
Iterated Boolean Games

Julian Gutierrez and Paul Harrenstein and Michael Wooldridge
Department of Computer Science

University of Oxford

Abstract
Iterated games are well-known in the game theory
literature. We study iterated Boolean games. These
are games in which players repeatedly choose truth
values for Boolean variables they have control over.
Our model of iterated Boolean games assumes that
players have goals given by formulae of Linear
Temporal Logic (LTL), a formalism for expressing
properties of state sequences. In order to model the
strategies that players use in such games, we use a
finite state machine model. After introducing and
formally defining iterated Boolean games, we in-
vestigate the computational complexity of their as-
sociated game-theoretic decision problems as well
as semantic conditions characterising classes of
LTL properties that are preserved by pure strategy
Nash equilibria whenever they exist.

1 Introduction
Playing a game more than once against the same opponent
can have a dramatic effect on which outcomes of the game
can be sustained as equilibria [Osborne and Rubinstein, 1994,
pp.133–161]. To take a classic example in the literature, in
the one-shot Prisoner’s Dilemma there is a unique pure Nash
equilibrium in which both players defect, leading to payoffs
that are worse for both players than the payoffs they would
have obtained had they cooperated. However, cooperation
cannot be ensured in the one-shot Prisoner’s Dilemma. If,
instead, the same players repeatedly meet each other then co-
operation can be sustained—leading to equilibria (outcomes)
which can be better than those of the one-shot version of the
game. Cooperation is rationally sustainable because the play-
ers will meet in the future, and will thereby have the opportu-
nity to punish each other for non-cooperation.

We study iterated versions of Boolean games. The basic
idea of a Boolean game [Harrenstein et al., 2001] is that each
player i is associated with a goal, represented as a logical for-
mula �i, and player i’s main purpose is to ensure that �i is sat-
isfied. The strategies and choices for each player i are defined
with respect to a set of Boolean variables �i, drawn from an
overall set of variables �. Player i is assumed to have unique
control over variables �i, in that it can assign truth values to
these variables in any way it chooses. Strategic concerns arise

in Boolean games as the satisfaction of player i’s goal �i can
depend on the variables controlled by other players.

In the version of Boolean games that we study, it is as-
sumed that players interact over an infinite series of rounds,
where at each round each player makes an assignment to
the variables under its control. Goals are expressed as for-
mulae of Linear Temporal Logic (LTL), a well-known for-
malism for expressing properties of distributed and con-
current systems [Emerson, 1990; Manna and Pnueli, 1992;
1995]. Formulae of LTL are essentially predicates over infi-
nite sequences of states. Thus, whether a player’s goal is or is
not satisfied may depend not just on how players act on one
round, but how they act in all future rounds.

Players in Boolean games can be understood as non-
deterministic computer programs, and the model thus has
great relevance to multi-agent systems research. As players
can model programs, building strategies in Boolean games
corresponds to synthesising computer systems from their log-
ical specifications, for instance as the modules for control and
synchronisation of concurrent processes [Kupferman et al.,
2000; Vardi, 2008; Pnueli and Rosner, 1988].

The paper contains three main contributions. Firstly, it
formalises iterated Boolean games. Moreover, it provides
a finite state machine representation (an operational model)
along with a temporal logic theory (a denotational model) for
the strategies and players. This dual operational/denotational
model for iterated Boolean games allows us to investi-
gate computational properties regarding the games, such as
whether a collection of strategies forms a Nash equilibrium.

Secondly, we study the complexity of various decision
problems. Model checking for iterated Boolean games is in
PSPACE and thus no harder than model checking for LTL
[Sistla and Clarke, 1985]. Synthesis is 2EXPTIME-complete,
matching the complexity of synthesis for ‘rational systems’
[Fisman et al., 2010]. Moreover, checking whether a strategy
profile is a pure Nash equilibrium and whether a game has at
least one pure Nash equilibrium are complete problems for
PSPACE and 2EXPTIME, respectively.

Thirdly, we give Folk Theorems for iterated Boolean
games. These theorems provide semantic characterisations
of LTL properties that are satisfied in equilibrium outcomes.
Some of these Folk Theorems completely characterise games
for which some questions can be answered more efficiently;
in particular, synthesis can be done in PSPACE.

Proceedings	
�   of	
�   the	
�   Twenty-Third	
�   International	
�   Joint	
�   Conference	
�   on	
�   Artificial	
�   Intelligence

932

Related work Equilibria in Boolean games have been stud-
ied before (e.g., [Dunne et al., 2008; Bonzon et al., 2009;
Grant et al., 2011]) but, to our knowledge, not in models
where the players are assumed to interact for an infinite num-
ber of rounds, which is the setting our results pertain to.

However, there are many games in the computer science
literature where the plays have infinite length; see, e.g., [Chat-
terjee and Henzinger, 2012; Grädel and Ummels, 2008] for
surveys on the topic. These games are most usually played by
two players (together with a hostile environment) who display
independent, distributed, and concurrent behaviour. In our
setting, we are interested in situations where there are multi-
ple players who do not necessarily have opposing objectives:
in fact cooperation is a desirable behaviour in our setting.

