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Abstract
In order to cooperate effectively with its peers, an
agent must manipulate representations of the so-
cial structures in which it plays a part. The pur-
pose of this paper is to investigate the mathematical
and computational aspects of this social reasoning
process. We begin by defining an abstract repre-
sentation of cooperation structures, wherein agents
cooperate to achieve goals on each other’s behalf.
We then investigate the question of whether or not
cooperation is feasible with respect to an agent’s
goal, and we show that answering this question is
an NP-complete problem. Finally, we investigate
the conditions under which such structures can be
composed to form larger structures.

1 Introduction
Cooperation is perhaps the paradigm example of social activ-
ity in both real and artificial social systems; it is certainly the
best studied process in multi-agent systems research. Coop-
eration in human societies is an intricate and subtle activity,
which has defied many attempts to formalise it. However,
some progress has been made on understanding the types of
situation in which cooperation can arise, and how it can pro-
ceed.

Central to the study of cooperation is the notion of a social
structure. A social structure is a set of relations that hold
between agents in a society. These relations define the depen-
dencies that exist between agents (e.g., [Castelfranchi, 1990;
d’Inverno and Luck, 1996a; 1996b]), and determine the rights
and responsibilities of each agent in the society with respect
to its peers. In order to cooperate effectively with its peers,
an agent must represent any social structures in which it plays
a part, and reason with these representations. This reason-
ing process is carried out in order to answer such questions
as whether cooperation is possible, and to investigate how
an agent stands in relation to other agents in the society. In
multi-agent systems, the representation of social structures
is a central research issue. For example, Durfee has devel-
oped representations of multi-agent activity known as partial
global plans [Durfee and Lesser, 1987]. These structures can
be manipulated by an agent in order to find more efficient
routes to solving complex multi-agent problems.

Much work on representing social structures in multi-agent
systems has been purely formal, with no obvious, direct route
to implementation. Game-theoretic and economic-theoretic
studies of social behaviour fall into this category [Rosenschein
and Genesereth, 1985]. Although such work is central to our
understanding of cooperation, it has little to tell us about the
computational aspects of social reasoning, such as what types
of social reasoning are tractable. Our aims in this paper are
therefore threefold:
� to introduce an abstract symbolic representation of social

structures;
� to identify and formally define some basic reasoning

problems associated with these social structures; and
finally

� to investigate the computational complexity of these
problems.

We begin in the following section by introducing a simple,
general formal framework, which can be used to represent a
wide range of multi-agent scenarios. This framework defines
agents as systems that have the ability to achieve certain goals,
and that are capable of making independent decisions about
how they will interact with other agents. We informally dis-
cuss the properties of cooperation and cooperation structures,
and formally define cooperation structures within our frame-
work. We then introduce COOPSAT, a key decision problem
in social reasoning. COOPSAT is the problem of determining,
given some society of agents and a particular agent’s goal,
whether or not cooperation is in principle possible to achieve
the agent’s goal. We show that the problem is NP-complete,
and that it cannot therefore be answered in practice. We then
address the issue of manipulating social structures, and the
conditions under which they can be combined. Finally, we
discuss related work, and present some conclusions and future
research directions.

2 Cooperation Structures
Before we can define cooperation and cooperation structures,
we need a formal framework within which we can express
the definitions. A number of such formal frameworks have
previously been developed, the most obvious of which being
game-theory (e.g., [Rosenschein and Genesereth, 1985]) and
multi-modal logic (e.g., [Wooldridge and Jennings, 1994]).



With respect to the former, the models derived are by nature
quantitati� ve rather than symbolic, and hence not well-suited
to representation within a computer system. With respect to
the latter, the models derived tend to be rather arcane, and
do not easily lend themselves to, for example, complexity-
theoretic analysis. For these reasons, we develop a simple
formal framework for expressing multi-agent scenarios, us-
ing a notation based on the Z specification language [Spivey,
1992] which, in turn, is based on set theory and first-order
logic. In Z, a relation

�
is defined as a set of ordered pairs.

