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What is an Agent?

• The main point about agents is they are autonomous:
capable independent action.

• Thus:

an agent is a computer system capable of
autonomous action in some environment, in
order to achieve its delegated goals.

• We think of an agent as being in a close-coupled,
continual interaction with its environment:

sense – decide – act – sense – decide · · ·
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Agent and Environment
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Simple (Uninteresting) Agents

• Thermostat
– delegated goal is maintain room temperature
– actions are heat on/off

• UNIX biff program
– delegated goal is monitor for incoming email and
flag it
– actions are GUI actions.

They are trivial because the decision making they do is
trivial.
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Intelligent Agents

We typically think of as intelligent agent as exhibiting 3
types of behaviour:

• reactive;

• pro-active;

• social.
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Reactivity
• If a program’s environment is guaranteed to be fixed,

a program can just execute blindly.

• The real world is not like that: most environments are
dynamic.

• Software is hard to build for dynamic domains:
program must take into account possibility of failure —
ask itself whether it is worth executing!

• A reactive system is one that maintains an ongoing
interaction with its environment, and responds to
changes that occur in it (in time for the response to be
useful).
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Proactiveness

• Reacting to an environment is easy (e.g., stimulus →
response rules).

• But we generally want agents to do things for us.

• Hence goal directed behaviour.

• Pro-activeness = generating and attempting to
achieve goals; not driven solely by events; taking the
initiative.

• Recognising opportunities.
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Social Ability

• The real world is a multi-agent environment: we
cannot go around attempting to achieve goals without
taking others into account.

• Some goals can only be achieved by interacting with
others.

• Similarly for many computer environments: witness
the INTERNET.
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• Social ability in agents is the ability to interact with
other agents (and possibly humans) via cooperation,
coordination, and negotiation.
At the very least, it means the ability to
communicate. . .
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Social Ability: Cooperation

• Cooperation is working together as a team to achieve
a shared goal.

• Often prompted either by the fact that no one agent
can achieve the goal alone, or that cooperation will
obtain a better result (e.g., get result faster).
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Social Ability: Coordination

• Coordination is managing the interdependencies
between activities.

• For example, if there is a non-sharable resource that
you want to use and I want to use, then we need to
coordinate.
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Social Ability: Negotiation

• Negotiation is the ability to reach agreements on
matters of common interest.

• For example: You have one TV in your house; you
want to watch a movie, your housemate wants to
watch football.
A possible deal: watch football tonight, and a movie
tomorrow.

• Typically involves offer and counter-offer, with
compromises made by participants.
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Some Other Properties. . .

• Mobility

• Veracity

• Benevolence

• Rationality

• Learning/adaption:
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Agents and Objects

• Are agents just objects by another name?

• Object:

– encapsulates some state;
– communicates via message passing;
– has methods, corresponding to operations that may

be performed on this state.
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Differences between Agents & Objects
• Agents are autonomous:

agents embody stronger notion of autonomy than
objects, and in particular, they decide for themselves
whether or not to perform an action on request from
another agent;

• Agents are smart:
capable of flexible (reactive, pro-active, social)
behavior – the OO model has nothing to say about
such types of behavior;

• Agents are active:
not passive service providers.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 14

Chapter 2 An Introduction to Multiagent Systems 2e

Objects do it for free. . .

• agents do it because they want to;

• agents do it for money.
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Agents and Expert Systems

• Aren’t agents just expert systems by another name?

• Expert systems typically disembodied ‘expertise’
about some (abstract) domain of discourse.

• Example: MYCIN knows about blood diseases in
humans.
It has a wealth of knowledge about blood diseases, in
the form of rules.
A doctor can obtain expert advice about blood
diseases by giving MYCIN facts, answering questions,
and posing queries.
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Differences between Agents & Expert Systems

• agents are situated in an environment:
MYCIN is not aware of the world — only information
obtained is by asking the user questions.

• agents act:
MYCIN does not operate on patients.

Some real-time (typically process control) expert
systems are agents.
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Intelligent Agents and AI

• Aren’t agents just the AI project?
Isn’t building an agent what AI is all about?

