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Abstract
We investigate the problem of influencing the pref-
erences of players within a Boolean game so that,
if all players act rationally, certain desirable out-
comes will result. The way in which we influence
preferences is by overlaying games with taxation
schemes.
In a Boolean game, each player has unique control
of a set of Boolean variables, and the choices avail-
able to the player correspond to the possible assign-
ments that may be made to these variables. Each
player also has a goal, represented by a Boolean
formula, that they desire to see satisfied. Whether
or not a player’s goal is satisfied will depend both
on their own choices and on the choices of others,
which gives Boolean games their strategic charac-
ter. We extend this basic framework by introduc-
ing an external principal who is able to levy a tax-
ation scheme on the game, which imposes a cost
on every possible action that a player can choose.
By designing a taxation scheme appropriately, it is
possible to perturb the preferences of the players,
so that they are incentivised to choose some equi-
librium that would not otherwise be chosen. After
motivating and formally presenting our model, we
explore some issues surrounding it, including the
complexity of finding a taxation scheme that imple-
ments some socially desirable outcome, and then
discuss desirable properties of taxation schemes.

1 Introduction
Our goal is to investigate the possibility of influencing the
behaviour of rational players in a game towards certain out-
comes by providing incentives for them to act in certain ways.
If we look to the real world, we see two forms of incentives
that are typically used by governments and other organisa-
tions in order to influence human behaviour: we can call

∗This paper is an invited contribution for the IJCAI-2011 “Best
Papers” track. It is an adapted and somewhat simplified version of
the paper Designing Incentives for Boolean Games, which was ac-
cepted for the AAMAS-2011 conference and shortlisted for the best
paper prize at this conference. We refer the reader to this parent
paper for further technical details, proofs, and discussion.

them “carrots” and “sticks”. “Carrots” provide positive in-
centives, by rewarding players who act in the desired way,
while “sticks” penalise undesirable behaviour. One of the
most common incentive mechanisms found in human soci-
eties is taxation. Taxation is frequently used to incentivise
behaviours. For example, a government might tax car driv-
ing in order to encourage the use of environmentally friendly
public transport; or it might tax cigarettes in order to discour-
age smoking. Of course, as well as incentivising behaviour,
taxation is also used by governments to raise revenue, typi-
cally with the intention that this revenue is then used to fund
socially desirable projects (education, healthcare, etc).

In the present paper, we study the design of taxation
schemes for incentivising behaviours in multi-agent systems.
The setting for our study is the domain of Boolean games [5;
1; 3]. Boolean games are a natural, expressive, and com-
pact class of games, based on propositional logic. Boolean
games were introduced in [5], and their computational and
logical properties have subsequently been studied by several
researchers [1; 3]. In such a game, each agent i is assumed
to have a goal, represented as a propositional formula γi over
some set of variables Φ. In addition, each agent i is allocated
some subset Φi of the variables Φ, with the idea being that
the variables Φi are under the unique control of agent i. The
choices, or strategies, available to i correspond to all the pos-
sible allocations of truth or falsity to the variables Φi. An
agent will try to choose an allocation so as to satisfy its goal
γi. Strategic concerns arise because whether i’s goal is in fact
satisfied will depend on the choices made by others.

We introduce the idea of imposing taxation schemes on
Boolean games, so that a player’s possible choices are taxed
in different ways. Taxation schemes are designed by an agent
external to the game known as the principal. The ability to
impose taxation schemes enables the principal to perturb the
preferences of the players in certain ways: all other things
being equal, an agent will prefer to make a choice that min-
imises taxes. As discussed above, the principal is assumed to
be introducing a taxation scheme so as to incentivise agents to
achieve a certain desirable outcome; or to incentivise agents
to rule out certain undesirable outcomes. We represent the
outcome that the principal desires to achieve via a propo-
sitional formula Υ: thus, the idea is that the principal will
impose a taxation scheme so that agents are rationally in-
centivised to make individual choices so as to collectively
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satisfy Υ. However, a fundamentally important assumption
in what follows is that taxes do not give us absolute control
over an agent’s preferences. To assume that we were able to
completely control an agent’s preferences by imposing taxes
would be unrealistic: to pick a perhaps rather morbid and
slightly tongue in cheek example, no matter how much you
propose to tax me, I would still choose to achieve my goal
of being alive rather than otherwise. If we did have complete
control over agents’ preferences through taxation, then the
problems we consider in this paper would indeed be rather
trivial. In our setting specifically, it is assumed that no matter
what the level of taxes, an agent would still prefer to have its
goal achieved than not. This imposes a fundamental limit on
the extent to which an agent’s preferences can be perturbed
by taxation.

