that for explicit state model checking, since it tells us
thatQCL model checking is no more complex than Coalition
Logic even for a realistic representation of models.

Expressive Power: We now argue thatQCL is equivalent in
expressive power to Coalition Logic. To begin, consider the
following translationτ from QCL formulae toCL formulae.
For atomsp and⊤, τ is the identity, and it distributes over
disjunction, and moreover:

τ(〈P〉ϕ) =
∨

{C |C |=pcP}〈C 〉τ(ϕ)

τ([P ]ϕ) =
∧

{C |C |=pcP}〈C 〉τ(ϕ)

We already know from above that we have a translation
in the other direction: let us call itδ, with defining clause
δ(〈C 〉ϕ) = 〈eq(C )〉δ(ϕ).

As an example, supposeAg = {a, b, c} and letP =
(supset({a})∨supset({b})∨supset({c}))∧¬eq({a, b, c}).
Now, consider theQCL formula ψ = 〈P〉q. Then
τ(ψ) = 〈{a, b}〉q ∨ 〈{a, c}〉q ∨ 〈{b, c}〉q while δ(τ(ψ)) =
〈eq({a, b})〉q ∨ 〈eq({a, c})〉q ∨ 〈eq({b, c})〉q. Hence, one
can think ofδ(τ(ϕ)) as anormal formfor ϕ, where the only
coalition predicate inϕ is eq. ThatQCL andCL have equal ex-
pressive power follows from the fact that the two translations
preserve truth.

Theorem 4 LetM be a model, ands a state, and letϕ be a
QCL formula, andψ a CL formula. Then:

1. M, s |=QCL ϕ iff M, s |=CL τ(ϕ)

2. M, s |=CL ψ iff M, s |=QCL δ(ψ)

P0 ⊢cp supseteq(∅)
P1 ⊢cp supseteq(C ) ∧ supseteq(C ′)

↔ supseteq(C ∪ C ′)
P2 ⊢cp supseteq(C ) → ¬subseteq(C ′)
P3 ⊢cp subseteq(C ∪ {a}) ∧ ¬supseteq(a)

→ subseteq(C )
P4 ⊢cp subseteq(C ) → subseteq(C ′)
Prop ⊢cp ψ
MP ⊢cp ϕ→ ψ, ⊢cp ϕ ⇒ ⊢cp ψ
δAx ⊢QCL δ(Ax )
δ〈〉 ⊢QCL 〈P〉ϕ↔∨

{C |C⊢cpP}〈eq(C )〉ϕ
δ[] ⊢QCL [P ]ϕ↔∧

{C |C⊢cpP}〈eq(C )〉ϕ

δR δ(R)

Table 2: Axioms and Rules for Quantified Coalition Logic.
The condition ofP2 is C 6⊆ C ′, for P4 it is C ⊆ C ′, ψ
in Prop is a propositional tautology;Ax in δAx is anyCL-
axiom,R in δR is anyCL-rule

Axiomatization: The translations introduced above pro-
vide the key to a complete axiomatization ofQCL. First, recall
Pauly’s axiomatization of Coalition Logic (Table 1). Given
this, and the translations defined previously, we obtain an ax-
iom system forQCL-formulae as follows. First,QCL includes
the δ translation of all theCL axioms and rules, and axioms
that state that theδ-translation is correct: see the lower part of
Table 2. On top of that,QCL is parametrisedby an inference
relation⊢cp for coalition predicates. The axioms for this in
Table 2 are taken from[Ågotnes and Walicki, 2006].

Theorem 5

1. ([ Ågotnes and Walicki, 2006]) ⊢cp is sound and com-
plete: for anyP , |=cp P ⇔ ⊢cp P

2. For anyCL formulaϕ, ⊢CL ϕ ⇒ ⊢QCL δ(ϕ)

3. Letϕ be anyQCL formula. Then⊢QCL ϕ ↔ δ(τ(ϕ))
and, in particular,⊢QCL ϕ iff ⊢QCL δ(τ(ϕ)).

Theorem 6 (Completeness and Soundness)Letϕ be an ar-
bitrary QCL-formula. Then:⊢QCL ϕ iff |=QCL ϕ

Examples of derivable properties include:

|=QCL [P1]ϕ→ [P2]ϕ when|=cp P1 → P2

|=QCL ([P1]ϕ ∧ [P2]ϕ) → [P1 ∨ P2]ϕ

These illustrate that we not only have primitive modal oper-
ators, but also some kind of operations over them, like nega-
tion and conjunction. This of course is very reminiscent of
Boolean modal logic, where one studies algebraic operations
like complement, meet and join on modal operators[Gargov
and Passy, 1987]. We will not pursue the details of the con-
nection here.

