CHAPTER 11: MULTIAGENT INTERACTIONS

An Introduction to Multiagent Systems

Thus a multiagent system contains a number of agents

- ... which interact through communication ...
- ... are able to act in an environment ...
- ... have different "spheres of influence" (which may coincide)...
- ... will be linked by other (organisational) relationships.

http://www.csc.liv.ac.uk/~mjw/pubs/imas/

4

 Utility functions lead to preference orderings over outcomes:

```
\omega \succeq_i \omega' means u_i(\omega) \ge u_i(\omega')
\omega \succ_i \omega' means u_i(\omega) > u_i(\omega')
```


Rational Action

 Suppose we have the case where *both* agents can influence the outcome, and they have utility functions as follows:

$$u_i(\omega_1) = 1$$
 $u_i(\omega_2) = 1$ $u_i(\omega_3) = 4$ $u_i(\omega_4) = 4$
 $u_j(\omega_1) = 1$ $u_j(\omega_2) = 4$ $u_j(\omega_3) = 1$ $u_j(\omega_4) = 4$

• With a bit of abuse of notation:

 $u_i(D,D) = 1$ $u_i(D,C) = 1$ $u_i(C,D) = 4$ $u_i(C,C) = 4$ $u_j(D,D) = 1$ $u_j(D,C) = 4$ $u_j(C,D) = 1$ $u_j(C,C) = 4$

http://www.csc.liv.ac.uk/~mjw/pubs/imas/

Chapter 11

An Introduction to Multiagent Systems 2e

• Then agent *i*'s preferences are:

$$C, C \succeq_i C, D \succ_i D, C \succeq_i D, D$$

• "C" is the *rational choice* for *i*.

(Because i prefers all outcomes that arise through C over all outcomes that arise through D.)

Chapter 11	An Introduction to Multiagent Systems 2e
Г	Iominant Strategies
	offiniarit Otrategies
• We will say that	a strategy si is <i>dominant</i> for player <i>i</i> if
	a strategy s_i is dominant for player i if
no matter what	strategy s_j agent j chooses, i will do at
least as well pla	ying s_i as it would doing anything else.
 Unfortunately, tr 	iere isn't always a dominant strategy.
http://www.csc.liv.ac.uk/~mjw/	pubs/imas/ 14

Chapter 11	An Introduction to Multiagent Systems 2e
	(Pure Strategy) Nash Equilibrium
 In gene in Nash 	ral, we will say that two strategies s_1 and s_2 are equilibrium if:
1. unc can	er the assumption that agent <i>i</i> plays s_1 , agent <i>j</i> do no better than play s_2 ; and
2. unc can	er the assumption that agent j plays s_2 , agent i do no better than play s_1 .
 Neither Nash e 	agent has any incentive to deviate from a quilibrium.
 Unfortu 	nately:
http://www.csc.li	v.ac.uk/~mjw/pubs/imas/ 15

Chapter 11	An Introduction to Multiagent Systems 2e
	Matching Pennies
Players <i>i</i> and <i>j</i> siff	" or "tails"
If they show the st	i wins while if they
show different face	s then <i>i</i> wins
http://www.csc.liv.ac.uk/~miw	pubs/imas/ 17

Chapter 11	An Introduction to Multiagent Systems 2e
Nash's Theore	m
 Nash proved that every finite ga equilibrium in mixed strategies. pure strategies.) 	ame has a Nash (Unlike the case for
 So this result overcomes the lac there still may be more than one 	ck of solutions; but e Nash equilibrium
http://www.csc.liv.ac.uk/~mjw/pubs/imas/	21

Pareto Optimality

An outcome is said to be *Pareto optimal* (or *Pareto efficient*) if there is no other outcome that makes one agent *better off* without making another agent *worse off*.

 If an outcome is Pareto optimal, then at least one agent will be reluctant to move away from it (because this agent will be worse off).

http://www.csc.liv.ac.uk/~mjw/pubs/imas/

 Zero sum encounters in real life are very rare ... but people frequently act as if they were in a zero sum game.

http://www.csc.liv.ac.uk/~mjw/pubs/imas/

Chapter 11
An Introduction to Multiagent Systems 2e
4 The Prisoner's Dilemma
Two men are collectively charged with a crime and
held in separate cells, with no way of meeting or
communicating.
They are told that:

 if one confesses and the other does not, the
confessor will be freed, and the other will be
jailed for three years;
 if both confess, then each will be jailed for two
years.

