
Information and Computation 242 (2015) 53–79

Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Iterated Boolean games

Julian Gutierrez, Paul Harrenstein, Michael Wooldridge ∗

Department of Computer Science, University of Oxford, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 October 2013
Available online 24 March 2015

Iterated games are well-known in the game theory literature. We study iterated Boolean
games. These are games in which players repeatedly choose truth values for Boolean
variables they have control over. Our model of iterated Boolean games assumes that
players have goals given by formulae of Linear Temporal Logic (LTL), a formalism for
expressing properties of state sequences. In order to represent the strategies of players in
such games, we use a finite state machine model. After introducing and formally defining
iterated Boolean games, we investigate the computational complexity of their associated
game-theoretic decision problems, as well as semantic conditions characterising classes
of LTL properties that are preserved by equilibrium points (pure-strategy Nash equilibria)
whenever they exist.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Playing a game more than once against the same opponent can have a dramatic effect on which outcomes of the game
can be sustained as equilibria [22, pp. 133–161]. To take a classic example in the literature, in the one-shot Prisoner’s
Dilemma there is a unique pure Nash equilibrium in which both players defect, leading to payoffs that are worse for both
players than the payoffs they would have obtained had they cooperated. However, if instead the same players repeatedly
meet each other then cooperation can be rationally sustained—leading to equilibria (outcomes) which can be better than
those of the one-shot version of the game. Cooperation is rationally sustainable because the players will meet in the future,
and will thereby have the opportunity to punish each other for non-cooperation.

We study iterated versions of Boolean games. The basic idea of a Boolean game [16] is that each player i is associated with
a goal, represented as a logical formula γi , and player i’s main purpose is to ensure that γi is satisfied. The strategies and
choices for each player i are defined with respect to a set of Boolean variables "i , drawn from an overall set of variables ".
Player i is assumed to have unique control over the variables in "i , in that it can assign truth values to these variables in
any way it chooses. Strategic concerns arise in Boolean games as the satisfaction of player i’s goal γi can depend on the
variables controlled by other players.

In the version of Boolean games that we study, it is assumed that players interact over an infinite series of rounds, where
at each round each player makes an assignment to the variables under its control. Goals are expressed as formulae of Linear
Temporal Logic (LTL), a well-known formalism for expressing properties of distributed and concurrent systems [9,20,21].
Formulae of LTL are essentially predicates over infinite sequences of states. Thus, whether a player’s goal is or is not satisfied
may depend not just on how players act in one round, but how they act in all future rounds.

* Corresponding author.
E-mail address: Michael.Wooldridge@cs.ox.ac.uk (M. Wooldridge).

http://dx.doi.org/10.1016/j.ic.2015.03.011
0890-5401/© 2015 Elsevier Inc. All rights reserved.

54 J. Gutierrez et al. / Information and Computation 242 (2015) 53–79

Players in Boolean games can be understood as non-deterministic computer programs, and the model thus has great
relevance to concurrent and multi-agent systems research. As players can model computer programs, building strategies in
Boolean games corresponds to synthesising computer systems from their logical specifications, for instance as the modules
for control and synchronisation of concurrent processes [18,23,32].

The paper contains the following main contributions:

• Firstly, it formalises iterated Boolean games. Moreover, it provides a finite state machine representation (an operational
model) along with a temporal logic theory (a denotational model) for strategies and players. This dual operational/de-
notational model for strategies and players in iterated Boolean games allows us to investigate computational properties
regarding the games, such as, for instance, whether a collection of strategies forms a pure-strategy Nash equilibrium.

• Secondly, we study the complexity of various decision problems. Model checking for iterated Boolean games is in
PSPACE and thus not harder than the model checking problem with respect to LTL specifications [27]. Synthesis is
2EXPTIME-complete, matching the complexity of the synthesis problem for LTL specifications [24]. Moreover, checking
whether a given strategy profile forms a pure-strategy Nash equilibrium and whether an iterated Boolean game has
at least one Nash equilibrium are PSPACE-complete and 2EXPTIME-complete problems, respectively. We also study the
complexity of checking the existence of equilibria for two other solution concepts, namely, dominant strategies and
a refinement of subgame perfect Nash equilibrium. In both cases, the complexity of solving these problems is also
2EXPTIME-complete.

• Thirdly, we give Nash Folk Theorems for iterated Boolean games.1 These theorems provide semantic characterisations of
LTL properties that are satisfied in equilibrium outcomes of a game. Some of these Folk Theorems completely charac-
terise games for which some questions can be answered more efficiently; in particular, in some cases synthesis can be
done in PSPACE, instead of in 2EXPTIME as in the general case.

Note that our main interest is in the use of game theoretic techniques for the analysis of multi-process computer systems,
but the present paper may also be of some minor interest to the game theory community concerned with iterated (re-
peated) games, in the following sense. Iterated games have been widely studied in the game theory literature, and it is
by now commonplace to model strategies for players in infinite games using finite state machines (see, e.g., [3, p. 376]).
Now, systems consisting of interacting finite state machines have also been widely-studied within computer science, and a
substantial literature has arisen developing techniques for the analysis of such systems. One of the key problems considered
within this community is that of how to reason about the infinite computational traces generated by such systems. To this
end, temporal logic has been widely promoted as a language for reasoning about such paths. In particular, Linear Temporal
Logic, the language that we use in the present paper, has theoretical properties that make it very attractive for this pur-
pose [9]. We believe that there may be some benefit by using such languages in the analysis of infinitely repeated games,
and that the present paper gives some indication of how they might be so used.

Finally, in order to improve the readability of the paper, longer proofs have been omitted from the main text and held
over to Appendix A.

2. Preliminaries

Propositional logic Let " = {p, q, . . .} be a finite, fixed, and non-empty vocabulary of Boolean variables. We let L0 denote
the set of formulae of classical propositional logic constructed over the set of Boolean variables " using the connectives
“∧” (and), “∨” (or), “¬” (not), “→” (implies), “↔” (iff), “⊤” (truth), and “⊥” (falsity). By vars(ϕ) we denote the propositional
variables that occur in ϕ .

A valuation is a subset of propositional variables, that is, v ⊆ ", where it is understood that v assigns truth to all the
variables it contains and falsity to the others. Let V (") denote the set of valuations for ", i.e., V (") = 2" . Whenever " is
clear from the context, we also write V for V ("). For ϕ ∈ L0 we use v |* ϕ to indicate that v satisfies ϕ (and say that ϕ
holds at v).

For $ ⊆ " and v ∈ V ("), we define the formula χ$
v in L(") that uniquely characterises the valuation v ∩$, that is, the

valuation v as restricted to $:

χ$
v =

∧

p∈$∩v

p ∧
∧

p∈$\v

¬p.

The superscript $ is omitted if $ = ". Thus, for valuations v, w ∈ V (") and $ ⊆ " we have,

v |* χ$
w if and only if v ∩ $ = w ∩ $.

1 As the name already suggests, Folk Theorems for repeated or iterated games have long been part of the folklore of game theory, without there being a
canonical reference for them. Nowadays, Aumann and Shapley [1] are commonly credited as the originators.

J. Gutierrez et al. / Information and Computation 242 (2015) 53–79 55

Linear Temporal Logic (LTL) We use the well-known framework of LTL to express properties of plays of iterated Boolean
games [9,20,21]. LTL extends classical propositional logic with modal tense operators for expressing properties of infinite
sequences. Specifically, LTL extends classical propositional logic with the unary modal operators X (“next”), F (“eventually”),
G (“always”), and the binary modal operator U (“until”).

We take X and U as our basic operators, and define the remaining LTL connectives in terms of these. For our propositional
basis, we use the operators “∨” and “¬”, and assume the remaining classical operators are defined in terms of these in the
standard way.

Formally, the syntax of LTL is defined with respect to a set " of Boolean variables as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ Uϕ

where p ∈ ". The remaining classical and LTL connectives are then defined in the standard way; in particular, we have
Fϕ = ⊤Uϕ , and Gϕ = ¬ F¬ϕ . Given a set of variables $, let L($) be the set of LTL formulae over $.

A core concept in the LTL semantics is that of a run. A run ρ: N → V (") is a function that assigns a valuation to every
time point t ∈ N, indicating which variables are true at that time point. Using square brackets around parameters referring
to time points, we will let ρ[t] denote the valuation assigned to time point t by ρ . For $ ⊆ " also use ρ|$ to refer to the
run ρ restricted to subsets of variables in $, that is, for all time points t ,

ρ|$ [t] = ρ[t] ∩ $.

We interpret formulae of LTL with respect to pairs (ρ, t) where ρ is a run and t ∈ N is a temporal index into ρ . Formally,
the semantics of LTL formulae is as follows:

(ρ, t) |* p iff p ∈ ρ[t]
(ρ, t) |* ¬ϕ iff it is not the case that (ρ, t) |* ϕ
(ρ, t) |* ϕ ∨ ψ iff (ρ, t) |* ϕ or (ρ, t) |* ψ
(ρ, t) |* Xϕ iff (ρ, t + 1) |* ϕ
(ρ, t) |* ϕ Uψ iff for some t′ ≥ t: ((ρ, t′) |* ψ and for all t ≤ t′′ < t′: (ρ, t′′) |* ϕ).

If (ρ, 0) |* ϕ , we also write ρ |* ϕ and say that ρ satisfies ϕ . We say that ϕ and ψ are equivalent if for all runs ρ we have
ρ |* ϕ if and only if ρ |* ψ . An LTL formula ϕ ∈ L is satisfiable if there is some run satisfying ϕ .

Boolean games In a Boolean game each player i controls a subset of propositional variables "i , meaning that i has the
unique ability to choose the value (either true or false) of each variable in "i . A choice for player i is a subset vi of the
propositional variables under its control, that is, vi ⊆ "i . A choice vector v⃗ = (v1, . . . , vn) is a collection of choices, one
for each player. When all players choose values for the variables they control, a valuation results. Each player i has a
propositional formula γi as its goal and chooses values for the variables under its control with the aim of satisfying γi . The
goal γi of player i, however, may contain variables controlled by other players j, who will also be choosing values for their
variables in " j so as to try to get their goals γ j satisfied. The satisfaction of these formulae γ j may in turn be dependent
on the choice that player i makes for the variables in "i .

Formally, a Boolean game is a tuple

(N,","1, . . . ,"n,γ1, . . . ,γn),

where N is a set of n players, " is a set of propositional variables, and "i is the subset of " that player i controls.
Finally, γi is a formula in L0(") which represents player i’s goal. We assume that "1, . . . , "n are pairwise disjoint and
"1 ∪ · · · ∪ "n = ". A choice for player i is a valuation vi ⊆ "i for the variables under its control. We denote the set of
player i’s choices by V i .

Notice that each strategy profile v⃗ = (v1, . . . , vn) trivially induces a unique valuation for the variables ", and vice versa.
We will frequently exploit this by treating strategy profiles as if they were valuations, and valuations as if they were strategy
profiles, e.g., by writing p ∈ v⃗ to denote that the truth value of p under valuation v is set to true.

The basic assumption in Boolean games is that players will strictly prefer outcomes that satisfy their goal over those
that do not, but are indifferent between outcomes that satisfy their goal, and indifferent between outcomes that do not
satisfy their goal. We capture these preferences in relations !i ⊆ V × V for each player i. Thus, each preference relation !i
defines dichotomous preferences over the valuations in the following sense: player i strictly prefers those valuations that
satisfy γi over those valuations that do not, and is indifferent between outcomes otherwise. Thus we write v !i w to mean
that outcome v ∈ V is (weakly) preferred over valuation w ∈ V . Formally, for each player i and all v, w ∈ V we have,

v !i w if and only if w |* γi implies v |* γi .

The irreflexive part of !i is defined in the usual way: v ≻i w if and only if both v !i w and not w !i v . Because valuations
and outcomes are interchangeable, we are justified in writing v⃗1 !i v⃗2, meaning that the valuation induced by v⃗1 is (weakly)
preferred over the valuation induced by v⃗2.

56 J. Gutierrez et al. / Information and Computation 242 (2015) 53–79

An outcome v⃗ = (v1, . . . , vi, . . . , vn) is said to be a pure strategy Nash equilibrium if there is no player i and choice v ′
i ∈ V i

such that

(v1, . . . , v ′
i, . . . , vn) ≻i (v1, . . . , vi, . . . , vn).

In the remainder of the paper, we will simply write “Nash equilibrium” as a shorthand for “pure strategy Nash equilibrium.”

3. Iterated Boolean games

Iterated Boolean games are an extension of Boolean games where players interact with each other for infinitely many
rounds. As in the standard (one-shot or one-round) setting described before, there are n players each of whom uniquely
controls a subset of Boolean variables and strives to get a particular goal formula γi satisfied. In an iterated Boolean game,
however, players’ goals γi are LTL formulae rather than propositional logic formulae. Such goals γi are interpreted on
(infinite) runs ρ and the players’ strategies are to determine a valuation vi[t] in V i for every time point t ∈ N. Here,
the choice vi[t] may very well depend on both i’s choice vi[t′] and the other players’ choices v j[t′] at previous time
points t′ < t .

Formally, an Iterated Boolean Game (IBG) is a structure

G = (N,","1, . . . ,"n,γ1, . . . ,γn),

where N = {1, . . . , n} is a set of agents (the players), " = {p, q, . . .} is a finite set of Boolean variables, "i ⊆ " is the set
of Boolean variables under the unique control of player i, and γi ∈ L is the LTL goal of player i. As for regular one-round
Boolean games, the sets "1, . . . , "n are assumed to form a partition of ", i.e., "i ∩ " j = ∅ for all i ̸= j ∈ N , and " =
"1 ∪ · · · ∪ "n .

We now need to define strategies for iterated Boolean games, and based on that explain why strategy profiles induce
runs, that is, infinite sequences of valuations.

Strategies In iterated Boolean games, a strategy for player i is a function that makes a choice in each round of the game on
the basis of the history of the game to date. Formally, we can understand such strategies as functions

f i : V ∗ → V i

where V ∗ denotes the set of finite sequences over V . However, there is a difficulty with this representation from a computa-
tional perspective, as the domain of such a function is of infinite size. When considering computational problems associated
with strategies, we therefore require a finite representation for strategies. In this paper, we model strategies as determin-
istic finite state machines with output. Such representations are widely used to study repeated games in the game theory
literature [22, pp. 140–143], and are of course very natural from the point of view of computer science.

Formally, a machine strategy σi for player i in an iterated Boolean game (N, ", "1, . . . , "n, γ1, . . . , γn) is a structure:

σi = (Q i,q0
i , δi,τi)

where Q i is a finite and non-empty set of states, q0
i ∈ Q i is the initial state, δi : Q i × V → Q i is the state transition function,

and τi : Q i → V i is the choice function. Let +i denote the class of machine strategies for player i. A strategy profile σ⃗ is an
n-tuple of strategies, one for each player i, that is, σ⃗ = (σ1, . . . , σn).

Runs induced by strategy profiles Because strategies are deterministic, a strategy profile σ⃗ induces a unique run, which we
will denote by ρ(σ⃗). To define ρ(σ⃗) formally, we need a little more notation. First, a state vector of a strategy profile is a
tuple q⃗ = (q1, . . . , qn) where for every i ∈ N , we have qi ∈ Q i . We denote the ith component of q⃗ by qi . With each point of
time t we associate a state vector denoted by q⃗[t] = (q1[t], . . . , qn[t]) and a valuation denoted by v⃗[t] = (v1[t], . . . , vn[t]).
The history, h(σ⃗) of a strategy profile σ⃗ is an infinite sequence of interleaved state vectors and valuations

h(σ⃗) = q⃗[0] v⃗[0]−−→ q⃗[1] v⃗[1]−−→ · · ·
where, for t = 0,

q⃗[0] = (q0
1, . . . ,q0

n),

v⃗[0] = (τ1(q0
1), . . . ,τn(q0

n)),

and for every t ∈ N with t > 0,

q⃗[t] = (δ1(q1[t − 1], v⃗[t − 1]), . . . , δn(qn[t − 1], v⃗[t − 1])), and

v⃗[t] = (τ1(q1[t]), . . . ,τn(qn[t])).