• AI aims to build systems that can (ultimately)
understand natural language, recognise and
understand scenes, use common sense, think
creatively, etc — all of which are very hard.

• So, don’t we need to solve all of AI to build an
agent. . . ?
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• When building an agent, we simply want a system
that can choose the right action to perform, typically in
a limited domain.

• We do not have to solve all the problems of AI to build
a useful agent:

a little intelligence goes a long way!

• Oren Etzioni, speaking about the commercial
experience of NETBOT, Inc:

We made our agents dumber and dumber and
dumber . . . until finally they made money.
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Properties of Environments

• Accessible vs inaccessible.
An accessible environment is one in which the agent
can obtain complete, accurate, up-to-date information
about the environment’s state.
Most moderately complex environments (including, for
example, the everyday physical world and the
Internet) are inaccessible.
The more accessible an environment is, the simpler it
is to build agents to operate in it.
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• Deterministic vs non-deterministic.
As we have already mentioned, a deterministic
environment is one in which any action has a single
guaranteed effect — there is no uncertainty about the
state that will result from performing an action.
The physical world can to all intents and purposes be
regarded as non-deterministic.
Non-deterministic environments present greater
problems for the agent designer.
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• Episodic vs non-episodic.
In an episodic environment, the performance of an
agent is dependent on a number of discrete episodes,
with no link between the performance of an agent in
different scenarios.
Episodic environments are simpler from the agent
developer’s perspective because the agent can
decide what action to perform based only on the
current episode — it need not reason about the
interactions between this and future episodes.
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• Static vs dynamic.
A static environment is one that can be assumed to
remain unchanged except by the performance of
actions by the agent.
A dynamic environment is one that has other
processes operating on it, and which hence changes
in ways beyond the agent’s control.
The physical world is a highly dynamic environment.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 23



Chapter 2 An Introduction to Multiagent Systems 2e

• Discrete vs continuous.
An environment is discrete if there are a fixed, finite
number of actions and percepts in it. Russell and
Norvig give a chess game as an example of a discrete
environment, and taxi driving as an example of a
continuous one.
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Agents as Intentional Systems

• When explaining human activity, we use statements
like the following:

Janine took her umbrella because she believed it
was raining and she wanted to stay dry.

• These statements make use of a folk psychology, by
which human behaviour is predicted and explained by
attributing attitudes such as believing, wanting,
hoping, fearing, . . . .
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Dennett on Intentional Systems

Daniel Dennett coined the term intentional system to
describe entities ‘whose behaviour can be predicted by
the method of attributing belief, desires and rational
acumen’.

‘A first-order intentional system has beliefs and desires
(etc.) but no beliefs and desires about beliefs and desires.
. . . A second-order intentional system is more
sophisticated; it has beliefs and desires (and no doubt other
intentional states) about beliefs and desires (and other
intentional states) — both those of others and its own’.
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Can We Apply the Intentional Stance to Machines?

‘To ascribe beliefs, free will, intentions, consciousness, abilities, or wants to a machine is

legitimate when such an ascription expresses the same information about the machine that it

expresses about a person. It is useful when the ascription helps us understand the structure of

the machine, its past or future behaviour, or how to repair or improve it. It is perhaps never

logically required even for humans, but expressing reasonably briefly what is actually known

about the state of the machine in a particular situation may require mental qualities or qualities

isomorphic to them. Theories of belief, knowledge and wanting can be constructed for machines

in a simpler setting than for humans, and later applied to humans. Ascription of mental qualities

is most straightforward for machines of known structure such as thermostats and computer

operating systems, but is most useful when applied to entities whose structure is incompletely

known’. (John McCarthy)
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What can be described with the intentional stance?

Consider a light switch:

‘It is perfectly coherent to treat a light switch as a
(very cooperative) agent with the capability of
transmitting current at will, who invariably
transmits current when it believes that we want it
transmitted and not otherwise; flicking the switch
is simply our way of communicating our desires’.
(Yoav Shoham)
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• Most adults would find such a description absurd!