The expression dom
�

represents the set of the first elements
of each of the ordered pairs of

�
, and ran

�
represents the set

of second elements. Also,
���

is the transitive closure, and���
is the reflexive transitive closure of

�
.

We start by assuming a fixed, finite set ��� of agents.
We use 	�
��
�� as variables ranging over ��� . The main
assumptions that we make with respect to agents are that
they are autonomous (in that they are not benevolent), and
that they have capabilities (in that they have the ability
to achieve goals). The properties of agents are discussed
in more detail elsewhere [Wooldridge and Jennings, 1995;
Luck and d’Inverno, 1995].

Next, we assumea fixed, finite set � of goals. We use � with
annotations ( ����
�� 1 
������ ) as variables ranging over � . Whereas
the assumption that ��� is finite seems intuitively reasonable,
it may seem odd to assume that the set of goals is finite: it
is common in AI to represent goals as logical formulae, and
hence to allow the set of goals to be infinite in size. We make
this assumption in the interests of simplicity. In this paper,
we are not concerned with the question of what a goal is —
the contents of � are left undefined (but have been considered
elsewhere [Luck and d’Inverno, 1995]). However, it seems
essential to introduce some notion of consistency between
goals. We thus assume a relation ���������! "� , such that if# �$
%���'&)(*�+��� , then � and ��� are said to be consistent with one
another. We write ����� # �$
%���'& to indicate that

# �,
����-&.(/���0� .
The intuitive meaning of ���0� # �,
�����& is that � being satisfied
does not preclude ��� being satisfied: the two goals are not
mutually exclusive. We shall not give a formal semantics to
���0� , but we do require that this relation satisfies the following
properties:� reflexive: 12�3(*� � ����� # �$
%�4& ; and� symmetric: 15�,
����,(*� � ����� # �$
%���'&768���0� # ���9
��4& .
In addition to consistency, we assume that goals are related
to each other through a sub-goal relation: :;�<�= >� . A
sub-goal is a component goal of another, higher-order, goal.
Thus if

# �,
����'&?(@: (written �A:=��� ), then � is said to be a
sub-goal of �B� .

The : relation must satisfy the following properties:� reflexive:

15�C(>� � �D:>� ;
� transitive:

15�$
%���E
%�B�F�G("� � �3:*���GHI���J:*���F�GKL�C:>���F� ;
� well-founded:

15�C(>� � # MN�B�PO0���Q:"�,R�(AST�

The first two conditions are intuitively obvious; well-
foundedness simply states that no goal has an infinite, non-
terminating chain of sub-goals.

We define the strict sub-goal relation, U , in the obvious
way: �VUW���)6X�Y:Z�B�[H/�]\^ ��� . With the exception of
reflexivity, U enjoys all the properties of : and, in addition,
U is asymmetric. Since U is well-founded, some goals are
primitive and have no strict sub-goals. We write _`UL�
to indicate that � has no strict sub-goals. We assume that
there is just one way to achieve a goal, by achieving all its
strict sub-goals. We make this assumption in the interests of
simplicity though, of course, the real-world is somewhat more
complicated than this. If I have a goal of drinking tea, I have
many different possible courses of action available to me: for
example, I can make the tea myself, ask someone to make me
a cup, or go to a cafe.

Another useful extension to : is the immediate sub-goal
relation: a . This relation is defined as follows: �Aab���Q6
�cU����dH #fehg ���F��(W� � #�# �YUW���F�'&5H # ���F��UW���'&i&�& . The
function 	'ji� : �>kmlA� takes a goal and returns the set of all
its immediate sub-goals: 	njo� # �4& ^ MN���PO����GaL�,R .

