International Journal of Cooperative Information Systems,
© World Scientific Publishing Company
Vol. 0, No. 0 (1993) 000-000

ON THE FORMAL SPECIFICATION AND VERIFICATION
OF MULTI-AGENT SYSTEMS

MICHAEL FISHER and MICHAEL WOOLDRIDGE
Department of Computing, Manchester Metropolitan University
Manchester M1 5GD, United Kingdom

Received 31 September 1995
Revised 31 May 1996
Communicated by Michael Huhns

ABSTRACT

This article describes first steps towards the formal specification and verification of
multi-agent systems, through the use of temporal belief logics. The article first describes
Concurrent METATEM, a multi-agent programming language, and then develops a logic
that may be used to reason about Concurrent METATEM systems. The utility of this
logic for specifying and verifying Concurrent METATEM systems is demonstrated through
a number of examples. The article concludes with a brief discussion on the wider im-
plications of the work, and in particular on the use of similar logics for reasoning about
multi-agent systems in general.

Keywords: Formal specification and verification; multi-agent systems.

1. Introduction

Multi-agent systems technology is arguably the most vibrant and exciting re-
search and development area in computer science today. It is now widely accepted
that this emerging technology will have a key role to play in the development of
twenty-first century computer systems. To date, research on multi-agent systems
has focussed primarily on foundational issues, such as coordination and the coher-
ence of cooperative activity*. However, as the techniques and tools of multi-agent
systems research migrate from the lab to the office of the everyday computer worker,
so we might expect to find greater emphasis placed on the developmental aspects
of multi-agent systems. This change of emphasis is likely to be evidenced in sev-
eral ways. For example, we might expect to see the emergence of software tools to
support the development of multi-agent systems. (Gasser articulated the need for

such tools as long ago as 198718.) However, in addition, we might also expect to see
the adaptation of mainstream software engineering tools and techniques to multi-
agent development. One important tradition in mainstream software engineering
is formal methods: the application of mathematical techniques to the design and
construction of software?’. Qur aim, in this article, is to begin to consider the use
of such formal methods for multi-agent systems.

Specifically, this article presents Concurrent METATEM an expressive new pro-
gramming language for multi-agent systems, and considers how one might go about
formally specifying and verifying systems implemented in Concurrent METATEM.
The remainder of this article is structured as follows. In the following section, we
outline the background to, and motivation for, our work. In section 2, we describe

2 Specification and Verification of Multi-Agent Systems

Concurrent METATEM in more detail. In section 3, we develop a Temporal Belief
Logic (TBL), which is used, in section 4, to axiomatize the properties of Concur-
rent METATEM systems. Examples of the use of the logic for specifying Concurrent
METATEM systems are presented in section 5; verification examples are presented in
section 6. Some comments and conclusions are presented in section 7; in particular,
we discuss the implications of our work for reasoning about multi-agent systems in
general.

1.1. Background and Motivation

Our starting point is the notion of a reactive system:

Reactive systems are systems that cannot adequately be described by
the relational or functional view. The relational view regards programs
as functions ... from an initial state to a terminal state. Typically,
the main role of reactive systems is to maintain an interaction with
their environment, and they must therefore be described (and specified)
in terms of their on-going behaviour ... [E]very concurrent system ...
must be studied by behavioural means. This is because each individual
module in a concurrent system is a reactive subsystem, interacting with
its own environment which consists of the other modules. 2°

Multi-agent systems are reactive, in precisely this sense:

e the applications for which a multi-agent approach seems well suited, (e.g., dis-
tributed sensing®), are typically non-terminating, and therefore cannot simply
be described by the functional view;

¢ multi-agent systems are necessarily concurrent, and as Pnueli observes (above),
each agent should therefore be considered as a reactive system.

Although the fact that multi-agent systems are reactive systems in the sense de-
scribed above has been recognised by theorists in multi-agent systems, (notably
Singh?®, and Rao-Georgeff?%), it has, as yet, had relatively little impact on the
practice of multi-agent systems. In particular, the various software tools and lan-
guages that have been proposed for multi-agent development do not incorporate
any features that make them especially well suited to the development of reactive
systems (see®® for survey of such systems).

In this article, we describe Concurrent METATEM, a multi-agent programming
language, in which the notion of reactivity is central. A Concurrent METATEM
system contains a number of concurrently executing agents, which are able to com-
municate through message passing. Each agent’s behaviour is generated by directly
executing a temporal logic specification of its desired behaviour. In a 1977 paper,
Pnueli proposed temporal logic as a tool for reasoning about reactive systems?*.
The justification for this approach is that when describing a reactive system, we
often wish to express properties such as ‘if a request is sent, then a response is
eventually given’. Such properties are easily and elegantly expressed in temporal
logic. As we observed above, each agent in a Concurrent METATEM system di-
rectly executes a temporal logic specification of its desired behaviour. Reactivity is
therefore at the very heart of Concurrent METATEM.

Although Concurrent METATEM is itself based on temporal logic, one cannot
use such a logic to directly reason about Concurrent METATEM systems. This is
because each agent in a Concurrent METATEM system is a symbolic Al system in its
own right: it contains a set of explicitly represented (temporal logic) formulae which
it manipulates in order to decide what to do. Thus, to represent the behaviour of
a Concurrent METATEM system, we require some way of representing the formulae

Specification and Verification of Multi-Agent Systems 3

that each agent is manipulating at each moment in time. One way of doing this
would be to use a first-order temporal meta-language (as in 2). However, meta-
languages are notationally cumbersome, are prone to inconsistency, and can be
confusing to use. What we propose instead is to use a multi-modal language, which
contains both temporal connectives and an indexed set of modal belief operators,
one for each agent. These belief operators will be used to describe the formulae that
each agent manipulates (see?! for a detailed exposition on the use of belief logics
without a temporal component for describing Al systems).

We have now set the scene for the remainder of the article. In section 2, we
describe Concurrent METATEM in more detail. We then develop a temporal belief
logic, and show how it can be used to reason about Concurrent METATEM systems.

1.2. Notation

If L is a logical language, then we write Form(L) for the set of (well-formed)
formulae of L. We use the lowercase Greek letters ¢, 1, and x as meta-variables
ranging over formulae of the logical languages we consider. We use a VDM-style
notation for manipulating functions?®. In particular, if f is a function, then by
f 1{z — y}, we mean the function that is the same as f except that it maps z to
y. If S is a set, then by p(S), we mean the powerset of S.

2. Concurrent METATEM

In this section, we informally introduce the Concurrent METATEM language. We
begin by considering the basic components of agents, then describe the temporal
logic used for defining agent behaviour and the basic execution mechanism for such
descriptions, and finally give a simple example of a multi-agent system in Concurrent
METATEM.

Note that Concurrent METATEM is a descendent of METATEM, details of both
the philosophy and execution mechanism underlying which can be found in'»'2. The
core Concurrent METATEM language is described in®, with a survey of the language
and its applications provided in°.

2.1. Agent Components

Agents in Concurrent METATEM are concurrently executing entities, able to
communicate with each other through asynchronous broadcast message passing.
Each Concurrent METATEM agent has two main components:

e an interface, which defines how the agent may interact with its environment
(i-e., other agents);

e a computational engine, which defines how the agent will act — although in
principle, any computational engine could be provided for an agent, as long
as the engine is consistent with the interface, in Concurrent METATEM the
approach used is based on the METATEM paradigm of executable temporal
logic.