Folk Theorems for other games are mostly found in the
game theory literature rather than in computer science or
multi-agent systems research. Yet there are a few excep-
tions. In [Fisman et al., 2010] a similar question is asked
for a problem—rational synthesis—that is essentially one of
the decision problems for iterated Boolean games. Other
results on synthesis can be found too, see, e.g., [Chatter-
jee et al., 2008; Ummels, 2006; Lustig and Vardi, 2009;
Kupferman et al., 2000]. In most of this literature the em-
phasis is on the question of whether a particular LTL formula
can be synthesised. With the Folk Theorems, on the other
hand, the focus is on semantic representations of complete
classes of properties (LTL properties in this case) which can
be rationally sustained—and hence possibly synthesised.

2 Preliminaries
Let � = {p, q, . . .} be a (finite, fixed, non-empty) set of
Boolean variables and L0 the set of formulae of classical
propositional logic constructed over �. A valuation v is a
subset of variables, that is, v ✓ �, where it is understood
that v assigns truth to all the variables it contains and falsity
to the others. Let V be the set of valuations for �. For formu-
lae ' 2 L0 we use v |= ' to indicate that v satisfies '.

Linear Temporal Logic (LTL): LTL extends classical
propositional logic with modal tense operators X (“next”),
F (“eventually”), G (“always”), and U (“until”), which can
be used for expressing properties of sequences. We take X
and U as our atomic operators, and define the remaining LTL
connectives based on these. The syntax of LTL is defined
with respect to a set � of Boolean variables as follows:

' ::= > | p | ¬' | ' _ ' | X' | 'U'

where p 2 �. The remaining classical and LTL connectives
are then defined in the standard way; in particular, we have
F' = >U', and G' = ¬F¬'. Given a set of vari-
ables , let L() be the set of LTL formulae over .

A core concept in the semantics for LTL is that of a run.
A run ⇢ : N ! V is a function that assigns a valuation ⇢[t] to
every time point t 2 N, indicating which Boolean variables
are true at time t.1 We interpret formulae of LTL with respect

1We use square brackets for parameters referring to time points.

to pairs (⇢, t), where ⇢ is a run and t 2 N is a temporal index
into ⇢. Formally, the semantics of LTL formulae is as follows:

(⇢, t) |= >
(⇢, t) |= p iff p 2 ⇢[t]
(⇢, t) |= ¬' iff it is not the case that (⇢, t) |= '
(⇢, t) |= ' _ iff (⇢, t) |= ' or (⇢, t) |=
(⇢, t) |= X' iff (⇢, t + 1) |= '
(⇢, t) |= 'U iff for some t0 � t : ((⇢, t0) |= and

for all t t00 < t0: (⇢, t00) |= ').

If (⇢, 0) |= ', we also write ⇢ |= ' and say that ⇢ satisfies '.
We say that ' and are equivalent if for all runs ⇢ we have
⇢ |= ' if and only if ⇢ |= . An LTL formula ' 2 L is
satisfiable if there is some run satisfying '.

3 The game model
Variables, Control, and Choices: Each player i controls
a (possibly empty) subset �i of the overall set of Boolean
variables. That is, player i has the unique ability to choose
the value (either true or false) of each variable p 2 �i at
each round of the game. A choice for agent i 2 N is a sub-
set vi of the propositional variables under his control, i.e.,
vi ✓ �i. At every round of the game, each player makes
such a choice. Let Vi be the set of choices for agent i. A
choice vector~v is a collection of choices, one for each player,
that is, ~v = (v1, . . . , vn). A choice vector uniquely defines
an overall valuation for �, and vice versa. We will gener-
ally abuse notation by treating choice vectors as valuations
and valuations as choice vectors. Every choice vi and every
choice vector ~v is associated with a characterising formula
��i

vi
=

V
p2�i\vi

p ^
V

p2�i\v ¬p and ��
~v =

V
i2N �

�
vi

.Thus,
~v |= ��

~w if and only if ~v \ � = ~w \ �. We will omit the
superscripts whenever � and �i are clear from the context.

Iterated Boolean Games: An Iterated Boolean Game
(hereafter sometimes just called a “game”) is a structure:

G = (N,�,�1, . . . ,�n, �1, . . . , �n)

where N = {1, . . . , n} is a set of players, � = {p, q, . . .} is a
finite set of Boolean variables2, �i ✓ � is the set of Boolean
variables under the unique control of player i, and �i 2 L is
the LTL goal of player i.

There is one requirement on these structures: the sets of
Boolean variables�1, . . . ,�n must form a partition of�, that
is, �i \ �j = ; for all i 6= j 2 N and � = �1 [· · · [�n.

The outcomes of a game are given by the runs ⇢ 2 R. Each
player i is associated with a strict preference relation �i over
the runs. Every relation �i is binary in the sense that player i
strictly prefers runs that satisfy its goal �i over runs that do
not and is indifferent otherwise, that is, for all runs ⇢ and ⇢0,

⇢ �i ⇢
0 if and only if both ⇢ |= �i and ⇢0 6|= �i.

Moreover, ⇢ %i ⇢0 means that it is not the case that ⇢0 �i ⇢.
2Arbitrary finite domains can be represented by Boolean

domains—viz., as finite numbers are represented by binary ones.