J. Gutierrez et al. / Information and Computation 242 (2015) 53–79 57

Let σ⃗ be a strategy profile and h(σ⃗) the history induced by σ⃗ . Then, the run ρ(σ⃗) induced by σ⃗ satisfies ρ(σ⃗)[t] = v⃗ [t] for
every t ∈ N whenever v⃗ is the valuation vector associated with h(σ⃗), that is,

ρ(σ⃗) = v⃗[0], v⃗[1], v⃗[2], . . .

Preferences and Nash equilibrium When every agent has made their choice in an iterated Boolean game, we obtain a strat-
egy profile σ⃗ = (σ1, . . . , σn), and hence a run ρ(σ⃗). The possible outcomes of an iterated Boolean game are thus the
runs ρ: N → V ("). For each run ρ and each player i, it will be the case that either ρ satisfies the goal γi of i or not. In
this way, we obtain preference relations !i for each player. Formally, for all runs ρ, ρ ′ ,

ρ !i ρ
′ if and only if ρ ′ |* γi implies ρ |* γi .

Given these relations, we can define the concept of Nash equilibrium for iterated Boolean games. We use the nota-
tion (σ⃗−i, σ ′

i) to denote the strategy profile σ⃗ = (σ1, . . . , σi, . . . , σn) where σi is replaced with σ ′
i , that is, (σ⃗−i, σ ′

i) denotes
the strategy profile (σ1, . . . , σ ′

i , . . . , σn). Consequently, we use the notation ρ(σ⃗−i, σ ′
i) to refer to the run induced by such a

strategy profile.
A strategy profile σ⃗ is then said to be a Nash equilibrium if for all players i ∈ N and for all strategies σ ′

i ∈ +i we have

ρ(σ⃗) !i ρ(σ⃗−i,σ
′
i).

Let NE(G) be the set of Nash equilibrium strategy profiles for a game G .
Due to the dichotomous character of the players’ preferences, this means that σ⃗ is a Nash equilibrium if every player

whose goal is not satisfied by ρ(σ⃗) cannot unilaterally deviate to get its goal achieved.

Observation 1. A strategy profile σ⃗ in an iterated Boolean game is a Nash equilibrium if and only if for every player i ∈ N,

either ρ(σ⃗) |* γi or ρ(σ⃗−i,σ
′
i) |̸* γi for every strategy σ ′

i .

Partial strategies It is implicit in the definition of machine strategies that δi is a total function, and so for any given state
q ∈ Q i we must have δi(q, ⃗v) defined for all 2|"| valuations v⃗ in V , resulting in strategies that are invariably of size
exponential in |"|. To obtain a more compact representation, we may allow δi to be a partial function defined only on
the relevant pairs (q, ⃗v). This will relieve us of the need to explicitly define δi(q, ⃗v) for every valuation v⃗ . Thus, a partial
strategy σi may sometimes be polynomial in the size of " and faithfully represent a strategy σ ′

i that is of size exponential
in |"|.

In order to obtain a full or complete machine strategy σ ′
i from a partial one σi , we will give a construction that uses

a default state qd
i to which all pairs (q, ⃗v)—i.e., machine transitions—for which δi(q, ⃗v) is not defined are mapped. Note,

however, that partial machine strategies may necessarily have to be exponential in |"|, as full machine strategies are a
particular case of the more general class of partial machine strategies. Henceforth, we write machine strategy to mean
partial strategy, and full machine strategy to mean a machine strategy of size exponential in ". The construction of a full
machine strategy from a partial one is given next.

A machine strategy σi = (Q i, q0
i , δi, τi), where δi: Q i × V → Q i may be a partial function, represents the full machine

strategy

σ ′
i = (Q ′

i ,q00
i , δ′

i,τ
′
i)

where, for some default state qd
i /∈ Q i , we have Q ′

i = Q i ∪ {qd
i }, q00

i = q0
i , and where δ′

i and τ ′
i are such that for all q′

i ∈ Q ′
i

and v⃗ ∈ V ,

δ′
i(q

′
i, v⃗) =

{
δi(q′

i, v⃗) if δi(q′
i, v⃗) = q′′

i for some q′′
i ∈ Q i,

qd
i otherwise.

τ ′
i (q

′
i) =

{
τi(q′

i) if q′
i ≠ qd

i ,
∅ otherwise.

We say a machine strategy σi = (Q i, q0
i , δi, τi) is complete or partial depending on whether δi is complete or partial, respec-

tively.
The run ρ(σ⃗) and history h(σ⃗) induced by a profile σ⃗ = (σ1, . . . , σn) of partial strategies are defined, respectively, by

the run and history induced by the profile σ⃗ ′ = (σ ′
1, . . . , σ

′
n) of complete strategies that σ⃗ represents, that is,

ρ(σ⃗) = ρ(σ⃗ ′) and h(σ⃗) = h(σ⃗ ′).

To illustrate the definitions given so far as well as the kind of strategic reasoning underlying iterated Boolean games, we
now provide some examples.

58 J. Gutierrez et al. / Information and Computation 242 (2015) 53–79

Fig. 1. Four machine strategies used in Example 1. An arc labelled with an asterisk indicates that on reading any input valuation, the machine moves to the
indicated state.

Fig. 2. Strategies υ and υ ′
1.

Example 1. Consider the following iterated Boolean game:

G = ({1,2}, {p,q}, {p}, {q},G F(p ∧ q),G F(¬p ∧ ¬q)).

In G there are two players, 1 and 2, the former controlling p and the latter q. Player 1, having G F(p ∧ q) as its goal strives
to have both p and q to be true infinitely often, whereas player 2’s goal is G F(¬p ∧¬q) and would like to see both variables
false infinitely often. Now consider the strategies σ1 and σ2 as depicted in Figs. 1(a) and 1(b), in which player 1 always
sets p to true, no matter what player 2 does and player 2 always sets q to false, no matter what player 1 does, respectively.
It might also seem that against any strategy of the other player, it can never hurt for player 1 to play σ1 or for player 2 to
play σ2. The strategy profile (σ1, σ2) is in fact a Nash equilibrium, be it one in which no player achieves its goal. Yet, as will
be seen below, σ1 and σ2 are not always optimal responses to every strategy of the other player.

If player 1 were to set p alternately to true and to false, as in strategy τ1 in Fig. 1(c), and player 2 were to set q
alternately to false and true, as in strategy τ2 in Fig. 1(d), both players would achieve their goal. Accordingly, the strategy
profile (τ1, τ2) is also an obvious Nash equilibrium in this game. Observe, however, that if player 2 were to play strategy τ ′

2
which is like τ2, but now with player 2 starting with setting q to false instead, a run would result in which alternately
the valuations {p} and {q} would be produced, leading to neither player’s goal being satisfied. This, however, is not a
Nash equilibrium. Player 1 could avert this situation by playing the slightly more sophisticated strategy υ1, as depicted in
Fig. 2(a): set p to true, until {p, q} is realised, then set p to false until ∅ is realised, and so on. Both strategy profiles (υ1, τ2)
and (υ1, τ ′

2) are Nash equilibria and lead to runs that satisfy the goals of both players, namely,

ρ(υ1,τ2) = {p,q},∅, {p,q},∅, . . .

and

ρ(υ1,τ
′
2) = {p}, {p,q},∅, {p,q},∅,

Finally, strategy υ ′ , depicted in Fig. 2(b), incorporates a mechanism to deter player 2 from playing σ2. It forces player 2 to
play τ2 (or a strategy displaying the same behaviour against υ ′

1) by threatening to set p to true forever after player 2’s first
deviation.

Example 2 (Auctioning an item). Consider the following auction involving two bidders and one auctioneer, in which one item
is sold to the highest bidder. When the auction starts at time 0, the price is £0 and with every time unit the auctioneer
raises the price by £1. A bidder bids by raising their hand at time t , indicating that he is prepared to pay £t for the item.
The action terminates as soon as one of the bidders no longer places a bid. Then, the item is assigned to the unique bidder
who did place a bid at the time the auction terminated. If no such bidder exists or if bidding goes on forever, then the item
is left unsold.

We model this situation as an iterated Boolean game with three players: 1, 2, and 3. The former two are the bidders and
each control one propositional variable, p and q, respectively, which they can set to true, indicating that they are bidding, or
to false, indicating they do not bid, at each time. Player 3 represents the auctioneer and controls two propositional variables,
p∗ and q∗ . The auctioneer sets p∗ to true when the auction terminates and bidder 1 wins the auction. Similarly, q∗ is set to
true at termination of the action if bidder 2 wins the auction.

J. Gutierrez et al. / Information and Computation 242 (2015) 53–79 59

Fig. 3. Strategies for the bidders that are part of a Nash equilibrium in the auction setting described in Example 2.

The rules of the auction can thus be formalised as follows

last_bid1 = (p ∧ q)U(p ∧ ¬q)

last_bid2 = (p ∧ q)U(q ∧ ¬p)

no_last_bid = ¬last_bid1 ∧ ¬last_bid2

assign1 = G¬q∗ ∧ (¬p∗ U(p ∧ ¬q ∧ p∗)

assign2 = G¬p∗ ∧ (¬q∗ U(q ∧ ¬p ∧ q∗)

no_assign = G(¬p∗ ∧ ¬q∗).

We assume that the auctioneer is only interested in the auction being conducted in good order and, in particular, that the
item goes to the highest bidder. Accordingly, the auctioneer’s goal γ3 is given by

γ3 = (last_bid1 → assign1) ∧ (last_bid2 → assign2) ∧ (no_last_bid → no_assign).

Observe that the auctioneer can always respond to the strategies σ1, σ2 adopted by the two bidders by choosing a strat-
egy σ ′

3 that guarantees γ3 to be satisfied in ρ(σ1, σ2, σ ′
3). Let σ 0

3 be the strategy for player 3 that outputs ∅ in every round.
If t is the first round such that ρ(σ1, σ2, σ 0

3)[t] |* p ∧ ¬q with ρ(σ1, σ2, σ 0
3)[t′] |* p ∧ q for all t′ < t , let σ ′

3 always output
∅ except for {p∗} at round t . If t is the first round such that ρ(σ1, σ2, σ 0

3)[t] |* ¬p ∧ q with ρ(σ1, σ2, σ 0
3)[t′] |* p ∧ q for all

t′ < t , let σ ′
3 always output ∅ except for {q∗} at round t . Otherwise, let σ ′

3 = σ 0
3 . Thus, we may assume that the auctioneer’s

goal is satisfied in every Nash equilibrium.
Let the bidders have reservation prices (the highest prices they are willing to pay for the item) of £k and £m, respectively.

For a bidder with reserve price £x this means that if that bidder submits the highest bid, the other bidder should have
stopped bidding at or before the xth round. Let X0ϕ = ϕ and Xk+1ϕ = X(Xkϕ). Thus, define:

reservek
1 = last_bid1 → (¬q ∨ X ¬q ∨ · · · ∨ Xk¬q),

reservem
2 = last_bid2 → (¬p ∨ X ¬p ∨ · · · ∨ Xm¬p).

Now, the players’ preferences can be formulated as follows:

γ1 = F p∗ ∧ reservek
1 γ2 = F q∗ ∧ reservem

2 .

Thus, each bidder’s goal is to obtain the item for his reserve price or less.
There are several Nash equilibria in this game. In one of them, the player with the highest reservation price gets the

item. This is, for instance, the case if bidder 1’s strategy outputs p k times in a row and henceforth ¬p, irrespective of what
bidder 2 does, whereas bidder 2 outputs q m times in a row and subsequently only ¬q. Assume m < k. Then bidder 1 gets
the item for £m + 1. There is, however, also a Nash equilibrium in which bidder 2, who has the lower reservation price,
obtains the item for £0. This is, for instance, the case for the strategies σ ′

1 and σ ′
2 as depicted in Fig. 3, where player 2

threatens to bid forever if player 1 dares to bid in the first round.
If, however, we assume the players not to be intimidated so easily and bestow them with a bidder’s pride never to con-

cede the auction without having bid their reservation price (but not more than that), better outcomes result in equilibrium.
To model this situation, let

bidders_pridek
1 = ¬last_bid1 → (p ∧ X p ∧ · · · ∧ Xk p ∧ Xk+1¬p)

bidders_pridem
2 = ¬last_bid2 → (q ∧ X p ∧ · · · ∧ Xmq ∧ Xm+1¬q)

and reformulate the bidders’ preferences as

γ ′
1 = reservek

1 ∧ bidders_pridek
1 γ ′

2 = reservem
2 ∧ bidders_pridem

2 .

60 J. Gutierrez et al. / Information and Computation 242 (2015) 53–79

Under these assumptions, both bidders can guarantee their goal to be satisfied by bidding exactly as long as their reservation
price is high. It is not hard to verify that now in all Nash equilibria the bidder with the highest reservation price obtains
the item for the other bidder’s reservation price plus £1. If both bidders have the same reservation price, neither of them
gets the item. Moreover, in each of these Nash equilibria all players’ goals, including that of the auctioneer, are satisfied.

3.1. Properties of machine strategies

Strategies in our framework are deterministic finite state machines with output, also called “sequential trans-
ducers” or “Moore machines” in the control or computer science literature. Such strategies are not as powerful as
strategies defined as unrestricted functions f i : V ∗ → V i from (finite) partial plays v⃗[0], ⃗v[1], ⃗v[2], . . . , ⃗v[k] to partial
plays v⃗[0], ⃗v[1], ⃗v[2], . . . , vi[k + 1]. For instance, machine strategies do not have unbounded counting power; consequently,
some runs cannot be generated by them. Take, e.g., the run

ρ = abaabbaaabbbaaaabbbbaaaaabbbbb . . .akbk . . .

which alternates finite and increasing sequences of a’s and b’s. This run cannot be generated by a machine strategy as an
unbounded counting power within the strategy model would be needed.

However, because players’ goals are LTL formulae, machine strategies are powerful enough in the following sense: if an
LTL formula ϕ is satisfiable, then ρ(σ⃗) |* ϕ , for some strategy profile of machine strategies σ⃗ . In other words, if we are
interested in modelling players with LTL goals, then, in fact, all we need are machine strategies, loosely speaking, because
they are powerful enough to achieve and represent any given LTL goal.

The following lemma formalises this.

Lemma 1. For every satisfiable LTL formula ϕ ∈ L(") there is a strategy profile σ⃗ = (σ1, . . . , σn) such that ρ(σ⃗) |* ϕ .

We will, in fact, prove a stronger version of this lemma: we will show that all we need for this result are myopic
strategies, σi , which are oblivious to the behaviour of other strategies σ j . Such strategies simply output a fixed infinite
sequence of symbols over "i .

Formally, a myopic strategy σi is a machine strategy (Q i, q0
i , δi, τi) where

δi(q, v⃗1) = δi(q, v⃗2)

for all states q ∈ Q i and valuations v⃗1, v⃗2 ∈ V .
In order to construct a strategy profile σ⃗ = (σ1, . . . , σn) only in myopic strategies σi we use the fact that any satisfiable

LTL formula ϕ is satisfied by an ω-regular word, that is, by an infinite word of the form

αβω

where α is a finite word of size k and βω = βββ . . . is an infinite word built from the concatenation of a finite word β of
size p. Thus, if ϕ is satisfiable, then it is satisfied by some ω-regular word of this form.

The claim and construction is as follows.

Lemma 2. For every satisfiable LTL formula ϕ ∈ L(") there is a strategy profile σ⃗ = (σ1, . . . , σn), where each σi is myopic, such that
ρ(σ⃗) |* ϕ .

Proof. As ϕ is satisfiable, then there is an ω-regular word ρ = αββ . . . that satisfies ϕ . And since ρ is a word over (2")ω ,
it can be written as the superposition/union of n words over (2"1 × . . . × 2"n)ω , that is, a word whose projection ρi with
respect to "i is the ω-regular "i -word

ρi = αi[0],αi[1], . . . ,αi[k − 1],βi[0],βi[1], . . . ,βi[p − 1],βi[0],βi[1], . . .
because of the definition of ρ .