We noted above that benevolence is not assumed in our
framework. Crudely, the benevolence assumption states
that agents will always attempt to do what is requested of
them: they are not autonomous [Rosenschein and Genesereth,
1985]. While benevolence is reasonable for many distributed
problem-solving systems, it is not an appropriate assumption
in most multi-agent scenarios. In order to capture auton-
omy in our framework, we make use of a will-adopt function,p 	Eq�q : �[�3 A�[�DkrlA� . The idea is that agent 	 will adopt a
goal � on behalf of another agent � iff �3( p 	�q�q # 	�
��& . Where
there can be no confusion, we write p 	Eq�q # 	�
��,
��& to indicate
�s( p 	�q�q # 	�
f�t& . We do not give a formal semantics to this
relation, as its properties will be domain specific1 .

The capabilities of agents are represented in a function
��u�v : ���wkxl�� . The idea is that ��u%v # 	& represents the set
of goals that agent 	 can achieve in isolation. We require the
following invariant to hold between the ��u�v and p 	�qEq functions:p 	Eq�q # 	�
��,
��&QKL�C(Y��u%v # 	& .

The various sets and relations introduced above together
comprise a framework.

Definition 1 A framework is a 6-tupley
Ag 
 G 
 con 
�:�
 will 
 cap z

with components as above. Let Fr be the set of all frameworks.
We use F with annotations (F � 
 F1 
������ ) as variables ranging
over Fr.

For most of this paper, the framework is assumed to be fixed
and understood.

2.1 Defining Cooperation Structures
Previously, Luck and d’Inverno [1996] have taxonomised the
types of interactions that occur between agents in a multi-

1There are certain properties that it seems reasonable to demand
of p 	�q�q . For example, we might specify that if 	 will adopt � for� , then 	 will also adopt any sub-goal of � for � : {2	�|n�c}~�����{[�,|i�4��}=���A���Y} p 	�q�q9�i	�|'�t�?�*�������4�����4��} p 	�qEq9�i	i|'�t� .
However, none of these properties are essential for our framework.



agent system, distinguishing in particular between engage-
ments� of non-autonomous agents and cooperation between
autonomous (motivated) agents. In this view, autonomous
agents will only adopt goals if it is to their motivational ad-
vantage to do so, while non-autonomous agents may benevo-
lently adopt goals. Though we focus on autonomous agents,
the discussion of cooperation structures below does not re-
fer to the reasons for goal adoption, nor to the autonomy or
non-autonomy of the agents involved and, consequently, these
structures are generic and may be applied to cooperations and
engagements, as described here, equally.

We define cooperation by one agent with another to mean
that the agent will adopt a goal on behalf of that other agent.
These cooperations give rise to a graph structure, with nodes
in the graph corresponding to agents, and arcs in the graph
corresponding to cooperations, labelled with goals. This leads
us to the definition of a structure.

Definition 2 A structure is a pair
#
C 
 l & where:

� C � Ag  Ag is a binary cooperates relation;� l : C k G labels each arc in C with a goal.

If
#�� 
Nq�& is a structure, then we write

��# 	�
f�t& to indicate# 	�
f�t&�( �
. The intuitive interpretation of

�.# 	�
f�t& is that
agent 	 has delegated goal q # 	�
f�t& to agent � , and thus that � is
cooperating with 	 over this goal.

Not all structures are cooperation structures, however. For
a structure to be a cooperation structure, there must first be at
least two agents cooperating, and each agent in the structure
must be connected to another through a cooperation over goals
between them. Furthermore, agents cannot delegate goals to
others who, in turn, delegate them back to the original agent.
Hence there are no cycles, and no agent cooperates with itself.
Also, if one agent � cooperates with another agent 	 over some
goal � , and another agent � cooperates with � for goal � � then
��� must be a sub-goal of � . Thus when agents delegate, they
delegate sub-goals. Finally, all goals in a cooperation structure
must be consistent with each other. These considerations lead
to the following definition.