933

Strategies: In a one-shot Boolean game, a strategy for a
player i is simply a single choice vi 2 Vi. This is, of
course, not the case for iterated Boolean games. In iter-
ated Boolean games, a strategy for player i is a function that
makes a choice in each round of the game on the basis of
the history of the game to date. Formally, we can under-
stand such strategies as functions fi : V⇤ ! Vi, where V⇤

denotes the set of finite sequences over V . In order to study
computational problems for games, it is desirable to have
a finite representation for strategies: here we model strate-
gies as deterministic finite state machines. Such representa-
tions are widely used to study repeated games in the game
theory literature [Osborne and Rubinstein, 1994, p.140–143]
and are of course very natural from a computational point of
view. Formally, a machine strategy �i for player i in a game
G = (N,�,�1, . . . ,�n, �1, . . . , �n) is given by a structure:

�i = (Qi, q0i , �i, ⌧i)

where Qi is a finite, non-empty set of states, q0i is the initial
state, �i : Qi ⇥ V ! Qi is a state transition function, and
⌧i : Qi ! Vi is a choice function. Let ⌃i denote the class
of strategies for player i. It is implicit above that �i is a total
function, and so, for any given state q 2 Qi we must have
�i(q, v) defined for all 2|�| valuations v 2 V , resulting in ma-
chine strategies of size exponential in |�|.

To obtain a more compact representation, we may allow the
transition function �i to be a partial function. Such a partial
strategy �i = (Qi, q0i , �i, ⌧i) then represents the (complete)
strategy �0 = (Qi [{qd

i }, q0i , �0, ⌧ 0i), where qd
i is an additional

“default state” to which �0 in state q and valuation ~v maps, in
case �(q, v) is undefined. Moreover, ⌧ 0(qd

i) = ;. This will
relieve us of the need to explicitly define �i(q, v) for every v:
we only need to define �i(q, v) for the valuations v of interest.

A strategy profile ~� is an n-tuple of strategies, one for
each player i, that is, ~� = (�1, . . . ,�n). For S ✓ N, de-
fine (~��S,~�

0
S) as the strategy profile ~�00 such that �00

i = �i if
i /2 S and �00

i = �0
i otherwise. If S = {i} we omit the curly

braces and write (~��i,�
0
i) rather than (~��{i},�

0
{i}).

Because strategies are deterministic, each ~� induces a
unique run, denoted by ⇢(~�). To define ⇢(~�), we need some
notation. First, a state vector of a strategy profile is a tuple
~q = (q1, . . . , qn), where, for all i 2 N, we have qi 2 Qi.
With each point of time t we associate both a state vector de-
noted by ~q[t] = (q1[t], . . . , qn[t]) and an outcome denoted by
~v[t] = (v1[t], . . . , vn[t]). The history h(~�) of ~� is an infinite
sequence of interleaved state vectors and outcomes:

h(~�) = ~q[0]
~v[0]��! ~q[1]

~v[1]��! · · ·
where:

~q[0] = (q0
1, . . . , q0

n)

~v[0] = (⌧1(q01), . . . , ⌧n(q0n)),
and for all t 2 N such that t > 0 we have:
~q[t] = (�1(q1[t � 1],~v[t � 1]), . . . , �n(qn[t � 1],~v[t � 1]))

~v[t] = (⌧1(q1[t]), . . . , ⌧n(qn[t]))

Note that machine strategies provide an operational model
for the behaviour/interactions of the players in a game. The

following lemma will prove very useful and is a consequence
of standard expressivity results (see, e.g. [Thomas, 1990;
Diekert and Gastin, 2008]) for LTL with respect to languages
accepted by deterministic !-automata.

Lemma 1 For every satisfiable LTL formula ' there is a
strategy profile ~� = (�1, . . . ,�n) such that ⇢(~�) |= '.

As LTL can express every finite star-free !-regular lan-
guage and a run ⇢(~�) for a strategy profile ~� can be seen as an
!-regular word over the valuations V over �, it can readily be
appreciated that for every strategy profile ~� there is an LTL
formula '(~�) such that for all runs ⇢,

⇢ |= '(~�) if and only if ⇢ = ⇢(~�).

Then, the LTL formula '(~�) exactly characterises the unique
run ⇢(~�) induced by the strategy profile ~� (the formula '(~�)
holds on ⇢(~�) and only on ⇢(~�)). The formula'(~�), however,
may be exponential in the size of ~�. We thus also have a
lemma which ensures that every run ⇢(~�) is characterised by
an LTL formula that is polynomial in the size of ~�.

For each player i and each state qi 2 Qi introduce a new
(“fresh”) Boolean variable which, assuming �,Q1, . . . ,Qn to
be pairwise disjoint, we will also denote by qi. Moreover, we
use Q = Q1 [· · · [Qn to refer to the entire set of these new
variables. For every player i and every (complete) strategy �i
we define an LTL formula th(�i) 2 L(� [Q) as follows:

th(�i) = INIT(�i) ^ TRANS(�i) ^ INVAR(�i) ^ VAL(�i)

where,

INIT(�i) = q0i ,

TRANS(�i) = G
^

�i(qi,~v)=q0i

�
(��

~v ^ qi) ! X q0i
�

,

INVAR(�i) = G
_

qi2Qi

0

@qi ^
^

q0i 6=qi

¬q0i

1

A ,

VAL(�i) = G
^

qi2Qi

⇣
qi ! ��

⌧(qi)

⌘
.