We can then define the myopic machine strategy

σi = (Q i,q0
i , δi,τi)

where

• Q i = {qs
i : 0 ≤ s < k + p},

• (qs
i , v, qt

i) ∈ δi if either
– s + 1 = t or
– s = k + p − 1 and t = k,

• τi(qs
i) = ρi[s].

J. Gutierrez et al. / Information and Computation 242 (2015) 53–79 61

Note that the correctness of the construction—that in fact σi is a myopic machine strategy—lies in the fact that there
is a unique qt

i for each qs
i . As a consequence, the valuation v⃗ in the transition function δi becomes irrelevant. It, then,

immediately follows that ρ(σ⃗) |* ϕ . ✷

Myopic strategies are machines which simply “write down” an output word, and since any myopic strategy is simply a
special type of finite state machine, such a word must be of the form w = αβββ . . . , for two finite words α and β of size k
and p, respectively. In other words, any word w generated by a myopic strategy is ω-regular. Note, moreover, that the other
direction holds too: every ω-regular word w can be generated by a myopic strategy σ . To see this, and using part of the
proof of Lemma 2, simply let w be the run ρi and σ be the machine strategy σi , thus implying:

Corollary 1. For every ω-regular word w over 2" there is a strategy profile σ⃗ = (σ1, . . . , σn), where each σi is myopic, such that
ρ(σ⃗) = w.

Another property that machine strategies enjoy, whether myopic or not, is extensionality. Machine strategies are exten-
sional in the sense that, if two strategies σ ′

i and σ ′′
i yield the same valuation vi against a strategy profile σ−i of the other

players at every time t , the profiles (σ−i, σ ′
i) and (σ−i, σ ′′

i) produce the same run as well. Formally, this could be stated as

ρ(σ⃗−i,σ
′
i)|"i = ρ(σ⃗−i,σ

′′
i)|"i implies ρ(σ⃗−i,σ

′
i) = ρ(σ⃗−i,σ

′′
i).

The following lemma gives a slightly stronger statement (the proof may be found in Appendix A).

Lemma 3. Let σ⃗ = (σ1, . . . , σn) and σ⃗ ′ = (σ ′
1, . . . , σ

′
n) be strategy profiles and i a player. Then,

ρ(σ⃗)|"i = ρ(σ⃗−i,σ
′
i)|"i and ρ(σ⃗)|"\"i = ρ(σ⃗ ′

−i,σi)|"\"i imply ρ(σ⃗) = ρ(σ⃗ ′).

3.2. Logical characterisation of machine strategies

We now present a lemma which tells us that every strategy profile σ⃗ can be characterised by an LTL formula TH(σ⃗)
in the sense that ρ |* TH(σ⃗) if and only if ρ is the unique run induced by the strategy profile σ⃗ . A crucial point of the
construction is that TH(σ⃗) is guaranteed to be of size at most polynomial in the size of σ⃗ . A slight complication is that
the formula TH(σ⃗) is in an LTL language L("′) on an extended set of propositional variables, "′ ⊇ ". We show that for all
runs ρ: N → V ("′) that satisfy TH(σ⃗) it is the case that ρ|" = ρ(σ⃗).

Let σ⃗ = (σ1, . . . , σn) be a profile of partial machine strategies σi = (Q i, q0
i , δi, τi). Let, furthermore, Q ′

i = Q i ∪ {qd
i },

where qd
i is the default state in the complete strategy that σi represents. For each player i and each state qi ∈ Q ′

i in-
troduce a new (“fresh”) Boolean variable, which, as without loss of generality we assume that ", Q ′

1, . . . , Q
′
n are pairwise

disjoint, we will also denote by qi . Moreover, we use Q ′ = Q ′
1 ∪ · · · ∪ Q ′

n to refer to the entire set of these new variables.
For each player i, we define the formula

th(σi) = INIT(σi) ∧ TRANS(σi) ∧ INVAR(σi) ∧ VAL(σi),

where,

INIT(σi) = q0
i ,

TRANS(σi) = G

⎛

⎝
∧

δi(qi ,v⃗)=q′
i

(
(χ"

v⃗ ∧ qi) → X q′
i

)
∧

⎛

⎝

⎛

⎝
∧

δi(qi ,v⃗)=q′
i

¬(χ"
v⃗ ∧ qi)

⎞

⎠ → X qd
i

⎞

⎠

⎞

⎠ ,

INVAR(σi) = G
∨

qi∈Q i∪{qd
i }

⎛

⎝qi ∧
∧

q′
i≠qi

¬q′
i

⎞

⎠ ,

VAL(σi) = G

⎛

⎝
∧

qi∈Q i

(
qi → χ"i

τ (qi)

)
∧ (qd

i → χ"i
∅)

⎞

⎠ .

Finally, let

TH(σ⃗) = th(σ1) ∧ · · · ∧ th(σn).

Intuitively, th(σi) is the LTL theory of strategy σi : the property INIT(σi) encodes the initial state q0
i , TRANS(σi) encodes the

transition relation δi , INVAR(σi) ensures that the strategy is in at most one state at any given time, while VAL(σi) encodes

62 J. Gutierrez et al. / Information and Computation 242 (2015) 53–79

the choice function τi . Note, in particular, that the size of th(σ⃗i) is polynomial in the size of σ⃗i . Now, let σ⃗ = (σ1, . . . , σn)
be a profile of partial strategies and let the history h(σ⃗) be given by

q⃗[0] v⃗[0]−−→ q⃗[1] v⃗[1]−−→ · · · .
Define the run ρ̂(σ⃗) : N → 2"∪Q ∪{qd

1,...,qd
n} where, for all time points t ,

ρ̂(σ⃗)[t] = ρ(σ⃗) ∪ {q1[t], . . . ,qn[t]}.
Thus, ρ̂(σ⃗) is exactly like ρ(σ⃗), except that the former also specifies the current state of each of the players’ strategies at
each time point. Observe that, for all subsets $ ⊆ ",

ρ̂(σ⃗)|$ = ρ(σ⃗)|$,

in particular, ρ̂(σ⃗)|" = ρ(σ⃗).
With the above logical characterisation of machine strategies in place, we can now show that only the run ρ(σ⃗) induced

by a strategy profile σ⃗ satisfies the LTL formula given by its logical characterisation TH(σ⃗).

Lemma 4. Let σ⃗ = (σ1, . . . , σn) be a profile of (partial) strategies σi = (Q i, q0
i , δi, τi) for an iterated Boolean game representing

complete strategies with default states qd
1, . . . , q

d
n. Let, furthermore, ρ : N → 2"∪Q ∪{qd

1,...,qd
n} an ω-regular run and σ⃗ ′ = (σ ′

1, . . . , σ
′
n)

a strategy profile such that ρ|" = ρ(σ⃗ ′). Then, for all players i,

1. ρ |* th(σi) if and only if ρ|"∪Q i∪{qd
i } = ρ̂(σ⃗ ′

−i, σi)|"∪Q i∪{qd
i }

,

2. ρ |* TH(σ⃗) if and only if ρ = ρ̂(σ⃗).

The proof of the above lemma can be found in Appendix A.
Note that, while machine strategies provide an operational model of the behaviour/interactions of the players in an

iterated Boolean game, the formula th(σi) provides a denotational model for σi with respect to the semantics of LTL—and
hence a denotational model of the behaviour of players.

4. Computational complexity

We now consider the complexity of problems relating to Nash equilibria in iterated Boolean games. We first establish an
upper bound on the complexity of a problem that underpins many of others that will be studied later on:

IBG Model Checking
Given: Game G , strategy profile σ⃗ , LTL formula ϕ ∈ L(").
Question: Is it the case that ρ(σ⃗) |* ϕ?

This problem is not quite the same as the “standard” LTL model checking problem, which is known to be PSPACE-
complete (“truth in an R-structure” [27, p. 741]), and so we need to establish the upper bound. Also, with respect to the
set of machine strategies given as input, recall that we allow them to be partial. The reduction in the following proof is to
LTL Satisfiability, which is known to be in PSPACE [27].

LTL Satisfiability
Given: LTL formula ϕ ∈ L(").
Question: Is there a run ρ: N → 2" such that ρ |* ϕ?

We are now in a position to prove the following result.

Proposition 1. IBG Model Checking is in PSPACE.

Proof. We reduce IBG Model Checking to LTL satisfiability. Let σ⃗ be a (partial) strategy profile for an iterated Boolean
game G and let ϕ be an LTL formula in L("). To check whether ρ(σ⃗) |* ϕ , we ask whether TH(σ⃗) ∧ ϕ is satisfiable. Recall
that the size of TH(σ⃗) is polynomial in the size of σ⃗ . It now suffices to show that,

TH(σ⃗) ∧ ϕ is satisfiable if and only if ρ(σ⃗) |* ϕ.

For the implication from left to right, assume that TH(σ⃗) ∧ ϕ is satisfiable. Then, there is some run ρ: N → 2"∪Q ∪{qd
1,...,qd

n} ,
with ρ |* TH(σ⃗) ∧ ϕ , and some strategy profile σ⃗ ′ such that ρ|" = ρ(σ⃗ ′). By Lemma 4(2) it then follows that ρ = ρ̂(σ⃗),
and hence ρ̂(σ⃗) |* ϕ . Since ϕ is an LTL formula in L(") and ρ(σ⃗) = ρ̂(σ⃗)|" , we can conclude that ρ(σ⃗) |* ϕ .

For the implication from right to left, assume that ρ(σ⃗) |* ϕ . Since ρ(σ⃗) = ρ̂(σ⃗)|" , also ρ̂(σ⃗) |* ϕ . Moreover, observe
that, by Lemma 4(2), we also have ρ̂(σ⃗) |* TH(σ⃗). It follows that TH(σ⃗) ∧ ϕ is satisfiable. ✷

J. Gutierrez et al. / Information and Computation 242 (2015) 53–79 63

Input: Game G and strategy profile σ⃗
Output: “yes” if σ⃗ ∈ NE(G), “no” otherwise.
1 for i := 1 to n do
2 if ρ(σ⃗) ̸|* γi then
3 if γi ∧ ∧

j∈N\{i} th(σ j) is satisfiable then
4 return “no”
5 end if
6 end if
7 end for
8 return “yes”

Algorithm 1: Algorithm for Membership.

With this result in place, we can consider problems specifically related to equilibria in iterated Boolean games. First,
consider the following problem:

Membership
Given: Game G and strategy profile σ⃗ .
Question: Is it the case that σ⃗ ∈ NE(G)?

Based on Observation 1, we have the following result.

Proposition 2. Membership is PSPACE-complete.

Proof. Observe that Algorithm 1 (see above) solves Membership for iterated Boolean games in PSPACE. By Proposition 1,
line 2 can be solved using a PSPACE oracle for IBG Model Checking. Moreover, line 3 uses a PSPACE oracle for LTL Satisfi-
ability. The algorithm checks whether there is some player i such that ρ(σ⃗) ̸|* γi and γi ∧ ∧

j∈N\{i} th(σ j) is satisfiable. It
outputs “no” if this is the case and “yes,” otherwise.

For soundness, note that, because of Observation 1, it suffices to prove that, for all players i,

γi ∧
∧

j∈N\{i}
th(σ j) is satisfiable if and only if (σ⃗−i,σ

′
i) |* γi for some σ ′

i .

Therefore, assume γi ∧ ∧
j∈N\{i} th(σ j) is satisfiable, let σ⃗ = (σ1, . . . , σn), with σi = (Q i, q0

i , δi, τi), and let qd
i be the

default state of the complete strategy that σi represents. Then, there is an ω-regular ρ: N → 2"∪Q ∪{qd
1,...,qd

n} such that

ρ |* γi ∧
∧

j∈N\{i}
th(σ j).

Since ρ is ω-regular, then ρ|" is also ω-regular and by Corollary 1 there is a strategy profile σ⃗ ′′ = (σ ′′
1 , . . . , σ ′′

n) where
each σ ′′

i is myopic such that ρ|" = ρ(σ⃗ ′′). Observe that, with γi ∈ L("), also ρ(σ⃗ ′′) |* γi . Now, for every player j distinct
from i, we have ρ |* th(σ j) and, by Lemma 4(1), moreover,

ρ(σ⃗ ′′) = ρ|" = ρ̂(σ⃗ ′′
− j,σ j)|" = ρ(σ⃗ ′′

− j,σ j).

By an (n − 2)-fold application of Lemma 3, we obtain ρ(σ⃗−i, σ ′′
i) = ρ(σ⃗ ′′). It follows that (σ⃗−i, σ ′′

i) |* γi .
For the opposite direction assume that (σ⃗−i, σ ′

i) |* γi for some strategy σ ′
i . Now, observe that Lemma 1 yields

ρ̂(σ⃗−i,σ
′
i) |* γi ∧

∧

j∈N\{i}
th(σ j).

For hardness, we reduce LTL Satisfiability to Membership. Let ϕ be an LTL formula in L(") and let ρ0 be the run such
that ρ0[t] = ∅ for all t ∈ N. Define G = ({i}, " ∪ {p}, ϕ ∧ p) as the one-player iterated Boolean game in which player i
has ϕ ∧ p as goal, where p is a fresh propositional variable, that is, p /∈ ". Let σi = (Q i, q0

i , δi, τi) be the partial machine
strategy with Q i = {q0

i } and δi = τi = ∅. Thus, ρ(σi) = ρ0 and ρ(σi) ̸|* ϕ ∧ p. Clearly, σi is polynomial in the size of ϕ . It
can now readily be seen that,

ϕ is satisfiable if and only if σi /∈ NE(G).

For the left-to-right direction assume that ϕ is satisfiable. As p does not occur in ϕ , obviously, ϕ ∧ p is satisfiable. Then, by
Lemma 1, there is a strategy profile σ ′

i such that ρ(σ ′
i) |* ϕ∧ p. Since ρ(σi) ̸|* ϕ∧ p, by Observation 1, we may conclude that

σi /∈ NE(G). Now assume that ϕ is not satisfiable. Then, neither is ϕ ∧ p. By Observation 1, it then follows that σi ∈ NE(G).
As PSPACE is closed under complement, the result follows. ✷

64 J. Gutierrez et al. / Information and Computation 242 (2015) 53–79

Thus, solving Membership for iterated Boolean games is no harder than LTL model checking. However, other apparently
closely related problems turn out to be much more complex. Consider the following:

E-Nash
Given: Game G , LTL formula ϕ ∈ L.
Question: Does ρ(σ⃗) |* ϕ hold for some σ⃗ ∈ NE(G)?

A-Nash
Given: Game G , LTL formula ϕ ∈ L.
Question: Does ρ(σ⃗) |* ϕ hold for all σ⃗ ∈ NE(G)?

Non-Emptiness
Given: Game G .
Question: Is it the case that NE(G) ≠ ∅?

On the one hand, we first show (i) that E-Nash can be reduced to the rational synthesis problem for pure Nash equilibria
as first analysed by Fisman et al., known to be 2EXPTIME-complete (Theorem 2 in Fisman et al. [11]). On the other hand, we
show (ii) that the LTL realizability problem studied by Pnueli and Rosner [25], which is known to be 2EXPTIME-complete too,
can be reduced to Non-Emptiness. Since Non-Emptiness can be solved by asking whether (G,⊤) is accepted as an instance
of E-Nash, then (i) and (ii) imply that both E-Nash and Non-Emptiness are 2EXPTIME-complete. Finally, since 2EXPTIME is
a deterministic complexity class, that A-Nash is 2EXPTIME-complete immediately follows as a corollary.