We begin in the following section by introducing the model
of Boolean games that we use throughout the remainder of the
paper. We then introduce taxation schemes and the incentive
design problem – the problem of designing taxation schemes
so that a certain objective Υ is satisfied in equilibrium. After
investigating some issues around the incentive design prob-
lem, we go on to consider possible desirable properties of
taxation schemes (such as minimising the total tax burden).
We conclude with a discussion and future work.

2 Boolean Games
Propositional Logic: Throughout the paper, we make use of
classical propositional logic, and for completeness, we thus
begin by recalling the technical framework of this logic. Let
B = {",⊥} be the set of Boolean truth values, with “"” be-
ing truth and “⊥” being falsity. We will abuse notation a little
by using " and ⊥ to denote both the syntactic constants for
truth and falsity respectively, as well as their semantic coun-
terparts (i.e., the respective truth values). Let Φ = {p, q, . . .}
be a (finite, fixed, non-empty) vocabulary of Boolean vari-
ables, and let L denote the set of (well-formed) formulae
of propositional logic over Φ, constructed using the conven-
tional Boolean operators (“∧”, “∨”, “→”, “↔”, and “¬”),
as well as the truth constants “"” and “⊥”. We assume a
conventional semantic consequence relation “|=” for propo-
sitional logic. A valuation is a total function v : Φ → B,
assigning truth or falsity to every Boolean variable. We write
v |= ϕ to mean that ϕ is true under, or satisfied by, valua-
tion v, where the satisfaction relation “|=” is defined in the
standard way. Let V denote the set of all valuations over Φ.

We write |= ϕ to mean that ϕ is a tautology, i.e., is sat-
isfied by every valuation. We denote the fact that formulae
ϕ,ψ ∈ L are logically equivalent by ϕ ⇔ ψ; thus ϕ ⇔ ψ
means that |= ϕ ↔ ψ. Note that “⇔” is a meta-language re-
lation symbol, which should not be confused with the object-
language bi-conditional operator “↔”.
Agents, Goals, and Controlled Variables: The games we
consider are populated by a set Ag = {1, . . . , n} of agents
– the players of the game. Each agent is assumed to have a
goal, characterised by an L-formula: we write γi to denote
the goal of agent i ∈ Ag. Each agent i ∈ Ag controls a (pos-
sibly empty) subset Φi of the overall set of Boolean variables
(cf. [10]). By “control”, we mean that i has the unique ability

within the game to set the value (either " or ⊥) of each vari-
able p ∈ Φi. We will require that Φ1, . . . ,Φn forms a partition
of Φ, i.e., every variable is controlled by some agent and no
variable is controlled by more than one agent (Φi ∩ Φj = ∅
for i ,= j). Where i ∈ Ag, a choice for agent i is defined by
a function vi : Φi → B, i.e., an allocation of truth or falsity
to all the variables under i’s control. Let Vi denote the set of
choices for agent i. The intuitive interpretation we give to Vi
is that it defines the actions or strategies available to agent i;
the choices available to the agent.

An outcome, (v1, . . . , vn) ∈ V1 × · · · × Vn, is a collec-
tion of choices, one for each agent. Clearly, every outcome
uniquely defines a valuation, and we will often think of out-
comes as valuations, for example writing (v1, . . . , vn) |= ϕ to
mean that the valuation defined by the outcome (v1, . . . , vn)
satisfies formula ϕ ∈ L. Let ϕ(v1,...,vn) denote the formula
that uniquely characterises the outcome (v1, . . . , vn):

ϕ(v1,...,vn) =
∧

p∈Φ:

(v1,...,vn)|=p

p ∧
∧

q∈Φ:

(v1,...,vn)!|=q

¬q

Let succ(v1, . . . , vn) denote the set of agents who have their
goal achieved by outcome (v1, . . . , vn), i.e.,:

succ(v1, . . . , vn) = {i ∈ Ag | (v1, . . . , vn) |= γi}.

Costs: Intuitively, the actions available to agents correspond
to setting variables true or false. We assume that these actions
have costs, defined by a cost function c : Φ × B → R≥, so
that c(p, b) is the marginal cost of assigning the value b ∈ B
to variable p ∈ Φ.

