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Abstract
This work is motivated by the following concern.
Suppose we have a game exhibiting multiple Nash
equilibria, with little to distinguish them except that
one of them can be verified while the others can-
not. That is, one of these equilibria carries suffi-
cient information that, if this is the outcome, then
the players can tell that an equilibrium has been
played. This provides an argument for this equilib-
rium being played, instead of the alternatives. Ver-
ifiability can thus serve to make an equilibrium a
focal point in the game. We formalise and investi-
gate this concept using a model of Boolean games
with incomplete information. We define and inves-
tigate three increasingly strong types of verifiable
equilibria, characterise the complexity of checking
these, and show how checking their existence can
be captured in a variant of modal epistemic logic.

1 Introduction
Equilibrium selection problems in game theory arise in sit-
uations where a game has multiple equilibria, in which case
players must make individual choices so as to coordinate on
a particular equilibrium [Binmore, 1992, p. 295]. Such prob-
lems are particularly important when the failure to coordi-
nate has negative consequences for players. One of the best-
known solutions proposed for the equilibrium selection prob-
lem is Schelling’s concept of focal points [Schelling, 1980].
Schelling’s idea was that some equilibria have distinguishing
properties that are independent of their utility structure. A
common example is that of two tourists on a day-trip to Paris,
who become separated: where should they meet up? The
tourists need to independently choose so as to coordinate on
a single location; and with respect to utility, any location in
the city is as good as any other. But nevertheless, most people
suggest the Eiffel tower as a natural meeting place. This is an
example of a focal point: an equilibrium that stands out for
players in a game, enabling them to coordinate their actions.

We argue that fact that an equilibrium is verifiable can
serve to make that equilibrium a focal point. The intuition
is as follows. Suppose we have a game with two equilib-
rium points, A and B, and so players need to coordinate on

one of these, and that in terms of utilities, A and B are iden-
tical. However, A and B differ with respect to the following
property. Equilibrium A carries sufficient information that,
if this equilibrium is played, every player will be able to tell
that an equilibrium has been played, while B is such that, if
it is played, one or more players would be unable to tell for
sure that an equilibrium had been played. This, we argue,
would be a reason for selecting A rather than B. For, if we
chose B, then some players would be unsure whether the ac-
tual outcome chosen was indeed an equilibrium. We say that
A is a verifiable equilibrium. For a more concrete example,
consider the following. Two nations have agreed to eliminate
their nuclear weapons, and there are two ways to do this: one
of which is verifiable, the other of which is not. Here, the se-
lection of the verifiable course of action is, we believe, more
natural for all concerned.

In this paper, we introduce and formalise verifiable equilib-
ria in Boolean games, an increasingly popular game theoretic
model, with a natural computational interpretation [Harren-
stein et al., 2001; Bonzon et al., 2006; Dunne et al., 2008;
Endriss et al., 2011]. In a Boolean game, each player i has
under its unique control a set of Boolean variables �i, from
an overall set of Boolean variables �. Player i can assign val-
ues to variables �i in any way it chooses: the strategies avail-
able to i correspond to the possible Boolean assignments that
can be made to variables �i. The outcome of a Boolean game
is a valuation for the variables �, made up of the choices
of individual players. Each player i has a goal that it de-
sires to be achieved, represented as a propositional formula
�i, which may contain variables under the control of other
players. Player i is satisfied with an overall outcome if that
outcome satisfies �i, and is unsatisfied otherwise. We also
assume that each player i is associated with a visibility set,
⇥i ✓ �: player i is able to correctly perceive the values of
the variables in ⇥i, but cannot observe the values of any other
variables [van der Hoek et al., 2011]. We then say that an
outcome (v1, . . . , vn) for a game is a verifiable equilibrium if
it “looks like” a Nash equilibrium to every player—that is, if
(v1, . . . , vn) could (or would have to) be a Nash equilibrium,
given i’s view of the outcome (v1, . . . , vn) through its visibil-
ity set ⇥i. In the remainder of this paper, we formalise several
variations of verifiable equilibrium, characterise the complex-
ity of checking for these equilibria, and discuss conditions for
their existence. In Section 4, we show how these concepts can
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be represented using a modal epistemic logic interpreted over
our game structures [Fagin et al., 1995].