Let furthermore TH(~�) =
V

i2N th(�i) for strategy pro-
files ~� = (�1, . . . ,�n). Observe that th(�i) is polynomial
in the size of �i; for partial strategies a similar formula can
be defined, still polynomial in size. Intuitively, th(�i) is the
LTL theory of strategy �i: the property INIT(�i) encodes the
initial state q0i , TRANS(�i) encodes the transition relation �i,
INVAR(�i) ensures that the strategy is in exactly one state at
any given time, while VAL(�i) encodes the choice function ⌧i.
Thus, th(�i) provides a denotational model for �i with respect
to the semantics of LTL. In particular, for all ⇢ : N ! 2�[Q

satisfying TH(~�) it holds that ⇢[t]\� = ⇢(~�)[t] for all t 2 N,
i.e., the run ⇢ restricted to � coincides with ⇢(~�).

Formulae of the form th(�i)—which characterise the play-
ers’ behaviour—are satisfiable, as shown next.
Lemma 2 Let ~� = (�1, . . . ,�i) be a strategy profile and let
S ✓ N. Then,

V
i2S th(�i) is satisfiable.

Based on the same construction, the following lemma holds.

934

Lemma 3 Let ~� be a strategy profile in the game

G = (N,�,�1, . . . ,�n, �1, . . . , �n) .

Then, for all S ✓ N and all ' 2 L(�), we have that
^

i2S

th(�i) ^ ' is satisfiable implies ⇢(~�0
�S,~�S) |= ' for some ~�0.

Nash Equilibrium: Let us now define the well-known no-
tion of (pure strategy) Nash equilibrium for iterated Boolean
games, which will allow us—in the next section—to ask dif-
ferent computational questions about these games. A strategy
profile ~� is defined to be a (pure strategy) Nash equilibrium
if for all players i 2 N and for all strategies �0

i 2 ⌃i we have

⇢(~�) %i ⇢(~��i,�
0
i).

Let NE(G) denote the set of Nash equilibria of game G.
Due to the binary character of the players’ preferences,

our definition implies that the strategy profile ~� is a Nash
equilibrium if every player whose goal is not satisfied by the
run ⇢(~�) cannot unilaterally deviate and get its goal achieved.
Observation 4 Strategy profile ~� is a (pure strategy) Nash
equilibrium if and only if for every player i 2 N,

either ⇢(~�) |= �i or for all �0
i 2 ⌃i: ⇢(~��i,�

0
i) 6|= �i.

4 Complexity
We now consider the computational complexity of problems
relating to Nash equilibria in iterated Boolean games. We first
establish an upper bound on the complexity of a problem that
underpins many of others that we will study later on:

Given: Game G, profile ~�, and LTL formula '.
MODEL CHECKING: Is it the case that ⇢(~�) |= '?

This problem is not quite the same as the “standard” LTL
model checking problem, which is known to be PSPACE-
complete (“truth in an R-structure” [Sistla and Clarke, 1985,
p.741]), and so we need to establish the upper bound.
Proposition 5 MODEL CHECKING is in PSPACE.

Proof sketch: We reduce MODEL CHECKING to LTL satisfi-
ability checking, which is known to be in PSPACE [Sistla and
Clarke, 1985]. Let ' 2 L(�). To check whether ⇢(~�) |= ',
we simply ask whether TH(~�) ^ ' is satisfiable. Recall that
the size of TH(~�) is polynomial in the size of ~�. It suffices to
show that, TH(~�) ^ ' is satisfiable if and only if ⇢(~�) |= '.
The implication from left to right is immediate by Lemma 3
(for S = N). For the opposite direction, by Lemma 2, we have
⇢(~�0) |= TH(~�) for some ~�0. Lemma 3 then yields ⇢(~�0) |= '
and the result follows.

With this result in place, we can move on to consider
problems specifically related to equilibria in iterated Boolean
games. First, consider the following problem:

Given: Game G, strategy profile ~�.
MEMBERSHIP: Is it the case that ~� 2 NE(G)?

Using Observation 4, and the construction th(�i) for strate-
gies �i—the denotational model for machine strategies—that
was given before, we have the following result.

Proposition 6 MEMBERSHIP is PSPACE-complete.

Proof sketch: We give an algorithm that is in PSPACE and
solves MEMBERSHIP for iterated Boolean games:
1. for i := 1 to n do
2. if ⇢(~�) 6|= �i then
3. if �i ^

V
j2N\{i} th(�j) is satisfiable then

4. return “no”
5. end-if
6. end-if
7. end-for
8. return “yes”
Because of Proposition 5, we know that line (2) can be solved
using a PSPACE oracle for MODEL CHECKING; moreover,
line (3) uses a PSPACE oracle for satisfiability.

The algorithm checks whether there is some player i such
that ⇢(~�) 6|= �i and �i ^

V
j2N\{i} th(�j) is satisfiable. It out-

puts “no” if this is the case and “yes,” otherwise. Soundness
follows immediately from Lemma 3 and Observation 4.