Definition 3 A structure
#
C 
 l & is a cooperation structure iff:

1. C is non-empty: C \^/� ;
2. C is weakly connected;

3. C is acyclic: 1 i ( Ag � e C
� #

i 
 i & ;
4. C is irreflexive: 1 i ( Ag � e C

#
i 
 i & ;

5. agents delegate sub-goals: 1 i 
 j 
 k ( Ag � C
#
i 
 j &�H

C
#
j 
 k &7K l

#
j 
 k &�: l

#
i 
 j & ;

6. goals within a structure are mutually consistent:
1 g 
 g �G( ran l � con

#
g 
 g �-& ; and

7. j cooperates with i only if j is willing to do so: C
#
i 
 j &�K

will
#
j 
 l # i 
 j &�
 i & .

Let Coop be the set of all cooperation structures.

Condition (3) may seem too strong. To see why, consider
the following scenario: John asks Paul to make some tea.
Paul agrees, but asks that John boil the kettle. This kind of
scenario (where 	 delegates a goal � to � , and � in return del-
egates a strict sub-goal of � back to 	 ) occurs frequently in

a1

g2 g4

g3

a2 a3 a4

g1

g3g2 g4

(a) Sub-goal structure for g1

g6g5

a1

g2 g4

g3

a2 a3 a4

a5 a6

g6

(c) Complete cooperation structure

(b) Incomplete cooperation structure

g5

Figure 1: Completeness

real life. However, the problem of determining whether an
arbitrary, possibly cyclic structure was in fact a legal cooper-
ation structure would then become much harder. In addition,
determining whether it was possible to fuse two cooperation
structures (a problem we consider below) would also be much
more complicated. For these reasons, cooperation structures
are required to be acyclic.

Finally, the function, ����q'��� : �[�A � ���%v�k`lA� , returns
the set of goals that an agent delegates in some cooperation
structure: ����q��9� # 	�
 #�� 
Nq�&�& ^ Mtq # 	�
f�t&�O �.# 	�
f�t&%R .
2.2 Complete Cooperation Structures

Consider the following scenario. Agent u 1 wants to achieve
goal � 1, but � 1 \(���u%v # u 1 & . The complete sub-goal structure
for � 1 is illustrated in Figure 1(a). Agent u 1 delegates goals
� 2, � 3, and � 4 to agents u 2, u 3, and u 4 respectively. Agents u 3
and u 4 have the capabilities to achieve their respective goals
(i.e., � 3 (/�+u%v # u 3 & and � 4 (���u%v # u 4 & ), but u 2 is not capable
of � 2. It should therefore delegate the sub-goals � 5 and � 6 to
other agents, but it does not. So � 2 will not be achieved, and
hence neither will � 1. The cooperation structure in Figure 1(b)
is thus in some sense incomplete.

This leads to the idea of a cooperation structure being com-
plete for some agent-goal pair. Informally, a cooperation
structure is said to be complete for agent 	 and goal � iff
either:

1. agent 	 has been delegated the goal � , and 	 is capable of
� ; or else



2. agent 	 has delegated each immediate sub-goal � � of �
to some agent � , and

#�� 
Nq�& is complete for agent � and
goal ��� .

Completeness is hence a recursive notion, with the first clause
as the base. It is not difficult to see that the cooperation struc-
ture in Figure 1(b) is incomplete according to this definition,
but that Figure 1(c) is complete (assuming that � 5 (*��u�v # u 5 &
and � 6 (���u�v # u 6 & ). Formally, completeness is defined as
follows.

Definition 4 A cooperation structure c ^ # C 
 l & is said to be
complete with respect to agent i and goal g iff either:

1. g ( cap
#
i & , and for some j ( Ag, we have C

#
j 
 i & and

l
#
j 
 i & ^ g; or else

2. isg
#
g &A� deleg

#
i 
 # C 
 l &�& , and 1 j ( Ag, if C

#
i 
 j & and

l
#
i 
 j &[a g, then

#
C 
 l & is complete for agent j and goal

l
#
i 
 j & .

In a complete cooperation structure, there are no sub-goals
left dangling: all sub-goals are successfully delegated and
hence, by the intuitive semantics for the sub-goal relation,
every goal in the structure is achieved.