• While the intentional stance description is consistent,

. . . it does not buy us anything, since we
essentially understand the mechanism
sufficiently to have a simpler, mechanistic
description of its behaviour. (Yoav Shoham)

• The more we know about a system, the less we need
to rely on animistic, intentional explanations of its
behaviour.
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• But with very complex systems, a mechanistic,
explanation of its behaviour may not be practicable.

• As computer systems become ever more complex, we
need more powerful abstractions and metaphors to
explain their operation — low level explanations
become impractical.
The intentional stance is such an abstraction.
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• The intentional notions are thus abstraction tools,
which provide us with a convenient and familiar way of
describing, explaining, and predicting the behaviour of
complex systems.

• Remember: most important developments in
computing are based on new abstractions:

– procedural abstraction;
– abstract data types;
– objects.

Agents, and agents as intentional systems, represent
a further, and increasingly powerful abstraction.
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• Points in favour of this idea:

Characterising Agents

• It provides us with a familiar, non-technical way of
understanding & explaing agents.

Nested Representations

• It gives us the potential to specify systems that
include representations of other systems.
It is widely accepted that such nested representations
are essential for agents that must cooperate with
other agents.
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Post-Declarative Systems

• in procedural programming, we say exactly what a
system should do;

• in declarative programming, we state something that
we want to achieve, give the system general info
about the relationships between objects, and let a
built-in control mechanism (e.g., goal-directed
theorem proving) figure out what to do;

• with agents, we give a high-level description of the
delegated goal, and let the control mechanism figure
out what to do, knowing that it will act in accordance
with some built-in theory of rational agency.
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An aside. . .

• We find that researchers from a more mainstream
computing discipline have adopted a similar set of
ideas in knowledge based protocols.

• The idea: when constructing protocols, one often
encounters reasoning such as the following:

IF process i knows process j has
received message m1

THEN process i should send process j
the message m2.
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Abstract Architectures for Agents
• Assume the environment may be in any of a finite set

E of discrete, instantaneous states:

E = {e, e′, . . .}.

• Agents are assumed to have a repertoire of possible
actions available to them, which transform the state of
the environment.

Ac = {α, α′, . . .}

• A run, r, of an agent in an environment is a sequence
of interleaved environment states and actions:

r : e0
α0−→ e1

α1−→ e2
α2−→ e3

α3−→ · · ·
αu−1
−→ eu
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Runs

Let. . .

• R be the set of all such possible finite sequences
(over E and Ac);

• RAc be the subset of these that end with an action;
and

• RE be the subset of these that end with an
environment state.
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Environments

• A state transformer function represents behaviour of
the environment:

τ : RAc → ℘(E)

• Note that environments are. . .

– history dependent.
– non-deterministic.

• If τ (r) = ∅, there are no possible successor states to r,
so we say the run has ended. (“Game over.”)
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• An environment Env is then a triple Env = 〈E, e0, τ〉
where E is set of environment states, e0 ∈ E is initial
state; and τ is state transformer function.
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Agents

• Agent is a function which maps runs to actions:

Ag : RE → Ac

• Thus an agent makes a decision about what action to
perform based on the history of the system that it has
witnessed to date.

• Let AG be the set of all agents.
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Systems

• A system is a pair containing an agent and an
environment.

• Any system will have associated with it a set of
possible runs; we denote the set of runs of agent Ag in
environment Env by R(Ag,Env).

• Assume R(Ag,Env) contains only runs that have
ended.
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• Formally, a sequence

(e0, α0, e1, α1, e2, . . .)

represents a run of an agent Ag in environment
Env = 〈E, e0, τ〉 if:

1. e0 is the initial state of Env

2. α0 = Ag(e0); and
3. for u > 0,

eu ∈ τ ((e0, α0, . . . , αu−1)) where
αu = Ag((e0, α0, . . . , eu))
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Purely Reactive Agents

• Some agents decide what to do without reference to
their history — they base their decision making
entirely on the present, with no reference at all to the
past.