For hardness, reduce LTL satisfiability to MEMBERSHIP.
Let ' be an LTL formula in L(�) and let ⇢0 be the run
such that ⇢0[t] = ; for all t 2 N. Without loss of gener-
ality, we may assume that ⇢0 6|= '. Define G as the one-
player iterated Boolean game in which player i has ' as goal.
Let �i = (Qi, q0i , �i, ⌧i) be the partial machine strategy with
Qi = {q0

i } and �i = ⌧i = ;. Thus, ⇢(�i) = ⇢0 and ⇢(�i) 6|= '.
Clearly, �i is polynomial in the size of '. It can now readily
be appreciated that ' is satisfiable if and only if �i /2 NE(G).
As PSPACE is closed under complement, the result follows.
Thus, checking membership is no more complex than LTL
model checking. However, other apparently closely related
problems turn out to be much harder. Consider the following:

Given: Game G, LTL formula ' 2 L.
E-NASH: Does 9~� 2 NE(G). ⇢(~�) |= ' hold?
Given: Game G, LTL formula ' 2 L.
A-NASH: Does 8~� 2 NE(G). ⇢(~�) |= ' hold?
Given: Game G.
NON-EMPTINESS: Is it the case that NE(G) 6= ;?

E-NASH is basically the rational synthesis problem for
pure Nash equilibrium as first analysed by Fisman et al,
whose complexity is 2EXPTIME-complete (Theorem 2 in
Fisman et al [Fisman et al., 2010])3. Since 2EXPTIME is
a deterministic complexity class, 2EXPTIME-completeness
of A-NASH immediately follows as a corollary.
Proposition 7 ([Fisman et al., 2010]) Both A-NASH and E-
NASH are 2EXPTIME-complete.

We can now show that NON-EMPTINESS is also complete
for 2EXPTIME. For membership we ask whether (G,>) is
accepted as an instance of E-NASH; for hardness we reduce
the LTL realizability problem [Pnueli and Rosner, 1989b],
which is known to be 2EXPTIME-complete.
Proposition 8 NON-EMPTINESS is 2EXPTIME-complete.

3Although we consider machine strategies rather than strategies
as functions between partial plays, our strategy model is known to
be sufficiently powerful for LTL goals [Pnueli and Rosner, 1989a].

935

5 Folk Theorems
In game theory much of the interest in iterated games derives
from the Nash Folk Theorems [Osborne and Rubinstein, 1994,
p.143]. These theorems tell us that the range of outcomes that
can be sustained as equilibria in iterated games is much wider
than one might at first suspect from the component game.
Their usual form is that the set of all feasible and individu-
ally rational payoff vectors are achievable as Nash equilibria
in iterated games; the definitions of feasibility and individual
rationality depend on the precise setting considered.

To take a famous example, the Nash Folk Theorems tell
us that cooperation can be sustained in the iterated Prisoner’s
Dilemma. The standard device for proving Folk Theorems is
a trigger strategy [Osborne and Rubinstein, 1994, p.143]. A
trigger strategy intended to obtain a particular outcome works
by punishing any player who deviates from behaviour leading
to the intended outcome: no player can benefit from devia-
tion, as this would result in punishment by all other players.
The desired outcome is thereby obtained as an equilibrium.

It seems very natural, therefore, to consider Folk Theorems
in the context of our iterated Boolean games. Given our in-
terest in using LTL to express properties of equilibria, we can
formulate the question of which equilibria can be sustained in
an iterated Boolean game in the following way:

Which LTL properties are preserved by the Nash
equilibria of a given iterated Boolean game?

This question is closely related to the rational synthesis
problem proposed by [Fisman et al., 2010], and here for-
malised in the E-NASH problem. However, the rational syn-
thesis problem, in effect, pertains to particular LTL proper-
ties being realised in some Nash equilibrium, while our con-
cern is rather with characterising the set of LTL formulae that
can be satisfied in equilibria of iterated Boolean games.

In this section, we show that the concepts and techniques
used to prove the Nash Folk Theorems can be adapted to our
setting. In particular, for games in which players have safety
goals (of the form G'), we use a punishment strategy con-
struction, similar in spirit to that used to prove the Nash Folk
Theorems, to characterise precisely the circumstances under
which arbitrary LTL formulae are satisfied in some equilib-
rium of an iterated Boolean game.

To be able to use such a construction, we need to be able
to define for our setting some counterpart of the notion of a
feasible and individually rational payoff for each player. In
game theory, a payoff is individually rational and feasible if it
could be enforced by the set of all other players in the game.
In our setting, players have goals, rather than payoffs, and so
we need to formulate the concept with respect to whether a
player’s goal can be falsified by the set of all other players.

Punishable players and goals A player i, with goal �i, is
punishable if (at any point of time) i’s opponents can jointly
find values for the propositional variables under their control
that guarantee �i to be false no matter which values i chooses
for its variables. Nash Folk Theorems may hold only if all
players, at all times, are punishable. This is indeed the case
for games with certain kinds of goals, which we define next.