2.1.1. Agent Interfaces

A Concurrent METATEM agent interface consists of three components:

e a unique agent identifier (or just agent id), which names the agent;

e a set of symbols defining what messages will be accepted by the agent — these
are termed environment predicates; and

4 Specification and Verification of Multi-Agent Systems

e a set of symbols defining messages that the agent may send — these are termed
component predicates.

For example, the interface definition of a ‘stack’ agent® might be:

stack(pop, push)[popped, full)

Here, stack is the agent id that names the agent, {pop, push} is the set of envi-
ronment predicates, and {popped, full} is the set of component predicates. The
intuition behind this definition is that, whenever a message headed by the symbol
pop is broadcast, the stack agent will accept the message; we describe what this
means below. If a message is broadcast that is not declared in the stack agent’s
interface, then stack ignores it. Similarly, the only messages that can be sent by
the stack agent are headed by the symbols popped and full.

2.2. Specifying Agent Behaviour

The computational engine of each agent in Concurrent METATEM, which defines
how the agent will act, is defined by a temporal logic specification given as a set of
temporal ‘rules’. This approach is based on the METATEM paradigm of executable
temporal logics!. The idea which informs this approach is that of directly executing
a declarative agent specification, where this specification is given as a set of program
rules, which are temporal logic formulae of the form:

antecedent about past and present = consequent about present and future.

The antecedent is a temporal logic formula referring to the past, whereas the conse-
quent is a temporal logic formula referring to the present and future. The intuitive
interpretation of such a rule is ‘on the basis of the past, construct the future’, which
gives rise to the name of the paradigm: declarative past and imperative futurel.
The rules that define an agent’s behaviour can be animated by directly executing
the temporal specification under a suitable operational model®°.

To make the discussion more concrete, we will now introduce a quantified tem-
poral logic, called First-order METATEM Logic (FML), in which the individual
temporal rules that are used to specify an agent’s behaviour will be given. (A
complete definition of FML is given in’.)

FML is essentially classical first-order predicate logic augmented by a set of
modal connectives for referring to the temporal ordering of events. FML is based
on a model of time that is linear (i.e., each moment in time has a unique successor),
bounded in the past (i.e., there was a moment that was the ‘beginning of time’), and
infinite in the future (i.e., there are an infinite number of moments in the future).
The temporal connectives of FML can be divided into two categories, as follows:

1. Strict past time connectives: ‘@’ (weak last), ‘ @’ (strong last), ‘@’ (was),
‘W’ (heretofore), ‘S’ (since) and ¢ Z’ (zince, or weak since).
2. Present and future time connectives: ‘O’ (next), ‘{>’ (sometime), ‘[]’ (al-
ways), ‘U’ (until) and ‘W’ (unless).

The connectives { @, ®,® ,l, O, {, [} are unary; the remainder are binary.
In addition to these temporal connectives, FML contains the usual classical logic
connectives. The meaning of the temporal connectives is quite straightforward,
with formulae being interpreted at a particular moment in time. Let ¢ and ¥ be
formulae of FML, then:

o Q is satisfied at the current moment in time (i.e., now) if ¢ is satisfied at
the next moment in time;

Specification and Verification of Multi-Agent Systems 5

o o is satisfied now if ¢ is satisfied either now or at some future moment in
time;

e [y is satisfied now if ¢ is satisfied now and at all future moments;
o U1 is satisfied now if 1 is satisfied at some future moment, and ¢ is sat-

isfied until then — W is a binary connective similar to U, allowing for the
possibility that the second argument might never be satisfied.

The past-time connectives have similar meanings:

¢ Oy and @ p are satisfied now if ¢ was satisfied at the previous moment in time
— the difference between them is that, since the model of time underlying the
logic is bounded in the past, the beginning of time is treated as a special case
in that, when interpreted at the beginning of time, @ ¢ can not be satisfied
whereas @ ¢ will always be satisfied, regardless of ¢;

@ ¢ is satisfied now if ¢ was satisfied at some previous moment in time;

M ¢ is satisfied now if ¢ was satisfied at all previous moments in time;

© S is satisfied now if) was satisfied at some previous moment in time, and
¢ has been satisfied since then — Z is similar, but allows for the possibility
that the second argument was never satisfied;

finally, a nullary temporal operator can be defined, which is satisfied only at
the beginning of time — this useful operator is called ‘start’.

2.2.1. Example Formulae

Before proceeding, we present some simple examples of FML formulae Note
that these example formulae are not in Concurrent METATEM rule form, but
are arbitrary FML formulae. However, the separation results of Gabbay tell us
that the Concurrent METATEM rules are in fact equal in expressive power to ar-
bitrary temporal formulae: any FML formula may be rewritten into Concurrent
METATEM rules. First, the following formula expresses the fact that, ‘while Con-
current METATEM is not currently famous, it will be at some time in the future’:

—~famous(Concurrent MetateM) A <) famous(Concurrent MetateM).

The second example expresses the fact that ‘sometime in the past, PROLOG was
famous’:

@ famous(prolog).

We might want to state that ‘if something is famous then, at some time in the
future, it will cease to be famous’ (i.e., that fame is not permanent):

YT - famous(T) = < [1-famous(T).

The final example expresses a statement that frequently occurs in human negotia-
tion, namely ‘we are not friends until you apologise’:

(= friends(me, you)) U apologise(you).

2.3. Agent Ezecution

6 Specification and Verification of Multi-Agent Systems

The actual execution of an agent in Concurrent METATEM is, superficially at
least, very simple to understand. Each agent obeys a cycle of trying to match the
past-time antecedents of its rules against a history, and executing the consequents
of those rules that ‘fire’> This execution mechanism is considered in more detail
below.

We call any formula of FML that refers to the present or past a history formula,
and any formula referring to the present or future a commitment formula. Formulae
of the form

history formula = commitment formula

are called rules. It is sets of such rules that comprise agent specifications. Formally,
an agent program in Concurrent METATEM is a formula

O /\Vifz'- Pi(z;) = 3z - Fi(%i,%)
=1

where Z; and z; are vectors of variables, P; is a (non-strict) past-time temporal
formula and F; is a (non-strict) future-time formula, for all i € {1,...,n}.

In order to execute such rules, the computational engine for an agent continually
executes the following cycle:

1. Update the history of the agent by receiving messages (i.e., environment pred-
icates) from other agents and adding them to its history.

2. Check which rules fire, by comparing past-time antecedents of each rule against
the current history to see which are satisfied.

3. Jointly execute the fired rules together with any commitments carried over
from previous cycles.

This involves first collecting together consequents of newly fired rules with old
commitments — these become the current constraints. Now attempt to create
the next state while satisfying these constraints. As the current constraints
are represented by a disjunctive formula, the agent will have to choose between
a number of execution possibilities.

Note that it may not be possible to satisfy all the relevant {)-formulae on
the current cycle, in which case unsatisfied {>-formulae are carried over to the
next cycle as commitments.