• We call such agents purely reactive:

action : E → Ac

• A thermostat is a purely reactive agent.

action(e) =

{

off if e = temperature OK
on otherwise.
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Perception

• Now introduce perception system:

ENVIRONMENT

action

AGENT

see
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• The see function is the agent’s ability to observe its
environment, whereas the action function represents
the agent’s decision making process.

• Output of the see function is a percept :

see : E → Per

which maps environment states to percepts, and
action is now a function

action : Per∗ → A

which maps sequences of percepts to actions.
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Agents with State

• We now consider agents that maintain state:

actionsee

next state

AGENT

ENVIRONMENT
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Perception

• These agents have some internal data structure,
which is typically used to record information about the
environment state and history.
Let I be the set of all internal states of the agent.

• The perception function see for a state-based agent is
unchanged:

see : E → Per
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Action

The action-selection function action is now defined as a
mapping

action : I → Ac

from internal states to actions.
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Next State Function

A function next is introduced, which maps an internal
state and percept to an internal state:

next : I × Per → I
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Agent control loop

1. Agent starts in some initial internal state i0.

2. repeat forever:

•Observe environment state, and generate a
percept through see(. . .).

•Update internal state via next function,
• Select action via action(. . .).
• Perform action.
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Tasks for Agents

• We build agents in order to carry out tasks for us.

• The task must be specified by us. . .

• But we want to tell agents what to do without telling
them how to do it.
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Utilities Functions over States

• One possibility: associate utilities with individual
states — the task of the agent is then to bring about
states that maximise utility.

• A task specification is a function

u : E → R

which associated a real number with every
environment state.
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• But what is the value of a run. . .

– minimum utility of state on run?
– maximum utility of state on run?
– sum of utilities of states on run?
– average?

• Disadvantage: difficult to specify a long term view
when assigning utilities to individual states.
(One possibility: a discount for states later on.)
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Utilities over Runs

• Another possibility: assigns a utility not to individual
states, but to runs themselves:

u : R→ R

• Such an approach takes an inherently long term view.

• Other variations: incorporate probabilities of different
states emerging.
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Problems with Utility-based Approaches

• “Where do the numbers come from?” (Peter
Cheeseman)

• People don’t think in terms of utilities — it’s hard for
people to specify tasks in these terms.

• Nevertheless, works well in certain scenarios. . . .
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Utility in the Tileworld

• Simulated two dimensional grid environment on which
there are agents, tiles, obstacles, and holes.

• An agent can move in four directions, up, down, left,
or right, and if it is located next to a tile, it can push it.

• Holes have to be filled up with tiles by the agent. An
agent scores points by filling holes with tiles, with the
aim being to fill as many holes as possible.

• TILEWORLD changes with the random appearance
and disappearance of holes.
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Utility in the Tileworld

• Utility function defined as follows:

u(r) =̂
number of holes filled in r

number of holes that appeared in r

• Thus:
if agent fills all holes, utility = 1.
if agent fills no holes, utility = 0.
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Expected Utility

• Write P(r | Ag,Env) to denote probability that run r
occurs when agent Ag is placed in environment Env.
Note:

∑

r∈R(Ag,Env)

P(r | Ag,Env) = 1.

• The expected utility of agent Ag in environment Env
(given P, u), is then:

EU(Ag,Env) =
∑

r∈R(Ag,Env)

u(r)P(r | Ag,Env). (1)
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An Example
Consider the environment Env1 = 〈E, e0, τ〉 defined as
follows:

E = {e0, e1, e2, e3, e4, e5}

τ (e0
α0−→) = {e1, e2}

τ (e0
α1−→) = {e3, e4, e5}

There are two agents possible with respect to this
environment:

Ag1(e0) = α0

Ag2(e0) = α1
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The probabilities of the various runs are as follows:
P(e0