We say a goal �i is non-trivial if both �i and ¬�i are satisfiable
(i.e., �i is neither a tautology nor a contradiction in LTL).
We say �i is a safety goal when �i = G'i for some LTL
formula 'i. When 'i is a propositional formula we say that
�i is a propositional safety goal. Folk theorems for iterated
Boolean games with safety goals are presented next.

Propositional Safety Goals Let punishable(i) be a predi-
cate that formalises when player i is punishable, that is if a
trigger strategy can be constructed against i. For games with
propositional safety goals the predicate punishable(i) reduces
to:

W
v�i2V�i

V
v0i 2Vi

�
�(v�i,v0i) ! ¬'i

�
is valid, for a proposi-

tional safety goal �i = G'i. We say that a player i of an
iterated game is punishable when the predicate punishable(i)
holds (and it is not punishable otherwise). We then have that:

Lemma 9 Let G = (N,�,�1, . . . ,�n, �1, . . . , �n) be an it-
erated Boolean game in which player i has a propositional
safety goal �i = G'i. Then, if player i is not punishable, for
all ~� 2 NE(G) we have that ⇢(~�) |= �i.

Proof sketch: W.l.o.g. assume that i = n and that player i
is not punishable, that is,

V
v�i2V�i

W
v0i 2Vi

�
�(v�i,v0i) ^ 'i

�
is

satisfiable. There is a function fn : V�n ! Vn such that for
each valuation ~v�n 2 V�n we have ⇢(~v�n, fn(~v�n)) |= 'n.
Consider an arbitrary ~� 2 NE(G), where �i = (Qi, q0i , �i, ⌧i)
for each player i. If ⇢(~�) satisfies G'i we are done. So as-
sume ⇢(~�) 6|= G'i. It now suffices to specify a strategy �⇤

n =
(Q⇤

n , q00
n , �⇤n , ⌧

⇤
n) for player n such that ⇢(~��n,�⇤

n) |= G'n.
This is achieved by a product construction, in particular Q⇤

n =
Q1 ⇥ · · ·⇥ Qn�1 ⇥ V , and the global behaviour of the profile
~��n against every possible behaviour of n is mimicked in the
states of �⇤

n . Thus, for each time point t, the strategy �⇤
n can

predict what ~v�i = ⇢[t] \ (� \ �i) will be and output an ap-
propriate valuation f (~v�n) = v0i ensuring that (~v�n, v0n) |= 'n.
Hence, we have that ⇢(~��n,�⇤

n) |= G'n, meaning that the
strategy profile ~� is not a pure Nash equilibrium.

Now we are in a position to prove a Folk Theorem for iter-
ated Boolean games with propositional safety goals.

Theorem 10 Let G = (N,�,�1, . . . ,�n, �1, . . . , �n) be an
iterated Boolean game in which each player i has a non-
trivial propositional safety goal �i = G'i. Then, the fol-
lowing two statements are equivalent:

(i) all players are punishable, and
(ii) for all satisfiable 2 L, there is ~� 2 NE(G) : ⇢(~�) |= .

Proof sketch: For the direction from (i) to (ii) consider an
arbitrary satisfiable formula and assume all players to be
punishable, that is,

W
v�i2V�i

V
v0i 2Vi

(�(v�i,v0i) ! ¬'i) is valid
for all players i. Then, by Lemma 1, there is some strategy
profile ~� such that ⇢(~�) |= . Moreover, for every player j,
there is some (vj

1, . . . , vj
n) 2 V such that for all v0j 2 Vj we

have (vj
1, . . . , vj

j�1, v0j , vj
j+1, . . . , vj

n) 6|= 'j.
For every player i we build a machine strategy �⇤

i =
(Q⇤

i , q0i , �⇤i , ⌧⇤i) with Q⇤
i = (Q1 ⇥ · · · ⇥ Qn) [{q1

i , . . . , qn
i },

where each qj
i is an additional state. These strategies are de-

signed so that ⇢(~�⇤) = ⇢(~�), that is, if all players play the

936

strategy �⇤
i exhibits the same global behaviour as the equilib-

rium profile ~�. Hence, ⇢(~�⇤) |= .
However, if (exactly) one player j adopts a strategy �0

j
such that ⇢(~�⇤

�j,�
0
j) 6= ⇢(~�⇤), and let t be the earliest time

point such that ⇢(~�⇤
�j,�

0
j)[t] 6= ⇢(~�⇤)[t], then ~�⇤ is designed

so that every player i distinct from j moves to state qj
i and

subsequently chooses vj
i at t + 1. Thus, at t + 1 player j

is punished in the sense that 'j is not satisfied at t + 1 by
⇢(~�⇤

�j,�
0
j)[t + 1]. It follows that ⇢(~�⇤

�j,�
0
j) 6|= G'j and that j

cannot achieve his goal by deviating from ~�⇤. We may con-
clude that ~�⇤ = (�⇤

1 , . . . ,�
⇤
n) 2 NE(G).

For the direction from (ii) to (i) we prove the contraposi-
tive. Assume that some player i is not punishable. As �i was
assumed to be non-trivial, ¬�i is satisfiable. Yet, by Lemma 9,
we have that ⇢(~�) |= �i for all equilibria ~� |= �i. Hence, there
is no ~� 2 NE(G) with ⇢(�) |= ¬�i.