2 Boolean Games with Incomplete
Information

We adapt the basic model of Boolean games [Harrenstein et
al., 2001; Bonzon et al., 2006; Dunne et al., 2008; Endriss et
al., 2011] to model incomplete information using the idea of
visibility sets introduced in [van der Hoek et al., 2011].
Propositional Logic: Let {>,?} be the set of Boolean truth
values, with “>” being truth and “?” being falsity; we use >
and ? to denote both the syntactic constants for truth and fal-
sity respectively, as well as their semantic counterparts. Let
� = {p, q, . . .} be a finite, fixed, non-empty vocabulary of
Boolean variables, and let L denote the set of (well-formed)
formulae of propositional logic over �, constructed using the
conventional Boolean operators (“^”, “_”, “!”, “$”, and
“¬”), as well as the truth constants “>” and “?”. Where
' 2 L, we let vars(') denote the (possibly empty) set of
Boolean variables occurring in ' (e.g., vars(p^q) = {p, q}).
A valuation is a total function v : � ! {>,?}, assigning
truth or falsity to every Boolean variable. We write v |= '
to mean that the propositional formula ' is true under, or sat-
isfied by, valuation v, where the satisfaction relation “|=” is
defined in the standard way. Let V denote the set of all valu-
ations over �. We write |= ' to mean that ' is a tautology.
We denote the fact that |= '$  by ' ⌘  .
Boolean Games: Our games are populated by a set N =
{1, . . . , n} of agents—the players of the game. Each agent i
is assumed to have a goal, which is represented by an L-
formula �i that i desires to have satisfied. Players i each con-
trol a (possibly empty) subset �i of the overall set of Boolean
variables. By “control”, we mean that i has the unique ability
within the game to set the value (> or ?) of each variable
p 2 �i. We will require that each Boolean variable is con-
trolled by exactly one agent, i.e., � = (�1 [ · · · [ �n) and
�i \ �j = ; for all i 6= j. A Boolean game is then defined as
a tuple

(N,�,�1, . . . ,�n, �1, . . . , �n).
When playing a Boolean game, the primary aim of an

agent i will be to choose an assignment of values for the vari-
ables �i under its control so as to satisfy its goal �i. The
difficulty is that the truth-value of �i may depend on variables
controlled by other agents j 6= i, who will also be trying to
choose values for their variables in �j to satisfy their own
goals; and their goals in turn may depend on the variables �i.

The set of choices available to an agent i is given by the
set Vi of valuations vi : �i ! {?,>} for the variables �i
under his control. Thus, i plays the game by choosing some
vi 2 Vi. An outcome is a collection of choices, one for each
player. Formally, a strategy profile or outcome for a game is
a tuple ~v = (v1, . . . , vn) in V1 ⇥ · · · ⇥ Vn. Each outcome
uniquely defines an overall valuation for the variables � and,
given the sets �1, . . . ,�n, each valuation uniquely defines an
outcome. We will, therefore, treat outcomes for games as
valuations. We will also often abuse notation and go back
and forth between valuations and outcomes, for example writ-
ing (v1, . . . , vn) |= ' to mean that the valuation defined

by the outcome ~v = (v1, . . . , vn) satisfies formula ' 2 L.
The preferences of a player i are captured by a utility func-
tion ui : V1 ⇥ · · ·⇥ Vn ! {0, 1} such that for all outcomes~v,

ui(~v) =
⇢

1 if~v |= �i,
0 otherwise.

Thus, the concepts of game theory are readily available
to Boolean games as well. This holds in particular for the
well-known notion of (pure strategy) Nash equilibrium. We
say an outcome (v1, . . . , vi, . . . , vn) is a Nash equilibrium if
there is no player i 2 N and choice wi 2 Vi for i such that
ui(v1, . . . ,wi, . . . , vn) > ui(v1, . . . , vi, . . . , vn). Thus, an out-
come is a Nash equilibrium if no player can unilaterally devi-
ate to obtain a better outcome for herself, under the assump-
tion that every other player stays with its choice. We denote
the Nash equilibrium outcomes of a game G by N (G); of
course, it could be that N (G) = ; for a given game G.
Boolean Games of Incomplete Information: A Boolean
game of incomplete information (hereafter simply a “Boolean
game” or just “game”) is a Boolean game augmented with
visibility sets ⇥i ✓ � for each agent i. Each agent’s visibil-
ity set ⇥i indicates that player i is able to correctly observe
the values of the variables in ⇥i and no other variables. It is
natural to require that each player is able to observe the val-
ues of the variables under its control, i.e., �i ✓ ⇥i for all
i 2 N. Note, however, that the results we present below go
through without this assumption. Formally, a Boolean game
of incomplete information is a tuple

(N,�,�1, . . . ,�n, �1, . . . , �n,⇥1, . . . ,⇥n).