This notion of a cost function represents an obvious gen-
eralisation of previous presentations of Boolean games: costs
were not considered in the original presentation of Boolean
games [5; 1], and while costs were introduced in [3], it was
assumed that only the action of setting a variable to " would
incur a cost. In fact, as we discuss in the parent paper, costs
are, in a technical sense, not required in our framework; we
can capture the key strategic issues at stake without them.
This is because we can “simulate” marginal costs with taxes.
However, it is natural from the point of view of modelling to
have costs for actions, and to think about costs as being im-
posed from within the game, and taxes, (defined below), as
being imposed from without.
Boolean Games: Collecting these components together, a
Boolean game, G, is a (2n + 3)-tuple:

G = 〈Ag,Φ, c, γ1, . . . , γn,Φ1, . . . ,Φn〉,

where Ag = {1, . . . , n} is a set of agents, Φ = {p, q, . . .} is
a finite set of Boolean variables, c : Φ × B → R≥ is a cost
function, γi ∈ L is the goal of agent i ∈ Ag, and Φ1, . . . ,Φn is
a partition of Φ over Ag, with the intended interpretation that
Φi is the set of Boolean variables under the unique control of
i ∈ Ag.

When playing a Boolean game, the primary aim of an agent
i will be to choose an assignment of values for the variables
Φi under its control so as to satisfy its goal γi. The difficulty
is that γi may contain variables controlled by other agents
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j ,= i, who will also be trying to choose values for their vari-
ables Φj so as to get their goals satisfied; and their goals in
turn may be dependent on the variables Φi. Note that if an
agent has multiple ways of gettings its goal achieved, then
it will prefer to choose one that minimises costs; and if an
agent cannot get its goal achieved, then it simply chooses to
minimise costs. These considerations are what give Boolean
games their strategic character. For the moment, we will post-
pone the formal definition of the utility functions and prefer-
ences associated with our games.

Example 1 Consider a simple example, to illustrate the gen-
eral setup of Boolean games and the problem we consider
in this paper. Suppose we have a game with two players,
Ag = {1, 2}. There are just three variables in the game: p, q
and r, i.e., Φ = {p, q, r}. Player 1 controls p (so Φ1 = {p}),
while player 2 controls q and r (i.e., Φ2 = {q, r}). All costs
are 0. Now, suppose the goal formulae γi for our players are
defined as follows:

γ1 = q
γ2 = q ∨ r

Notice that player 1 is completely dependent on player 2 for
the achievement of his goal, in the sense that, for player 1 to
have his goal achieved, player 2 must set q = ". However,
player 2 is not dependent on player 1: he is in the fortunate
position of being able to achieve his goal entirely through his
own actions, irrespective of what others do. He can either set
q = " or r = ", and his goal will be achieved. What will
the players do? Well, in this case, the game can be seen as
having a happy outcome: player 2 can set q = ", and both
agents will get their goal satisfied at no cost. Although we
have not yet formally defined the notion, we can informally
see that this outcome forms an equilibrium, in the sense that
neither player has any incentive to do anything else.

Now let us change the game a little. Suppose the cost for
player 2 of setting q = " is 10, while the cost of setting q = ⊥
is 0, and that all other costs in the game are 0. Here, although
player 2 can choose an action that satisfies the goal of player
1, he will not rationally choose it, because it is more expen-
sive. Player 2 would prefer to set r = " than to set q = ",
because this way he would get his goal achieved at no cost.
However, by doing so, player 1 is left without his goal being
satisfied, and with no way to satisfy his goal. Now, it could
be argued that the outcome here is socially undesirable, be-
cause it would be possible for both players to get their goal
achieved. Our idea in the present paper is to provide incen-
tives for player 2 so that he will choose the more socially
desirable outcome in which both players get their goal sat-
isfied. The incentives we study are in the form of taxes: we
tax player 2’s actions so that setting q = " is cheaper than
setting r = ", and so the socially desirable outcome results.
This might seem tough on player 2, but notice that he still gets
his goal achieved. And in fact, as we will see below, there are
limits to the kind of behaviour we can incentivise by taxes. In
a formal sense, to be defined below, there is nothing we can
do that would induce player 2 to set both q and r to ⊥, since
this would result in his goal being unsatisfied.