As seen in Lemma 9 non-punishable players invariably
achieve their goals in any Nash equilibrium. The next Folk
Theorem, which is proved by using virtually the same con-
structions and arguments as in Theorem 10, refers to situa-
tions where non-punishable players have to be considered.

Theorem 11 Let G = (N,�,�1, . . . ,�n, �1, . . . , �n) be an
iterated Boolean game in which each player i has a propo-
sitional safety goal �i ⌘ G'i. Then, for all 2 L such
that ^

V
{�i : �i is not punishable} is satisfiable, there is a

~� 2 NE(G) such that ⇢(~�) |= .

We can now leverage Theorem 10 and Theorem 11 so as to
obtain PSPACE-completeness for the E-NASH problem for
iterated Boolean games with propositional safety goals.

Proposition 12 The E-NASH and A-NASH problems for it-
erated Boolean games with propositional safety goals are
PSPACE-complete.

Proof sketch: For membership in PSPACE, consider an ar-
bitrary game G = (N,�,�1, . . . ,�n, �1, . . . , �n) with propo-
sitional safety goals and an arbitrary 2 L. To decide
whether is sustained by some pure Nash equilibrium of G
we proceed as follows.

1. N0 := ;
2. for i := 1 to n do
3. if 8� \ �i . 9�i . ' is true
4. then N0 := N0 [{i}
5. else N0 := N0

6. end if
7. end-for
8. if ^

V
i2N0

�i is satisfiable then
9. return “yes”

10. else return “no”
11. end-if

In the for-loop, that is, in lines (1) through (7), this algorithm
singles out the players that are not punishable. Checking
the quantified Boolean formula 8� \ �i . 9�i . ' for truth
is equivalent to checking

V
v�i2V�i

W
v0i 2Vi

(�(v�i,v0i) ^ 'i) for
satisfiability and can be achieved in ⌃p

2. Soundness of this
step then follows from Lemma 9. In step (8) satisfiability of

 ^
V

i2N0
�i is checked, which can be achieved in PSPACE.

As PSPACE subsumes ⌃p
2, the algorithm runs in PSPACE.

For soundness and completeness, it now suffices to show
that the following two statements are equivalent:

(i) ^
V

i2N0
�i is satisfiable

(ii) there is a ~� 2 NE(G) with ⇢(~�) |= .
For the direction from (ii) to (i), assume that there is a ~� 2

NE(G) with ⇢(~�) |= . By Lemma 9, it then follows that
⇢(~�) |= �i for all i 2 N0. Hence, ^

V
i2N0

�i is satisfiable.
The opposite direction is immediate by Theorem 11.

For PSPACE-hardness, we reduce the LTL satisfiability
problem (which is known to be PSPACE-complete). Let
be an arbitrary LTL formula in L(�). We construct a game
with two punishable players, both having propositional safety
goals. The result then follows from Theorem 10.

General Safety Goals For general safety goals �i = G'i
the predicate punishable(i) holds iff there is some LTL satis-
fiable formula � 2 L(� \ �i) such that � ! ¬G'i is valid.
Based on this definition the next Folk Theorem follows:
Theorem 13 Let G = (N,�,�1, . . . ,�n, �1, . . . , �n) be an
iterated Boolean game where each player i has a non-trivial
safety goal �i = G'i. Then, if all players are punishable, for
all satisfiable 2 L, there is ~� 2 NE(G) with ⇢(~�) |= .

Proof sketch: Assume that all players are punishable, that
is, for each player i, there is some satisfiable �i 2 L(��i)
such that �i ! ¬G'i is valid. Moreover, let 2 L be a
satisfiable formula. By Lemma 1 there is are strategy profiles
~�(),~�(�1), . . . ,~�(�n), the runs induced by which satisfy
 and �1 through �n, respectively. On their basis and by
means of a product construction very similar to the one for
Theorem 10, we can build for every player i a machine strat-
egy �⇤

i = (Q⇤
i , q00i , �⇤i , ⌧

⇤
i) that incorporates a punishment

strategy against every other player. It can then be shown that
⇢(~�⇤) |= and ~�⇤ 2 NE(G).

6 Future work
In the model of iterated Boolean games we studied in this pa-
per the players’ goals are represented by LTL formulae. It
is also natural to consider players whose behaviour, as moti-
vated by their goals, would be better described by branching-
time temporal logics, such as CTL⇤ [Emerson and Halpern,
1986] or the µ-calculus [Kozen, 1983]. Most probably a
framework of this kind would lead to systems (games) with
different computational complexity properties.

Another important technical component of this work was
the formalisation of semantic conditions underpinning the
Folk Theorems. Our study covered so-called (propositional)
safety goals; other types of goals should be studied as well,
for instance, goals with fairness or response properties.

We plan to analyse iterated Boolean games by means of
other solution concepts. Punishment strategies arguably in-
volve incredible threats. Subgame-perfect equilibrium seems
to be appealing in this respect, as it does not suffer from
this (alleged) defect and, moreover, Folk Theorems have been
shown to hold for it (e.g., [Fudenberg and Maskin, 1986]).