Let us briefly outline the rational synthesis problem (see [11] for a detailed description). In the rational synthesis prob-
lem there is a set of players 1, . . . , n, called the environment, and a player 0 called the system. Each player has an LTL
goal γ0, γ1, . . . , γn and as in iterated Boolean games each player controls a set of variables "0, "1, . . . , "n and the game is
played for infinitely many rounds. In a single round of the game the environment players simultaneously give values to the
variables they have control over and based on that the system player gives values to the variables it controls, that is, those
variables in "0. Such values are either ⊤ or ⊥ in the Boolean setting. Note, in particular, that in a single round the system
gets to see the values that the environment has chosen before giving the values of the variables in "0. The strategies of the
environment players i ∈ {1, . . . , n} are functions

f i : (2"0∪"1∪...∪"n)∗ → 2"i

and the strategy of the system player is a function

f0 : (2"0∪"1∪...∪"n)∗(2"1∪...∪"n) → 2"0

showing that the system only plays after its environment. Clearly, each strategy profile (f0, f1, . . . , fn) induces a unique
outcome of the game, namely, an infinite run/word over the set 2"0∪"1∪...∪"n .2 Now, the rational synthesis problem asks
for a strategy profile (f0, f1, . . . , fn) such that the outcome of the game satisfies γ0 (the goal of the system) and the strategy
profile (f1, . . . , fn) is a pure-strategy Nash equilibrium. The reduction of E-Nash to the rational synthesis problem is now
possible.

Proposition 3. The problems E-Nash, A-Nash, and Non-Emptiness are 2EXPTIME-complete.

Proof. To solve E-Nash for a game (G, ϕ) one can ask for a solution to the rational synthesis problem [11] where the system
player does not control any variables, i.e. "0 = ∅, and has ϕ as goal, that is, γ0 = ϕ . Suppose now that this rational synthesis
problem has a positive answer, that is, that there is a run, say π , induced by (f0, f1, . . . , fn) such that both π |* γ0 and
(f1, . . . , fn) is a Nash equilibrium. Since strategy profiles (f0, f1, . . . , fn) induce unique runs and f0 is trivial (because
"0 = ∅)—due to Lemma 1—the unique run over 2"1∪...∪"n , namely π , induced by (f0, f1, . . . , fn) can be generated by a set
of machine strategies {σ1, . . . , σn}. In other words, it follows that π = ρ(σ1, . . . , σn) and ρ(σ1, . . . , σn) |* ϕ , for some σ⃗ =
(σ1, . . . , σn) that forms a Nash equilibrium. The other direction, namely that if the rational synthesis problem has a negative
answer then E-Nash has a negative answer too, is trivial. Therefore, E-Nash can be solved in 2EXPTIME.

For hardness, we now show that the LTL realizability problem can be reduced to Non-Emptiness which, as mentioned
before, can be solved by asking whether (G,⊤) is accepted as an instance of E-Nash. We first construct an intermediate
game R ′ , which is a variant of the realizability problem R = (ϕ, I, O) as first studied by Pnueli and Rosner [25]. In the
standard realizability game R = (ϕ, I, O) the environment always plays first. Then, a play is an infinite sequence of valua-
tions v0

i , v
0
o, v1

i , v
1
o, . . . where each vk

i ∈ 2I and each vk
o ∈ 2O , with k ∈ N. The system controls the variables in O and the

environment controls those in I . If ϕ can be realised, then there is a function f : (2I∪O)+ → 2O that the system can use as
a strategy so that every run given by f , that is, every word ρ = (v0

i ∪ v0
o), (v1

i ∪ v1
o), . . . satisfies ϕ .

2 Because the goals are LTL formulae, it is sufficient to assume that strategies are the functions represented by finite state machines with output, i.e. by
transducers [24].

J. Gutierrez et al. / Information and Computation 242 (2015) 53–79 65

In the realizability game R ′ = (ϕ′, I, O) we now have both players, the system and the environment, playing
simultaneously—i.e., the system no longer plays after the environment. The formula ϕ′ is ϕ[X p1, . . . , X pm/p1, . . . , pm],
the LTL formula where every occurrence of a variable p j ∈ O is replaced by X p j . We first show that ϕ is R-realizable if and
only if ϕ′ is R ′-realizable, and then that R ′-realizability can be reduced to Non-Emptiness.

Now, suppose that ϕ is realizable. It follows that there is a function f : (2I∪O)+ → 2O for which every ρ =
(v0

i ∪ v0
o), (v1

i ∪ v1
o), . . . , with vk

i ∈ 2I and vk
o ∈ 2O , satisfies ϕ . Let f ′ : (2I∪O)+ → 2O be defined as follows:

f ′((v0
i ∪ v0

o), . . . , (vk
i ∪ vk

o)) =
{∅ if k = 0,

f ((v0
i ∪ v0

o), . . . , (vk−1
i ∪ vk−1

o)) otherwise.

Thus, if ρ = (v0
i ∪ v0

o), (v1
i ∪ v1

o), . . . is a run in the R-realizability game, then ρ ′ = (v0
i ∪ ∅), (v1

i ∪ v0
o), (v2

i ∪ v1
o) . . . is the

induced run in the associated R ′-realizability game. Induction on ϕ′ shows that, for every run ρ ′ in the R ′-realizability game
constructed from R , we have that ρ ′ |* ϕ′ , i.e., that ϕ′ is R ′-realizable, because ρ |* ϕ holds in the associated R-realizability
game.

For the other direction, we prove the contrapositive: we suppose that ϕ is not R-realizable and show that, in such
a case, ϕ′ is not R ′-realizable either. Since ϕ is not R-realizable, there is a winning strategy for the environment to
make ϕ false whatever strategy the system uses, that is, to generate a run ρ such that ρ |̸* ϕ . It then follows that
as ρ = (v0

i ∪ v0
o), (v1

i ∪ v1
o), . . . does not satisfy ϕ , then ρ ′ = (v0

i ∪ ∅), (v1
i ∪ v0

o), (v2
i ∪ v1

o) . . . does not satisfy ρ ′ =
ϕ[X p1, . . . , X pm/p1, . . . , pm] either—and hence ϕ′ is not R ′-realizable.3

Finally, we reduce R ′-realizability to Non-Emptiness. Given an R ′-realizability game R ′ = (ϕ′, I, O), create a 4-player
iterated Boolean game G , as follows. The variables in G are " = I ∪ O ∪ {x1, x2}, where x1 and x2 are new. Player 1
corresponds to the system, controls the variables in O , and has goal γ1 = ϕ′ . Player 2 corresponds to the environment,
controls variables in I , and has goal γ2 = ¬ϕ′ . Player 3 controls x1 and has goal γ3 = ϕ′ ∨ (x1 ↔ x2) while Player 4 controls
x2 and has goal γ4 = ϕ′ ∨¬(x1 ↔ x2). Note that players 3 and 4 ensure that in any Nash equilibrium, ϕ′ must be satisfied: in
any strategy profile that does not satisfy ϕ′ , one of players 3 or 4 has a beneficial deviation. We claim that ϕ′ is R ′-realizable
if and only if NE(G) ̸= ∅.

For the left-to-right direction, assume ϕ′ is R ′-realizable, and let σ1 be the machine strategy corresponding to the
winning strategy for ϕ′ . Also, let σ2, σ3, σ4 be arbitrary strategies for players 2, 3, and 4, respectively. We claim that
(σ1, σ2, σ3, σ4) ∈ NE(G). Observe that players 1, 3, and 4 all have their goal achieved by this strategy profile and can have
no beneficial deviation. A beneficial deviation for player 2 would require a strategy σ ′

2 such that ρ(σ1, σ ′
2, σ3, σ4) |* ¬ϕ′ .

But since σ1 encodes a winning strategy for ϕ′ , no such strategy σ ′
2 is possible; hence (σ1, σ2, σ3, σ4) ∈ NE(G).

Finally, for the right-to-left direction, assume NE(G) ̸= ∅, and let the profile σ⃗ = (σ1, σ2, σ3, σ4) be a witness to this fact.
Observe that we must have ρ(σ⃗) |* ϕ′ , for otherwise, players 3 and 4 would ensure that σ⃗ /∈ NE(G). Since σ⃗ is a Nash
equilibrium, player 2 cannot deviate through any strategy σ ′

2 so that ρ(σ⃗−2, σ ′
2) |* ¬ϕ′ . It then follows that σ1 encodes a

winning strategy f ′ for ϕ′ , and hence ϕ′ is R ′-realizable. ✷

5. Complexity of other solution concepts

Nash equilibrium is the most important solution concept in game theory, and many relevant solution concepts in the
literature are either generalisations or refinements of it. However, there are well-known weaknesses of Nash equilibria; for
instance, it is not guaranteed to be unique, it is arguably unstable (nothing is ensured if, e.g., more than one player deviates
or irrational moves are made), and it does not account for dynamic behaviour, amongst others. For this reason, we now
explore the complexity of other solution concepts, namely, dominant strategies and a refinement of subgame perfect Nash
equilibrium.4

The former is a stronger concept when compared with Nash equilibrium. However, it is much more stable: it ensures a
player’s best response regardless of the behaviour of the other players. Thus, unlike Nash equilibria, dominant strategies behave
well even with respect to “irrational” moves of other players. The latter solution concept, on the other hand, is a refinement
of Nash equilibrium (every subgame perfect Nash equilibrium is a Nash equilibrium) intended to take into account the
dynamic behaviour of systems—informally, a Nash equilibrium is subgame perfect if it is a Nash equilibrium in all subgames
of the original game. Here, we study a refinement of subgame perfect Nash equilibrium where reachable, rather than all,
subgames are considered.5

3 The preservation of (un)satisfiability for the LTL formulae given by the map from LTL formulae ϕ to ϕ′—where output variables are preceded by a
next-time operator—is also presented in [7] where strategies as finite state transducers are also considered.

4 We note that subgame perfect equilibrium can be formulated in different ways for iterated Boolean games; the definition we provide here represents
just one of a range of possibilities.

5 A criticism of subgame perfect equilibrium, as defined by Selten, is that this solution concept requires every strategy in a profile to be a best re-
sponse, even in situations that the strategy profile precludes from arising, i.e., in unreachable subgames. Selten studied refinements of subgame perfect
equilibrium [26] where this defect could be eliminated.

66 J. Gutierrez et al. / Information and Computation 242 (2015) 53–79

5.1. Dominant strategies

Dominant strategy equilibrium is a very appealing solution concept because of its stability/robustness: it defines
a best response for each player, no matter how other players in the game behave. Formally, a strategy profile σ⃗ =
(σ1, . . . , σi, . . . , σn) is a dominant strategy equilibrium if for every strategy profile (σ ′

1, . . . , σ
′
n) and every player i, we have

ρ(σ ′
1, . . . ,σi, . . . ,σ

′
n) !i ρ(σ ′

1, . . . ,σ
′
i , . . . ,σ

′
n).

We now show that computing the set of dominant strategy equilibria of an iterated Boolean game is, as for Nash equilib-
ria, a 2EXPTIME-complete problem. We shall write Non-Emptiness for such a problem. The proof of this result is obtained
via a variation of the proof of Proposition 3 (see Appendix A). We also write E-Dominant and A-Dominant for the analogous
problems of E-Nash and A-Nash, respectively, now with respect to dominant strategy equilibrium. Formally, we have the
following result, whose proof may be found in Appendix A.

Proposition 4. E-Dominant, A-Dominant, and Non-Emptiness for Dominant Strategies are 2EXPTIME-complete.

5.2. Consistent-subgame perfect Nash equilibrium

A well-known, natural refinement of Nash equilibrium when considering extensive form games [22] is subgame perfect
Nash equilibrium (SPNE), a solution concept where the dynamic nature of a system is better captured. As iterated Boolean
games are played for infinitely many rounds, it is only natural to study this solution concept in our framework.

Specifically, in this section, we show that Non-Emptiness, E-CSPNE, and A-CSPNE (again, the analogous problems of
those defined for Nash equilibrium), remain complete for 2EXPTIME when the solution concept is a refinement of SPNE
where, informally, one is interested in whether a strategy profile is a Nash equilibrium in all reachable subgames, that is, in
all subgames that are consistent with the strategy profile (the definition of subgame perfect Nash equilibrium requires the
strategy profile to be a Nash equilibrium in all subgames, even unreachable ones, that is, those subgames inconsistent with
the strategy profile). The proofs of these results are adaptations of the proofs for Nash equilibrium, based—informally—on
the following key observation: that if a player has a winning strategy, then it also has one in all reachable subgames allowed
by (consistent with) such a winning strategy.

We start by defining subgames in iterated Boolean games. Subgames are defined with respect to finite runs (finite
sequences of valuations), whose concatenation will be denoted by the symbol “;” usually employed to represent the con-
catenation of two strings/words. Then, given a finite run π = v0, . . . , vk—with k ∈ N—and a run ρ = w0, w1, . . . we will
write π ; ρ for the sequence of valuations (i.e., run) v0, . . . , vk, w0, w1,

Now, given an iterated Boolean game

G = (N,","1, . . . ,"n,γ1, . . . ,γn)

and a finite run π , the π -subgame Gπ of G is defined to be the iterated Boolean game G , save that, for all runs ρ, ρ ′ , we
have

ρ !i ρ
′ if and only if π ;ρ ′ |* γi implies π ;ρ |* γi,

that is, with the satisfaction of the LTL goals γ1, . . . , γn subject to the finite run π (an unfinished “partial play”) having
already happened. Finally, outcomes and strategies in subgames are defined as for iterated Boolean games (possible because
any π -subgame Gπ of G has the same structure of G).

Observe that once players choose their strategies, some subgames are not reachable. For instance, in Example 1, if
player 1 chooses to play with the strategy in Fig. 1(a), then no π -subgame where π contains an occurrence of ¬p is
reachable (because such a strategy, namely σ1, always plays p).

We can then, given a game G , define the subgames of G with respect to the finite runs induced by a particular strategy
profile σ⃗ . These would be, precisely, the reachable subgames when the strategy profile σ⃗ is being played. Formally, the
subgames of G when playing the strategy profile σ⃗ , called the σ⃗ -subgames G σ⃗ of G , are defined to be the set of subgames

{Gρ(σ⃗)[0,...,k] : k ∈ N}.
Also, substrategies can be defined for subgames, i.e., given some G and a strategy profile σ⃗ , we can define the

π -substrategies that will be played in every π -subgame. Formally, for every i ∈ N , let σπ
i be the π -substrategy of σi defined

to be σi save that the new initial state of the strategy is

q0
i = h(σ⃗)[|π |]i

where h is the history of σ⃗ as defined before, and |π | denotes the size of π . In other words, h(σ⃗)[|π |]i is the state that the
strategy σi reaches after reading (being fed with) π . We, thus, write σ⃗π for the strategy profile (σπ

1 , . . . , σπ
n).

With the above definitions in place, we can now introduce the best known solution concept (equilibrium) for subgames
in iterated Boolean games. Given a game G , we say that σ⃗ is a subgame perfect Nash equilibrium of G if σ⃗π is a Nash

J. Gutierrez et al. / Information and Computation 242 (2015) 53–79 67

Fig. 4. The strategies ν1 and ν2 for player 1 and player 2, respectively.

equilibrium of Gπ , for all finite runs π . Moreover, we say it is a consistent-subgame perfect Nash equilibrium if it is a Nash
equilibrium of Gπ , for all runs π ∈ {ρ(σ⃗)[0, . . . , k] : k ∈ N}, that is, with respect to all reachable subgames of G when
playing σ⃗ (i.e., subgames that are consistent with the strategy profile σ⃗). Given the definitions above, we also have the
following result, whose proof may be found in Appendix A.

Proposition 5. E-CSPNE, A-CSPNE, and Non-Emptiness with respect to Consistent-Subgame Perfect Nash equilibria are 2EXPTIME-
complete.

6. Folk theorems for iterated Boolean games

In game theory, much of the interest in iterated games derives from the Nash Folk Theorems [22, p. 143]. These theorems
tell us that the range of outcomes that can be sustained as equilibria in iterated games is much wider than one might
at first suspect from the component game. Their usual form is that the set of all feasible and individually rational payoff
vectors are achievable as Nash equilibria in iterated games; the definitions of feasibility and individual rationality depend
on the precise setting considered.