3 Is Cooperation Possible?
Suppose an agent has a goal that it wants to achieve, and
further suppose that the agent either cannot achieve the goal in
isolation (because it does not have the resources), or does not
want to achieve it in isolation (because in so doing, it would
clobber one of its other goals) [Wooldridge and Jennings,
1994]. The obvious question this agent should ask is: can I get
other agents to help me with this goal? This is a satisfiability
problem, similar in nature to the question of whether a formula
of some particular logic is true under some interpretation.
Formally, the problem can be stated as follows.

Definition 5 (The COOPSAT problem.) Given a framework
F ^ y

Ag 
 G 
 con 
�:5
 will 
 cap z , an agent i ( Ag, and a goal
g ( G, does there exist a cooperation structure over F that is
complete for

#
i 
 g & ?

Theorem 1 COOPSAT is NP-complete.
Proof: Membership of NP is easy: given an instanceyiy

Ag 
 G 
 con 
�:�
 will 
 cap z%
 i 
 g z of the COOPSAT problem, sim-
ply guess a cooperation structure

#
C 
 l & that is complete for#

i 
 g & . Thesizeof the structure is bounded above by #
#
Ag  Ag &

and, since Ag is finite, guessing can be done in polynomial
time. Verifying that

#
C 
 l & is complete for

#
i 
 g & can also be

done in polynomial time.
For completeness, we must show that COOPSAT is in some

sense no easier than all other NP-complete problems. To do
this, it suffices to show that any instance I of some known
NP-complete problem can be transformed into an instance of� # I & of COOPSAT such that the transformation can be done
in polynomial time, and the transformed problem � # I & has a
solution only if the original problem I has a solution. For
COOPSAT, we define a reduction from a version of the well-
known HAMILTONIAN CYCLE (HC) problem.

An instance of HC is determined by a graph
#
N 
 A � N  N & .

The aim is to answer ‘yes’ if A has a cycle containing all

n1

n3

n2 n4

Figure 2: Illustrating the Reduction

nodes without repetition, ‘no’ otherwise. The idea behind the
reduction is to encode the relation A in the will relation, and
the requirement for the cycle in the sub-goal relation U .

To see how the reduction works, consider the following
graph G1 (illustrated in Figure 2):

G1
^ # M n1 
 n2 
 n3 
 n4 R�
�M # n1 
 n2 &%
 # n2 
 n3 &�
#

n3 
 n4 &%
 # n4 
 n1 &�
 # n1 
 n3 &�
 # n2 
 n4 &%RN&
This graph has a Hamiltonian cycle (n1 
 n2 
 n3 
 n4). We trans-
form G1 into an instance � # G1 & of COOPSAT. To do this, we first
create five goals g0 
������+
 g4, and five agents, n1 
�������
 n4 
 end.
We then create a linear sub-goal structure for g0:

g4 a g3 a g2 a g1 a g0

The will relation is then generated as follows.

To

From

n1 n2 n3 n4 end
n1

n2 g1 �F�F�F�F� g4

n3 g1 �F�F�F�F� g4 g1 �F�F�F�F� g4

n4 g1 �F�F�F�F� g4 g1 �F�F�F� � g4

end g1 �F�F�F� � g4

Now consider the COOPSAT problem determined by this frame-
work and the agent-goal pair

#
n1 
 g0 & . The problem clearly

has a solution, which will look like that below, where each
question mark represents an agent.

n1
g1� k ?

g2� k ?
g3� k ?

g4� k ?