We will denote games by G,G0,G1, . . . etc. If G is such that
for every player i 2 N we have ⇥i = � then we say that G
is a game of complete information. Thus, in a game of com-
plete information, every player can see every variable. We
say that an outcome is a Nash equilibrium in a Boolean game
of incomplete information if it is a Nash equilibrium in the
underlying Boolean game. Thus, the notion of Nash equilib-
rium is not dependent on the visibility sets ⇥i for players i.
The following example illustrates the definitions above.

Example 1 (Two Professors) Two professors and a student
have a joint paper accepted at a conference. The question
is who of them is going to attend: the first professor (p1), the
second (p2), and/or the student (q). Relationships between the
professors are a little complicated. Their goals are as follows.
Professor 1 wants himself to attend and professor 2 to stay
at home; he does not care about the presence of the student.
Professor 2’s goal is that neither professor goes on his own.
The first professor can tell the student what to do. Each pro-
fessor (only) observes whether himself attends and whether
the student attends. We model this situation as a game

GG = ({1, 2},�,�1,�2, �1, �2,⇥1,⇥2),

with � = {p1, p2, q}; �1 = p1 ^ ¬p2 and �2 = ¬(p1 ^ ¬q ^
¬p2)^¬(¬p1^¬q^p2); �1 = ⇥1 = {p1, q} and �2 = {p2}
and ⇥2 = {p2, q}. The game GG is illustrated in Figure 1.
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(0, 0) (0, 1)¬p1 ^ ¬q

(0,1) (1, 0)p1 ^ ¬q

(0,1) (0, 1)¬p1 ^ q

(0,1) (1,1)p1 ^ q

p2 ¬p2

~v7 ~v8¬p1 ^ ¬q

~v5 ~v6p1 ^ ¬q

~v3 ~v4¬p1 ^ q

~v1 ~v2p1 ^ q

p2 ¬p2

Figure 1: The normal-form game associated with the Boolean
game GG. Actions/strategies are represented by formulae that
characterise these choices. The first professor chooses rows,
the second professor columns. The entries (x, y) represent
the utility of professors 1 and 2, respectively. Nash equilibria
are marked in bold. The matrix on the right indicates what
the outcomes are called elsewhere in this paper. Epistemic
indistinguishabilty relations for professors 1 and 2 are shown
using dotted and solid lines, respectively.

3 Verifiable Equilibria
We now introduce the idea of verifiable equilibria. The moti-
vation is as follows. A player i is part of a game G. The player
can completely see the game—that is, it knows what the vari-
ables are, who controls what, and what the goals and visibility
sets of each player are. However, when an outcome ~v is cho-
sen, player i can only see the value of the variables in ⇥i. As a
consequence, each player has some uncertainty about exactly
what actions the other players have performed. We argue that,
if the uncertainty is sufficiently large, then players that have
actually played a Nash equilibrium collection of choices may
in fact have no confidence that this is the case, because they
cannot verify the actions of the others. As argued in the in-
troduction, verifiable equilibria can be important in their own
right, (such as in the example of nuclear disarmament given
in the introduction), and they serve as natural focal points
in general. So, we argue, for a Nash equilibrium to be both
achievable and verifiable, not only must it satisfy the standard
rationality requirements (that no player has any incentive to
deviate) but the equilibrium choices of the players must con-
vey sufficient information that each player has confidence that
afterwards she can tell that the choices being made constitute
a Nash equilibria. We formulate this idea as verifiable fea-
sibility. We will shortly identify and investigate three types
of verifiable feasibility; for this we will need some additional
notation.

Where � ✓ � is a (sub)set of variables in a game G, we
define an equivalence relation ⇠� over valuations, as follows:

v ⇠� w iff 8p 2 � : (v |= p iff w |= p)

Thus v ⇠� w means that the valuations v and w agree on
the values of all the variables in �. Clearly, this definition in-
duces for every player i 2 N an “indistinguishability” relation
⇠⇥i over valuations. Where there is no risk of confusion, we
will write ⇠i as a shorthand for ⇠⇥i . Alert readers will guess
that the relations ⇠i will later serve as epistemic accessibility
relations [Fagin et al., 1995].

Example 2 (Epistemic indistinguishability in GG) The in-
distinguishability relations in the game GG are illustrated in
Figure 1. Both agents know that in ~v2 both their goals are
satisfied. Moreover, they can bring this about, and they know
this. Still, they do not know that an equilibrium is played,
e.g., since professor 2 considers it possible that the outcome
in fact is ~v4, which is not an equilibrium. On the other hand,
in ~v1 the outcome is known to be an equilibrium, although it
does not satisfy professor 1’s goal. Thus, although ~v1 is an
equilibrium that can be verified by all players, it is not one
that satisfies everybody’s goals, whereas~v2 is an equilibrium
that makes everybody happy, although it cannot be verified.