937

References
[Bonzon et al., 2009] Elise Bonzon, Marie-Christine

Lagasquie-Schiex, and Jérôme Lang. Dependencies
between players in boolean games. Int. J. Approx.
Reasoning, 50(6):899–914, 2009.

[Chatterjee and Henzinger, 2012] Krishnendu Chatterjee
and Thomas A. Henzinger. A survey of stochastic
!-regular games. J. Comput. Syst. Sci., 78(2):394–413,
2012.

[Chatterjee et al., 2008] Krishnendu Chatterjee, Thomas A.
Henzinger, and Barbara Jobstmann. Environment assump-
tions for synthesis. In CONCUR, volume 5201 of LNCS,
pages 147–161. Springer, 2008.

[Diekert and Gastin, 2008] Volker Diekert and Paul Gastin.
First-order definable languages. In Logic and Automata,
volume 2 of Texts in Logic and Games, pages 261–306.
Amsterdam University Press, 2008.

[Dunne et al., 2008] Paul E. Dunne, Wiebe van der Hoek,
Sarit Kraus, and Michael Wooldridge. Cooperative
boolean games. In AAMAS (2), pages 1015–1022. IFAA-
MAS, 2008.

[Emerson and Halpern, 1986] E. Allen Emerson and
Joseph Y. Halpern. “sometimes” and “not never” revis-
ited: on branching versus linear time temporal logic. J.
ACM, 33(1):151–178, 1986.

[Emerson, 1990] E. Allen Emerson. Temporal and modal
logic. In Handbook of Theoretical Computer Science, Vol-
ume B: Formal Models and Sematics (B), pages 995–1072.
1990.

[Fisman et al., 2010] Dana Fisman, Orna Kupferman, and
Yoad Lustig. Rational synthesis. In TACAS, volume 6015
of LNCS, pages 190–204. Springer, 2010.

[Fudenberg and Maskin, 1986] D. Fudenberg and
E. Maskin. The folk theorem in repeated games with dis-
counting or with incomplete information. Econometrica,
pages 533–554, 1986.

[Grädel and Ummels, 2008] Erich Grädel and Michael Um-
mels. Solution concepts and algorithms for infinite mul-
tiplayer games. In New Perspectives on Games and In-
teraction, volume 4 of Texts in Logic and Games, pages
151–178. Amsterdam University Press, 2008.

[Grant et al., 2011] John Grant, Sarit Kraus, Michael
Wooldridge, and Inon Zuckerman. Manipulating boolean
games through communication. In IJCAI, pages 210–215.
IJCAI/AAAI, 2011.

[Harrenstein et al., 2001] P. Harrenstein, W. van der Hoek,
J.-J.Ch. Meyer, and C. Witteveen. Boolean games. In
Theoretical Aspects of Rationality and Knowledge (TARK
VIII), pages 287–298, 2001.

[Kozen, 1983] Dexter Kozen. Results on the propositional
mu-calculus. Theor. Comput. Sci., 27:333–354, 1983.

[Kupferman et al., 2000] Orna Kupferman, P. Madhusudan,
P. S. Thiagarajan, and Moshe Y. Vardi. Open systems in re-
active environments: Control and synthesis. In CONCUR,
volume 1877 of LNCS, pages 92–107. Springer, 2000.

[Lustig and Vardi, 2009] Yoad Lustig and Moshe Y. Vardi.
Synthesis from component libraries. In FOSSACS, volume
5504 of LNCS, pages 395–409. Springer, 2009.

[Manna and Pnueli, 1992] Zohar Manna and Amir Pnueli.
The temporal logic of reactive and concurrent systems -
specification. Springer, 1992.

[Manna and Pnueli, 1995] Zohar Manna and Amir Pnueli.
Temporal verification of reactive systems - safety.
Springer, 1995.

[Osborne and Rubinstein, 1994] M. J. Osborne and A. Ru-
binstein. A Course in Game Theory. The MIT Press, 1994.

[Pnueli and Rosner, 1988] Amir Pnueli and Roni Rosner. A
framework for the synthesis of reactive modules. In Con-
currency, volume 335 of LNCS, pages 4–17. Springer,
1988.

[Pnueli and Rosner, 1989a] Amir Pnueli and Roni Rosner.
On the synthesis of a reactive module. In POPL, pages
179–190. ACM Press, 1989.

[Pnueli and Rosner, 1989b] Amir Pnueli and Roni Rosner.
On the synthesis of an asynchronous reactive module. In
ICALP, volume 372 of LNCS, pages 652–671. Springer,
1989.

[Sistla and Clarke, 1985] A. Prasad Sistla and Edmund M.
Clarke. The complexity of propositional linear temporal
logics. J. ACM, 32(3):733–749, 1985.

[Thomas, 1990] Wolfgang Thomas. Automata on infinite ob-
jects. In Handbook of Theoretical Computer Science, Vol-
ume B: Formal Models and Sematics (B), pages 133–192.
1990.

[Ummels, 2006] Michael Ummels. Rational behaviour and
strategy construction in infinite multiplayer games. In
FSTTCS, volume 4337 of LNCS, pages 212–223. Springer,
2006.

[Vardi, 2008] Moshe Y. Vardi. From verification to synthe-
sis. In VSTTE, volume 5295 of LNCS, page 2. Springer,
2008.

938