α0−→ e1 | Ag1,Env1) = 0.4

P(e0

α0−→ e2 | Ag1,Env1) = 0.6

P(e0

α1−→ e3 | Ag2,Env1) = 0.1

P(e0

α1−→ e4 | Ag2,Env1) = 0.2

P(e0

α1−→ e5 | Ag2,Env1) = 0.7

Assume the utility function u1 is defined as follows:
u1(e0

α0−→ e1) = 8

u1(e0

α0−→ e2) = 11

u1(e0

α1−→ e3) = 70

u1(e0

α1−→ e4) = 9

u1(e0

α1−→ e5) = 10

What are the expected utilities of the agents for this
utility function?
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Optimal Agents

• The optimal agent Agopt in an environment Env is the
one that maximizes expected utility:

Agopt = arg max
Ag∈AG

EU(Ag,Env) (2)

• Of course, the fact that an agent is optimal does not
mean that it will be best; only that on average, we can
expect it to do best.
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Bounded Optimal Agents

• Some agents cannot be implemented on some
computers

• Write AGm to denote the agents that can be
implemented on machine (computer) m:

AGm = {Ag | Ag ∈ AG and Ag can be implemented on m}.

• The bounded optimal agent, Agbopt, with respect to m
is then. . .

Agbopt = arg max
Ag∈AGm

EU(Ag,Env) (3)
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Predicate Task Specifications

• A special case of assigning utilities to histories is to
assign 0 (false) or 1 (true) to a run.

• If a run is assigned 1, then the agent succeeds on that
run, otherwise it fails.

• Call these predicate task specifications.

• Denote predicate task specification by Ψ:

Ψ : R→ {0, 1}
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Task Environments

• A task environment is a pair 〈Env,Ψ〉, where Env is an
environment, and

Ψ : R→ {0, 1}

is a predicate over runs.
Let T E be the set of all task environments.

• A task environment specifies:

– the properties of the system the agent will inhabit;
– the criteria by which an agent will be judged to have

either failed or succeeded.
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• Write RΨ(Ag,Env) to denote set of all runs of the
agent Ag in environment Env that satisfy Ψ:

RΨ(Ag,Env) = {r | r ∈ R(Ag,Env) and Ψ(r) = 1}.

• We then say that an agent Ag succeeds in task
environment 〈Env,Ψ〉 if

RΨ(Ag,Env) = R(Ag,Env)
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The Probability of Success

• Let P(r | Ag,Env) denote probability that run r occurs if
agent Ag is placed in environment Env.

• Then the probability P(Ψ | Ag,Env) that Ψ is satisfied
by Ag in Env would then simply be:

P(Ψ | Ag,Env) =
∑

r∈RΨ(Ag,Env)

P(r | Ag,Env)
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Achievement & Maintenance Tasks

• Two most common types of tasks are achievement
tasks and maintenance tasks:

1. Achievement tasks Are those of the form “achieve
state of affairs φ”.

2. Maintenance tasks Are those of the form
“maintain state of affairs ψ”.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 66

Chapter 2 An Introduction to Multiagent Systems 2e

• An achievement task is specified by a set G of “good”
or “goal” states: G ⊆ E.
The agent succeeds if it is guaranteed to bring about
at least one of these states (we do not care which one
— they are all considered equally good).

• A maintenance goal is specified by a set B of “bad”
states: B ⊆ E.
The agent succeeds in a particular environment if it
manages to avoid all states in B — if it never performs
actions which result in any state in B occurring.
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Agent Synthesis

• Agent synthesis is automatic programming: goal is to
have a program that will take a task environment, and
from this task environment automatically generate an
agent that succeeds in this environment:

syn : T E → (AG ∪ {⊥}).

(Think of ⊥ as being like null in JAVA.
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Soundness and Completeness

• Synthesis algorithm is:

– sound if, whenever it returns an agent, then this
agent succeeds in the task environment that is
passed as input; and

– complete if it is guaranteed to return an agent
whenever there exists an agent that will succeed in
the task environment given as input.
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• Synthesis algorithm syn is sound if it satisfies the
following condition:

syn(〈Env,Ψ〉) = Ag implies R(Ag,Env) = RΨ(Ag,Env).

and complete if:

∃Ag ∈ AG s.t. R(Ag,Env) = RΨ(Ag,Env) implies
syn(〈Env,Ψ〉) 6= ⊥.
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