Weak Verifiable Equilibrium: We start with the simplest
model of verifiable equilibrium. Suppose we are given a game
G and an outcome ~v 2 V1 ⇥ · · · ⇥ Vn. We say that ~v is a
weak verifiable equilibrium if every player considers it pos-
sible that ~v is a Nash equilibrium; that is, if for every player,
there is some outcome ~w that is indistinguishable to i from ~v
such that ~w is a Nash equilibrium. It is important to note that
weak verifiable equilibrium does not satisfy our criteria for a
verifiable equilibrium, as an outcome ~v being a weak verifi-
able equilibrium does not mean that~v is itself a Nash equilib-
rium. Rather,~v could be, as far as every player i is concerned.
Formally, given game G and an outcome ~v 2 V1 ⇥ · · · ⇥ Vn,
we say that~v is a weak verifiable equilibrium if

8i 2 N : 9~w 2 V : ~v ⇠i ~w and ~w 2 N (G).

Let W(G) denote the weak verifiable equilibria of a game G.

Example 3 (Weak equilibria in GG) In order to compute
W(G), given that N (G) = {~v1,~v2,~v3,~v5} ✓ W(G), we only
need to check membership of~v4,~v6,~v7, and~v8. In~v8, the out-
comes that professor 2 considers possible are ~v8 and ~v6 (in
both, p2 and q, the variables that 2 can see, are false). Neither
of those outcomes is in N (G), and hence ~v8 62 W(G). Sym-
metrically, given~v6, professor 2 only considers~v8 and~v6 pos-
sible: neither are in N (G), so~v6 62 W(G). That ~v7 62 W(G)
follows similarly. Finally, in~v4, professor 1 considers~v3 pos-
sible and professor 2 considers~v2 possible. Since both~v3 and
~v2 are in N (G), we have~v4 2 W(G).

Let us now establish some basic properties of weak verifi-
able equilibria.

Proposition 1 1. For all games G, we have N (G) ✓
W(G); for some games, the inclusion is strict.

2. For all games G, we have W(G) = ; iff N (G) = ;.

3. For complete information games G, weak verifiable
equilibria and Nash equilibria coincide: W(G) =
N (G).

4. If ⇥i = ; for all players i, and N (G) 6= ;, then W(G) =
V .

We now analyse the problem of checking whether an out-
come is a weak verifiable equilibrium and find it to be ⌃p

2-
complete. The same applies to checking whether the set of
weak verifiable equilibria is non-empty.

Theorem 1 Given a game G and an outcome ~v for G, the
problem of checking whether ~v 2 W(G) is ⌃p

2-complete;
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the problem of determining whether W(G) 6= ; for a given
game G is also ⌃p

2-complete.

Proof: For the first part, membership is by guess-
and-check. For hardness, we reduce the problem of
checking whether a Boolean game of complete informa-
tion has a Nash equilibrium, which is known to be ⌃p

2-
hard. Let G be a Boolean game of complete information
with n players be given by (N,�,�1, . . . ,�n, �1, . . . , �n),
where N = {1, . . . , n}. We construct a Boolean game
of incomplete information G0 with n + 1 players given by
(N[{n+1},�0,�0

1, . . . ,�
0
n+1, �

0
1, . . . , �

0
n+1,⇥1, . . . ,⇥n+1)

where �0 = � [ {a⇤}, a⇤ is a variable not contained in �,
�0

i = �i for all 1  i  n, �0
n+1 = {a⇤}, ⇥i = �0

i for all
1  i  n + 1, and

�0i =

⇢
�i _ a⇤ if i 2 N,
> if i = n + 1.

Observe that for all~v = (v1, . . . , vn+1) with~v(a⇤) = ?,

~v 2 N (G0) if and only if (v1, . . . , vn) 2 N (G). (⇤)

To see this, let ~v(a⇤) = ? and assume that ~v =
(v1, . . . , vn+1) 2 N (G0). Observe that ~v 6|= a⇤ and as-
sume (v1, . . . , vn) /2 N (G). Then, (v1, . . . , vn) 6|= �i and
(v1, . . . ,wi, . . . , vn) |= �i for some i 2 N and some wi. Then,
also ~v 6|= �i _ a⇤. Let ~w = (v1, . . . ,wi, . . . , vn, vn+1). Then,
~w |= �i _ a⇤. It follows that ~v /2 N (G0). For the oppo-
site direction, assume ~v = (v1, . . . , vn+1) /2 N (G0). Then,
~v 6|= �i _ a⇤ and (v1, . . . ,wi, . . . , vn+1) |= �i _ a⇤ for some
i 2 N [ {n + 1} and some wi. Since �i = >, we know that
i 6= n + 1. Also observe that (v1, . . . ,wi, . . . , vn+1) 6|= a⇤

and, hence, (v1, . . . ,wi, . . . , vn+1) |= �i. Since, vars(�i) ✓
�, furthermore, (v1, . . . ,wi, . . . , vn) |= �i. It follows that
(v1, . . . , vn) /2 N (G).