To take a famous example, the Nash Folk Theorems tell us that cooperation can be sustained in the iterated Prisoner’s
Dilemma. The standard device for proving Folk Theorems is a trigger strategy [22, p. 143]. A trigger strategy intended to
obtain a particular outcome works by punishing any player who deviates from behaviour leading to the intended outcome:
no player can benefit from deviation, as this would result in punishment by all other players. The desired outcome is thereby
obtained as an equilibrium.

It seems very natural, therefore, to consider Folk Theorems in the context of our iterated Boolean games. Given our
interest in using LTL to express properties of equilibria, we can formulate the question of which equilibria can be sustained
in an iterated Boolean game in the following way:

Which LTL properties are preserved by the Nash equilibria of an iterated Boolean game?

This question is closely related to the rational synthesis problem in [11], and here formalised in E-Nash. However, the
rational synthesis problem, in effect, pertains to particular LTL properties being realised in some Nash equilibrium, while
our concern is rather with characterising the set of LTL formulae that can be satisfied in equilibria of iterated Boolean games.

Let us now consider the following example.

Example 3. Consider again the iterated Boolean game of Example 1 along with the formula ϕ = G(¬p ∧ q). Obviously, ϕ
is inconsistent with both player 1’s goal G F(p ∧ q) and player 2’s goal G F(¬p ∧ ¬q). The run that results from player 1
invariably setting p to false and player 2 invariably setting q to true clearly satisfies ϕ but the strategies involved clearly
do not constitute a Nash equilibrium: player 1 would like to deviate to σ1 and player 1 to σ2 (see Fig. 1). The same run,
however, is produced by the strategies ν1 and ν2 as depicted in Fig. 4. Moreover, it can be seen that ν1 and ν2 constitute a
pure-strategy Nash equilibrium. Note that if player 1 were to set p to true at a certain point in time, it would be answered
by player 2 playing ¬q ever after. This would also render player 1’s goal false. Similarly, if, at some time point, player 2
were to set q to false, player 1 will invariably play p from the next time point onwards. If so, player 2’s goal is rendered
unachievable.

In this section, we show that the concepts and techniques used to prove the Nash Folk Theorems can be adapted to
our setting. In particular, for games in which players have safety goals (of the form Gϕ), we use a punishment strategy
construction, similar in spirit to that used to prove the Nash Folk Theorems, to characterise precisely the circumstances
under which arbitrary LTL formulae are satisfied in some equilibrium of an iterated game.

To be able to use such a construction, we need to be able to define for our setting some counterpart of the notion of a
feasible and individually rational payoff for each player. In game theory, a payoff for one player is individually rational and
feasible if it could be enforced by the set of all other players in the game. In our setting, players have goals, rather than
payoffs, and so we need to formulate the concept with respect to whether a player’s goal can be falsified by the set of all
other players.

68 J. Gutierrez et al. / Information and Computation 242 (2015) 53–79

6.1. Punishable players and goals

A player i, with goal γi , is punishable if (at any point of time) i’s counterparts can jointly find values for the propositional
variables under their control that guarantee γi will then be false no matter which values i chooses for its variables. Nash
Folk Theorems may hold only if all players, at all times, are punishable. This is indeed the case for games with certain
kinds of goals, which we define next. We say a goal γi is non-trivial if γi and ¬γi are satisfiable (i.e., if the goal γi is
neither a tautology nor a contradiction in LTL). We say γi is a safety goal when γi is equivalent to a formula Gϕi for some
LTL formula ϕi . When ϕi is a propositional formula we say that γi is a propositional safety goal. Folk theorems for iterated
Boolean games with propositional safety goals are presented first.

6.2. Propositional safety goals

We now define a predicate punishable(i), which formalises when a player i with a propositional safety goal is punishable,
that is, if a trigger strategy can be constructed against i. For this we find it useful to introduce a small piece of additional
notation. Where i is a player, we let V−i denote the set of valuations V (" \ "i), i.e., the set of valuations for variables
controlled by players other than i. Then, for iterated Boolean games with propositional safety goals γi = Gϕi the predicate
punishable(i) reduces to the expression

∨

v−i∈V−i

∧

v ′
i∈V i

(
χ(v−i ,v ′

i)
→ ¬ϕi

)

being valid. Say player i is punishable when the predicate punishable(i) holds (and it is not punishable otherwise).
In the case where a player i is not punishable, we can ensure that its goal will be achieved in any Nash equilibrium, as

shown next.

Lemma 5. Let G = (N, ", "1, . . . , "n, γ1, . . . , γn) be an iterated Boolean game in which player i has a propositional safety
goal γi = Gϕi . Then, if player i is not punishable, for all σ⃗ ∈ NE(G) we have that ρ(σ⃗) |* γi .

The proof may be found in Appendix A.
Now, we can prove a Folk Theorem for iterated Boolean games with propositional safety goals. As seen in Lemma 5,

non-punishable players invariably achieve their goals in any Nash equilibrium. The next Folk Theorem refers to situations
where non-punishable players have to be considered.

Theorem 1. Let G = (N, ", "1, . . . , "n, γ1, . . . , γn) be an iterated Boolean game in which each player i has a propositional safety
goal γi = Gϕi . Let, furthermore, ψ be an LTL formula such that ψ ∧∧{γi : i is not punishable} is satisfiable. Then, there is a σ⃗ ∈ NE(G)
with ρ(σ⃗) |* ψ .

The proof may be found in Appendix A.
Using Theorem 1, the following statement follows as a corollary.

Theorem 2. Let G = (N, ", "1, . . . , "n, γ1, . . . , γn) be an iterated Boolean game where each player i has a non-trivial propositional
safety goal γi = Gϕi . Then, the following two statements are equivalent:

(i) all players are punishable, and
(ii) for all satisfiable ψ ∈ L, there is a σ⃗ ∈ NE(G): ρ(σ⃗) |* ψ .

Proof. The implication from (i) to (ii) is immediate by Theorem 1. For the direction from (ii) to (i), we prove the contrapos-
itive. Assume that some player i is not punishable. As γi was assumed to be non-trivial, ¬γi is satisfiable. Yet, by Lemma 5,
we have that ρ(σ⃗) |* γi for all equilibria σ⃗ ∈ NE(G) (take ψ in Lemma 5 to be ¬γi). Hence, there is no σ⃗ ∈ NE(G) with
ρ(σ⃗) |* ¬γi . ✷

We can leverage Theorems 1 and 2 to obtain PSPACE-completeness for the E-Nash problem with propositional safety
goals.

Proposition 6. The E-Nash and A-Nash problems for iterated Boolean games with propositional safety goals are PSPACE-complete.

Proof. For membership of E-Nash in PSPACE, consider an arbitrary game G = (N, ", "1, . . . , "n, γ1, . . . , γn) with proposi-
tional safety goals and an arbitrary ψ ∈ L("). Algorithm 2 decides whether ψ is sustained by some pure Nash equilibrium
of G .

J. Gutierrez et al. / Information and Computation 242 (2015) 53–79 69

Input: Game G = (N, ", "1, . . . , "n, γ1, . . . , γn), where γ1, . . . , γn are propositional safety goals given by Gϕ1, . . . , Gϕn
Output: “yes” if σ⃗ ∈ NE(G) for some σ⃗ ∈ +i , “no” otherwise.

1 N0 := ∅
2 for i := 1 to n do
3 if ∀ " \ "i ∃"i ϕi is true then
4 N0 := N0 ∪ {i}
5 else
6 N0 := N0
7 end if
8 end for
9 if ψ ∧ ∧

i∈N0
γi is satisfiable then

10 return “yes”
11 else
12 return “no”
13 end if

Algorithm 2: Algorithm for E-Nash with propositional safety goals.

In the for-loop, that is, in lines (1) through (8), this algorithm singles out the players that are not punishable. Checking
the quantified Boolean formula ∀ " \ "i ∃"i ϕ for truth is equivalent to checking

∧
v−i∈V−i

∨
v ′

i∈V i
(χ(v−i ,v ′

i)
∧ϕi) for satisfia-

bility and can be achieved in +p
2 . Soundness of this step then follows from Lemma 5. In step (9) satisfiability of ψ ∧∧

i∈N0
γi

is checked, which can be done in PSPACE. As PSPACE subsumes +p
2 , the algorithm runs in PSPACE.

For soundness and completeness, it now suffices to show that the following two statements are equivalent:

(i) ψ ∧ ∧
i∈N0

γi is satisfiable,
(ii) there is a σ⃗ ∈ NE(G) with ρ(σ⃗) |* ψ .

For the direction from (ii) to (i), assume that there is a σ⃗ ∈ NE(G) with ρ(σ⃗) |* ψ . By Lemma 5, it then follows that
ρ(σ⃗) |* γi for all i ∈ N0. Hence, ψ ∧ ∧

i∈N0
γi is satisfiable. The other direction is immediate by Theorem 1.

For PSPACE-hardness, we reduce the LTL satisfiability problem, which is PSPACE-complete. Let ψ be an arbitrary
LTL formula in L. We may assume vars(ψ) to contain at least two propositional variables p and q. Now consider
the iterated Boolean game G = (N, ", "1, . . . , "n, γ1, . . . , γn) such that N = {1, 2}, " = vars(ψ), p ∈ "1, q ∈ "2, and
γ1 = G q and γ2 = G p. Clearly, both γ1 and γ2 are propositional safety goals. Moreover, it can easily be checked that ∨

v−i∈V−i

∧
v ′

i∈V i
(χ(v−i ,v ′

i)
→ ¬γi) is valid for both i = 1 and i = 2, that is, both 1 and 2 are punishable. It now suffices to

show that

ψ is satisfiable if and only if there is a σ⃗ ∈ NE(G) with ρ(σ⃗) |* ψ.

This, however, is an immediate consequence of Theorem 2.
Finally, PSPACE-completeness of A-Nash follows from E-Nash, since PSPACE is a deterministic complexity class. ✷

6.3. General safety goals

For general safety goals γi = Gϕi we say that, for each player i, the predicate punishable(i) holds if and only if there is
some satisfiable LTL formula χ ∈ L(" \ "i) such that χ → ¬ Gϕi is valid. Based on this definition the next Folk Theorem
follows:

Theorem 3. Let G = (N, ", "1, . . . , "n, γ1, . . . , γn) be an iterated Boolean game where each player i has a non-trivial safety
goal γi = Gϕi . Then, if all players are punishable, for all satisfiable ψ ∈ L, there is a strategy profile σ⃗ ∈ NE(G) with ρ(σ⃗) |* ψ .

Proof. Assume that each player is punishable, that is, that for each player i there is some satisfiable formula χi ∈ L("−i)
such that χi → ¬ Gϕi is valid. Observe that ρ(σ⃗) |* χi implies that ρ(σ⃗−i, σ ′

i) |* χi for all σ ′
i in +i . Moreover, let ψ ∈ L be

an arbitrary satisfiable formula.
For arbitrary satisfiable formulae ϕ , we denote by σ⃗ [ϕ] = (σ1[ϕ], . . . , σn[ϕ]) any strategy profile which run satisfies ϕ ,

i.e., ρ(σ⃗ [ϕ]) |* ϕ . For each player i we write σi[ϕ] = (Q i[ϕ], q0
i [ϕ], τi[ϕ], δi[ϕ]). In virtue of Lemma 1 we know such

strategies and strategy profiles exist.
Now consider the machine strategy profiles σ⃗ [ψ], ⃗σ [χ1], . . . , ⃗σ [χn]. Without loss of generality we may assume that the

sets of states of the machines involved are pairwise disjoint.
For every player i we construct a machine strategy σ ∗

i = (Q ∗
i , q00

i , τ ∗
i , δ∗

i) that keeps track of what the other players
do, chooses in accordance with σi[ψ] as long as all other players j choose in accordance with σ⃗ [ψ] as well. However, if a
player j is the only one to deviate from the behaviour prescribed by σ⃗ j[ψ], player i reverts to playing σi[χ j] thenceforth. If
all players other than j adopt this strategy, j’s efforts to achieve his goal Gϕ j will be undermined. Each σ ∗

i is obtained by

70 J. Gutierrez et al. / Information and Computation 242 (2015) 53–79

a rather straightforward product construction. We then show

(i) ρ(σ ∗
1 , . . . , σ ∗

n) |* ψ , and
(ii) σ⃗ ∗ = (σ ∗

1 , . . . , σ ∗
n) ∈ NE(G).

Formally, for each player i ∈ N , define the strategy σ ∗
i = (Q ∗

i , q00
i , τ ∗

i , δ∗
i) as follows:

Q ∗
i = (Q 1[ψ] × · · · × Q n[ψ]) ∪ Q i[χ1] ∪ · · · ∪ Q i[χn]

q00
i = (q0

1[ψ], . . . ,q0
n[ψ]).

We define τ ∗
i : Q ∗

i → V i such that for all qi ∈ Q ∗
i ,

τ ∗
i (qi) =

{
τi[ψ](qi[ψ]) if qi = (q1[ψ], . . . ,qn[ψ]),
τi[χ j](qi) if qi ∈ Q i[χ j].

And define δ∗
i : Q ∗

i × V → Q ∗
i such that for every (q1, . . . , qn) in the set Q 1[ψ] × · · · × Q n[ψ] and every v⃗ ∈ V ,

δ∗
i ((q1, . . . ,qn), v⃗) =

{
q0

i [χ j] if v j ≠ τ j(q j) and vk = τk(qk) for all k ≠ j,
(δ1[ψ](q1, v⃗), . . . , δn[ψ](qn, v⃗)) otherwise.

Finally, for all qi ∈ Q i[χ j] for some j ∈ N ,

δ∗
i (qi, v⃗) = δi[χ j](qi, v⃗).

Let the histories h(σ⃗) and h(σ⃗ ∗) be given by, respectively,

q⃗[0] v⃗[0]−−→ q⃗[1] v⃗[1]−−→ · · · , and

r⃗[0] w⃗[0]−−−→ r⃗[1] w⃗[1]−−−→ · · · .
It can then be shown by a routine induction that for all time points t and each player i both ri[t] = q⃗[t] =
(q1[ψ][t], . . . , qn[ψ][t]) and w⃗[t] = v⃗[t].

For (i), see that it now follows that ρ(σ⃗ ∗) = ρ(σ⃗) and, hence, ρ(σ⃗ ∗) |* ψ .
For (ii), assume for some player j that ρ(σ⃗ ∗) ̸|* Gϕ j . In order to get a contradiction, also assume that there is a strat-

egy σ ′
j = (Q ′

j, q
000
i , δ′

j, τ
′
j) such that ρ(σ⃗ ∗

− j, σ
′
j) |* Gϕ j . Let the history h(σ⃗ ∗

− j, σ
′
j), moreover, be given by

p⃗[0] u⃗[0]−−→ p⃗[1] u⃗[1]−−→ · · · .
Obviously, ρ(σ⃗ ∗) ̸= ρ(σ⃗ ∗

− j, σ
′
j) and let t′ be the earliest time point for which ρ(σ⃗ ∗)[t′] ̸= ρ(σ⃗ ∗

− j, σ
′
j)[t′], that is, w⃗[t′] ̸= u⃗[t′].

Let σ ′′
j = (Q ′

j, p j[t′ + 1], δ′
j, τ

′
j), that is, the same strategy as σ ′

j but with p j[t′ + 1] as start state instead of q000
j . Moreover,

let the history h(σ⃗−i[χ j], σ ′′
j) be given by

s⃗[0] x⃗[0]−−→ s⃗[1] x⃗[1]−−→ · · · .
By induction it can then be shown that, for all time points t ,

p⃗[t + t′ + 1] = s⃗[t] and u⃗[t + t′ + 1] = x⃗[t].
For the basis, observe that for j obviously, both

p j[0 + t′ + 1] = p j[t′ + 1] = s j[0], and

u j[0 + t′ + 1] = τ ′
j(p j[0 + t′ + 1]) = τ ′

j(s j[0]) = x j[0].
Now, consider an arbitrary player i distinct from j. It can be seen that then w j[t] = v j[t] = τ j(q j[ψ][t]) ̸= u j[t], whereas
wk[t] = vk[t] = τk(qk[ψ][t]) = uk[t] for all k distinct from j. Hence, observing that q0

i [χ j] ∈ Q i[χ j],

pi[0 + t + 1] = δ∗
i ((q1[ψ][t], . . . ,qn[ψ][t]), u⃗[t]) = q0

i [χ j] = si[0], and

ui[0 + t′ + 1] = τ ∗
i (pi[0 + t + 1]) = τ ∗

i (q0
i [χ j]) = τi[χ j](q0

i [χ j]) = si[0].
The induction step follows by a routine argument.