4. Goto (1).

Clearly, step (3) is the heart of the execution process. Making the wrong choice at
this step may mean that the agent specification cannot subsequently be satisfied
(seel'1?). If a contradiction is generated, the agent is allowed a limited form of
backtracking in order to explore alternative choices®. The basic limitation of this
activity is that externally recognised actions can not be undone. Thus, backtracking
is essentially used to explore possibilities before committing to some course of action
by broadcasting a message.

2.3.1. Communication

A natural question to ask is: how do agents send messages? When a predicate
in an agent becomes true, it is compared against that agent’s interface (see above);

*There are obvious similarities between the execution cycle of an agent and production systems?2”

— but there are also significant differences. The reader is cautioned against taking the analogy
too seriously.

Specification and Verification of Multi-Agent Systems 7

rp(askl, ask2)[givel, give2] :
1. @askl = <>givel;
2. ©@ask2=> <>g'w62;
3. start = [](givel A give2).

rcl(givel)[askl] :
1. start = askl;
2. @askl = askl.

rc2(askl, give2)[ask2] :
1. ©@(askl A —ask2) = ask2.

Figure 1: A Simple Concurrent METATEM System

if it is one of the agent’s component predicates, then that predicate is broadcast
as a message to all other agents. On receipt of a message, each agent attempts to
match the predicate against the environment predicates in their interface. If there
is a match then they add the predicate to their history, prefixed by a ‘ @’ operator,
indicating that the message has just been received.

The reader should note that although the use of only broadcast message-passing
may seem restrictive, standard point-to-point message-passing can easily be sim-
ulated by adding an extra ‘destination’ argument to each message. Also, the use
of broadcast message-passing as the communication mechanism gives us the ability
to define more adaptable and flexible systems. We will not develop this argument
further; the interested reader is urged to either consult our earlier work on Con-
current METATEM®1%:1410 o1 relevant work showing the utility of broadcast and
multi-cast mechanisms®-3:23,

2.4. An Ezample Concurrent METATEM System

To illustrate Concurrent METATEM in more detail, we present in Figure 1 a
simple example system (outlined originally in')! The system contains three agents:
rp, rcl, and rc2. The agent rp is a ‘resource producer’: it can ‘give’ to only one
agent at a time (rule 3), and will commit to eventually give to any agent that asks
(rules 1 and 2). Agent rp will only accept messages askl and ask2, and can only
send givel and give2 messages.

Agent rcl has an interface which states that it will only accept givel messages,
and can only send askl messages. The rules for agent rcl ensure that an askl
message is sent on every cycle — this is because start is satisfied at the beginning
of time, thus firing rule 1, while @askl will then be satisfied on the next cycle,
thus firing rule 2, and so on. Thus, rcl asks for the resource on every cycle, using
an askl message.

The interface for agent rc2 states that it will accept both askl and give2 mes-
sages, and can send ask2 messages. The single rule for agent rc2 ensures that an
ask2 message is sent on every cycle where, on its previous cycle, it did not send an
ask2 message, but received an askl message (from agent rcl).

Having specified the network of agents as in Figure 1, we can directly execute
the agent specification in order to animate the system. We can observe that the
system has certain properties, for example:

1. agents rcl and rc2 will ask rp for the resource infinitely often;

TNote that in the interests of readability, rule numbers have been introduced to facilitate reference
and only the propositional version of this example has been provided.

8 Specification and Verification of Multi-Agent Systems

2. every time rp is ‘asked’, it must eventually ‘give’ to the corresponding asker.
Given these observations regarding the agent specifications, we can also deduce that
3. agent rp will give the resource to both rcl and rc2 infinitely often.

In section 6, we formally verify this behaviour.

3. The Temporal Belief Logic (TBL)

In this section, we define the Temporal Belief Logic (TBL) that we subsequently
use to axiomatize the properties of Concurrent METATEM systems. Formally, this
logic is a linear discrete first-order temporal logic, enriched by the addition of an
indexed set of unary modal belief connectives. We begin by defining the syntax of
TBL in section 3.1, and its semantics in section 3.2. Proof theoretic aspects are
briefly considered in section 3.3, and in section 4, we show how TBL may be used to
axiomatize the properties of Concurrent METATEM systems. Note that since TBL
is based on FML, details of which may be found in'”, our presentation, though
complete, will be somewhat terse.

3.1. Syntax
Definition 1 The alphabet of TBL contains the following symbols:
1. The truth constant, true’;
. A denumerable set Pred, of predicate symbols;

. A denumerable set Fun, of function symbols;

2

3

4. A denumerable set Var, of variable symbols;

5. A denumerable set Ag = {1,...,n} of agent identifiers;
6

. The binary temporal connectives ‘U’ (until) and ‘S’ (since), and unary tem-
poral connectives ‘O’ (next) and ‘@’ (last);

7. The binary classical connective vV’ (or), and unary classical connective “’

(not);
8. The equality symbol, ‘=’;
9. The universal quantifier, ‘Y ’;

10. The square brackets, ‘]|’ and ‘[’, parentheses ‘)’ and ‘(’, and raised point
‘, "

For convenience, we shall generally write predicates as lowercase strings of roman
letters. Function symbols and variables will be written as strings starting with an
uppercase roman letter. The syntax of TBL is defined by the grammar in Figure 2.
The reader will note that the main difference between TBL and FML is the belief
modality, which allows us to construct formulae of the form [i]p, where ¢ is an FML
formula, and ¢ is an agent identifier. A TBL formula of the form [i]¢ should be read
‘@ is in 4’s current state’. Thus, if ¢ is a history formula, this would say that ¢ was
in ¢’s history; if ¢ was a rule, this would say that ¢ was one of ¢’s rules, and if ¢
were a commitment, it would say that ¢ was committed to .

Associated with every predicate and function symbol is a natural number, known
as its arity, which indicates how many arguments it takes. We assume that arity
is defined by a function arity : PredU Var — IN, and that predicate and function
symbols are only applied to the appropriate number of arguments. Predicate sym-
bols of arity 0 are known as proposition symbols, and function symbols of arity 0
are known as constants.

Specification and Verification of Multi-Agent Systems 9

any element of F'un
(fun-sym)
(fun-sym)({term), ..., (term))
any element of Var
(fun-term)
(var-term)

any element of Pred
(pred-sym;)
(pred-sym)((term), ..., (term))
any element of Ag
true

(atomn)

((term) = (term))
~(wff)

(wff) v (wif)
Y{var-term) - {wff)
[(ag-id)](wf)

O(wff)

O (uff)

(wff) U (wf)

(wff) S (wf)

Figure 2: Syntax of TBL

(fun-sym)
(fun-term)

1

(var-term,)
(term)

(pred-sym;)
(atom)

(ag-id)
(wff)

Definition 2 The set Term, of all terms is defined as follows:

1. if X € Var, then X € Term;

2. if T € Fun, arity(T) = n, and {m1,..., 7} C Term, then T(7r1,...,7,) €
Term.

We use 7 (with decorations: 7',71,...) to stand for arbitrary members of Term.
It is sometimes convenient to deal just with constants.

Definition 3 Let Const = {T | T € Fun and arity(T) = 0} be the set of con-
stants.