In fact, this problem has a simple solution:

n1
g1� k n2

g2� k n3
g3� k n4

g4� k end

The transformation from HC to COOPSAT is entirely automatic,
(see Figure 3) and is polynomial. We leave it for the reader to
see that the generated COOPSAT problem has a solution only if
the original HC problem does, and so we are done. �

Suppose we had an algorithm that was guaranteed to give
us the correct answer to an instance of the COOPSAT problem.
This algorithm would take as input a framework, an agent and
a goal and, some time later, would be guaranteed to generate
as output of either ‘yes’ (indicating that a solution did indeed
exist), or ‘no’ (indicating that the problem had no solution).
Now, suppose the algorithm answered ‘yes’. Then the agent
would know that cooperation was possible. It would then
have to start delegating goals to other agents. But the simple



let n ^ #N be the size of N
for each node i ( N, create a corresponding agent i
create a ‘dummy’ agent, called end
create n   1 goals, g0 
������i
 gn
set con

#
g 
 g ��& for all goals g 
 g �

define U by gn a�¡�¡�¡�a g1 a g0
for each agent j \^ end

for each agent k \^ end
if
#
j 
 k &d( A then
if k ^ n1 then

will : ^ will ¢AM # j 
 end &7£k�M gn R�R
else

will : ^ will ¢AM # j 
 k &7£k�M g1 
�������
 gn R�R
else

will : ^ will ¢�M # j 
 k &¤£k � R
end-for

end-for
cap : ^ M end £k�M gn R�R

Figure 3: Reducing HC to COOPSAT

‘yes’ answer does not indicate exactly who the agent should
delegate to. A more useful algorithm would not only say
‘yes’, but would also produce a solution to the problem. This
leads us to the following, closely related problem.

Definition 6 (The COOPFIND problem.) Given a framework
F ^ y

Ag 
 G 
 con 
�:5
 will 
 cap z , an agent i ( Ag, and a goal
g ( G, find a cooperation structure over F that is complete
for
#
i 
 g & if such a structure exists, or else answer that there is

no solution.

This problem is clearly related to many similar planning prob-
lems [Allen et al., 1990]; it is also naturally viewed as a type
of constraint satisfaction problem.

4 Composing Cooperation Structures
In a real society there will be many cooperation structures
in existence at any given time. This may result in redun-
dancy through different agents achieving the same goals in
different contexts. In order to remove this redundancy it may
be possible to compose two cooperation structures. Given
two cooperation structures, � ^ #�� 
0q�& and ��� ^ #�� ��
0q'��& , we
write �7¢��%� to denote the set-theoretic union

#�� ¢ � �E
Nq�¢�q'��&
of these structures. However, this composition can only oc-
cur in certain situations: we cannot expect the union of two
arbitrary cooperation structures to be a legal structure. For
example, if we have some arc,

# 	�
��& , that appears in both
�

and
� � , but q # 	�
��&?\^ q'� # 	�
f�t& , then q�¢�q'� is not a function (since# q4¢cq'��& # 	�
��& is not well-defined). This raises the question of

what conditions are required for the union of two cooperation
structures itself to be a cooperation structure. It turns out that
we can define these conditions precisely. First, we extend the
notion of intra-structure goal consistency to inter-structure
goal consistency.

Definition 7 Let c ^ # C 
 l & and c � ^ # C �E
 l �'& be cooperation
structures. Then c and c � are said to be consistent (written
cons

#
c 
 c ��& ) iff 1 g ( ran l � 1 g �,( ran l � � con

#
g 
 g �-& .

We can now define what it means for two structures to be
compatible.

Definition 8 If c ^ #
C 
 l & and c � ^ # C �E
 l �'& are cooperation

structures, then c and c � are said to be compatible (written
compat

#
c 
 c �'& ) iff:

1. C ¢ C � is weakly connected;

2. C ¢ C � is acyclic;

3. the two structures agree on labels: 1 i 
 j ( Ag � C
#
i 
 j &¤H

C � # i 
 j &�K l
#
i 
 j & ^ l � # i 
 j &

4. 1 i 
 j 
 k ( Ag,

(a) if C
#
i 
 j &2H e C

#
j 
 k &�H e C � # i 
 j &�H C � # j 
 k & then

l � # j 
 k &): l
#
i 
 j & ;

(b) if C � # i 
 j &�H e C � # j 
 k &�H e C
#
i 
 j &?H C

#
j 
 k & then

l
#
j 
 k &7: l � # i 
 j & ; and

5. cons
#
c 
 c ��& .