3 Designing Incentives

We can now describe in more detail the overall problem that
we consider in the remainder of the paper. Imagine a soci-
ety populated by agents Ag, with each agent i ∈ Ag having
a goal γi ∈ L and actions corresponding to valuations to Φi.
We assume an external principal has some goal Υ ∈ L that it
wants the society to achieve, and to this end, wants to incen-
tivise the agents Ag to act collectively so as to bring about Υ.
Incentives in our model are provided by taxation schemes.

Taxation Schemes: A taxation scheme defines additional
(imposed) costs on actions, over and above those given by
the marginal cost function c. While the cost function c is fixed
and immutable for any given Boolean game, the principal is
assumed to be at liberty to levy taxes as they see fit. Agents
will seek to minimise their overall costs, and so by assign-
ing different levels of taxation to different actions, the prin-
cipal can incentivise agents away from performing some ac-
tions and towards performing others; if the principal designs
the taxation scheme correctly, then agents are incentivised to
choose valuations (v1, . . . , vn) so as to satisfy Υ (i.e., so that
(v1, . . . , vn) |= Υ).

We model a taxation scheme as a function τ : Φ×B → R≥,
where the intended interpretation is that τ(p, b) is the tax
that would be levied on the agent controlling p if the value
b was assigned to the Boolean variable p. The total tax
paid by an agent i in choosing a valuation vi ∈ Vi will be∑

p∈Φi
τ(p, vi(p)).

We let τ0 denote the taxation scheme that applies no taxes
to any choice, i.e., ∀x ∈ Φ and b ∈ B, τ0(x, b) = 0. Let T (G)
denote the set of taxation schemes over G. We make one
technical assumption in what follows, relating to the space re-
quirements for taxation schemes in T (G). Unless otherwise
stated explicitly, we will assume that we are restricting our at-
tention to taxation schemes whose values can be represented
with a space requirement that is bounded by a polynomial in
the size of the game. This seems a reasonable requirement:
realistically, taxation schemes requiring space exponential in
the size of the game at hand could not be manipulated. It is
important to note that this requirement relates to the space re-
quirements for taxes, and not to the size of taxes themselves:
for a polynomial function f : N → N, the value 2f (n) can be
represented using only a polynomial number of bits (i.e., f (n)
bits).

Utilities and Preferences: One important assumption we
make is that while taxation schemes can influence the de-
cision making of rational agents, they cannot, ultimately,
change the goals of an agent. That is, if an agent has a chance
to achieve its goal, it will take it, no matter what the taxation
incentives are to do otherwise. To understand this point, and
to see formally how incentives work, we need to formally de-
fine the utility functions for agents, and for this we require
some further auxiliary definitions. First, with a slight abuse
of notation, we extend cost and taxation functions to partial
valuations as follows:
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ci(vi) =
∑

p∈Φi

c(p, vi(p))

τi(vi) =
∑

p∈Φi

τ(p, vi(p))

Next, let ve
i denote the most expensive possible course of ac-

tion for agent i:

ve
i ∈ argmax

vi∈Vi
(ci(vi) + τi(vi)).

Let µi denote the cost to i of its most expensive course of
action:

µi = ci(ve
i ) + τi(ve

i ).

Given these definitions, we define the utility to agent i of an
outcome (v1, . . . , vn), as follows:

ui(v1, . . . , vn) ={
1 + µi − (ci(vi) + τi(vi)) if (v1, . . . , vn) |= γi
−(ci(vi) + τi(vi)) otherwise.

Thus utility for agent i will range from 1 + µi (the best out-
come for i, where it gets its goal achieved by performing ac-
tions that have no tax or other cost) down to −µi (where i
does not get its goal achieved but makes its most expensive
choice). This definition has the following properties:

• an agent prefers all outcomes that satisfy its goal over all
those that do not satisfy it;

• between two outcomes that satisfy its goal, an agent
prefers the one that minimises total expense (= marginal
costs + taxes); and

• between two valuations that do not satisfy its goal, an
agent prefers to minimise total expense.

It is important to note that while utility functions provide
a convenient numeric representation of preference relations,
utility is not transferable in our settings.
Solution Concepts: Given this formal definition of util-
ity, we can define solution concepts in the standard game-
theoretic way [9]. In this paper, we focus on (pure) Nash
equilibrium. (Of course, other solution concepts, such as
dominant strategy equilibria, might also be considered, but
for simplicity, in this paper we focus on Nash equilibria.)
We say an outcome (v1, . . . , vi, . . . , vn) is a Nash equilib-
rium if for all agents i ∈ Ag, there is no v′i ∈ Vi such that
ui(v1, . . . , v′i , . . . , vn) > ui(v1, . . . , vi, . . . , vn). Let NE(G, τ)
denote the set of all Nash equilibria of the game G with taxa-
tion scheme τ .