3.2. Semantics

We present an overview of the key semantic features of TBL, before formally
defining its semantics. First, we recall that the semantics of TBL represent a gen-
eralisation of FML semantics!, which in turn represent a generalisation of the se-
mantics of classical first-order logic (see, e.g.,'”). Rather than give a detailed,
first-principles discussion on the semantics of TBL, we pre-suppose familiarity with
classical first-order semantics, and focus on the less standard aspects of TBL: its
temporal model and the representation of belief.

Since, as we just noted, TBL is a generalisation of FML, the temporal model
that underpins it is (IV, <), i.e., the natural numbers ordered by the usual ‘less
than’ relation. This model, although by no means universally accepted, is never-
theless widely used in mainstream computer science for representing the semantics
of concurrent and distributed systems (see, e.g.,”).

10 Specification and Verification of Multi-Agent Systems

With respect to belief, we eschew the ‘standard’ approach of possible worlds
semantics'?, in favour of a much simpler model based on the scheme proposed by
Konolige?!. Recall that the state of a Concurrent METATEM agent at any time may
be characterised as a set of FML formulae. We require a belief modality in order
to represent these formulae; the TBL formula [i] will be used to represent the fact
that agent ¢ has formula ¢ in its current state. We therefore adopt a simple model
of belief, in which the semantics of belief modalities are given in terms of belief sets.
At each moment in time, each agent is simply assigned a belief set of FML formulae
representing its internal state at that moment. A formula [i|p is satisfied at some
time u € IN if, and only if, ¢ is a member of the belief set assigned to agent i at
time u. This simple scheme is certainly not adequate as a model of human belief.
However, as we shall demonstrate in the remainder of this article, it is sufficiently
rich to represent the internal state of Concurrent METATEM agents.

Definition 4 A domain, D, is a non empty set. If D is a domain and u € IN,
then by D* we mean the set of u-tuples over D.

In order to interpret TBL, we need various functions that associate symbols of the
language with semantic objects. The first of these is an interpretation for predicates.

Definition 5 A predicate interpretation, ®, is a function

®: Pred x N - o(| J D¥)
ueIN

such that Vq € Pred,Vn,u € IN, if arity(q) = n then ®(q,u) C D™ (i.e., predicate
interpretations preserve arity).

Definition 6 An interpretation for functions, F', is a second-order function

F:Fun— (|J D* - D)
ueIN

For reasons that will become clear below, we shall make the assumption that every
element of the domain has exactly one constant (function of arity 0) that names
it. These constants may be thought of as standard names for the corresponding
domain elements. A variable assignment simply associates variables with elements
of the domain.

Definition 7 A variable assignment, V, is a function V : Var — D.

We now introduce a derived function [...]v,7, which gives the denotation of an
arbitrary term with respect to a particular interpretation for functions and variable
assignment.

Definition 8 IfV is a variable assignment and F' is a function interpretation, then
by [...]v,r, we mean the function [...]Jy,r : Term — D, which interprets arbitrary
terms relative to V and F':

ar [F()[lv,e,s.. s [mlv,e) where T is f(T1,...,7n)
[rv.r = { V() e o otherwise. '

Since V' and F' will generally be clear from context, reference to them will often be
suppressed. We can now define models for TBL.

Definition 9 A model, M, for TBL, is a structure
M =(D,F,®,BS)
where:

e D is a domain;

Specification and Verification of Multi-Agent Systems 11

(M,V,u) | true
(M, Viu) |2 q(m1,--,m) i (1], -, [m]) € 2(g, u)
(M, V,u) = (1 =1') iff] =[]
<M7V7u>|=_'90 iff <M7V7u>b£90
(M, Vu) |= oV (M V,u) g or (M,V,u) b=
(M,V,u) EVz - if (M,Vi{z—d}u)l=pforaldeD
<M7 V7u> 'Z["‘(P iff " EBS(u,i)
(M, V,u) = Og (M, V,ut 1) o
(M,V,u) F @¢p if w>0 and (M,V,u—1) ¢
(M, V,u) = oUy if FveNst (v>wu) and (M,V,v) E ¢,
and Yw e IN, if (u <w <w) then (M,V,w) =g
(M, V,u) E oSv¢ if FvelNst (v<u) and (M,V,v) E 1,
and Vw € IN, if (v<w <wu) then (M,V,w) E¢

Figure 3: Semantics of TBL

o F:Fun — (U,cn D™ — D) interprets functions;
e &: Predx IN = p(U,cv D™) interprets predicates; and

e BS:INxAg — p(Form(TBL)) assigns every agent a belief set at every time
point.

Before we can present the formal semantics of the language, we require two further
definitions, in order to deal with the semantics of belief modalities, and in particular,
with the semantics of quantifying-in to modal belief contexts.

Definition 10 If F' is an interpretation for functions and V is a variable assign-
ment, then let ny r : D — Const be the function that gives the standard name of
every element of the domain: ny,r(d) =T iff T € Const and [T]v,r = d.

Note that this function will be well defined, since we required that F allocate exactly
one constant to every element of the domain. The use of the naming function 7 is
similar to the technique developed by Konolige, in his deduction model of belief?!.

Definition 11 If ¢ is a formula of TBL, F is an interpretation for functions, and
V is a variable assignment, then by ©"V-F , we mean the formula obtained from ¢ by
systematically substituting ny,r([X]v,r) for every free variable X that occurs in .

As usual, we define the formal semantics of the language via the satisfaction relation,
‘=’. For TBL, this relation holds between triples of the form (M, V,u), (where M
is a model, V' is a variable assignment, and u € IV is a temporal index into M), and
TBL-formulae. The rules defining the satisfaction relation are given in Figure 3.
Satisfiability and validity for TBL are defined in the standard way.

The remaining temporal connectives of TBL are introduced as abbreviations:

) o trueld ¢ @ & trueSy
Op = O My = -&-p
oWy = UV O 2y = YSYpVvHle.

3.8. Proof Theory

The proof theory of FML has been examined exhaustively elsewhere (see, for
example,”). Here, we simply identify some axioms and inference rules that are later

12 Specification and Verification of Multi-Agent Systems

used in our proofs.

—

F O =)= (Oe=)
F (e = 9) = (e = Ov)
FO(p=19)= (Op = Oy)
FOOp & O

F (start = y) = O

F O(e = Op) = (¢ = Oy)
FOp = ¢
F(OOp = ¥) & (p=1)
F(@Oyp = ¥) = (p=19)
From F ¢ infer F [y

W N

U

© 0o 3

—~
(=}

From F ¢ infer F Oo
From F ¢ infer F Ogp

—~~
— o))
~— ~— — — e e e e . e e N

—~
—
[NV

We claim that these axioms and inference rules are sound, (i.e., that F ¢ implies
that ¢ is valid, and that the inference rules preserve validity). However, we do not
claim completeness.

4. Axiomatizing Concurrent METATEM

In this section, we show how TBL may be used to aziomatize the properties
of Concurrent METATEM systems. This involves extending the basic TBL proof
system outlined above to account for the particular properties of the Concurrent
METATEM systems that we intend to verify properties of.

The first axiom we add describes the conditions under which an agent will send
a message: if a predicate becomes ‘true’ inside an agent, and the predicate symbol
appears in the agent’s component predicate list within its interface, then that pred-
icate is broadcast to all other agents. (Note the use of ordinary FML predicates to
describe messages.) So if P is one of ¢’s component predicates, then the following
axiom holds.