It now follows that, for all formulas ϕ and all time points t ,

ρ(σ⃗− j[χ j],σ ′′
j)[t] |* ϕ if and only if ρ(σ⃗ ∗

− j,σ
′
j)[t + t′ + 1] |* ϕ.

To conclude, recall that, by a previous observation, ρ(σ⃗−i[χ j], σ ′′
j) |* χ j and, hence, ρ(σ⃗−i[χ j], σ ′′

j) |* ¬ Gϕ j . Accord-
ingly, we also have that ρ(σ⃗ ∗

−i, σ
′
i)[t + 1] |* ¬ Gϕ j . Thus, there is t′′ such that ρ(σ⃗ ∗

−i, σ
′
i)[t + t′ + 1] ̸|* ϕ j . And hence,

ρ(σ⃗ ∗
−i, σ

′
i) ̸|* Gϕ j , a contradiction as desired. ✷

J. Gutierrez et al. / Information and Computation 242 (2015) 53–79 71

7. Related work

Pure-strategy Nash equilibria in Boolean games have been studied previously (e.g., in [8,4,13,5]) but, to the best of our
knowledge, apart from a very recent exception (see [15]), not in game models where the players are allowed to interact for
an infinite number of rounds, which is the setting our main results pertain to. In particular, in [15], the present framework
was extended in order to consider both linear-time and branching-time goals as well as explicit structures (arenas, boards)
where the games are played.

However, many games in logic and computer science have been considered where game plays are assumed to have
infinite length; see, e.g., [6,12] for surveys on the topic. These games are usually played by two players (in a hostile envi-
ronment) who have independent and concurrent behaviour. In our setting, we are interested in situations where there are
multiple players who do not necessarily have opposing objectives.

Two game models are worth singling out as being particularly relevant to our present work: the non-zero-sum concurrent
n-player games with qualitative (binary) winning objectives in [6] and the infinite concurrent multiplayer games over a Boolean
domain in [11]. The former model differs from ours in that (i) there is no explicit notion of control over variables—players
simply choose moves in a given set—and (ii) the games are played on graphs. These two features of the games in [6] make
them potentially exponentially larger than ours, which can have important implications when dealing with complexity
issues. On the other hand, the games in [11] generalise our framework in two ways: first, they use a model of strategies
that is more general than machine strategies and, secondly, they allow one player in the game (called the system player)
to make choices after all other players have, independently and simultaneously, made their choices. As shown in this paper,
the synthesis problem for both games has, however, the same complexity.

Finally, Folk Theorems for other games are mostly found in the game theory literature rather than in logic, computer
science, or multi-agent systems research. Yet, there are a few exceptions. In [11] a similar question is asked for a problem—
rational synthesis—that is closely related to one of the decision problems for iterated Boolean games. Other results on
synthesis can be found too, see, e.g., [7,28,19,18]. In most of this literature the emphasis is on the question whether a strat-
egy can be synthesised that guarantees the satisfaction of an LTL formula. With the Folk Theorems, however, our focus is
on semantic representations of complete classes of LTL properties which can be rationally sustained when playing a game.

8. Future work

In the model of iterated Boolean games we studied here the players’ goals are represented by LTL formulae. It is also
natural to consider players whose behaviour, as motivated by their goals, would be better described by branching-time
temporal logics, such as CTL∗ [10] or the µ-calculus [17]. It seems likely that a framework of this kind would lead to
systems (games) with different computational complexity properties.

Even within the linear-time setting, the use of LTL goals presents some limitations: It is known that LTL cannot express
all linear-time ω-regular properties. It then seems reasonable to consider linear-time temporal logics with such expressive
power, e.g., a natural choice would be the linear-time µ-calculus [2] which elegantly extends LTL with extremal fixpoint
operators. The study of a game model that extends iterated Boolean games, and which considers goals given by, e.g., the
linear-time or the modal µ-calculus, is presented in [15], where, amongst others, some hardness results for the computa-
tional complexity of the synthesis of strategies are provided.

Another important technical component of this work was the formalisation of conditions underpinning the Folk Theo-
rems. Our study covered so-called (propositional) safety goals; other types of goals might be studied as well, for instance,
goals with fairness or response properties. This study could be complemented by the definition of a purely semantic char-
acterisation of punishability. Such a definition of punishability could be given in terms of runs and strategies, rather than in
terms of the syntactic form of the players’ goals. On the one hand, the definition should be strong enough to ensure that in
any iterated Boolean game in which all players are punishable, every satisfiable formula is sustainable in a Nash equilibrium.
At the same time, the concept should be broad enough so as to capture an as wide as possible range of Folk Theorems. In
particular, Theorems 2 and 3 should follow as corollaries of a more general result involving this concept of punishability.
It is also an additional challenge to syntactically characterise such a concept of punishability by a class of formulae that
render a player punishable if such a player adopts any of them as a goal.6

The results in this paper are confined to games where the outcomes of the payoff sets are win-lose (binary) and the
strategies are deterministic. Relaxing any of these two design choices may lead to computational problems. Recent work on
games has shown that allowing randomization, either in the strategies [31] or in the arenas [29] where the games are played
may result in scenarios where computing the Nash equilibria of a game is undecidable, even for reachability objectives which
can easily be expressed in LTL. However with respect to binary payoff sets, decidability can be recovered [30].

Acknowledgments

This paper is a revised and extended version of [14]. The authors gratefully acknowledge the financial support of the ERC
Advanced Research Grant 291528 (“RACE”) at Oxford.

6 We thank one of the anonymous reviewers for suggesting this interesting problem.

72 J. Gutierrez et al. / Information and Computation 242 (2015) 53–79

Appendix A. Proofs from the main text

Lemma 3. Let σ⃗ = (σ1, . . . , σn) and σ⃗ ′ = (σ ′
1, . . . , σ

′
n) be strategy profiles and i a player. Then,

ρ(σ⃗)|"i = ρ(σ⃗−i,σ
′
i)|"i and ρ(σ⃗)|"\"i = ρ(σ⃗ ′

−i,σi)|"\"i imply ρ(σ⃗) = ρ(σ⃗ ′).

Proof. Let σk = (Q k, q0
k , δk, σ ′

k) and σ ′
k = (Q ′

i , q
00
i , δ′

i, τ
′
i), for each player k. Assume ρ(σ⃗)|"i = ρ(σ⃗−i, σ ′

i)|"i and ρ(σ⃗)|"\"i =
ρ(σ⃗ ′

−i, σi)|"\"i Let the histories h(σ⃗), h(σ⃗−i, σ ′
i), h(σ⃗ ′

−i, σi), and h(σ⃗ ′), moreover, be given by, respectively,

h(σ⃗−i,σi): q⃗[0] v⃗[0]−−→ q⃗[1] v⃗[1]−−→ · · ·
h(σ⃗−i,σ

′
i): p⃗[0] u⃗[0]−−→ p⃗[1] u⃗[1]−−→ · · ·

h(σ⃗ ′
−i,σi): s⃗[0] x⃗[0]−−→ s⃗[1] x⃗[1]−−→ · · ·

h(σ⃗ ′
−i,σ

′
i): r⃗[0] w⃗[0]−−−→ r⃗[1] w⃗[1]−−−→ · · ·

We prove by (a routine) induction that, for all time points t and all players j distinct from i,

qi[t] = si[t], pi[t] = ri[t], q j[t] = p j[t], s j[t] = r j[t],
as well as

v⃗[t] = u⃗[t] = x⃗[t] = w⃗[t].
For the basis, let j be an arbitrary player distinct from i. Observe that qi[0] = si[0], pi[0] = ri[0], q j[0] = p j[0], s j[0] = r j[0]
follow immediately from the definition of the strategy profiles considered. It now suffices to show that v⃗[0] = u⃗[0],
v⃗[0] = x⃗[0], and v⃗[0] = w⃗[0]. To see v⃗[0] = u⃗[0], observe that vi[0] = ui[0] by our initial assumption and that,

v j[0] = τ (q j[0]) = τ j(p j[0]) = u j[0].
Similarly, to see that v⃗[0] = x⃗[0], observe that v j[0] = x j[0] by the initial assumption and

vi[0] = τ (qi[0]) = τ (si[0]) = xi[0].
Finally, for v⃗[0] = w⃗[0], observe that vi[0] = ui[0] and v j[0] = x j[0] by the initial assumption. Now the following equations
hold:

vi[0] = ui[0] = τ ′
i (pi[0]) = τ ′

i (ri[0]) = wi[0],
v j[0] = x j[0] = τ ′

j(s j[0]) = τ ′
j(r j[0]) = w j[0].

For the induction step, consider player i an arbitrary player j distinct from i. Now the following equations hold.

qi[t + 1] = δi(qi[t], v⃗[t]) =i.h. δi(si[t], xi[t]) = si[t + 1],
pi[t + 1] = δ′

i(pi[t], u⃗[t]) =i.h. δi(ri[t], wi[t]) = ri[t + 1],
q j[t + 1] = δ j(q j[t], v⃗[t]) =i.h. δ j(p j[t], u j[t]) = p j[t + 1],
s j[t + 1] = δ′

j(q j[t], v⃗[t]) =i.h. δ j(r j[t], w j[t]) = w j[t + 1].
Finally, we show that v⃗[t + 1] = u⃗[t + 1], v⃗[t + 1] = x⃗[t + 1], and v⃗[t + 1] = w⃗[t + 1]. The argument is analogous to the one
for the base case. To see v⃗[t + 1] = u⃗[t + 1], observe that vi[t + 1] = ui[t + 1] by the initial assumption and that,

v j[t + 1] = τ (q j[t + 1]) = τ j(p j[t + 1]) = u j[t + 1].
Similarly, to appreciate that v⃗[t + 1] = x⃗[t + 1], observe that v j[t + 1] = x j[t + 1] by the initial assumption and

vi[t + 1] = τ (qi[t + 1]) = τ (si[t + 1]) = xi[t + 1].
Finally, for v⃗[t + 1] = w⃗[t + 1], observe that vi[t + 1] = ui[t + 1] and v j[t + 1] = x j[t + 1] by the initial assumption. Now the
following equations hold:

vi[t + 1] = ui[t + 1] = τ ′
i (pi[t + 1]) = τ ′

i (ri[t + 1]) = wi[t + 1],
v j[t + 1] = x j[t + 1] = τ ′

j(s j[t + 1]) = τ ′
j(r j[t + 1]) = w j[t + 1].

This concludes the proof. ✷

J. Gutierrez et al. / Information and Computation 242 (2015) 53–79 73

Lemma 4. Let σ⃗ = (σ1, . . . , σn) be a profile of (partial) strategies σi = (Q i, q0
i , δi, τi) for an iterated Boolean game representing

complete strategies with default states qd
1, . . . , q

d
n. Let, furthermore, ρ : N → 2"∪Q ∪{qd

1,...,qd
n} an ω-regular run and σ⃗ ′ = (σ ′

1, . . . , σ
′
n)

a strategy profile such that ρ|" = ρ(σ⃗ ′). Then, for all players i,

1. ρ |* th(σi) if and only if ρ|"∪Q i∪{qd
i }

= ρ̂(σ⃗ ′
−i, σi)|"∪Q i∪{qd

i }
,

2. ρ |* TH(σ⃗) if and only if ρ = ρ̂(σ⃗).

Proof. For item 1 above, consider an arbitrary player i, an arbitrary run ρ: N → 2"∪Q ∪{qd
1,...,qd

n} and a strategy profile σ⃗ ′ =
(σ ′

1, . . . , σ
′
n) such that ρ|" = ρ(σ⃗ ′). Let σ ′

j = (Q ′
j, q

00
j , δ′

j, τ
′
j) for each player j. Let furthermore the histories h(σ⃗ ′

−i, σi) and
h(σ⃗ ′) be given by, respectively,

q⃗[0] v⃗[0]−−→ q⃗[1] v⃗[1]−−→ · · ·
r⃗[0] w⃗[0]−−−→ r⃗[1] w⃗[1]−−−→ · · ·

First assume that ρ |* th(σi). Recall that

ρ̂(σ⃗ ′
−i,σi)[t] = v[t] ∪ {q1[t], . . . ,qn[t]}

for each time point t . It now suffices to show by induction, for all time points t , that

ρ[t] ∩ (Q i ∪ {qd
i }) = {qi[t]} and v⃗[t] = w⃗[t],

as well as that q j[t] = r j[t] for all players j distinct from i.
For the basis, let t = 0. Observe that qi[0] = q0

i . Moreover, ρ |* INIT(σi) and, hence, ρ[0] |* q0
i . Also, ρ |* INVAR(σi), from

which follows that ρ[0] ̸|* q′
i for all q′

i ∈ Q i ∪ {qd
i } with qi ≠ q0

i . Accordingly,

ρ[0] ∩ (Q i ∪ {qd
i }) = {qi[0]}.

Furthermore, ρ |* VAL(σi). Hence, in particular, ρ[0] |* q0
i → χ"i

τ (q0
i)

. With ρ[0] |* q0
i we then obtain ρ[0] |* χ"i

τi(q0
i)

. With

ρ|" = ρ(σ⃗ ′), also ρ(σ⃗ ′, σ ′
i)[0] |* χ"i

τi(q0
i)

and, thus, ρ(σ⃗ ′)[0] ∩ "i = τi(q0
i). Then,

vi[0] = ρ(σ⃗ ′
−i,σi)[0] ∩ "i = τi(q

0
i) = ρ(σ⃗ ′)[0] ∩ "i = wi[0].

It can, moreover, easily be appreciated that for every player j distinct from i we have q j[0] = q00
j = r j[0] and

v j[0] = τ ′
j(q j[0]) = τ ′

j(r j[0]) = w j[0].
It follows that v⃗[0] = w⃗[0], as desired.

For the induction step, we may assume that

ρ[t] ∩ (Q i ∪ {qd
i }) = {qi[t]} and v⃗[t] = w⃗[t],

as well as that q j[t] = r j[t] for all players j distinct from i. We show that,

ρ[t + 1] ∩ (Q i ∪ {qd
i }) = {qi[t + 1]} and v⃗[t + 1] = w⃗[t + 1],

as well as that q j[t + 1] = r j[t + 1] for all players j distinct from i.
First, consider an arbitrary player j distinct from i. By a routine application of the induction hypothesis, it can easily be

seen that both q j[t + 1] = r j[t + 1] and v j[t + 1] = w j[t + 1].
Now distinguish the following cases. Either there is some q′

i ∈ Q i such that δi(qi[t], ⃗v[t]) = q′
i or there is no such q′

i ∈ Q i .
If the former, q′

i = δi(qi[t], ⃗v[t]) = qi[t + 1]. By the induction hypothesis we obtain ρ[t] |* qi[t]. Since ρ |* INVAR(σi),
moreover, ρ[t] ̸|* q′

i for all states q′
i distinct from qi[t]. By another application of the induction hypothesis, ρ(σ⃗ ′)[t] |* χ"i

v⃗[t] .
Recall that ρ|" = ρ(σ⃗ ′) and, thus, also ρ[t] |* q[t]. As, moreover, ρ |* TRANS(σi), in particular,

ρ[t] |* (χ"
v⃗[t] ∧ qi[t]) → X qi[t + 1].

Hence, subsequently, ρ[t] |* X qi[t + 1] and ρ[t + 1] |* qi[t + 1]. Moreover, ρ |* INVAR(σi), from which follows that
ρ[t + 1] ̸|* q′

i or all q′
i ∈ Q ∪ {qd

i } with q′
i ≠ qi[t + 1]. Accordingly,

ρ[t + 1] ∩ (Q i ∪ {qd
i }) = {q⃗i[t + 1]}.