Before proceeding, let us consider some properties of Nash
equilibrium outcomes. First, observe that an unsuccessful
agent will choose a least cost course of action in any Nash
equilibrium.
Proposition 1 Suppose (v∗1, . . . , v∗i , . . . , v∗n) ∈ NE(G, τ) is
such that i ,∈ succ(v∗1, . . . , v∗i , . . . , v∗n). Then

v∗i ∈ arg min
vi∈Vi

ci(vi) + τi(vi)

The following is an obvious decision problem:

NASH OUTCOME VERIFICATION:
Instance: Boolean game G, taxation scheme τ , and
outcome (v1, . . . , vn).
Question: Is (v1, . . . , vn) ∈ NE(G, τ)?

Proposition 2 NASH OUTCOME VERIFICATION is co-NP-
complete, even for two player games with τ = τ0 and where
c assigns no costs.

Incentive Design: We now come to the main problems that
we consider in the remainder of the paper. Suppose we have
an agent, which we will call the principal, who is external
to a game G. The principal is at liberty to impose taxation
schemes on the game G. It will not do this for no reason,
however: it does it because it wants to provide incentives for
the agents in G to choose certain collective outcomes. Specif-
ically, the principal wants to incentivise the players in G to
choose rationally a collective outcome that satisfies an objec-
tive, which is represented as a propositional formula Υ over
the variables Φ of G. We refer to this general problem – try-
ing to find a taxation scheme that will incentivise players to
choose rationally a collective outcome that satisfies a proposi-
tional formula Υ – as the implementation problem. It inherits
concepts from the theory of Nash implementation in mecha-
nism design [6], although our use of Boolean games, taxation
schemes, and propositional formulae to represent objectives
is quite different.

3.1 Weak Implementation
Let WI(G,Υ) denote the set of taxation schemes over G that
satisfy a propositional objective Υ in at least one Nash equi-
librium outcome:

WI(G,Υ) =
{τ ∈ T (G) | ∃(v1, . . . , vn) ∈ NE(G, τ) s.t. (v1, . . . , vn) |= Υ}.

Given this definition, we can state the first basic decision
problem that we consider in the remainder of the paper:

WEAK IMPLEMENTATION:
Instance: Boolean game G and objective Υ ∈ L.
Question: Is it the case that WI(G,Υ) ,= ∅?

If the answer to the WEAK IMPLEMENTATION problem
(G,Υ) is “yes”, then we say that Υ can be weakly imple-
mented in Nash equilibrium (or simply: Υ can be weakly im-
plemented in G). Let us see an example.

Example 2 Define a game G as follows: Ag = {1, 2},
Φ = {p1, p2}, Φi = {pi}, γ1 = p1, γ2 = ¬p1 ∧ ¬p2,
c(p1, b) = 0 for all b ∈ B, while c(p2,") = 1 and
c(p2,⊥) = 0. Define an objective Υ = p1 ∧ p2. Now, with-
out any taxes (i.e., with taxation scheme τ0), there is a single
Nash equilibrium, (v∗1, v∗2), which satisfies p1 ∧ ¬p2. Agent 1
gets its goal achieved, while agent 2 does not; and moreover
(v∗1, v∗2) ,|= Υ. However, if we adjust τ so that τ(p2,⊥) = 10,
then we find a Nash equilibrium outcome (v′1, v′2) such that
(v′1, v′2) |= p1 ∧ p2, i.e., (v′1, v′2) |= Υ. Here, agent 2 is
not able to get its goal achieved, but it can, nevertheless,
be incentivised by taxation to make a choice that ensures the
achievement of the objective Υ.
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So, what objectives Υ can be weakly implemented? At first
sight, it might appear that the satisfiability of Υ is a sufficient
condition for implementability. Consider the following naive
approach for constructing taxation schemes with the aim of
implementing satisfiable objectives Υ:

Find a valuation v such that v |= Υ (such a valua-
tion will exist since Υ is satisfiable). Then define a
taxation scheme τ such that τ(p, b) = 0 if b = v(p)
and τ(p, b) = k otherwise, where k is an astronom-
ically large number.