= (1P) = OP (13)

The second axiom deals with how agents receive messages: if a message is broad-
cast, and the predicate symbol of that message appears in an agent’s environment
predicate list, then that message is accepted by the agent, which subsequently ‘be-
lieves’ that the predicate was true. So, if P is one of i’s environment predicates,
then the following axiom holds.

F P= {[]OP (14)

Notice the implicit assumption that messages are guaranteed to be delivered. In-
ternal commitments will also be eventually achieved.

F EOP = Q[P (15)
The next axiom states that agents maintain accurate histories.
F (lip) = []O 0y (16)

To simplify the proofs, we will assume that all agents in a Concurrent METATEM
system execute synchronously, i.e., the ‘execution steps’ of each agent match. This
simplification allows us to add the following synchronisation azioms. (Note that,

Specification and Verification of Multi-Agent Systems 13

without this simplification, each agent would be executing under a distinct local
clock, and so proving properties of such a system becomes much more difficult,
though possible®11.)

F(Ol(e = ¢)) & ([(]O(p = ¥)) (17)
F(O[(y = ¥) & ([0(p = ¥)) (18)

Now, for every rule, R, in an agent, ¢, we add the following axiom showing that
once the agent has started executing, the rule is always applicable.

F [i]start = [][{]R (19)

Since there is no direct interaction between the temporal connectives and the ‘[i]’
operators in the basic TBL system, we add the following.

FE(P=F) = (([{P) = (11F) (20)

This characterises the fact that the ‘=’ operator in Concurrent METATEM follows
the same logical rules as standard implication.

Finally, to simplify the proofs still further, we will assume that all agents com-
mence execution at the same moment, denoted by the global ‘start’ operator. Thus,
for every agent, i, we add the following axiom.

F start = [i]start (21)

5. Specification Examples

In this section, we consider some example multi-agent systems, and present de-
scriptions of the behaviour of agents in terms of Concurrent METATEM. In section 6,
we consider the formal verification of certain properties, within our framework, for
each of these example systems.

5.1. Resource Controller

The first example system we consider is that presented in section 2.4 and defined
in Figure 1, namely the simple ‘resource controller’ system. To recap, this system
consists of three agents: ‘rp’, which is a ‘resource producer’ that guarantees to
(eventually) give a resource to any agent that asks for it, but will only allocate one
resource at a time; ‘rcl’; which continually asks for a resource for itself; and ‘rc2’,
which asks for a resource if it sees rcl asking for a resource, but has not asked for
one itself in the previous cycle.

We consider the properties that we might wish to verify of this system in sec-
tion 6.1.

5.2. An Abstract Distributed Problem Solving System

A common form of multi-agent system is based upon the idea of distributed
problem solving?®. Here, we consider a simple abstract distributed problem solving
system, in which a single agent, called top, broadcasts a problem to a group of
problem solvers. Some of these problem solvers can solve the problem completely,
and some will reply with a solution. We define such a Concurrent METATEM system
in Figure 4. Here, solvera can solve a different problem from the one top poses,
while solverb can solve the desired problem, but does not announce the fact (as
solutionl is not a component predicate for solverb); solverc can solve the problem
posed by top, and will eventually reply with the solution.

14 Specification and Verification of Multi- Agent Systems

top(solutionl)[problem]l, solvedl] :
1. start = Oprobleml;
2. @solutionl = solvedl.

solvera(problem2)[solution2] :
1. ©@problem2 = solution2.

solverb(problem1)[solution2] :
1. ©probleml = {ysolutionl.

solverc(problem1)[solution]] :
1. ©probleml = {solutionl.

Figure 4: A Distributed Problem Solving System

Again, we will verify some properties of the above system in section . We will
also consider the refinement of individual agents, (e.g., a single problem-solver),
into groups of agents with the same properties.

5.3. The Contract Net

Finally, we look at a more complex multi-agent system in more detail. This
system contains a group of agents cooperating via a contract net-like protocol.
Below, we consider the specification (and implementation, once executed) of this
multi-agent system using Concurrent METATEM. Throughout, we assume familiar-
ity with the contract net2°.

Recall that a manager agent announces a particular task (or set of tasks) that
it requires undertaking. The other agents in the system each have a specific set of
capabilities and can, based upon these, bid for the contract to undertake all, or part
of, a particular task. We first describe the notions of tasks and capabilities that are
used throughout this specification. These will be represented by internal predicates.

5.3.1. Internal Predicates

An individual capability is simply represented as a constant. For example, if
an agent is able to move, speak and jump, the capabilities of the agent would be
represented by the capabilities predicate within the agent’s definition:

capabilities(Agent,[Move, Speak, Jump)
A task is represented simply as the function task applied to certain arguments:
task(Name, Description, Requirements, Originator)
where
o Name is the name of the task;

e Description is the general description of the task (we will not provide any
further details regarding this);

e Requirements is the list of capabilities required of an agent for it to be able
to carry out the task;

Specification and Verification of Multi-Agent Systems 15

Predicate Meaning

announce(Task) announces that a particular task is available for bids
bid(Task, Bidder) a bid for a particular task

award(Task, Awardee) awards the contract for a particular task
completed(Task, By, Result) signals the completion of a particular task

Table 1: Message Predicates

e Originator is the agent who announced the task.

In particular, we will define the predicates competent, busy, bidded, and most-
preferable as follows. (We assume that each agent awarding contracts has an internal
selection procedure which is characterised by the predicate preferable.)

capabilities(A,Cap) A (CapnN Req #0) = competent(A,task(T, D, Req, O))
(—completed(T, self, R)) S award(T, self) = busy(self)

(maward(T, A)) S announce(T) A bid(T,X) = bidded(T,X)
-3Y - preferable(Y, X) A bidded(T,Y) < most-preferable(T,X)

Note that ‘self’ refers to the id of the agent in which the predicates occur.

5.3.2. Messages

In addition to the above internal predicates, the system utilises a set of basic
message predicates; these are summarised in Table 1.
In general, the interface to an individual agent within this system is defined as

agent(announce, bid, award, completed)[announce, bid, award, completed).

Thus, every agent is capable of being both a manager and a contractor. If we
wish to introduce agent types for manager and contractor, then we can define their
interfaces as follows:

manager (bid, completed)[announce, award)
contractor(announce, award)[bid, completed]

In the remainder of this section, we outline the Concurrent METATEM rules that can
be used to describe the behaviour of a simple agent taking part in our system. The
behaviours of the agent will be split into categories relating to task announcement,
bidding, the award of contracts, and the completion of contracts.

5.3.3. Task Announcement

Initially, a prospective manager agent just announces its first task, using the
following rule.

start = announce(task(Name, Desc, Req, self)) (A1)

If an agent has been contracted to carry out a task, yet is unable to complete it,
then it must sub-contract part of the task. The rule used in this case utilises ‘split’,
a predicate that splits a task appropriately, given the agent’s capabilities (i.e., a
task is split into two tasks, the first of which the agent is able to complete, the
second of which it must attempt to subcontract).