74 J. Gutierrez et al. / Information and Computation 242 (2015) 53–79

Furthermore, since ρ |* VAL(σi), in particular, ρ[t +1] |* qi[t +1] → χ"
τ (qi [t+1]) . Recall that ρ[t +1] |* qi[t +1] and, therefore,

ρ[t + 1] |* χ"
τi(qi [t+1]) . Recall that ρ|" = ρ(σ⃗ ′) and, hence, also ρ(σ⃗ ′

−i, σ
′
i)[t + 1] |* χ"

τi(qi [t+1]) . Therefore, ρ(σ⃗ ′
−i, σ

′
i)[t + 1] ∩

"i = τi(qi[t + 1]) and, thus,

vi[t + 1] = ρ(σ⃗ ′
−i,σi)[t + 1] ∩ "i = τi(q

0
i) = ρ(σ⃗ ′

−i,σ
′
i)[t + 1] ∩ "i = wi[t + 1].

We may conclude that in this case v[t + 1] = w[t + 1].
If the latter, we have qi[t + 1] = qd

i . By virtue of the induction hypothesis, we have ρ[t] |* qi[t]. As ρ |* INVAR(σi),
moreover, ρ |̸* q′

i for all q′
i ≠ qi[t]. By another application of the induction hypothesis, ρ(σ⃗ ′) |* χ"

v⃗[t] . As ρ|" = ρ(σ⃗), we
also have ρ[t] |* χ"

v⃗[t] . Now consider arbitrary qi, q′
i ∈ Q and v⃗ such that δi(qi, ⃗v) = q′

i . Then, either qi ≠ q[t] or v⃗ ≠ v⃗[t].
It follows that ρ[t] |* ¬(χ"

v⃗ ∧ qi) and, with q, q′ , and v⃗ having been chosen arbitrarily, ρ[t] |* ∧
δi(qi ,v⃗)=q′

i
¬(χ"

v⃗ ∧ qi). As
ρ |* TRANS(σi), in particular,

ρ[t] |*

⎛

⎝
∧

δi(qi ,v⃗)=q′
i

¬(χ"
v⃗ ∧ qi)

⎞

⎠ → X qd
i .

Therefore, ρ[t] |* X qd
i and, subsequently, ρ[t + 1] |* qd

i . Also observe that, as ρ |* INVAR(σi), also ρ[t + 1] ̸|* qi for every qi

distinct from qd
i . It now follows that

ρ(σ⃗ ′)[t + 1] ∩ (Q i ∪ {qd
i }) = {qi[t + 1]}.

To appreciate vi[t + 1] = wi[t + 1], observe that

vi[t + 1] = τi(qi[t + 1]) = τi(q
d
i) = ∅.

Moreover, in virtue of ρ |* VAL(σi), we have ρ[t + 1] |* qd
i → χ"i

∅ . Also, ρ[t + 1] |* qd
i , and, hence, ρ[t + 1] |* χ"i

∅ . Recall
that ρ|" = ρ(σ⃗ ′), and, hence, ρ(σ⃗ ′) |* χ"i

∅ . Therefore, ρ(σ⃗ ′) ∩ "i = ∅ and, thus,

vi[t + 1] = ∅ = ρ(σ⃗ ′
−i,σ

′
i)[t + 1] ∩ "i = wi[t + 1].

Also in this case, we may conclude that v⃗[t + 1] = w⃗[t + 1].
For the opposite direction, assume ρ|"i∪Q i∪{qd

i } = ρ̂(σ⃗ ′
−i, σi)|"i∪Q i∪{qd

i }
. From the definition of ρ̂(σ⃗ ′

−i, σi) it immediately
follows that for all t ∈ N,

ρ̂(σ⃗ ′
−i,σi)[t] |* χ"i

wi [t], ρ̂(σ⃗ ′
−i,σi)[t] |* χ"

w⃗[t], ρ̂(σ⃗ ′
−i,σi)[t] |* ri[t],

and, for all q′
i ∈ Q i with q′

i ≠ ri[t], moreover, ρ̂(σ⃗ ′
−i, σi)[t] ̸|* q′

i . With our assumption, for all time points t and all q′
i ∈ Q i

with q′
i ≠ qi[t], we then also have that,

ρ̂[t] |* χ"i
vi [t], ρ̂[t] |* χ"

v⃗[t], ρ̂[t] |* qi[t],
and, for all q′

i ∈ Q i with q′
i ≠ qi[t], moreover, ρ̂(σ⃗ ′

−i, σi)[t] ̸|* q′
i . It can now straightforwardly be shown that,

ρ |* INIT(σi) ∧ TRANS(σi) ∧ INVAR(σi) ∧ VAL(σi).

The tedious details we omit.
Finally, for 2, first assume that ρ = ρ̂(σ⃗). Then, in particular, ρ|" = ρ(σ⃗). Now consider an arbitrary player i. Then,

moreover, ρ|"∪Q i∪{qd
i }

= ρ(σ⃗−i, σi)|"∪Q i∪{qd
i }

. By 1, it then follows that ρ |* th(σi). Having chosen i arbitrarily, we also have
ρ |* TH(σ⃗). For the opposite direction, assume ρ |* TH(σ⃗). Thus, ρ |* th(σ j) for all players j. Consider an arbitrary player i.
Without loss of generality and for ease of notation, we assume that i = n. Now consider the sequence of strategy profiles

σ⃗ 1 = (σ ′
1,σ

′
2,σ

′
3, . . . ,σ

′
n−1,σ

′
n),

σ⃗ 2 = (σ1,σ
′
2,σ

′
3, . . . ,σ

′
n−1,σ

′
n),

σ⃗ 3 = (σ1,σ2,σ
′
3, . . . ,σ

′
n−1,σ

′
n),

...

σ⃗ n = (σ1,σ2,σ3, . . . ,σn−1,σ
′
n).

We show for all j with 1 ≤ j ≤ n,

ρ|"∪Q j∪{qd
j }

= ρ̂(σ⃗ j
− j,σ j)|"∪Q j∪{qd

j }
.

J. Gutierrez et al. / Information and Computation 242 (2015) 53–79 75

As ρ |* th(σ1), the basis is immediate by 1. For the induction step, assume that ρ|"∪Q j∪{qd
j }

= ρ̂(σ⃗ j
− j, σ j)|"∪Q j∪{qd

j }
. Then, in

particular, ρ|" = ρ(σ⃗ j
− j, σ j) = ρ(σ⃗ j+1). As ρ |* th(σ j+1), an application of 1 yields

ρ|"∪Q j+1∪{qd
j+1} = ρ̂(σ⃗ j+1

− j+1,σ j+1)|"∪Q j+1∪{qd
j+1}.

For i = n, we then find that

ρ|"∪Q n∪{qd
n} = ρ̂(σ⃗ n

−n,σn)|"∪Q n∪{qd
n} = ρ̂(σ⃗)|"∪Q n∪{qd

n}.

It follows that ρ|"∪Q i∪{qd
i }

= ρ̂(σ⃗)|"∪Q i∪{qd
i }

for all players i. We may conclude that ρ = ρ̂(σ⃗). ✷

Proposition 4. E-Dominant, A-Dominant, and Non-Emptiness for Dominant Strategies are 2EXPTIME-complete.

Proof. Membership in 2EXPTIME is proven exactly as for Nash equilibrium, using [11]. For hardness, we also first use the
reduction from LTL realizability to its variant (namely, the R ′-realizability game R ′ = (ϕ′, I, O)) where both the system
and the environment play simultaneously. Then, we prove the following claim: that the LTL formula ϕ′ is R ′-realizable if
and only if DS(G) ̸= ∅, where DS(G) is the set of dominant strategy equilibria of the iterated Boolean game G , defined as
described below.

Given an R ′-realizability game R ′ = (ϕ′, I, O), create a two-player iterated Boolean game G where player 1 controls
the variables in I as well as a fresh Boolean variable x1, player 2 controls the variables in O as well as a fresh Boolean
variable x2, and the goals are γ1 = ϕ′ ∨ (x1 ↔ x2) and γ2 = ⊥. Variables x1 and x2 are used to show that player 1 has a dom-
inant strategy (winning) that satisfies ϕ′ . Now, for the left-to-right direction, assume that ϕ′ is R ′-realizable, and let σ1 be
the machine strategy corresponding to the winning strategy for ϕ′ and σ2 be any strategy. We claim that (σ1, σ2) ∈ DS(G).
Observe that σ1 ensures γ1, thus it is a dominant strategy for player 1. On the other hand, any σ2 is a dominant strategy
for player 2 since γ2 can never be satisfied. Hence (σ1, σ2) ∈ DS(G). For the right-to-left direction, assume DS(G) ̸= ∅, and
let the profile σ⃗ = (σ1, σ2) ∈ DS(G). From the definition of dominant strategy equilibrium we know that

ρ(σ1,σ
′
2) !1 ρ(σ ′

1,σ
′
2)

for all strategies σ ′
1 and σ ′

2 for player 1 and player 2, respectively. In other words, we know that

if ρ(σ1,σ
′
2) |̸* γ1 then ρ(σ ′

1,σ
′
2) |̸* γ1.

We first show that ρ(σ⃗) |* γ1. Let σ ′
2 be σ2. Then, for a contradiction, assume that ρ(σ⃗) ̸|* γ1. It follows that ρ(σ ′

1, σ
′
2) ̸|* γ1,

for any σ ′
1. But, necessarily, there is σ ′

1 for which x1 = x2, thus satisfying γ1—which is a contradiction. Therefore, we have
that ρ(σ⃗) |* γ1.

Now, we show that, in addition, ρ(σ⃗) |* ϕ′ . Again, for a contradiction, suppose that ρ(σ⃗) ̸|* ϕ′ . Because ρ(σ⃗) |* γ1, it
must be the case that ρ(σ⃗) |* (x1 ↔ x2). Let σ ′

2 be the strategy that plays exactly as σ2, save that it plays a different value
for x2, i.e., x2 false/true in σ ′

2 if true/false in σ2. Then, ρ(σ1, σ ′
2) ̸|* γ1. As before, it then follows that ρ(σ ′

1, σ
′
2) ̸|* γ1, for

any σ ′
1. But, necessarily, there is σ ′

1 for which x1 = x2, thus satisfying the goal γ1—which is a contradiction. Therefore, we
have that ρ(σ⃗) |* ϕ′ too.

Now, we show that σ1 is, in fact, a winning strategy for ϕ′ . Suppose, for a contradiction, that σ1 is not. Then, there is σ ′
2

such that ρ(σ1, σ ′
2) ̸|* ϕ′ . Let, without loss of any generality, σ ′

2 be such that ρ(σ1, σ ′
2) ̸|* (x1 ↔ x2). Then, ρ(σ1, σ ′

2) ̸|* γ1.
It follows that ρ(σ ′

1, σ
′
2) ̸|* γ1, for any σ ′

1. But, there is σ ′
1 for which x1 = x2, thus satisfying γ1—which is a contradiction.

Therefore, it follows that ρ(σ1, σ ′
2) |* ϕ′ , for all σ ′

2, that is, σ1 is a strategy that ensures ϕ′ . It thus follows that σ1 encodes
a winning strategy f ′ for ϕ′ in the R ′-realizability game, and hence ϕ′ is R ′-realizable.

We can conclude that Non-Emptiness for Dominant Strategies in iterated Boolean games is a 2EXPTIME-complete prob-
lem. The hardness results for the E-Nash and A-Nash problems immediately follow from that of Non-Emptiness, as done in
the case of Nash equilibrium. ✷

Proposition 5. E-CSPNE, A-CSPNE, and Non-Emptiness with respect to Consistent-Subgame Perfect Nash equilibria are 2EXPTIME-
complete.

Proof. Membership in 2EXPTIME and hardness, up to the end of the construction of the 4-player game, is as for Nash equi-
librium, but we claim, instead, that ϕ′ is R ′-realizable iff CSPNE(G) ̸= ∅, where CSPNE(G) is the set of consistent-subgame
perfect Nash equilibria of G . We now show that a small variant of the argument for Nash equilibria holds in this case.

For the left-to-right direction, assume ϕ′ is R ′-realizable, and let σ1 be the machine strategy corresponding to the
winning strategy for ϕ′ . Also, let σ2, σ3, σ4 be any strategies for players 2, 3, and 4. We now claim that σ⃗ = (σ1, σ2, σ3, σ4) ∈
CSPNE(G). Take any reachable subgame Gπ , that is, a subgame where π ∈ {ρ(σ⃗)[0, . . . , k] : k ∈ N}. The π -substrategies in
this subgame are (σπ

i)i∈N , each with initial state given by q0
i = h(σ⃗)[|π |]i . First, observe that since π is consistent with σ⃗ ,

then there is a run ρ ′ such that π ; ρ ′ |* ϕ′ . Since player 1 is using a winning strategy to satisfy ϕ′ , and π is consistent with

76 J. Gutierrez et al. / Information and Computation 242 (2015) 53–79

such a winning strategy, then, in fact, every ρ ′ , consistent with σπ
1 , also satisfies ϕ′ . That is, π ; ρ ′ |* γ1, for all such ρ ′ .

Then, the goal of player 1 is also satisfied in the subgame Gπ , and hence also the goals of players 3 and 4. And, as for Nash
equilibrium, a beneficial deviation for player 2 requires a σ ′π

2 such that π ; ρ(σπ
1 , σ ′π

2 , σπ
3 , σπ

4) ̸|* ϕ′ , which is impossible
since σπ

1 encodes a winning π -substrategy for ϕ′; hence (σπ
1 , σπ

2 , σπ
3 , σπ

4) ∈ NE(Gπ). Since the finite run π was chosen
arbitrarily, the result necessarily holds for all π in {ρ(σ⃗)[0, . . . , k] : k ∈ N}—and hence for all subgames Gπ consistent with
the strategy profile σ⃗ —implying that σ⃗ ∈ CSPNE(G).

The right-to-left direction is almost immediate. Simply assume that CSPNE(G) ≠ ∅, and let σ⃗ = (σ1, σ2, σ3, σ4) ∈
CSPNE(G). Observe that σ⃗ is, in particular, also a Nash equilibrium. Therefore, exactly the same argument for Nash equi-
librium strategy profiles holds to ensure that σ1 encodes a winning strategy f ′ for ϕ′ , and hence, to show that ϕ′ is
R ′-realizable. ✷

Lemma 5. Let G = (N, ", "1, . . . , "n, γ1, . . . , γn) be an iterated Boolean game in which player i has a propositional safety
goal γi = Gϕi . Then, if player i is not punishable, for all σ⃗ ∈ NE(G) we have that ρ(σ⃗) |* γi .

Proof. Without loss of generality let i = n and assume that player n is not punishable. Thus,
∨

v−n∈V−n

∧
v ′

n∈Vn

(
χ(v−n,v ′

n) →
¬ϕn

)
is not valid, that is,

∧
v−n∈V−n

∨
v ′

n∈Vn

(
χ(v−n,v ′

n) ∧ ϕn
)

is satisfiable. From the latter it can easily be seen that for
all v−n ∈ V−n there is some v ′

n ∈ Vn such that (v−n, v ′
n) |* ϕn and we may assume the existence of a function fn: V−n → Vn

such that, for every valuation (v1, . . . , vn−1) ∈ V−n ,

ρ(v1, . . . , vn−1, fn(v1, . . . , vn−1)) |* ϕn.

Now consider an arbitrary strategy profile σ⃗ = (σ1, . . . , σn), where σi = (Q j, q0
j , τ j, δ j) for each player j, and assume

that ρ(σ⃗) ̸|* Gϕn . To show that σ⃗ /∈ NE(G), it suffices to construct a machine strategy σ ∗
n for n such that ρ(σ⃗−n, σ ∗

n) |* Gϕn .
Define σ ∗

n = (Q ∗
n , q00

n , τ ∗
n , δ∗

n) in such a way that

Q ∗
n = Q 1 × · · · × Q n−1 × V

q00
n = (q0

1, . . . ,q0
n−1, (v0

1, . . . , v0
n)),

where (v0
1, . . . , v

0
n) is such that for all players i,

v0
j =

{
fn(τ1(q0

1), . . . ,τn−1(q0
n−1)) i = n,

τ j(q0
j) otherwise.