Succinctness: Theorem 4 tells us that the gain ofQCL over
CL is not its expressivity. Rather, the advantage ofQCL is
in its succinctnessof representation. For example, for the
QCL formula〈any〉q, the translatedCL formulaτ(〈any〉q) is



exponentially longer, since it has to explicitly enumerateall
coalitions inAg. Is it howevergenerallythe case thatτ(ϕ)
is shorter thanϕ? Since the translation does some computa-
tions under|=cp , this is in general not the case. For instance,
if P = supseteq({a}) ∧ supseteq({c}) ∧ supseteq({b}) ∧
(subseteq({a, b, c}) ∨ subseteq({a, b, d})), thenψ = 〈P〉q
would have as aτ -translation〈{a, b, c}〉q, which is shorter
than the originalQCL-formulaψ. But then again,δ(τ(ψ))
is a QCL formula that is equivalent toψ, but that has a size
similar toτ(ψ).

To make this all precise, let us define the lengthℓ(ϕ) of
bothQCL andCL formulasϕ, as follows:

ℓ(⊤) = ℓ(p) = 1
ℓ(ϕ1 ∨ ϕ2) = ℓ(ϕ1) + ℓ(ϕ2) + 1
ℓ(¬ϕ) = ℓ(ϕ) + 1
ℓ(〈P〉ϕ) = ℓ[P ]ϕ) = prsize(P) + ℓ(ϕ)
ℓ(〈C 〉ϕ) = coalsize(C ) + ℓ(ϕ)

with

prsize(subseteq(C )) = coalsize(C ) + 1
prsize(supseteq(C )) = coalsize(C ) + 1
prsize(¬P) = prsize(P) + 1
prsize(P1 ∨ P2) = prsize(P1) + prsize(P2) + 1
coalsize(C ) = | C |

Let ϕ andψ be X andY formulas, respectively, where
X andY both range overCL and QCL. Then we say that
they are equivalent with respect to some class of models if
they have the same satisfying pairsM, s , that is, for each
M, s in the class of models it is the case thatM, s |=X ϕ
iff M, s |=Y ψ. This definition naturally extends to sets of
formulas.

In the following theorem we show thatQCL is exponen-
tially more succinctthanCL, over general models. This no-
tion of relative succinctness is taken from[Lutz, 2006], who
demonstrates that public announcement logis is more succinct
than epistemic logic.

Theorem 7
There is an infinite sequence of distinctQCL formulas
ϕ0, ϕ1, . . . such that, not only is theCL formulaτ(ϕi) equiv-
alent toϕi for every i ≥ 0, but everyCL formulaψi that
is equivalent, with respect to general models, toϕi has the
propertyℓ(ψi) ≥ 2|ϕi |.

4 Coalition Size
As we noted earlier, an obvious omission from our language
of coalition predicates is designated predicates for expressing
cardinality properties of coalitions. In this section, we ex-
plore extensions to the framework for this purpose. The ob-
vious approach is to introduce primitive coalition predicates
geq(n), wheren ∈ N, with semantics as follows:

C |= geq(n) iff |C | ≥ n

Given this predicate, we can define several obvious derived
predicates (see also[Ågotnes and Alechina, 2006] for a dis-
cussion of a similar language).

gt(n) ≡ geq(n + 1)
lt(n) ≡ ¬geq(n)

leq(n) ≡ lt(n + 1)
maj (n) ≡ geq(⌈(n + 1)/2⌉)
ceq(n) ≡ (geq(n) ∧ leq(n))

The first natural question is whethergeq(n) is definable in
QCL. Indeed it is:

geq(n) ≡
∨

C⊆Ag,|C |≥n

supseteq(C ) (1)

However, we again see that such a definition leads to expo-
nentially large formulae, which justifies extending the pred-
icate language ofQCL with an atomic coalition predicate
geq(n) for everyn ∈ N. Call the resulting logicQCL(≥),
and let |=cp≥ and |=QCL(≥) denote the satisfiability rela-
tions for QCL(≥) predicates andQCL(≥) formulae, respec-
tively. Once again, the gain is not expressiveness butsuc-
cinctness. As another example of the added succinctness,
consider theCL formula〈C 〉p. In QCL this cannot in general
be written by any less complex formula than〈subseteq(C ) ∧
supseteq(C )〉p, but inQCL(≥) it can be simplified somewhat
to 〈supseteq(C )∧¬geq(|C |+1)〉p (which in general is sim-
pler since one of the enumerations of the agents inC is re-
placed by a number).