16 Specification and Verification of Multi- Agent Systems

award(task(N, D, Req, O), self) split(task(N, D, Req, 0),T1,T2)
[] A capabilities(self, Cap) = A announce(T2)
A (Req— Cap # 0) A Q3IR- result(T1,R)
(42)

5.3.4. Bidding

The first rule in the bidding process states that an agent should only define a
possible task as one that has been announced (and not yet awarded) and which the
agent has the capabilities to undertake (at least partially).

((maward(T, A)) S announce(T) A competent(A,T)) < possible(A,T)
(B1)
Given this rule, another basic property of bidding agents is that they should not
bid for tasks that are not possible.

—possible(self,T) = —bid(T,self) (B2)

We can then add a variety of rules depending upon the behaviour required for the
agent. For example, the following rules (B3) and (B4) can be used in order to ensure
that each agent only bids for one task at a time.

possible(self,T) = JY - bid(Y, self) (B3)

Note that rule (B3) should be read in conjunction with (B2), which together with
(B1) ensures that an agent will not bid for a task that has not been announced, or
that it is not competent for.

(bid(X,self) A bid(Y,self)) = X =Y (B4)

The following rule is needed if we restrict the agent’s behaviour so it cannot bid
while it is actively undertaking a task.

busy(self) = —bid(X, self) (B5)

Finally, if we require that an agent is able to bid for every task, at any time, we
would replace rules (B3), (B4), and (B5) by the following rule.

possible(self,T) = bid(T,self) (B6)

5.3.5. Awarding Contracts

Given that a manager agent has announced a task then, after a certain time,
it must decide which bidding agent to award the contract to. To achieve this, we
simply use the following rule.

O (bidded(T,Y) A most-preferable(T,Y)) < award(T,Y) (W1)
Thus, the choice amongst those agents that have bid for the contract is made by

consulting the manager’s internal list of preferences, and no award is made if no
bids have been received.

5.3.6. Task Completion

Specification and Verification of Multi-Agent Systems 17

There are two rules relating to the completion of a task, the first for tasks solely
carried out within the agent, the second for tasks that were partially sub-contracted.

((~completed(T, self, X)) S award(T, self)

A ©result(T, R)) = completed(T,self, R) (C1)

(—completed(T, self, X)) S award(T, self)
A @ split(T,T1,T2)
A @ result(T1,R1)
A @ completed(T2, By, R2)

= completed(T, self, RITUR2)

(2)
Thus, in the first case, once the agent has produced a result, the completion of
the task is announced, while in the second case completion is only announced once
the agent has completed its portion of the task and the sub-contractor reports
completion of the remainder.

This more complex specification indicates the type of multi-agent system that
may readily be represented using Concurrent METATEM. Again, we wish to verify
that certain properties hold of this specification — it is this issue that we consider
in section .

6. Verification Examples

In this section, we show how TBL can be used to reason about Concurrent
METATEM systems, in particular the examples provided in section 5. In addition to
checking the static properties of agent specifications, there are a variety of temporal
properties that might be important. These properties can be broadly categorised
as follows?2:

e safety properties, which intuitively state that nothing bad can happen;
o liveness properties, which intuitively state that something will happen; and

e fairness properties, which intuitively state that, if a choice is reached an infi-
nite number of times, then it is discharged fairly?

In additional to this broad categorisation, there is a more structural classification
of the properties that need to be established, based upon whether they can be
established just within a single agent specification, or whether the whole system
must be considered:

o local properties are those that can be verified from a single agent specification;

e global properties require not only the specifications of several agents to be
examined, but also the axioms defining constraints upon communication and
relative execution.

Thus, global properties are usually required when we wish to establish that coordi-
nation or cooperation between agents occurs, whereas local properties relate more
to the attributes of individual agents.

In the proofs that follow, we use the notation {S} F ¢ to represent the statement
‘system S satisfies property ¢’. Also, as the majority of the proof steps involve
applications of the Modus Ponens inference rule, we will omit reference to this rule.

6.1. Resource Controller

iFor a discussion of fairness, see!?.

18 Specification and Verification of Multi- Agent Systems

1. [rel]start = [][rcl](start = askl) (rule 1 in rel)
2. start = [][rcl](start = askl) (axiom 19, 1)

3. [[rel](start = askl) (axiom 5, 2)

4. [rcl)(start = askl) (axiom 7, 3)

5. [rcl]start = [rcllaskl (axiom 20, 4)

6. start = [rcllaskl (axiom 19, 5)

7. [rcllstart = [J[rcl](@askl = askl) (rule 2 in rcl)
8. start = [J[rcl](@askl = askl) (axiom 19, 7)

9. [[rcl](@askl = askl) (axiom 5, 8)

10. [rcl](@askl = askl) (axiom 7, 9)

11. [rcl]@askl = [rcllaskl (axiom 20, 10)
12. O([rcl]@askl = [rcllaskl) (inf. rule 12, 11)
13. Olrel]@askl = Ojrcllaskl (axiom 3, 12)
14. O@Jrcllaskl = QOlrcllaskl (axiom 18, 13)
15. [rcllaskl = Ofrcllaskl (axiom 8, 14)
16. [J([rcllaskl = Oflrcllaskl) (inf. rule 10, 15)
17. [rcllaskl = [[rcllaskl (axiom 6, 16)
18. start = [J[rcllaskl (6, 17)

Figure 5: Proof of Lemma 1

We begin by proving some properties of the simple resource controller outlined
in section 2.4 and presented in Figure 1. This multi-agent system, which we shall
refer to as S1, consists of three agents: a resource producer (rp), and two resource
consumers (rcl and rc2).

The first property we prove is that the agent rcl, once it has commenced exe-
cution, satisfies the commitment askl on every cycle.

Lemma 1l {S1}F+ start = [J[rcl]askl.

(The proof of this lemma is given in Figure 5; we shall omit all other proofs from this
section, due to space restrictions.) Using this result, it is not difficult to establish
that the message askl is then sent infinitely often.

Lemma 2 {S1}+ O askl.

Similarly, we can show that any agent that is listening for askl messages, in par-
ticular rp, will receive them infinitely often.

Lemma 3 {S1}F start = [][rp]Oaskl.

Now, since we know that askl is one of rp’s environment predicates, then we can
show that once both rp and rcl have started, the resource will be given to rcl
infinitely often.

Lemma 4 {S1}F start = [|{givel.

Similar properties can be shown for rc2. Note, however, that we require knowledge
about rcl’s behaviour in order to reason about rc2’s behaviour.

Lemma 5 {S1}F start = [O[rp]O@ask2.
Given this, we can derive the following result.

Lemma 6 {S1}F start = [1{give2.

