CHAPTER 13: FORMING COALITIONS

Multiagent Systems

http://www.csc.liv.ac.uk/~mjw/pubs/imas/

Chapter	13
---------	----

Coalition Structure Generation

- Deciding *in principle* who will work together.
- The basic question:

Which coalition should I join?

• The result: *partitions* agents into disjoint *coalitions*. The overall partition is a *coalition structure*.

http://www.csc.liv.ac.uk/~mjw/pubs/imas/

Chapter	13
---------	----

Dividing the Benefits

- Deciding "who gets what" in the payoff.
- Coalition members cannot ignore each other's preferences, because members can *defect*: if you try to give me a bad payoff, I can always walk away.
- We might want to consider issues such as *fairness* of the distribution.

http://www.csc.liv.ac.uk/~mjw/pubs/imas/

4

Chapter 13 Formalising Cooperative Scenarios A coalitional game: $\langle Ag, \nu \rangle$ Where: • $Ag = \{1, ..., n\}$ is a set of agents; • $\nu : 2^{Ag} \rightarrow \mathbb{R}$ is the *characteristic function* of the game. Usual interpretation: if $\nu(C) = k$, then coalition *C* can cooperate in such a way they will obtain utility *k*, which may then be distributed amongst team members.

6

http://www.csc.liv.ac.uk/~mjw/pubs/imas/

Chapter 13
 The Core
 The core of a coalitional game is the set of *feasible* distributions of payoff to members of a coalition that no sub-coalition can reasonably object to.
 An outcome for a coalition C in game ⟨Ag, ν⟩ is a vector of payoffs to members of C, ⟨x₁,...,x_k⟩ which represents a *feasible distribution of payoff to members of Ag*.
 "Feasible" means:

Chapter 13	An Introduction to Multiagent Systems 2e	
Representir	ng Coalitional Games	
 It is important for an core of a coalition is so, how hard is it to 	agent to know (eg) whether the non-empty decide this?	
 Problem: naive, obv game is exponential 	ious representation of coalitional in the size of $Ag!$	
 Now such a represe 	ntation is:	
 utterly infeasible in 	n practice; and	
http://www.csc.liv.ac.uk/~mjw/pubs/i	mas/ 14	

Representation 2: Weighted Voting Games

 For each agent *i* ∈ *Ag*, assign a weight *w_i*, and define an overall *quota*, *q*.

$$\nu(C) = \begin{cases} 1 & \text{if } \sum_{i \in C} w_i \ge q \\ 0 & \text{otherwise.} \end{cases}$$

 Shapley value: #P-complete, and "hard to approximate" (Deng & Papadimitriou, 94).

• Core non-emptiness:

in polynomial time.

Not a complete representation.

http://www.csc.liv.ac.uk/~mjw/pubs/imas/

22

• Pattern is conjunction of agents, a rule *applies* to a group of agents *C* if *C* is a superset of the agents in the pattern.

Value of a coalition is then sum over the values of all the rules that apply to the coalition.

Example:

$$\begin{array}{ccc} a \wedge b & \longrightarrow 5 \\ b & \longrightarrow 2 \end{array}$$

We have: $\nu(\{a\}) = 0$, $\nu(\{b\}) = 2$, and $\nu(\{a, b\}) = 7$.

We can also allow negations in rules (agent not present).

http://www.csc.liv.ac.uk/~mjw/pubs/imas/

Chapter 2
Chapter 2
Representation 3: Marginal Contribution Nets
e. Shapley value:

in polynomial time

e. Checking whether distribution is in the core:

co-NP-complete

e. Checking whether the core is non-empty:

co-NP-hard.

A complete representation, but not necessarily succinct.
http://www.csc.liv.ac.uk/~mjw/pubs/imas/

• $V: 2^{Ag} \rightarrow 2^{2^G}$ is a *characteristic function*, which for every coalition $C \subseteq Ag$ determines a set V(C) of *choices*, the intended interpretation being that if $G' \in V(C)$, then one of the choices available to coalition *C* is to bring about *all* the goals in *G'* simultaneously.

http://www.csc.liv.ac.uk/~mjw/pubs/imas/

Chapter 13

An Introduction to Multiagent Systems 2e

Fourteen QCG Decision Problems (AIJ, Sep 2004)

Problem	Description	Complexity	q ^{mono}
SC	SUCCESSFUL COALITION	NP-complete	NP-complete
SSC	SELFISH SUCCESSFUL COALITION	NP-complete	NP-complete
UGS	UNATTAINABLE GOAL SET	NP-complete	NP-complete
MC	MINIMAL COALITION	co-NP-complete	co-NP-complete
СМ	CORE MEMBERSHIP	co-NP-complete	co-NP-complete
CNE	CORE NON-EMPTINESS	D ^p -complete	D ^p -complete
VP	VETO PLAYER	co-NP-complete	-
MD	MUTUAL DEPENDENCE	co-NP-complete	-
GR	GOAL REALISABILITY	NP-complete	Р
NG	NECESSARY GOAL	co-NP-complete	-
EG	EMPTY GAME	co-NP-complete	co-NP-complete
TG	TRIVIAL GAME	Π_2^p -complete	Π_2^p -complete
GU	GLOBAL UNATTAINABILITY	Σ_2^p -complete	NP
IG	INCOMPLETE GAME	D ₂ ^p -complete	-

• Problem:

where does characteristic function come from?

- One answer provided by Coalitional Resource Games (CRGs).
- Key ideas:
 - achieving a goal requires expenditure of resources;
 - each agent endowed with a profile of resources;
 - coalitions form to pool resource so as to achieve mutually satisfactory set of goals.

http://www.csc.liv.ac.uk/~mjw/pubs/imas/

Nine Decision Problems for CRGs

Problem	Complex	kity
SUCCESSFUL COALITION	NP-COM	olete
MAXIMAL COALITION	CO-NP-CO	mplete
NECESSARY RESOURCE	CO-NP-CO	mplete
STRICTLY NECESSARY RESOURCE	D^p -com	olete
(C, G', r)-optimal	NP-COM	olete
<i>R</i>- PARETO OPTIMALITY	CO-NP-CO	mplete
SUCCESSFUL COALITION WITH RESOURCE BOUNDS	NP-COM	olete
CONFLICTING COALITIONS	CO-NP-CO	mplete
ACHIEVABLE GOAL SET	in P	
http://www.csc.liv.ac.uk/~mjw/pubs/imas/	32	

Can we translate between QCGs and CRGs? Four questions suggest themselves: 1. Given a *crg*, Γ , is there always a QCG, Q_{Γ} such that $Q_{\Gamma} \equiv \Gamma$?

- 2. Given a *qcg*, *Q*, is there always a CRG, Γ_Q such that $\Gamma_Q \equiv Q$?
- 3. How "efficiently" can a given CRG be expressed as an equivalent QCG in those cases where such an equivalent structure exists?
- 4. How "efficiently" can a given QCG be expressed as an equivalent CRG in those cases where such an equivalent structure exists?

http://www.csc.liv.ac.uk/~mjw/pubs/imas/

Translating QCGs to CRGs

- We *cannot* always translate QCGs to equivalent CRGs.
- Moreover, even when we can translate, we can't always do it efficiently:

there exist QCGs Γ for which equivalent CRGs exist but for which the size of the *smallest* equivalent CRG is at least $2^{|\Gamma|}$

http://www.csc.liv.ac.uk/~mjw/pubs/imas/