 Both prisoners know that if neither confesses,
then they will each be jailed for one year.

• Payoff matrix for prisoner's dilemma:

- Top left: If both defect, then both get punishment for mutual defection.
- Top right: If *i* cooperates and *j* defects, *i* gets sucker's payoff of 1, while *j* gets 4.

http://www.csc.liv.ac.uk/~mjw/pubs/imas/

What Should You Do?

The *individual rational* action is *defect*. This guarantees a payoff of no worse than 2, whereas cooperating guarantees a payoff of at most 1.
So defection is the best response to all possible strategies: both agents defect, and get payoff = 2.
But *intuition* says this is *not* the best outcome: Surely they should both cooperate and each get payoff of 3!

http://www.csc.liv.ac.uk/~mjw/pubs/imas/

Chapter 11		An Introduction to Multiagent Systems 2	!e
	Solution Concept	S	
• D is a dominar	nt strategy.		
• (<i>D</i> , <i>D</i>) is the or	nly Nash equilibriur	n.	
All outcomes e	except (D, D) are Pa	areto optimal.	
\bullet (C C) maximis	es social welfare		
http://www.cgc_liv.ac.uk/~m-	w/nubs/imas/	2	1
	w, Pass, Imas,		

 This apparent paradox is the fundamental problem of multi-agent interactions.
It appears to imply that cooperation will not occur in societies of self-interested agents.
 Real world examples:
 – nuclear arms reduction ("why don't I keep mine") – free rider systems — public transport; – in the UK — television licenses.
 The prisoner's dilemma is ubiquitous.
 Can we recover cooperation?
http://www.csc.liv.ac.uk/~mjw/pubs/imas/ 3

Chapter 11 Arguments for Recovering Cooperation • Conclusions that some have drawn from this analysis: – the game theory notion of rational action is wrong! – somehow the dilemma is being formulated wrongly • Arguments to recover cooperation: – We are not all machiavelli! – The other prisoner is my twin! – Program equilibria and mediators – The shadow of the future...

Chapter 11	An Introduction to Multiagent System	ns <mark>2e</mark>
	4.2 Program Equilibria	
 Consider the 	e following program:	
IF HisProg DO(C); ELSE DO(D); END-IF.	gram == ThisProgram THEN	
Here == is <i>t</i> e	extual comparison.	
 The best res same progra 	ponse to this program is to submit the m , giving an outcome of (C, C) !	
http://www.csc.liv.ac.uk/	~mjw/pubs/imas/	35

4.4 Backwards Induction

• But... suppose you both know that you will play the game exactly *n* times.

On round n - 1, you have an incentive to defect, to gain that extra bit of payoff...

But this makes round n - 2 the last "real", and so you have an incentive to defect there, too.

This is the *backwards induction* problem.

 Playing the prisoner's dilemma with a fixed, finite, pre-determined, commonly known number of rounds, defection is the best strategy.

http://www.csc.liv.ac.uk/~mjw/pubs/imas/

Chapter 11	An Introduction to Multiagent Systems 2	?e
	4.5 Axelrod's Tournament	
 Suppose yo a range of o What strate your overal 	ou play iterated prisoner's dilemma against opponents egy should you choose, so as to maximise I payoff?	
 Axelrod (19 computer to prisoner's c 	84) investigated this problem, with a ournament for programs playing the lilemma.	
http://www.csc.liv.ac.u	k/~mjw/pubs/imas/ 3	39

Strategies in Axelrod's Tournament

• <u>ALLD</u>:

"Always defect" — the *hawk* strategy;

TIT-FOR-TAT:

- 1. On round u = 0, cooperate.
- 2. On round u > 0, do what your opponent did on round u 1.

• <u>TESTER</u>:

On 1st round, defect. If the opponent retaliated, then play TIT-FOR-TAT. Otherwise intersperse cooperation & defection.

http://www.csc.liv.ac.uk/~mjw/pubs/imas/

Chapter 11

An Introduction to Multiagent Systems 2e

• Don't hold grudges:

Always reciprocate cooperation immediately.

46

- There is no dominant strategy (in our sense).
- Strategy pairs (*C*, *D*)) and (*D*, *C*)) are Nash equilibriums.
- All outcomes except (D, D) are Pareto optimal.
- All outcomes except (D, D) maximise social welfare.

$-CC \succ_i DC \succ_i DD \succ_i CD$ Stag hunt.

http://www.csc.liv.ac.uk/~mjw/pubs/imas/