Specification and Verification of Multi-Agent Systems 19
1. [top]start = [J[top](start = {problem1) (rule 1 in top)
2. start = [][top](start = {probleml) (axiom 19, 1)
3. [[top](start = {problem1) (axiom 5, 2)
4. [top](start = {>problem1) (axiom 7, 3)
5. [top]start = [top]probleml (axiom 20, 4)
6. start = [top]probleml (axiom 19, 5)
7. start = [top]probleml (axiom 15, 6)
8. start = {probleml (axiom 13, 7)
9. start = {probleml (axiom 4, 8)
10. probleml = <{}[solverc]@probleml (axiom 14)
11. Oprobleml = <[solverc) @ problem1 (axiom 2, 10)
12. start = {><[solverc] @probleml (9, 11)
13. [solverc]start = [J[solverc](@probleml = {>solutionl) (rule 1 in solverc)
14. start = [J[solverc](@problem1 = {>solutionl) (axiom 19, 13)
15. [[solverc](@probleml = <)solutionl) (axiom 5, 14)
16. [solverc](@probleml = <{)solutionl) (axion 7, 15)
17. [solverc] @probleml = [solverc]osolutionl) (axiom 20, 16)
18. [solverc] @probleml = {[solverc]<ysolutionl (axiom 2, 17)
19. start = {[solverc] @probleml (axiom 4, 12)
20. start = Q[solverc]osolutionl (18, 19)
21. start = {[solverc|solutionl (axiom 15, 20)
22. start = [solverc|solutionl (axiom 4, 21)
23. start = {solutionl (axiom 13, 22)
24. start = {>solutionl (axiom 4, 23)

Figure 6: Proof of Lemma 7

Finally, we can show the desired behaviour of the system; compare this to result
(3) that we informally deduced in section 2.4.

Theorem 1 {S1}F start = ([1Qgivel A [Jgive2).

6.2. An Abstract Distributed Problem Solving System

We now consider properties of the simple distributed problem-solving system
presented in section . If we call this system S2, then we can prove the following.

Lemma 7 {S2} F start = {solutionl.

(See Figure 6 for a proof of this.) We can then use this result to prove that the
system solves the required problem:

Theorem 2 {S2} I start = <{solvedl.

We briefly consider a refinement of the above system where solverc is replaced by
two agents who together can solve probleml, but cannot manage this individually.
These agents, called solverd and solvere are defined in Figure 7.

Thus, when solverd receives the problem it cannot do anything until it has
heard from solvere. When solvere receives the problem, it broadcasts the fact that
it can solve part of the problem (i.e., it broadcasts solutionl.2). When solverd sees

20 Specification and Verification of Multi- Agent Systems

solverd(problem1, solutionl.2)[solutionl] :
1. (©solutionl.2 A @ probleml) = <{>solutionl.

solvere(problem1)[solutionl.2] :
1. ©@probleml = Qsolutionl.l

Figure 7: Refined Problem Solving Agents

this, it knows it can solve the other part of the problem and broadcasts the whole
solution. Thus, given these new agents we can prove the following (the system is
now called S3).

Theorem 3 {S3}F start = {solvedl.

6.3. The Contract Net

We now give an outline of how various properties of the simple Contract Net
system presented in section may be established. Rather than giving detailed proofs,
we present a precis of the proof process for a selection of properties that the system
should exhibit. Throughout, we will refer to this system as S4.

Theorem 4 If at least one agent bids for a task, then the contract will eventually
be awarded to one of the bidders.

As this is a global property of the system, not restricted to a particular agent, then
it can be represented logically as follows.

{84} VT - 3A- bid(T,A) = 3B- {award(T,B)

In order to prove this statement, we start with the assumption that an agent a has
a task t for which it bids:

[a]bid(t, a).

Now, from the axioms governing communication between agents, we know that, if
a particular predicate is a component predicate then it will eventually be broadcast
(i.e., axiom (13) in section 4). This, together with the above, ensures that

Qbid(t, a). (CN1)

Now, we know that, once broadcast, such a message will eventually reach all agents
who wish to receive messages of this form (from axiom (14)). Thus, we can deduce
that

bid(t,a) = {>[m]bid(t,a)
where m is the manager agent for this particular task. Similarly, we can derive
bid(t,a) = {>[m]bidded(t, a).

By the definition of contract allocation given by axiom (W1), we know that for some
bidding agent p (the ‘most preferable’), then the manager will eventually award the
contract to p:

bid(t,a) = {[m]award(t, p).
Using this, together with (CN1), above, and axioms (4) and (2), we can derive

Specification and Verification of Multi-Agent Systems 21

$mlaward(t, p).

Finally, as this information is broadcast, we can derive the global statement that,
given [a]bid(t,a),
3B - {award(t, B)
thus establishing the theorem.
Theorem 5 Agents do not bid for tasks that they cannot contribute to.

In logical terms, this is simply
{S4} F VT - YA - (announce(T) A (—competent(A,T))) = —bid(T, A)

If we know that, for some task ¢ and agent a, where the task ¢ has been announced,
yet the agent a is not competent to perform the task, then we know by rule (B1)
that

[a]—possible(a,t).

Then, by rule (B2), we can derive the fact that agent a will not bid for the task,
ie.,
[a]bid(t,a).

Theorem 6 Agents do mot bid unless they believe there has been a task an-
nouncement.

Again, this can be formalised as
{S4}F VT - VA- bid(T,A) = @ announce(T).

In order to prove this statement, we simply show that for there to have been a bid,
a particular agent a must have considered the task, ¢, possible:

[a]possible(t, a)
and, for this to occur, then by (B1)
[a](—award(t, B)) S announce(t)

which in turn implies

[a] ® announce(t).

As announce is an environment predicate for agent a then it must be the case that
the appropriate message was broadcast at some time in the past:

® announce(t).

Theorem 7 Managers award the contract for a particular task to at most one
agent.

This can be simply represented by
award(T,A) A award(T,B) = A=B.
The proof of this follows simply from (W1) which states that the ‘most preferable’

bidder is chosen. The definition of ‘most preferable’ in turn utilises the linear
ordering provided by the preferable predicate.

22 Specification and Verification of Multi- Agent Systems

7. Concluding Remarks

In this article, we have described Concurrent METATEM, a multi-agent pro-
gramming language, and developed a Temporal Belief Logic for reasoning about
Concurrent METATEM systems. In effect, we used the logic to develop a seman-
tics for the language; this approach did not leave us with a complete proof system
for Concurrent METATEM, (since we made the assumption of synchronous action).
However, the approach has the advantage of simplicity when compared to other
methods for defining the semantics of the language (such as those based on dense
temporal logic®, or first-order temporal meta-languages?).

More generally, logics similar to that developed herein can be used to reason
about a wide class of multi-agent systems: those in which agents have a classic
‘symbolic AT’ architecture. Such systems typically employ explicit symbolic repre-
sentations, which are manipulated in order to plan and execute actions. A belief
logic such as that described in this article seems appropriate for describing these
representations (see also?!). A temporal component to the logic seems to be suit-
able for describing reactive systems, of which multi-agent systems are an example.
In other work, we have developed a family of temporal belief logics, augmented
by modalities for describing the actions and messages of individual agents, and
demonstrated how these logics can be used to specify a wide range of cooperative
structures30:3L.

With respect to future work, there are a number of issues that require investiga-
tion. First, and most obviously, the Concurrent METATEM language needs further
development and evaluation. At the time of writing, a C++ implementation of Con-
current METATEM has been developed, which supports only limited quantification,
does not allow full backtracking, and does not have equality. This prototype is cur-
rently undergoing further development. With respect to formal aspects, an obvious
problem is the automation of proof methods for TBL; automatic proof methods are
required if verification is to become a realistic possibility. Elsewhere, we describe
one approach to proof for a TBL-like logic, based on semantic tableaux32. This
proof method has been implemented, but this implementation is not sufficiently
powerful to make it usable for everyday work. Finally, we need to look at the
completeness of Concurrent METATEM semantics.