One might expect that compatibility is an equivalence relation
over the set of all cooperation structures, but this is not in fact
the case, as the following theorem establishes.

Theorem 2 The compatibility relation is reflexive and sym-
metric, but not transitive.
Proof: Reflexivity and symmetry are obvious. For transitiv-
ity, it is easy to construct a counter-example. Suppose we
had three cooperation structures c 
 c �9
 c �F� . Further suppose
that compat

#
c 
 c ��& and compat

#
c ��
 c �F��& , and that c and c � share

a single agent i in common, and c � and c �F� share a different
single agent j in common (i \^ j). Hence c and c �F� are disjoint,
so c ¢ c �F� is not weakly connected. Hence c and c �F� are not
compatible. �
Determining whether two cooperation structures are compat-
ible is a tractable problem.

Theorem 3 It is possible to determine whether two coopera-
tion structures are compatible in polynomial time — no worse
than O

#
#
#
Ag & 3 & .

Proof: The only non-trivial step involves showing that the re-
sulting cooperation relation is acyclic, which requires check-
ing the transitive closure of the relation — using Warshall’s
algorithm, the transitive closure can be computed in time
O
#
#
#
Ag & 3 & [van Leeuwen, 1990, pp540–544]. The overall

time complexity is therefore no worse than O
#
#
#
Ag & 3 & . �

Theorem 4 If c ^ #
C 
 l & and c � ^ #

C ��
 l �-& are coopera-
tion structures, then c ¢ c � is a cooperation structure iff
compat

#
c 
 c �'& .

Proof: (Omitted due to lack of space.) �
Once we know that two cooperation structures are compati-
ble, the problem of generating their union is computationally
trivial.

5 Related Work
As we noted in Section 1, cooperation is a widely studied
issue in multi-agent systems research. Despite this, we are
aware of little other work that considers cooperation in the



complexity-theoretic way proposed in this paper. Probably
the most¥ closely related work to ours is that of Shehory and
Kraus on coalition formation [Shehory and Kraus, 1996].
Coalition formation is the process of devising a team of agents
to work on a goal, and is rather similar to our COOPSAT prob-
lem. The most obvious differences between our work and
that of Shehory and Kraus are that they assume benevolent
agents, and they present algorithms (adapted from the set cov-
ering problem) to design coalitions. In addition, the work of
Tennenholtz and Moses on the multi-entity model of multi-
agent systems [Tennenholtz and Moses, 1989] is also closely
related. This model is used to define the cooperative goal
achievement (CGA) problem, which can crudely be stated as:
given a set of benevolent agents, each with their own goals,
is there some plan for the set that will achieve all their goals?
Tennenholtz and Moses show that this problem is PSPACE-
complete. Our framework most significantly differs from
theirs in that they allow a richer representation of goals (as
arbitrary propositional logic formulae) and, in addition, they
also assume benevolence.

6 Conclusion
Cooperation is a key process for multi-agent systems research
and, as such, it has received a considerable amount of attention
in the multi-agent systems literature. However, mathematical
treatments of cooperation have focussed primarily on either
game-theoretic or modal logic formulations.

When many agents cooperate together, a cooperation struc-
ture emerges, which can be represented formally as a directed
graph with certain properties. In this paper, we have formally
defined the properties that must hold of such a graph to be con-
sidered as a cooperation structure. We have shown that, even
when making simplifying and limiting assumptions about the
world, the problem of determining whether cooperation struc-
tures are available to achieve an agent’s goal is NP-complete.
The problem of computational complexity and tractability has
often been overlooked in the design of multi-agent systems.
In future work we wish to use our framework in order to for-
mally define other key social reasoning problems, and analyse
the computational complexity of such problems. In addition,
we aim to investigate algorithms for solving these problems.
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