A subtle but important issue when reasoning with the logic
is the way in which the natural number argument of the
geq(. . .) predicate isrepresented. Suppose, (following stan-
dard practice in complexity theory), that we represent the
argument in binary. Now, we ask whether a given coali-
tion predicateP is satisfiable, whereP contains a constraint
geq(n). Now checking the satisfiability of such constraints
is not obviously inNP. The problem is that the witnessC
to the satisfiability ofP is exponentially larger than the con-
straint geq(n). Of course, if we express the natural number
n in unary, then this is not an issue. But unary is not a realis-
tic or practical representation for numbers. It turns out, how-
ever, that we do in fact getNP completeness for the satisfiabil-
ity problem also forQCL(≥), although the argument requires
some more work. The reason is that we can use an efficient
encoding of the witnessC . This was shown by[Ågotnes and
Alechina, 2006] for a similar problem (cf. Section 5).

Let Ag(P) andsubp(P) denote the set of agents, and the
set of sub-predicates, respectively, occurring in a predicateP .

Lemma 1 Any satisfiableQCL(≥) predicateP is satisfied by
a coalition consisting of no more than1 + maxP agents,
where1 + maxP equals

max ({|Ag(P)|,max ({geq(n) : geq(n) ∈ subp(P)})})

Theorem 8 The satisfiability problem forQCL(≥) coalition
predicates isNP-complete.

It is straightforward to lift the translationτ from QCL to
CL to the case when also the additional predicates ofQCL(≥)
are allowed, and it is easy to see that Theorem 4 holds also
for QCL(≥) formulae. For axiomatisation, we only need to
add axioms for thegeq(n) predicates to the predicate calclu-
lus. That can be achieved simply by adding (1) as an axiom



(MIN 0) ⊢cp geq(0)
(MIN 1) ⊢cp geq(n) → geq(m) (m < n)
(MIN 2) ⊢cp supseteq({a1}) ∧ · · · ∧ supseteq({ak})

→ geq(k) ∀i 6= j ai 6= aj

Table 3: Extra predicate calculus axioms forQCL(≥).

schema. A more “direct” axiomatisation ofgeq(n) is shown
in Table 3, taken from[Ågotnes and Alechina, 2006]. Let
⊢cp≥ denote derivability in theQCL predicate calculus (from
Table 2) extended with the axioms in Table 3. The follow-
ing is easily obtained from a similar result in[Ågotnes and
Alechina, 2006]:

Lemma 2 TheQCL(≥) predicate calculus is sound and com-
plete: for any QCL(≥) predicate P , |=cp≥ P ⇔
⊢cp≥ P

Let ⊢QCL(≥) denote derivability in the system obtained by
replacing⊢cp with ⊢cp≥ in the definition of⊢QCL (Table 2).

Theorem 9 (Completeness and Soundness)Let ϕ be a
QCL(≥)-formula. Then:⊢QCL(≥) ϕ iff |=QCL(≥) ϕ

To illustrate the use ofQCL(C) for reasoning about multi-
agent systems, consider the expression ofmajority voting:

An electorate ofn voters wishes to select one of
two outcomesω1 andω2. They want to use a sim-
ple majority voting protocol, so that outcomeωi

will be selected iff a majority of then voters state
a preference for it. No coalition of less than ma-
jority size should be able to select an outcome, and
anymajority should be able to choose the outcome
(i.e., the selection procedure is not influenced by
the “names” of the agents in a coalition). One out-
come must be selected, but both outcomes should
not be selected simultaneously.

We express these requirements as follows. First:any majority
should be able to select an outcome.

([maj (n)]ω1) ∧ ([maj (n)]ω2)

No coalition that is not a majority can select an outcome.

(¬〈¬maj (n)〉ω1) ∧ (¬〈¬maj (n)〉ω2)

Either outcomeω1 or ω2 must result.

〈any〉(ω1 ∨ ω2)

Both outcomes cannot be selected simultaneously.

〈any〉¬(ω1 ∧ ω2)

Notice that majority voting cannot be succinctly specified us-
ing regular Coalition Logic.

5 Related Work and Conclusions
Quantified Coalition Logic adds a limited but useful form of
quantification to Coalition Logic, which is computationally
tractable. The motivation is succinctness rather than expres-
siveness:QCL is exponentially more expressive thanCL.

While first-order temporal logics have been studied in the
literature, andCL can be seen as the next-time fragment
of ATL which again is a generalisation of the branching-
time temporal logic Computational Tree Logic (CTL), we
are not aware of any other works on quantification inCL
or ATL . Lately, there has been some work on generalis-
ing the coalition modalities in another direction: to explic-
itly include actions and strategies[van der Hoeket al., 2005;
Ågotnes, 2006].

Opportunities for future work include a more detailed un-
derstanding of the relationship betweenQCL and Boolean
modal logic.
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