To conclude the proof, let ~v0 denote the valuation that sets
all variables in �0 to ?. We show that,

~v0 2 W(G0) if and only if N (G) 6= ;.

First, assume that ~v0 2 W(G0) and consider player n +
1. Then, there is some ~v = (v1, . . . , vn+1) such that both
~v0 ⇠n+1 ~v and ~v 2 N (G0). Hence, ~v(a⇤) = ? and with (⇤)
also (v1, . . . , vn) 2 N (G).

For the opposite direction, assume that ~v⇤ =
(v⇤1, . . . , v⇤n) 2 N (G) and let v⇤n+1(a

⇤) = ?. Thus,
~v0 ⇠n+1 (v⇤1, . . . , v⇤n , v⇤n+1). In virtue of (⇤), moreover,
(v⇤1, . . . , v⇤n , v⇤n+1) 2 N (G0). Finally, let ~v be the valuation
that sets all variables in � to ? and a⇤ to >. Obviously, ~v
satisfies all players’ goals. Hence,~v 2 N (G0). Moreover, for
all i 2 N, we have ~v0 ⇠i ~v. Thus, for all i 2 N [ {i + 1},
there is some ~w 2 N (G0) with~v0 ⇠i ~w and we may conclude
that~v0 2 W(G0).1 2

Note that the problem of verifying whether an outcome
of complete information Boolean game is a Nash equilib-
rium is co-NP-complete, and thus, under standard complex-
ity theoretic assumptions, verifying weak verifiable equilib-

1We are indebted to an anonymous IJCAI reviewer for some sim-
plifications of this proof.

ria is harder than the problem of verifying Nash equilibria in
Boolean games of complete information.
Strong Verifiable Equilibrium: Weak verifiable equilib-
ria do not form a robust basis for action, as the fact that
~v 2 W(G) does not guarantee that ~v 2 N (G). We there-
fore introduce a stronger notion of verifiable equilibrium. We
say ~v is a strong verifiable equilibrium if for every player i
and for every outcome ~w that i cannot distinguish from ~v, we
have that ~w is a Nash equilibrium. Formally, we say that an
outcome~v of a game G is a strong verifiable equilibrium if

8i 2 N : 8~w 2 V : ~v ⇠i ~w implies ~w 2 N (G).

We let S(G) denote the strong verifiable equilibria of a
game G. It may be readily appreciated that, for every game G,
S(G) ✓ N (G), and for some G this inclusion is strict—e.g.,
for the game GG.
Example 4 (Strong equilibria in GG) We know that
S(G) ✓ N (G) = {~v1,~v2,~v3,~v5}. In ~v1, professor 1
considers any outcome possible in which p1 and q are true
(~v1 and ~v2), and we know that these outcomes are in N (G).
Similarly, in ~v1 professor 2 considers ~v1 and ~v3 possible.
These outcomes are also in N (G), hence ~v1 2 S(G). We
have ~v2 ⇠2 ~v4 62 N (G), hence ~v2 62 S(G). Similarly,
~v3 ⇠1 ~v4 62 N (G) implies that ~v3 62 S(G). Finally,
~v5 ⇠1 ~v6 62 N (G), hence~v5 62 S(G). Thus, S(G) = {~v1}.
As with weak verifiable equilibria, strong verifiable equilibria
and Nash equilibria coincide under complete information.
Observation 1 If G is a game of complete information, then
S(G) = W(G) = N (G).
Theorem 2 Given a game G and an outcome ~v for G, the
problem of checking whether~v 2 S(G) is co-NP complete.

Proof: Membership is by showing the complementary prob-
lem is in NP, which can be achieved by guess-and-check.
Given a certificate consisting of two outcomes ~v and ~w and
two players i and j, it can be checked in polynomial time
whether i wants to deviate from ~v to ~w, that is, that ~v is not
a Nash equilibrium. Moreover it is achievable in polynomial
time to check whether player j can distinguish~v and ~w.