7.1. Acknowledgments

The authors were supported by the EPSRC under grant GR/K57282.

This article incorporates work presented at the Twelfth International Workshop
on Distributed Artificial Intelligence (Hidden Valley, Pennsylvania, May 1993), the
1993 Portuguese Conference on Artificial Intelligence (Porto, October 1993) and
the Second International Working Conference on Cooperating Knowledge-Based
Systems (Keele, June 1994).

1. H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens. METATEM: A Frame-
work for Programming in Temporal Logic. In Proceedings of REX Workshop on
Stepwise Refinement of Distributed Systems: Models, Formalisms, Correctness,
Mook, Netherlands, June 1989. (Published in Lecture Notes in Computer Science,
volume 430, Springer Verlag).

2. H. Barringer, M. Fisher, D. Gabbay, and A. Hunter. Meta-Reasoning in Executable
Temporal Logic. In J. Allen, R. Fikes, and E. Sandewall, editors, Proceedings of
the International Conference on Principles of Knowledge Representation and
Reasoning (KR), Cambridge, Massachusetts, April 1991. Morgan Kaufmann.

3. K. Birman. The Process Group Approach to Reliable Distributed Computing. Techan-
ical Report TR91-1216, Department of Computer Science, Cornell University, USA,
July 1991.

4.

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

Specification and Verification of Multi-Agent Systems 23

A. H. Bond and L. Gasser, editors. Readings in Distributed Artificial Intelligence.
Morgan Kaufmann, 1988.

A. Borg, J. Baumbach, and S. Glazer. A Message System Supporting Fault Tolerance.
In Proceedings of the Ninth ACM Symposium on Operating System Principles,
pages 90-99, New Hampshire, October 1983. ACM. (In ACM Operating Systems Re-
view, vol. 17, no. 5).

E. Durfee. Coordination of Distributed Problem Solvers. Kluwer Academic Press,
1988.

E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, pages 996-1072. Elsevier, 1990.

M. Fisher. Concurrent METATEM — A Language for Modeling Reactive Systems. In
Parallel Architectures and Languages, Europe (PARLE), Munich, Germany, June
1993. Springer-Verlag.

M. Fisher. A survey of Concurrent METATEM — the language and its applications.
In D. M. Gabbay and H. J. Ohlbach, editors, Temporal Logic — Proceedings of
the First International Conference (LNAI Volume 827), pages 480-505. Springer-
Verlag: Heidelberg, Germany, July 1994.

M. Fisher. Representing and executing agent-based systems. In M. Wooldridge and
N. R. Jennings, editors, Intelligent Agents: Theories, Architectures, and Languages
(LNAI Volume 890), pages 307-323. Springer-Verlag: Heidelberg, Germany, January
1995.

M. Fisher. Towards a Semantics for Concurrent METATEM. In M. Fisher and
R. Owens, editors, Fxecutable Modal and Temporal Logics. Springer-Verlag, 1995.
M. Fisher and R. Owens. From the Past to the Future: Executing Temporal Logic Pro-
grams. In Proceedings of Logic Programming and Automated Reasoning (LPAR),
St. Petersberg, Russia, July 1992. (Published in Lecture Notes in Computer Science,
volume 624, Springer Verlag).

M. Fisher and M. Wooldridge. Executable Temporal Logic for Distributed A.I. In
Proceedings of the Twelfth International Workshop on Distributed Artificial In-
telligence, Hidden Valley, Pennsylvania, May 1993.

M. Fisher and M. Wooldridge. A logical approach to simulating societies. In N. Gilbert
and R. Conte, editors, Artificial Societies: The Computer Simulation of Social Life,
pages 268-284. UCL Press: London, 1995.

N. Francez. Fairness. Springer-Verlag: Heidelberg, Germany, 1986.

D. Gabbay. Declarative Past and Imperative Future: Executable Temporal Logic for
Interactive Systems. In B. Baniegbal, H. Barringer, and A. Pnueli, editors, Proceed-
ings of Colloquium on Temporal Logic in Specification, pages 402-450, Altrincham,
UK., 1987. (Published in Lecture Notes in Computer Science, volume 398, Springer
Verlag).

J. Gallier. Logic for Computer Science: Foundations of Automatic Theorem prov-
ing. John Wiley and Sons, 1987.

L. Gasser, C. Braganza, and N. Hermann. MACE: A Flexible Testbed for Distributed
AT Research. In M. Huhns, editor, Distributed Artificial Intelligence. Pitman/Morgan
Kaufmann, 1987.

J. Y. Halpern and Y. Moses. A guide to completeness and complexity for modal logics
of knowledge and belief. Artificial Intelligence, 54:319-379, 1992.

C. B. Jones. Systematic Software Development using VDM (second edition). Pren-
tice Hall, 1990.

K. Konolige. A Deduction Model of Belief. Pitman/Morgan Kaufmann, 1986.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag: Heidelberg, Germany, 1992.

24 Specification and Verification of Multi- Agent Systems

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

T. Maruichi, M. Ichikawa, and M. Tokoro. Modelling Autonomous Agents and their
Groups. In Y. Demazeau and J. P. Muller, editors, Decentralized AT — Proceedings of
the First European Workshop on Modelling Autonomous Agents and Multi-Agent
Worlds (MAAMAW). Elsevier/North Holland, 1990.

A. Pnueli. The Temporal Logic of Programs. In Proceedings of the FEighteenth
Symposium on the Foundations of Computer Science, 1977.

A. Pnueli. Specification and Development of Reactive Systems. In Information Pro-
cessing ’86. Elsevier/North Holland, 1986.

A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture. In
R. Fikes and E. Sandewall, editors, Proceedings of Knowledge Representation and
Reasoning (KRE&R-91), pages 473-484. Morgan Kaufmann Publishers: San Mateo,
CA, April 1991.

P. S. Rosenbloom, J. E. Laird, A. Newell, and R. McCarl. A preliminary analysis of
SOAR as a basis for general intelligence. Artificial Intelligence, 47:289-326, 1991.
M. P. Singh. Multiagent Systems: A Theoretical Framework for Intentions, Know-
How, and Communications (LNAI Volume 799). Springer-Verlag: Heidelberg, Ger-
many, 1994.

R. G. Smith. A Framework for Distributed Problem Solving. UMI Research Press,
1980.

M. Wooldridge. The Logical Modelling of Computational Multi-Agent Systems.
PhD thesis, Department of Computation, UMIST, Manchester, UK, 1992.

M. Wooldridge and M. Fisher. A First-Order Branching Time Logic of Multi-Agent Sys-
tems. In Proceedings of the Tenth European Conference on Artificial Intelligence
(ECAI ’92), Vienna, Austria, August 1992. Wiley and Sons.

M. Wooldridge and M. Fisher. A decision procedure for a temporal belief logic. In D. M.
Gabbay and H. J. Ohlbach, editors, Temporal Logic — Proceedings of the First In-
ternational Conference (LNAI Volume 827), pages 317-331. Springer-Verlag: Hei-
delberg, Germany, July 1994.

M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. The
Knowledge Engineering Review, 10(2):115-152, 1995.