Also define τ ∗
n : Q ∗

n → Vn such that for all (q1, . . . , qn−1, (v1, . . . , vn)) ∈ Q ∗
n ,

τ ∗
n (q1, . . . ,qn−1, (v1, . . . , vn)) = fn(τ1(q1), . . . ,τn−1(qn−1)).

Moreover, for every state (q1, . . . , qn−1, ⃗v) ∈ Q ∗
n and all valuations w⃗ ∈ V , set

δ∗
n ((q1, . . . ,qn−1, v⃗), w⃗) = (δ1(q1, v⃗), . . . , δn−1(qn−1, v⃗), v⃗∗),

where v⃗∗ = (v∗
1, . . . , v

∗
n) is such that, for all players j ∈ N ,

v∗
j =

{
τ ∗

n (δ1(q1, v⃗), . . . , δn−1(qn−1, v⃗), v⃗) if j = n,
τ j(δ j(q j, v⃗)) otherwise.

Observe that δ∗
n does not depend on its second argument w⃗ .

To show that ρ(σ⃗−n, σ ∗
n) |* Gϕn , consider the history h(σ1, . . . , σn−1, σ ∗

n) and assume it to be given by,

r⃗[0] w⃗[0]−−−→ r⃗[1] w⃗[1]−−−→ · · ·
By a straightforward induction on t , it can be shown that for all r⃗[t] = (r1[t], . . . , rn[t]) and w⃗[t] = (w1[t], . . . , wn[t]): we
have:

r j[t] = (r1[t], . . . , rn−1[t], w⃗[t])
w j[t] = fn(w1[t], . . . , wn−1[t]).

Intuitively, the former says that σ ∗
n correctly predicts the behaviour of σ⃗−n at each time t , the latter that σ ∗

n always selects
the appropriate and winning answer to this behaviour.

We may conclude that for every time point t ∈ N,

ρ(σ⃗−n,σ
∗
n)[t] = (w1[t], . . . , wn−1[t], fn(w1[t], . . . , wn−1[t])).

Hence, ρ(σ⃗−n, σ ∗
n)[t] |* ϕn and, accordingly, ρ(σ⃗−n, σ ∗

n) |* Gϕn . Having assumed that ρ(σ⃗) ̸|* Gϕi , we may conclude that
σ⃗ /∈ NE(G). ✷

J. Gutierrez et al. / Information and Computation 242 (2015) 53–79 77

Theorem 1. Let G = (N, ", "1, . . . , "n, γ1, . . . , γn) be an iterated Boolean game in which each player i has a propositional safety
goal γi ≡ Gϕi . Let, furthermore, ψ be an LTL formula such that ψ ∧∧{γi : i is not punishable} is satisfiable. Then, there is a σ⃗ ∈ NE(G)
with ρ(σ⃗) |* ψ .

Proof. Having assumed that ψ ∧ ∧{γi : i is not punishable} is satisfiable, by Lemma 1, there is some strategy profile σ⃗ =
(σ1, . . . , σn) such that ρ(σ⃗) |* ψ ∧ ∧{γi : i is not punishable}. Moreover, for every punishable player j, we have that

∨

v− j∈V− j

∧

v ′
j∈V j

(χ(v− j ,v ′
j)

→ ¬ϕ j) is valid.

Thus, for every punishable player j, there is some (v j
1, . . . , v

j
n) ∈ V such that for all v ′

j ∈ V j ,

(v j
1, . . . , v j

j−1, v ′
j, v j

j+1, . . . , v j
n) |̸* ϕ j.

For every player i, punishable or not punishable, we construct a machine strategy σ ∗
i = (Q ∗

i , q0
i , τ

∗
i , δ∗

i) that keeps track
of what the other players do, chooses in accordance with σi if all other players j choose according to σ j , but chooses v j

i at
t + 1 whenever j is the only punishable player whose choice at t deviates from ρ(σ⃗)[t] ∩ " j . We then show that

(a) ρ(σ ∗
1 , . . . , σ ∗

n) |* ψ , and
(b) σ⃗ ∗ = (σ ∗

1 , . . . , σ ∗
n) ∈ NE(G).

Formally, for each player i we define σ ∗
i = (Q ∗

i , q00
i , τ ∗

i , δ∗
i) such that

Q ∗
i = (Q 1 × · · · × Q n) ∪ {q1

i , . . . ,qi−1
i ,qi+1

i , . . . ,qn
i }, and

q00
i = (q0

1, . . . ,q0
n).

Moreover, let τ ∗
i : Q ∗

i → V i be such that for all q∗
i ∈ Q ∗

i ,

τ ∗
i (q∗

i) =

⎧
⎨

⎩

τi(qi) if q∗
i = (q1, . . . ,qn),

v j
i if q∗

i = q j
i for some punishable j ≠ i,

∅ otherwise,

where q1
i , . . . , q

i−1
i , qi+1

i , . . . , qn
i are fresh and mutually distinct. Finally, we define δ∗

i : (Q ∗
i ∪ V) → Q ∗

i such that for all
v⃗ = (v1, . . . , vn) in V , all q∗

i = (q1, . . . , qn) in Q 1 × · · · × Q n ,

δ∗
i (q∗

i , v⃗) =
{

q j
i if v j ≠ τ j(q j) and vk = τk(qk) for all k ≠ j,

(δ1(q1, v⃗), . . . , δn(qn, v⃗)) otherwise.

Finally, for all v⃗ = (v1, . . . , vn) in V and all j ̸= i we stipulate that,

δ∗
i (q j

i , v⃗) = q j
i .

For (a), take the histories h(σ⃗) and h(σ⃗ ∗) and assume they are given by

q⃗[0] v⃗[0]−−→ q⃗[1] v⃗[1]−−→ · · · , and

r⃗[0] w⃗[0]−−−→ r⃗[1] w⃗[1]−−−→ · · · ,
respectively. By a straightforward induction on t it follows that, for all t ∈ N,

r⃗[t] = ((q1[t], . . . ,qn[t]), . . . , (q1[t], . . . ,qn[t])), and

w⃗[t] = v⃗[t].
Hence, for all t ∈ N, we have ρ(σ⃗)[t] = ρ(σ⃗ ∗)[t]; it follows that ρ(σ⃗ ∗) |* ψ , as desired, and that ρ(σ⃗ ∗) |* γk for each
player k who is not punishable.

To show (b), assume for contradiction that σ⃗ ∗ is not a Nash equilibrium. Then, there is a player j and some σ ′
j ∈ + j

such that ρ(σ⃗ ∗) ̸|* γ j as well as ρ(σ ∗
− j, σ

′
j) |* γ j . Observe that j has to be a punishable player. Moreover, it is obvious that

ρ(σ⃗ ∗) ̸= ρ(σ ∗
− j, σ

′
j). Accordingly, let t be the earliest time point such that

ρ(σ⃗ ∗)[t] ̸= ρ(σ ∗
− j,σ

′
j)[t].

78 J. Gutierrez et al. / Information and Computation 242 (2015) 53–79

Let the histories h(σ⃗ ∗) and h(σ⃗ ∗
− j, σ

′
j) for σ⃗ and σ⃗ ∗ up to t + 1 be given by, respectively,

r⃗[0] w⃗[0]−−−→ r⃗[1] w⃗[1]−−−→ · · · w⃗[t−1]−−−−→ r⃗[t] w⃗[t]−−→ r⃗[t + 1] w⃗[t+1]−−−−→,

s⃗[0] u⃗[0]−−→ s⃗[1] u⃗[1]−−→ · · · u⃗[t−1]−−−−→ s⃗[t] u⃗[t]−−→ s⃗[t + 1] u⃗[t+1]−−−−→ .

Then, w⃗[t′] = u⃗[t′] for all t′ < t , and v⃗[t] ̸= w⃗[t]. Now, consider an arbitrary player i ̸= j. Recall that player i’s strategy in
(σ⃗ ∗

− j, σ
′
j) is σ ∗

i . As u⃗[t′] = w⃗[t′] for all t′ < t , it follows that, for all t′ ≤ t ,

si[t′] = ri[t′] = (q1[t′], . . . ,qn[t′]).
In particular this holds for t′ = t and hence, si[t] = (q1[t], . . . , qn[t]). Now,

ui[t] = τ ∗(si[t]) = τ ∗(q1[t], . . . ,qn[t]) = τ (qi[t]).
Thus, having chosen i arbitrarily, we have,

uk[t] = τ (qk[t]) for all k ≠ j.

As u[t] ̸= w[t], it moreover follows that, u j[t] ̸= w j[t]. Also observe that

w j[t] = v j[t] = τ ∗
j (q[t]) = τ ∗(q1[t], . . . ,qn[t]) = τ j(q j[t]).

Hence, u j[t] ̸= τ j(q j). Accordingly, we obtain

u⃗[t] = (τ (q1[t]), . . . ,τ (q j−1[t]), u j[t],τ (q j+1[t]), . . . ,τ (qn[t])),
where u j[t] ̸= τ j(q j). Now, observe that

si[t + 1] = δ∗
i (si[t], u⃗[t]) = δ∗

i ((q1[t], . . . ,qn[t]), u⃗[t]) = δ∗
i (q∗

i [t], u⃗[t]) = q j
i .

As a consequence we also have

ui[t + 1] = τ ∗
i (si[t + 1]) = τ ∗

i (q j
i) = v j

i .

With i having been chosen arbitrarily,

u⃗[t + 1] = (v j
1, . . . , v j

j−1, u j[t + 2], v j
j+1, . . . , v j

n).

As we know that (v j
1, . . . , v

j
j−1, v

′
j, v

j
j+1, . . . , v

j
n) ̸|* ϕ j for all v ′

j ∈ V j , then,

(v j
1, . . . , v j

j−1, u j[t + 1], v j
j+1, . . . , v j

n) |̸* ϕ j .

Since

(v j
1, . . . , v j

j−1, v ′
j, v j

j+1, . . . , v j
n) = u[t + 1] = ρ(σ ∗

− j,σ
′
j),

we obtain (ρ(σ ∗
− j, σ

′
j), t + 1) ̸|* ϕ j . It follows that ρ(σ ∗

− j, σ
′
j) ̸|* Gϕ j and we can conclude that ρ(σ ∗

− j, σ
′
j) ̸|* γ j , a contra-

diction. ✷

References

[1] R. Aumann, L. Shapley, Long-term competition: a game-theoretic analysis, in: Essays in Game Theory in Honor of Michael Maschler, Springer, 1994,
pp. 1–15.

[2] H. Barringer, R. Kuiper, A. Pnueli, A really abstract concurrent model and its temporal logic, in: POPL, ACM Press, 1986, pp. 173–183.
[3] K. Binmore, Fun and Games, D. C. Heath and Company, 1992.
[4] E. Bonzon, M.C. Lagasquie-Schiex, J. Lang, Dependencies between players in Boolean games, Int. J. Approx. Reason. 50 (6) (2009) 899–914.
[5] J. Bradfield, J. Gutierrez, M. Wooldridge, On the structure of events in Boolean games, in: LOFT, 2014.
[6] K. Chatterjee, T.A. Henzinger, A survey of stochastic ω-regular games, J. Comput. Syst. Sci. 78 (2) (2012) 394–413.
[7] K. Chatterjee, T.A. Henzinger, B. Jobstmann, Environment assumptions for synthesis, in: CONCUR, in: LNCS, vol. 5201, Springer, 2008, pp. 147–161.
[8] P.E. Dunne, W. van der Hoek, S. Kraus, M. Wooldridge, Cooperative Boolean games, in: AAMAS (2), IFAAMAS, 2008, pp. 1015–1022.
[9] E.A. Emerson, Temporal and modal logic, in: Handbook of Theoretical Computer Science, vol. B: Formal Models and Semantics (B), Elsevier, 1990,

pp. 995–1072.
[10] E.A. Emerson, J.Y. Halpern, “Sometimes” and “not never” revisited: on branching versus linear time temporal logic, J. ACM 33 (1) (1986) 151–178.
[11] D. Fisman, O. Kupferman, Y. Lustig, Rational synthesis, in: TACAS, in: LNCS, vol. 6015, Springer, 2010, pp. 190–204.
[12] E. Grädel, M. Ummels, Solution concepts and algorithms for infinite multiplayer games, in: New Perspectives on Games and Interaction, in: Texts in

Logic and Games, vol. 4, Amsterdam University Press, 2008, pp. 151–178.
[13] J. Grant, S. Kraus, M. Wooldridge, I. Zuckerman, Manipulating Boolean games through communication, in: IJCAI, IJCAI/AAAI, 2011, pp. 210–215.
[14] J. Gutierrez, P. Harrenstein, M. Wooldridge, Iterated Boolean games, in: IJCAI, IJCAI/AAAI, 2013.

J. Gutierrez et al. / Information and Computation 242 (2015) 53–79 79

[15] J. Gutierrez, P. Harrenstein, M. Wooldridge, Reasoning about equilibria in game-like concurrent systems, in: KR, AAAI Press, 2014.
[16] P. Harrenstein, W. van der Hoek, J.J. Meyer, C. Witteveen, Boolean games, in: TARK VIII, 2001, pp. 287–298.
[17] D. Kozen, Results on the propositional mu-calculus, Theor. Comput. Sci. 27 (1983) 333–354.
[18] O. Kupferman, P. Madhusudan, P.S. Thiagarajan, M.Y. Vardi, Open systems in reactive environments: control and synthesis, in: CONCUR, in: LNCS,

vol. 1877, Springer, 2000, pp. 92–107.
[19] Y. Lustig, M.Y. Vardi, Synthesis from component libraries, Int. J. Softw. Tools Technol. Transf. 15 (5–6) (2013) 603–618.
[20] Z. Manna, A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems – Specification, Springer, 1992.
[21] Z. Manna, A. Pnueli, Temporal Verification of Reactive Systems – Safety, Springer, 1995.
[22] M.J. Osborne, A. Rubinstein, A Course in Game Theory, The MIT Press, 1994.
[23] A. Pnueli, R. Rosner, A framework for the synthesis of reactive modules, in: Concurrency, in: LNCS, vol. 335, Springer, 1988, pp. 4–17.
[24] A. Pnueli, R. Rosner, On the synthesis of a reactive module, in: POPL, ACM Press, 1989, pp. 179–190.
[25] A. Pnueli, R. Rosner, On the synthesis of an asynchronous reactive module, in: ICALP, in: LNCS, vol. 372, Springer, 1989, pp. 652–671.
[26] R. Selten, Re-examination of the perfectness concept for equilibrium points in extensive games, Int. J. Game Theory 4 (1975) 25–55.
[27] A.P. Sistla, E.M. Clarke, The complexity of propositional linear temporal logics, J. ACM 32 (3) (1985) 733–749.
[28] M. Ummels, Rational behaviour and strategy construction in infinite multiplayer games, in: FSTTCS, in: LNCS, vol. 4337, Springer, 2006, pp. 212–223.
[29] M. Ummels, D. Wojtczak, The complexity of Nash equilibria in simple stochastic multiplayer games, in: ICALP (2), in: LNCS, vol. 5556, Springer, 2009,

pp. 297–308.
[30] M. Ummels, D. Wojtczak, Decision problems for Nash equilibria in stochastic games, in: CSL, in: LNCS, vol. 5771, Springer, 2009, pp. 515–529.
[31] M. Ummels, D. Wojtczak, The complexity of Nash equilibria in limit-average games, in: CONCUR, in: LNCS, vol. 6901, Springer, 2011, pp. 482–496.
[32] M.Y. Vardi, From verification to synthesis, in: VSTTE, in: LNCS, vol. 5295, Springer, 2008, p. 2.