Thus, the idea is simply to make all choices other than select-
ing an outcome that satisfies Υ too expensive to be rational.
In fact, this approach does not work, because of an important
subtlety of the definition of utility. In designing a taxation
scheme, the principal can perturb an agent’s choices between
different valuations, but it cannot perturb them in such a way
that an agent would prefer an outcome that does not satisfy
it’s goal over an outcome that does. We have:
Proposition 3 There exist instances of the WEAK IMPLE-
MENTATION problem with satisfiable objectives Υ that can-
not be weakly implemented.
What about tautologous objectives, i.e., objectives Υ such
that Υ ⇔ "? Again, we might be tempted to assume that
tautologies are trivially implementable. This is not in fact the
case, however, as it may be that NE(G, τ) = ∅ for all taxation
schemes τ :
Proposition 4 There exist instances of the WEAK IMPLE-
MENTATION problem with tautologous objectives Υ that can-
not be implemented.
Tautologous objectives might appear to be of little interest,
but we argue that this is not the case. Suppose we have a
game G such that NE(G, τ0) = ∅. Then, in its unmodified
condition, this game is unstable: it has no equilibria. Thus,
we will refer to the problem of implementing " (= checking
for the existence of a taxation scheme that would ensure at
least one Nash equilibrium outcome), as the STABILISATION
problem. The following example illustrates STABILISATION.
Example 3 Let Ag = {1, 2, 3}, with ϕ = {p, q, r}, Φ1 =
{p}, Φ2 = {q}, Φ3 = {r}, γ1 = ", γ2 = (q∧¬p)∨(q ↔ r),
γ3 = (r ∧ ¬p) ∨ ¬(q ↔ r), c(p,") = 0, c(p,⊥) = 1,
and all other costs are 0. For any outcome in which p =
⊥, agent 1 would prefer to set p = ", so no such outcome
can be stable. So, consider outcomes (v1, v2, v3) in which
p = ". Here if (v1, v2, v3) |= q ↔ r then agent 3 would
prefer to deviate, while if (v1, v2, v3) ,|= q ↔ r then agent
2 would prefer to deviate. Now, consider a taxation scheme
with τ(p,") = 10 and τ(p,⊥) = 0 and all other taxes are
0. With this scheme, the outcome in which all variables are
set to ⊥ is a Nash equilibrium. Hence this taxation scheme
stabilises the system.
Returning to the weak implementation problem, we can de-
rive a sufficient condition for weak implementation, as fol-
lows.
Proposition 5 For all games G and objectives Υ, if the for-
mula Υ′ is satisfiable:

Υ′ = Υ ∧
∧

i∈Ag

γi

then WI(G,Υ) ,= ∅.
We know from [1] that the problem of checking for the ex-
istence of pure strategy Nash equilibria in cost-free Boolean
games is Σp

2-complete. It turns out that the IMPLEMENTA-
TION problem is no harder:
Proposition 6 The STABILISATION problem is Σp

2-complete,
even if taxes are 0-bounded. As a consequence, the WEAK
IMPLEMENTATION problem is also Σp

2-complete.

3.2 (Strong) Implementation
The fact that WI(G,Υ) ,= ∅ is good news of a kind – it tells
us that we can impose a taxation scheme such that at least
one rational (NE) outcome of the game satisfies Υ. However,
it could be that there are many taxation schemes, and only
one of them satisfies Υ. This motivates us to consider the
strong implementation (or simply implementation) problem.
Strong implementation corresponds closely to the notion of
Nash implementation in the mechanism design literature [6].
Let SI(G,Υ) denote the set of taxation schemes τ over G
such that:

1. G, τ has at least one Nash equilibrium outcome;
2. all Nash equilibrium outcomes of G, τ satisfy Υ.

Formally:

SI(G,Υ) =
{τ ∈ T (G) |

NE(G, τ) ,= ∅ &
∀(v1, . . . , vn) ∈ NE(G, τ) : (v1, . . . , vn) |= Υ}.

.

This gives us the following decision problem:
IMPLEMENTATION:
Instance: Boolean game G and objective Υ ∈ L.
Question: Is it the case that SI(G,Υ) ,= ∅?

It turns out that strong implementation is no harder than weak
implementation:
Proposition 7 IMPLEMENTATION is Σp

2-complete.