Hardness is shown by a reduction of the problem of check-
ing whether a valuation ~v is a Nash equilibrium in a regu-
lar Boolean game or not, which is known to be co-NP hard.
For a Boolean game G = (N,�,�1, . . . ,�n, �1, . . . , �n)
define Boolean game of incomplete information G0 =
(N,�,�1, . . . ,�n, �1, . . . , �n,⇥1, . . . ,⇥n), such that ⇥i =
� for all players i, i.e., G0 is the Boolean game of complete
information corresponding to G. The result follows then im-
mediately from Observation 1. 2

Ideal Verifiable Equilibrium: Finally, we define ideal ver-
ifiable equilibria, which are outcomes that are commonly
known to be equilibria, when they are played. One can ar-
gue that if there is a unique ideal verifiable equilibrium, this
will be played: not only do I know that the outcome is an
equilibrium, but I do know that you know it, and I know that
you know that I know it, etc. Formally, let ⇠C= (

S
i2N ⇠i)+

(where + denotes transitive closure), and we say that an out-
come~v of a game G is an ideal verifiable equilibrium if

8i 2 N : 8~w 2 V : ~v ⇠C ~w implies ~w 2 N (G).
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Where G is a game, let I(G) denote the set of ideal verifiable
equilibria of G. Clearly, I(G) ✓ S(G) for all G, and this
inclusion is strict for some G (e.g., in the following example).

Example 5 (ideal verifiable equilibria in GG) Since
I(G) ✓ S(G) = {~v1}, we only need to check whether
outcome ~v1 2 I(G). But since ~v1 ⇠1 ~v2 ⇠2 ~v4 62 N (G), we
conclude that~v1 62 I(G).

Characterising Ideal Verifiable Equilibrium: Ideal verifi-
able equilibrium is a very strong concept: we will now show
that many games do not have one. For this, we first give
a characterization of the common knowledge relation ⇠C.
Clearly,

T
i2n ⇥i is the set of variables visible by all agents. It

now turns out that ⇠C is the universal relation on the set of
valuations over variables not visible by all agents.
Theorem 3 For all outcomes ~w and ~v of a Boolean
game:~w ⇠C ~v iff 8p 2

T
i2N ⇥i : ~v(p) = ~w(p).

In other words, two valuations are distinguishable by the
common knowledge relation if and only if they disagree on
at least one variable that is visible to all agents. This imme-
diately gives us the following characterization of ideal verifi-
able equilibrium.

Corollary 1 Let G be a game. ~v 2 I(G) iff ~w 2 N (G) for
all ~w agreeing with~v on the variables in

T
i2N ⇥i.

As a technical aside, we note that reachability properties
(such as common knowledge) are often computationally hard
to compute on succinctly represented graphs. Boolean games
can be understood as providing a succinct representation for
the relation ⇠C, and this might lead one to conclude that
computational problems involving these relations would be
computationally hard. However, by virtue of Corollary 1, we
find that, (perhaps somewhat surprisingly), the ideal equilib-
rium case is in fact not computationally harder to check than
weaker verifiable equilibria.

Theorem 4 Given a game G and an outcome ~v for G, the
problem of checking whether~v 2 I(G) is co-NP-complete.

Considering the set of variables visible to all agents, there
are two borderline cases. First, if all variables are visible
to all agents, then ideal verifiable equilibrium coincides with
standard Nash equilibrium. Second, if no variable is visible
to all agents, i.e., if every variable is invisible to at least on
agent, ⇠C is the universal relation:

Corollary 2 If
T

i2N ⇥i = ;, i.e., if every variable is invisible
to at least one agent, then~v ⇠C ~w for all ~w and~v.

In this case an outcome is an ideal verifiable equilibrium if
and only if every outcome is an ideal verifiable equilibrium,
which in turn holds if and only if every outcome in the game
is a Nash equilibrium.
Corollary 3 For any game G, if every variable is invisible to
at least one agent then I(G) = ; if N (G) 6= V1 ⇥ · · ·⇥ Vn,
and I(G) = N (G) otherwise.

Thus, in the case that every variable is invisible to at least
one agent, the games that have ideal verifiable equilibria are
exactly those where every outcome is a Nash equilibrium.
However, it is, we believe, plausible to assume that there

are some commonly visible variables in a game. Indeed, one
would intuitively expect that such variables provide the basis
around which players will coordinate their actions.

In summary, we have seen that common knowledge of
Nash equilibrium is a strong requirement, often difficult to
obtain. That common knowledge is difficult to achieve is not
surprising, as the situation is similar in related settings; for
example in distributed systems where common knowledge is
constant in every run [Meyer and van der Hoek, 1995, Corol-
lary 2.2.6], and in public announcement games [Ågotnes and
van Ditmarsch, 2011] where common knowledge of non-
trivial Nash equilibria is impossible. Our framework demon-
strates this once again.

4 Logical Characterisation
We now show how the Epistemic Coalition Logic of Proposi-
tional Control (“ECL” for short) can be used to characterise
and reason about the concepts we have introduced above.
Introduced in [van der Hoek et al., 2011], ECL combines
the well-known modal epistemic language S5C

n [Fagin et al.,
1995] with operators allowing us to represent the choices
available to agents [van der Hoek and Wooldridge, 2005].
The language of ECL extends classical propositional logic
with modal operators Ki and C for referring to the knowledge
possessed by agents. A formula Ki', where i 2 N is an agent,
is to be read “agent i knows that '”, while a formula C' is
to be read “it is common knowledge that '”. In addition,
the language contains operators 3i', where i 2 N, with the
intended interpretation that “assuming nothing else changes,
then i has a choice such that ' holds”. More precisely, 3i'
means that i can assign values to the variables under its con-
trol in such a way as to make ' true.

Formally, the syntax of formula ' of ECL is defined with
respect to a set N = {1, . . . , n} of agents and a set � =
{p, q, . . .} of Boolean variables by the following grammar:

' ::= p | ¬' | ' _ ' | Ki' | C' | 3i'

where p 2 � and i 2 N.
We now give an interpretation of formulae of ECL with re-

spect to pairs of the form (G,~v), called pointed games, where
G is a game (with player set N and variable set �) and ~v is
an outcome for G. We write (G,~v) |=ECL ' to mean that the
formula ' is true with respect to (G,~v), defined as follows:

(G,~v) |=ECL p , ~v |= p
(G,~v) |=ECL ¬' , (G,~v) 6|=ECL '
(G,~v) |=ECL ' _  , (G,~v) |=ECL ' or (G,~v) |=ECL  
(G,~v) |=ECL Ki' , 8~w with ~v ⇠i ~w: (G, ~w) |=ECL '
(G,~v) |=ECL C' , 8~w with ~v ⇠C ~w: (G, ~w) |=ECL '
(G,~v) |=ECL 3i' , 9~w with~v ⇠�\�i ~w: (G, ~w) |=ECL '

Other propositional connectives (^,!, . . .) are defined in
terms of ¬ and _ in the standard way. We also define E' =V

i2N Ki' (“everyone knows that '”). The model checking
problem for ECL is as follows: we are given a pointed game
(G,~v) and a formula ', and asked whether (G,~v) |=ECL '.

We now show how weak, strong and ideal verifiable equi-
libria can be quite naturally captured as formulae of our epis-
temic language. First, where G is a Boolean game, we define
an ECL formula ⌫(G) (or just ⌫) as follows:
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⌫(G) =
^

i2N

(3i�i ! �i)

The key point about ⌫ is that it characterises Nash equilibria:

Proposition 2 For all pointed games (G,~v), we have:
(G,~v) |=ECL ⌫ iff~v 2 N (G).

Next, for each game G we define the following formulae:

�(G) =
V

i2N ¬Ki¬⌫ (G) = C⌫ �(G) = E⌫

(We omit G when clear from context). With these definitions
in place, we can state our logical characterisation results.
Proposition 3 For all Boolean games G and outcomes~v: ~v 2
W(G) iff (G,~v) |=ECL �; ~v 2 S(G) iff (G,~v) |=ECL �;
~v 2 I(G) iff (G,~v) |=ECL .
Thus, the problem of checking verifiable equilibria can be
reduced to ECL model checking problems.
Example 6 (Logical properties of GG) In the game GG, we
have (GG,~v4) |=ECL ¬�1 ^ ¬⌫ ^ ¬K1¬⌫ ^ ¬K1⌫ ^ Cq:
professor 1’s goal �1 is not satisfied in ~v4; ~v4 is not a Nash
equilibrium; professor 1 considers this possible, but he does
not know it; and it is common knowledge that q holds. Also,
(GG,~v1) |=ECL �2 ^ ¬�1 ^ ⌫ ^ E⌫ ^ ¬C⌫: ~v1 satisfies pro-
fessor 2’s goal but not professor 1’s; v1 is a Nash equilibrium
and everybody knows this, still it is not common knowledge.

Normal Forms: Above we gave a new interpretation of ECL.
We now turn to studying the resulting logic in more detail.
Although the object language seems rather rich, we will now
argue that in fact every formula ' of ECL is equivalent (on
games) to a formula in propositional logic. More precisely,
for every ' of ECL there is a formula ⇡ in propositional logic
such that (G,~v) |=ECL ' iff ~v |= ⇡.