4 Desirable Properties of Taxation Schemes
We saw above that one simple approach to designing taxation
schemes is simply to apply punatively high taxes to all un-
desirable actions, effectively leaving players no choice but to
comply with the desires of the principal. Even allowing for
the key fact that, as we noted earlier, we cannot completely
control a player’s preferences using this approach (because
a player would always prefer to get their goal achieved than
not, however high taxes are set), this does not seem an intu-
itively sensible approach in practice, because arbitrarily high
taxes are ineffecient if a player ends up paying more than they
strictly need to. So, the overall goal of the principal is to de-
sign taxation schemes so as to bring about the objective Υ,
and thus the first measure of whether a taxation scheme τ
succeeds will be whether it implements Υ; but we can surely
think of many secondary criteria through which the desirabil-
ity or otherwise of a taxation scheme to implement Υ can be
evaluated. In the parent paper we investigate a number of
different such criteria. Here, we will focus on just two.
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The first idea we have is to design a taxation scheme that
implements Υ while imposing the lowest possible tax bur-
den on society. Broadly, we can think of this approach as
minimising the degree of intervention of the principal in the
operation of society. The function tb(· · ·) gives the total tax
burden of an outcome:

tb(v1, . . . , vn) =
∑

i∈Ag

τ(vi).

The optimal taxation scheme τ∗ then satisfies:

τ∗ ∈ argminτ∈SI(G,Υ)

max{tb(v1, . . . , vn) | (v1, . . . , vn) ∈ NE(G, τ)}
It is easy to construct examples showing that minimising

the total tax burden may result in socially undesirable out-
comes; but such “least intervention” approaches are of course
very popular in human societies.

Another desirable property of taxation schemes is that
they should treat those in similar circumstances broadly
the same. In the literature on taxation, this is known as
horizontal equity [2]. One could formalise this notion in
several different ways for our model, but we will focus on
the following idea. In any outcome, we have two “classes”
of agents: those that get their goal achieved and those that do
not. Thus, when looking at the differences in taxes paid, we
only compare the taxes of agents that get their goal achieved
against other agents that get their goal achieved, and we only
compare agents that do not get their goal achieved against
other agents that do not get their goal achieved. The function
he(· · ·) denotes the maximum difference in tax paid between
agents in the same equivalence class:

he(v1, . . . , vn) = max
{abs(τi(vi)− τj(vj)) | {i, j} ⊆ Ag & (v1, . . . , vn) |= γi ∧ γj}

∪
{abs(τi(vi)− τj(vj)) | {i, j} ⊆ Ag & (v1, . . . , vn) |= ¬(γi ∨ γj)}

Then τ∗ will denote an outcome that maximises horizontal
equity (i.e., minimises the difference in taxes paid by agents
in the same circumstances).

τ∗ ∈ argminτ∈SI(G,Υ)

max{he(v1, . . . , vn) | (v1, . . . , vn) ∈ NE(G, τ)}

5 Conclusions & Future Work
We have studied the use of taxation schemes to incentivise
behaviours in Boolean games. We showed how a principal
can perturb the preferences of agents in a Boolean game by
imposing a taxation scheme, and in so doing, how it can, in
certain circumstances, incentivise agents to choose outcomes
to satisfy some social objective Υ, represented as a Boolean
formula. However, we saw that while an agent’s preferences
can be perturbed, they are not completely malleable: no mat-
ter what the taxation scheme, an agent would always prefer
to get its goal achieved than otherwise. This means there are
limits on the extent to which preferences can be perturbed
by taxation, and hence limits on what objectives Υ can be
achieved. We studied a number of issues around the problem
of implementing objectives Υ via taxation schemes, and also
discussed the notion of equitable taxation.

Our focus in the present paper has not been on the design
of incentive compatible mechanisms, and in this respect, our
work differs from the large body of work on computational
and algorithmic mechanism design [8; 4; 7]. Of course, this is
not to say that incentive compatibility is not important; we are
simply focussing on scenarios in which the true preferences
of agents are already known and where we want to incen-
tivise these agents to realise a range of social objectives that
can be expressed in terms of a Boolean formula. We believe
the results of the present paper strongly indicate that there are
important and interesting theoretical and practical questions
relating to non-incentive compatible taxation schemes. Fu-
ture work might consider: a characterisation of the conditions
under which an objective Υ can be implemented in a game
G; consideration of the computation of taxation schemes τ
for objectives Υ; and the use of taxation schemes to incen-
tivise behaviour in other settings, beyond Boolean games.
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