We have to leave out the formal proof of this due to lack
of space, and instead sketch the idea here based on examples.
Let '(p1, . . . , pk) be a formula where p1, . . . , pk are all the
variables from �i that occur in ' and let '(b1, . . . , bk) denote
' with bi 2 {?,>} uniformly substituted for pi. Then

3i'(p1, . . . , pk) ⌘ECL
_

(b1,...,bk)2{?,>}k

'(b1, . . . , bk).

For examples, let us use atoms pi, qi, . . . to denote they are
in �i. Then, 31(p1 ^ (p2 _ q2)) ⌘ECL (? ^ (p2 _ q2)) _
(> ^ (p2 _ q2)) ⌘ECL p2 _ q2. Indeed, if �1 = {p1}, then
for agent 1 to enforce p1 ^ (p2 _ q2), he needs to rely on the
truth of those variables not in �1, i.e., on (p2_q2). Similarly,
3132(p1^¬p2^p3)) ⌘ECL p3 ⌘ECL 31(p1^3(p2^p3)).

Let '(q1, . . . , qm) be a formula where q1, . . . , qm are all
the variables in � \⇥i occurring in '. Then,

Ki'(q1, . . . , qm) ⌘ECL
^

(b1,...,bm)2{?,>}m

'(b1, . . . , bm).

For example, suppose ⇥1 = {p, q} and ⇥2 = {q, r}, while
� = {p, q, r, s}. Then K1(p^q) ⌘ECL (p^>)^(p^?) ⌘ ?:
Indeed, 1 cannot know that q since q 62 ⇥1. For another
example, K1(K2q ^ (K2r _ K2¬r)) ⌘ECL q. If ⇥1 = {p, s}
and ⇥2 = {q, r}, then K231(p ^ (q _ r)) ⌘ECL K2r ⌘ECL r

while K131(p ^ (q _ r)) ⌘ECL K1r ⌘ECL ?. For instance,
note that we are not saying that K2r $ r is a validity over all
games even if it is true in games where r 2 ⇥2.

Since we have only a finite number (say k) of atoms, and
the alternatives for the agents are valuations, we can finally
replace every C' by E' ^ EE' ^ ... ^ EE . . .E', where the
number of E operators in the last conjunct is 2k.

This all implies that we do not need our rich object lan-
guage to reason about even epistemic properties of Nash equi-
libria if we are only interested in expressivity. However, it is
clear that the formulae of our object language are much more
succinct than the equivalents we obtain in propositional logic.

5 Conclusions
In this paper, we proposed that verifiability can provide a
means to distinguish between equilibria that are otherwise
similar. We formalised verifiable equilibria by extending the
standard model of Boolean games with sets of visible vari-
ables. As a consequence, players don’t necessarily know
which outcome they have ended up in. We formalised and
studied three variants of verifiable equilibria. We charac-
terised the complexity of computing them, gave conditions
for their existence, and demonstrated how they can be char-
acterised using modal logic. We emphasise that while we ar-
gue that verifiable equilibria are natural focal points, that does
not mean that verifiable equilibria always are more reasonable
than non-verifiable equilibria – there might be other reasons
for selecting non-verifiable equilibria. For example, a game
might have a non-verifiable equilibrium that consists of dom-
inant strategies in addition to a verifiable equilibrium. The
point is that verifiability can provide a solution to the problem
of choosing between equilibria that otherwise are similar.

We looked at both strong verifiable equilibria, where all
players know a posteriori that they are in an equilibrium,
as well as ideal verifiable equilibria, where (in addition) it
is common knowledge that an equilibrium has been played.
In particular, we saw that the latter occur only in very spe-
cial cases. It is important to note that the difference here
is in the definition of verifiability: in the former case each
agent knows that the outcome is an equilibrium but not nec-
essarily that the other agents know that, unlike in the latter
case. But in both cases it is common knowledge before the
outcome is chosen, which outcomes are (strong or ideal) veri-
fiable equilibria. The assumptions underpinning game theory
with respect to what players in a game know about the game
and each other, and the impact of relaxing or modifying these
assumptions with respect to the outcomes of games that are
predicted by game theoretic solution concepts, are studied in
the field of epistemic game theory [Pacuit and Roy, 2012].
However, in this paper we are concerned with incomplete in-
formation about the outcome, i.e., about the actions chosen
by all players in the situation after the players have acted.

For future research, it would be of interest to find more
computationally tractable classes of games. We believe that
the general framework in Section 4 can be used towards that
end. Furthermore, other possible solution concepts can be of
interest, taking the players’ knowledge of whether or not they
will be better off into account when defining best responses.
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